JP5584052B2 - High efficiency heat transfer device in air conditioning system - Google Patents

High efficiency heat transfer device in air conditioning system Download PDF

Info

Publication number
JP5584052B2
JP5584052B2 JP2010185606A JP2010185606A JP5584052B2 JP 5584052 B2 JP5584052 B2 JP 5584052B2 JP 2010185606 A JP2010185606 A JP 2010185606A JP 2010185606 A JP2010185606 A JP 2010185606A JP 5584052 B2 JP5584052 B2 JP 5584052B2
Authority
JP
Japan
Prior art keywords
temperature
air conditioning
air
return
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010185606A
Other languages
Japanese (ja)
Other versions
JP2012042162A (en
Inventor
信 沼田
敏明 小川
秀喜 安河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonets Corp
Original Assignee
Tonets Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonets Corp filed Critical Tonets Corp
Priority to JP2010185606A priority Critical patent/JP5584052B2/en
Publication of JP2012042162A publication Critical patent/JP2012042162A/en
Application granted granted Critical
Publication of JP5584052B2 publication Critical patent/JP5584052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

この発明は、空調システムにおいて冷温水の往き・返り温度差の問題を解決することにより低負荷時でも所定の温度差を確保して熱源側に戻ることにより、搬送動力の低減だけでなく熱供給設備のシステムCOPも向上する高効率熱搬送装置に関するものである。   This invention solves the problem of the temperature difference between the return and return of cold / hot water in the air conditioning system, ensuring a predetermined temperature difference even at low loads and returning to the heat source side, not only reducing the transport power but also supplying heat. The present invention relates to a high-efficiency heat transfer device that improves the system COP of the facility.

地域冷暖房への社会的な期待は、初期には公害防止、都市景観の向上、供給の信頼性などであったものから省資源・省エネルギーの推進、都市の防災、地球環境の保全へとより高く広範囲な公益性のあるものへと拡大してきた。これらの社会的な要請に呼応した新たなシステムとして河川水、下水等を利用した未利用エネルギーシステム、環境調和型エネルギーのコージェネレイションシステム及び電力負荷の平準化に寄与する蓄熱システム等様々な地域冷暖房システムが採り入れられてきている。   Social expectations for district heating and cooling are higher from the initial prevention of pollution, improvement of urban landscape, reliability of supply, etc. to promotion of resource and energy conservation, urban disaster prevention, and preservation of the global environment. It has been expanded to a wide range of public interest. Various district heating and cooling systems such as unused energy systems using river water, sewage, etc., environmentally harmonized energy cogeneration systems, and heat storage systems that contribute to leveling of electric power load as new systems in response to these social demands The system has been adopted.

地域冷暖房とは、一か所又は数か所の熱供給設備(地域冷暖房プラント)で集中的に製造された冷水、温水、蒸気等の熱媒を地域導管を用いて複数の需要家建物へ供給するシステムである。図15はその概念図を示す。また、熱容量の決定は最大負荷に対応するばかりでなく、年間の圧倒的に多い部分負荷(図16参照)に、いかに効率よく対応して運転できるかを考慮した熱源の設計が現在の最大の課題の一つとなっている。   District heating / cooling is the supply of heat medium such as cold water, hot water, steam, etc., intensively produced at one or several heat supply facilities (district heating / cooling plants) to multiple customer buildings using regional conduits. System. FIG. 15 shows a conceptual diagram thereof. In addition, the determination of the heat capacity not only corresponds to the maximum load, but the design of the heat source that considers how efficiently it can operate corresponding to the overwhelmingly large partial load (see Fig. 16) of the year is the largest One of the challenges.

熱媒体の種類や供給温度は、需要家ニーズとして要求される温度レベルとプラント側のシステム設計条件とのバランスによって冷・温熱媒は定められるべきである。   The type of the heat medium and the supply temperature should be determined according to the balance between the temperature level required as a consumer need and the system design conditions on the plant side.

冷熱媒としては、一般に冷水が用いられている。初期の頃の熱供給施設では、冷水の送り温度として4〜6°Cの水温が用いられていたが、特に需要家で低温度を要求される用途がない限り、建物の冷房用の熱媒としては7°Cでも十分であり、熱源機器のCOP(Coefficient of Performance)も冷水温度が高いほど良く、最近では7°Cが良く用いられている。冷水の往き返りの温度差は、地域導管や需要家設備の配管の口径をなるべく小さくするためと、水搬送動力を低減するために、温度差を冷水の場合は6〜7°Cに、温水の場合は10〜15°Cにとっている例が多い。しかし、実態は図17に示すように、所定の温度差を確保できない場合が多く、冷熱源機の負荷率が低下し、結果、熱供給設備のシステムCOPは大きく低下している。   In general, cold water is used as the cooling medium. In the early days of heat supply facilities, a water temperature of 4 to 6 ° C was used as the feed temperature of the cold water. However, unless there is a use requiring a low temperature by the customer, the heat medium for cooling the building 7 ° C is sufficient, and the COP (Coefficient of Performance) of the heat source device is better as the cold water temperature is higher, and recently 7 ° C is often used. The temperature difference between the chilled water and the cold water is 6 to 7 ° C in the case of chilled water, in order to reduce the diameter of the pipes of local conduits and customer equipment as much as possible and to reduce the water transfer power. In the case of, there are many cases where the temperature is 10 to 15 ° C. However, in reality, as shown in FIG. 17, there are many cases where a predetermined temperature difference cannot be ensured, the load factor of the cold heat source machine is lowered, and as a result, the system COP of the heat supply facility is greatly lowered.

この様に冷水の往き・返り温度差が確保できない要因は、以下のものである。第1の要因は、給気温度設定変更にある。変風量空調システムでは、設定室温に達していないVAVユニットが存在すると、設定室温を満足するように設定給気温度を冷水の場合は下限値まで、温水の場合は上限値まで変更する。この給気温度下限値(温水の場合は上限値)が空調機設計条件給気温度以下(温水の場合は以上)で設定されていると、目標値に達成するためにバルブを全開にすることとなり、水量が過剰となり、水温差が設計値以下となる。例えば、給気温度設定値をSA=15°C→11°Cに変更すると、冷水往き・返り温度差はΔt=10°C→5°Cとなる(図18参照)。空調機の吹き出し温度差拡大により空調側搬送動力は減少するが、反面、水側搬送動力は増加し、冷温熱源機の効率も低下してしまう。   The reasons why the difference in temperature between the return and return of cold water cannot be ensured are as follows. The first factor is a change in the supply air temperature setting. In the variable air volume air conditioning system, if there is a VAV unit that has not reached the set room temperature, the set supply air temperature is changed to a lower limit value for cold water and to an upper limit value for hot water so as to satisfy the set room temperature. If this air supply temperature lower limit (upper limit for hot water) is set below the air conditioner design condition supply air temperature (or higher for hot water), the valve must be fully opened to achieve the target value. Thus, the amount of water becomes excessive, and the water temperature difference becomes less than the design value. For example, if the supply air temperature setting value is changed from SA = 15 ° C. → 11 ° C., the cold water going-back temperature difference becomes Δt = 10 ° C. → 5 ° C. (see FIG. 18). Although the air-conditioning side conveyance power decreases due to the expansion of the air temperature difference of the air-conditioning unit, the water-side conveyance power increases, and the efficiency of the cold / hot heat source machine also decreases.

また、第2の要因として、冬期の冷房が常態化している。室内発熱条件の変化により、大規模建物を中心として冬期の冷房が常態化しつつある。そのため、在来の夏期条件で冷房設計、冬期条件で暖房設計という設計手法では想定されないような不具合が運転現場で発生している。その代表的なものが、冷水の往き・返り温度差の縮小である。これに関して、冬期条件で冷房を設計すると夏期の条件によるより大きいコイル列数が要求されるという事例も報告されている。例えば、夏期 室内26°CDB、50%RH/吹き出し空気15°CDB、95%RHから冬期 室内22°CDB、40%RH/吹き出し空気11°CDB、80%RHに変更すると夏期で決定されたコイル列6が冬期では8列必要となる。また、6列のまま冬期運転を行うと冷水の往き・返り温度差は、4°C程度縮小されてしまう。   In addition, as a second factor, cooling in winter has become normal. Due to changes in indoor heat generation conditions, winter cooling is becoming normal, especially in large buildings. For this reason, troubles that cannot be envisaged by the design method of cooling design under conventional summer conditions and heating design under winter conditions occur at the operation site. A typical example is the reduction in the temperature difference between the return and return temperatures of cold water. In this regard, it has been reported that when a cooling system is designed in winter conditions, a larger number of coil arrays is required depending on summer conditions. For example, a coil determined in the summer when the indoor room 26 ° CDB, 50% RH / blowing air 15 ° CDB, 95% RH is changed to the winter indoor 22 ° CDB, 40% RH / blowing air 11 ° CDB, 80% RH Row 6 requires 8 rows in winter. In addition, if the winter operation is performed with six rows, the temperature difference between the return and return of cold water is reduced by about 4 ° C.

第3の要因としてはコイルの返り温度特性にあった空調システムがないことである。外気の変化や室内発熱の変化等によって各空調機の負荷が小さくなるにつれて、空調機コイルの冷水(温水)出口温度の特性が、次の二つの特性に大別できる。言い換えれば、空調機コイルは空調システム(使い方)によって、冷水(温水)往き返り「温度差が付く特性」と「温度差が付かない特性」を持っていることである。従来は、この特性の違いを把握せず、全ての空調システムの返りを一本の返り配管に一緒くたにして返してきた。   The third factor is the absence of an air conditioning system that matches the return temperature characteristics of the coil. As the load on each air conditioner decreases due to changes in the outside air, changes in indoor heat generation, etc., the characteristics of the cold water (hot water) outlet temperature of the air conditioner coil can be broadly divided into the following two characteristics. In other words, the air conditioner coil has a “characteristic with a temperature difference” and a “characteristic without a temperature difference” when the cold water (hot water) goes back and forth depending on the air conditioning system (how to use). Conventionally, the return of all air conditioning systems has been returned together in a single return pipe without grasping this difference in characteristics.

空調機システムグループ1
負荷が小さくなるにつれて冷水(温水)返り温度が空調機の入口空気温度に近づいていく特性(温度差が付く特性)をもつ空調システム(図19及び図20参照)。
空調機システムグループ2
負荷が小さくなるにつれて冷水(温水)返り温度が空調機の出口空気温度に近づいていく特性(温度差が付かない特性)をもつ空調システム(図19及び図20参照)。
Air conditioner system group 1
An air conditioning system having a characteristic (characteristic that a temperature difference is added) in which the cold water (hot water) return temperature approaches the inlet air temperature of the air conditioner as the load decreases (see FIGS. 19 and 20).
Air conditioner system group 2
An air conditioning system having a characteristic (characteristic that there is no temperature difference) in which the cold water (warm water) return temperature approaches the outlet air temperature of the air conditioner as the load decreases (see FIGS. 19 and 20).

この様な冷温水の返り温度差に対して考慮した熱搬送システムは構築されていないのが現状である。   The present condition is that the heat conveyance system which considered such return temperature difference of cold / hot water is not constructed | assembled.

特開平9−243140号公報JP-A-9-243140 特開平6―159741号公報Japanese Patent Laid-Open No. 6-159741 特開平6−002891号公報JP-A-6-002891

しかしながら、冷温水の往き・返り温度差が確保できない場合は以下の弊害がある。まず、搬送動力の増加、熱供給設備のシステムのCOPの低下である。空調機の冷温水制御弁は、室内(還気)あるいは給気の温度を設定値に保つようコントロールしている。冷温水返り温度は一般的にコントロールの対象では無いから、冷温水往き・返り温度差は変動する。冷温水往き・返り温度差が設計値未満になると冷温水の搬送動力の無駄が発生するだけでなく、冷温熱源機は「熱量負荷」でなく、「流量負荷」による台数制御となり、冷温熱源機の負荷率が低下し、結果、熱供給設備のシステムCOPは大きく低下する。   However, when the difference in temperature between the return and return of cold / hot water cannot be ensured, there are the following problems. First, the conveyance power increases and the COP of the heat supply equipment system decreases. The cold / hot water control valve of the air conditioner controls the temperature of the room (return air) or the supply air to be kept at a set value. The cold / hot water return temperature is not generally controlled, so the cold / hot water return / return temperature difference varies. When the temperature difference between the return and return temperatures of the cold / hot water is less than the design value, not only is the waste of the cold / hot water conveyance power generated, but the cold / heat source equipment is controlled by the number of units by the “flow load” instead of the “heat load”. As a result, the system COP of the heat supply facility is greatly reduced.

また、返り温度制御による送水温度が上昇する。地域熱供給設備の需要家設備において、冷温水の往き・返り温度差が確保できないと、熱供給設備の熱源機器の運転効率は悪化し、熱供給設備の能力低下を招く。よって、冷水の場合は返り温度が熱供給規定の契約温度以上、温水の場合は契約温度以下になるように、需要家設備側において対策をとっている。それでも返り温度が契約温度を確保されない場合には、供給熱媒の流量を絞り、熱量の有効活用を促す操作を行う。よって、需要家設備の送水温度が冷水の場合は上昇し、温水の場合は下降するので、負荷の大きな空調機では、能力が不足してしまうことがある。また、需要家設備側の送水量も増加し、その結果、水側搬送動力は勿論、さらに変風量空調システムの場合は空気側の搬送動力も大きく増加する。   Moreover, the water supply temperature by return temperature control rises. If the difference in temperature between the return and return of cold / hot water cannot be ensured in the customer facility of the district heat supply facility, the operating efficiency of the heat source equipment of the heat supply facility deteriorates and the capacity of the heat supply facility decreases. Therefore, measures are taken on the customer facility side so that the return temperature is not less than the contract temperature specified in the heat supply regulations in the case of cold water and not more than the contract temperature in the case of hot water. If the return temperature still does not secure the contract temperature, the flow rate of the supply heat medium is reduced to perform an operation to promote effective use of the heat quantity. Therefore, since the water supply temperature of the customer facility rises when it is cold water and falls when it is hot water, the capacity of an air conditioner with a large load may be insufficient. In addition, the amount of water supplied on the customer facility side is also increased. As a result, not only the water-side conveyance power but also the air-side conveyance power is greatly increased in the case of the variable air volume air conditioning system.

そこで、この発明は、冷温熱源機から複数の空調系統に冷温熱媒を供給し、各空調系統の負荷側空調機から再び冷温熱源機に冷温熱媒が戻ってくる空調システムにおいて、負荷側空調機の低負荷時でも所定の温度差を確保して熱源側に冷温熱媒が戻ってくることにより、搬送動力の低減だけでなく熱供給設備のシステムCOPも向上する高効率熱搬送装置を提供することを目的としたものである。   Therefore, the present invention provides a load-side air conditioner in an air-conditioning system in which a cooling / heating medium is supplied from a cooling / heating source to a plurality of air-conditioning systems, and the cooling / heating medium is returned to the cooling / heating source from the load-side air conditioner of each air-conditioning system. Providing a high-efficiency heat transfer device that not only reduces transfer power but also improves the system COP of heat supply equipment by ensuring a predetermined temperature difference and returning the cooling / heating medium to the heat source even when the machine is under low load It is intended to do.

請求項1の発明は、冷温熱源機を有する熱源部と複数の空調系統を並列接続した負荷部とを熱交換器を介して接続し、前記熱源部から熱交換器を介して負荷部の前記各空調系統に冷温熱媒を供給し、各空調系統の空調機から再び熱交換器を介して熱供給側に冷温熱媒が戻ってくる空調システムにおいて、各空調系統の空調機コイルの冷温熱媒の入口温度と出口温度の差に基づく出口温度特性で分けた複数の返り配管を設け、これらの配管を負荷側の返り温度差の大きな順に配管し、これらの各返り配管に夫々設けた前記各熱交換器を直列に接続した高効率熱搬送装置とした。
The invention of claim 1 connects a heat source part having a cold / hot heat source unit and a load part in which a plurality of air conditioning systems are connected in parallel via a heat exchanger, and the load part is connected to the load part via the heat exchanger. In an air conditioning system in which a cooling / heating medium is supplied to each air conditioning system and the cooling / heating medium returns from the air conditioner of each air conditioning system to the heat supply side again through the heat exchanger, the cooling / heating energy of the air conditioning coil of each air conditioning system A plurality of return pipes divided by outlet temperature characteristics based on the difference between the inlet temperature and the outlet temperature of the medium are provided, these pipes are arranged in descending order of the return temperature difference on the load side, and each of these return pipes is provided. A high-efficiency heat transfer device in which each heat exchanger was connected in series was used.

また、請求項2の発明は、前記請求項1の発明において、前記各空調系統の空調機コイルの冷温熱媒の出口温度を計測する温度計を設け、当該各温度計によって計測した出口温度特性によって、当該空調機の返り管の終端部を前記複数の返り配管に選択的に接続できる切り替手段を設けた、高効率熱搬送装置とした。   The invention of claim 2 provides the thermometer which measures the exit temperature of the cooling / heating medium of the air conditioner coil of each air conditioning system in the invention of claim 1, and the exit temperature characteristic measured by each thermometer. Thus, a high-efficiency heat transfer device provided with switching means that can selectively connect the end of the return pipe of the air conditioner to the plurality of return pipes.

また、請求項3の発明は、前記請求項1又は2の発明において、前記複数の空調系統に冷温水を送る配管を、各空調系統の求める温度によって複数に分けて設けた、高効率熱搬送装置とした。   Further, the invention of claim 3 is the high efficiency heat transfer according to the invention of claim 1 or 2, wherein piping for sending cold / warm water to the plurality of air conditioning systems is divided into a plurality according to the temperature required by each air conditioning system. The device.

また、請求項4の発明は、前記請求項1、2又は3のいずれかの発明において、前記熱源部に、各空調系統の求める温度に対応する異なる温度の冷温水を供給できる複数の冷温熱源製造手段を、直列又は/及び並列に配置した、高効率熱搬送装置とした。   Further, the invention of claim 4 is the invention according to any one of claims 1, 2, or 3, wherein a plurality of cold / hot heat sources capable of supplying cold / hot water having different temperatures corresponding to the temperature required by each air conditioning system to the heat source section. The production means was a high-efficiency heat transfer device arranged in series or / and in parallel.

請求項1の発明によれば、冷温熱媒の返り温度差を、低負荷時でも確保して熱源側に戻ってくる構成としたため、各空調システムの返り温度特性を把握することにより、より高効率な運転が可能である。また、複数の返り配管と、これらに対応する複数の熱交換器により、建物特性や運用特性の変化に対して、前記返り配管と熱交換器を増設することにより高効率を維持できる。また、年間を通じて所定の温度差以上を確保できることにより、冷温熱媒の搬送動力の無駄がなくなり、冷温熱源機は常に熱量負荷による台数制御となり、熱供給設備のシステムCOPが向上する。また、需要家設備側の返り温度制御による送水温度の、冷水の場合は上昇、温水の場合は、下降がないため、送水量の増加による水側搬送動力の増加や変風量空調システムの場合の空気側の搬送動力増加もない。   According to the first aspect of the present invention, the return temperature difference of the cooling / heating medium is ensured even at a low load and returned to the heat source side. Therefore, by grasping the return temperature characteristics of each air conditioning system, Efficient operation is possible. Further, with a plurality of return pipes and a plurality of heat exchangers corresponding to these, high efficiency can be maintained by adding the return pipes and heat exchangers with respect to changes in building characteristics and operational characteristics. In addition, since a predetermined temperature difference or more can be secured throughout the year, there is no waste of power for transporting the cooling / heating medium, and the number of cooling / heating source units is always controlled by the amount of heat load, thereby improving the system COP of the heat supply facility. In addition, the water supply temperature by the return temperature control on the customer's equipment side rises in the case of cold water and does not fall in the case of hot water. There is no increase in conveyance power on the air side.

また、大温度差高効率空調システムが可能となり、送水量は従来システムの1/2程度となり、配管サイズのダウン等のイニシャルコストの低減、空気側の搬送動力を増加させることもなく、水側の搬送動力を1/2〜1/8程度に削減することが可能となる。また、熱供給設備のシステムCOPの向上に大きく貢献する。また、冷温熱源機と空調機を持ったどのような施設でも有効なシステムである。特に、熱源棟を持ち、空調機までの配管が長い工場や、長い地域導管を備えた地域冷暖房施設に有効なシステムである。   In addition, a large temperature difference high-efficiency air conditioning system is possible, and the amount of water supplied is about half that of the conventional system, reducing the initial cost such as downsizing of the piping, increasing the conveyance power on the air side, and the water side Can be reduced to about 1/2 to 1/8. In addition, it greatly contributes to the improvement of the system COP of the heat supply equipment. In addition, the system is effective in any facility having a cold / hot heat source machine and an air conditioner. In particular, this system is effective for factories that have a heat source building and have long piping to the air conditioner and district heating and cooling facilities with long regional conduits.

また、請求項2の発明によれば、建物用途の変更や負荷形態の変化により、「給気温度設定の変更」や「冬期の冷房が常態化」と同様の運転にせざるを得ない場合があるが、このような場合でも、切り替え手段によって、大温度差返り配管へでも小温度差返り配管へも切り替えることができる。   In addition, according to the invention of claim 2, due to a change in building use or a change in load form, there is a case where the same operation as “change in supply air temperature setting” or “normal cooling in winter” is unavoidable. However, even in such a case, it is possible to switch to the large temperature difference return pipe or the small temperature difference return pipe by the switching means.

また、請求項3の発明によれば、冷温水往き配管を低温と高温の2系統送水システムとしたので更なる熱供給設備のシステムCOPの向上を図ることができる。   Further, according to the invention of claim 3, since the cold / hot water outgoing pipe is a low-temperature and high-temperature two-line water supply system, it is possible to further improve the system COP of the heat supply facility.

また、請求項4の発明によれば、例えば冷水の場合、高温側を処理する冷温熱源製造手段と低温側を処理する冷温熱源製造手段を直列又は/及び並列に配置することにより、大温度差(10°C以上)の冷熱供給システムが構築でき、冷温熱源製造手段の効率が大きく向上し(冷熱源機の特性:COPは冷水温度が高いほど良くなる)、搬送動力の低減だけでなく熱供給設備のシステムCOPも向上する。   According to the invention of claim 4, for example, in the case of cold water, a large temperature difference can be obtained by arranging the cold / hot heat source production means for treating the high temperature side and the cold / heat source production means for treating the low temperature side in series or / and in parallel. (10 ° C or higher) cooling power supply system can be constructed, and the efficiency of the cooling / heating source manufacturing means is greatly improved (characteristic of the cooling / heating source machine: COP is better as the chilled water temperature is higher) The system COP of the supply facility is also improved.

この発明は、冷温熱源機を有する熱源部と複数の空調系統を並列接続した負荷部とを熱交換器を介して接続し、前記熱源部から熱交換器を介して負荷部の前記各空調系統に冷温熱媒を供給し、各空調系統の空調機から再び熱交換器を介して熱供給側に冷温熱媒が戻ってくる空調システムにおいて、各空調系統の空調機コイルの冷温熱媒の出口温度特性で分けた複数の返り配管を設け、これらの配管を負荷側の返り温度差の大きな順に配管し、これらの各返り配管に夫々設けた前記各熱交換器を直列に接続した高効率熱搬送装置とした。   The present invention connects a heat source unit having a cold / hot heat source unit and a load unit in which a plurality of air conditioning systems are connected in parallel via a heat exchanger, and each air conditioning system of the load unit from the heat source unit via a heat exchanger. In the air conditioning system in which the cooling / heating medium returns to the heat supply side from the air conditioner of each air conditioning system to the heat supply side again through the heat exchanger, the outlet of the cooling / heating medium of the air conditioning coil of each air conditioning system A plurality of return pipes divided according to temperature characteristics, these pipes are arranged in descending order of the return temperature difference on the load side, and the heat exchangers provided in each of these return pipes are connected in series. A transfer device was used.

これにより、冷温熱媒の返り温度差を、低負荷時でも確保して熱源側に戻ってくる構成としたためより高効率な運転が可能である。   As a result, the return temperature difference of the cooling / heating medium is ensured even at a low load and returned to the heat source side, so that a more efficient operation is possible.

以下、この発明の実施例1を図に基づいて説明する。まず、この発明の構成を説明する前に、返り温度特性と2つの空調システムグループについて説明する。空調システムは、外気の変化や室内発熱の変化等によって各空調機の負荷が小さくなるにつれて、空調機コイルの冷水(温水)出口温度の特性が次の2つの特性に大別できる。   Embodiment 1 of the present invention will be described below with reference to the drawings. First, before describing the configuration of the present invention, the return temperature characteristics and the two air conditioning system groups will be described. In the air conditioning system, as the load on each air conditioner becomes smaller due to a change in outside air, a change in indoor heat generation, or the like, the characteristics of the cold water (hot water) outlet temperature of the air conditioner coil can be roughly divided into the following two characteristics.

空調システムグループ1
これは負荷が小さくなるにつれて冷水(温水)返り温度が空調機の入口空気温度に近づいていく特性をもつ空調システムであり、図4に示す定風量循環空調機システム、図5に示す定風量外気混合循環空調機システム、図6に示す変風量循環空調機システムがある。
Air conditioning system group 1
This is an air conditioning system having a characteristic that the return temperature of cold water (warm water) approaches the air temperature at the inlet of the air conditioner as the load decreases. The constant air flow circulating air conditioner system shown in FIG. 4 and the constant air flow outside air shown in FIG. There is a mixed circulation air conditioner system, and a variable air volume circulation air conditioner system shown in FIG.

この空調機システム1は、図4〜6に示すように、還気温度あるいは室内温度が一定になるように空調機コイルの熱出力を調整することで熱負荷を処理している。この負荷が小さくなるにつれて空調機の出口空気温度が図7に示すように入口空気温度に近づいていく特性をもっており、冷水(温水)の返り温度も、100%負荷時は、所定の設計温度差を取った温度(コイル列数の余裕により、設計温度差以上となる場合もある)となり、負荷が小さくなるにつれて図19及び20に示すように温度差は大きくなっていき、入口空気温度に近づいていく。図8に実例を示す。   As shown in FIGS. 4 to 6, the air conditioner system 1 processes the heat load by adjusting the heat output of the air conditioner coil so that the return air temperature or the room temperature becomes constant. As this load decreases, the air temperature at the outlet of the air conditioner approaches the inlet air temperature as shown in FIG. 7, and the return temperature of the cold water (warm water) is also a predetermined design temperature difference at 100% load. The temperature difference increases as the load decreases, and the temperature difference increases as shown in FIGS. 19 and 20 and approaches the inlet air temperature. To go. An example is shown in FIG.

空調システムグループ2
これは負荷が小さくなるにつれて冷水(温水)返り温度が空調機の出口空気温度に近づいていく特性をもつ空調システムであり、図9に示す、定風量外気処理空調機システム、図10に示す変風量外気処理空調機システムがある。
Air conditioning system group 2
This is an air conditioning system having a characteristic that the return temperature of cold water (warm water) approaches the outlet air temperature of the air conditioner as the load becomes smaller. The constant air flow outside air processing air conditioner system shown in FIG. There is an air volume outside air treatment air conditioning system.

この空調機システム2は、図9〜10に示すように、給気温度が一定になるように空調機コイルの熱出力を調整することで熱負荷を処理している。空調機の入口空気温度が図11に示すように出口空気温度に近づいていくことで負荷が小さくなっていく特徴を持っており、冷水(温水)の返り温度も、100%負荷時は、所定の設計温度差を取った温度(コイル列数の余裕により、設計温度差以上となる場合もある)となり、負荷が小さくなるにつれてコイル列数に余裕ができ、図19及び20に示すように、一旦、温度差は大きくなり(その度合いは、コイル列数の余裕と出口空気温度で異なる)、その後、出口空気温度に近づいていく。図12及び13に実例を示す。   As shown in FIGS. 9 to 10, the air conditioner system 2 processes the heat load by adjusting the heat output of the air conditioner coil so that the supply air temperature becomes constant. As shown in FIG. 11, the load air becomes smaller as the air temperature of the air conditioner approaches the air temperature of the outlet as shown in FIG. 11, and the return temperature of the cold water (hot water) is also predetermined at 100% load. The temperature is obtained by taking the design temperature difference of (there may be more than the design temperature difference due to the margin of the number of coil arrays), and the number of coil arrays can be afforded as the load decreases, as shown in FIGS. Once the temperature difference becomes large (the degree varies depending on the margin of the number of coil arrays and the outlet air temperature), and then approaches the outlet air temperature. Examples are shown in FIGS.

この様な返り温度特性の異なる空調システムの返り冷温熱媒を、従来は図14に示すように、1系統の配管で熱供給システムへ返送していたため、返り温度差が小さくなった時に対応する方法しかなかった。   Since the return cooling / heating medium of such an air conditioning system having different return temperature characteristics has been conventionally returned to the heat supply system by one line of piping as shown in FIG. 14, it corresponds to when the return temperature difference becomes small. There was only a way.

そこで、この発明では、図1に示すように、返り温度特性の異なるごとに返り配管を設け、前記空調システムグループ1の冷水(温水)の返りは「冷水返り温度高配管(温水の場合は、温水返り温度低配管)」(以下、大温度差返り配管という)へ接続し、前記空調システムグループ2の冷水(温水)の返りは「冷水返り温度低配管(温水の場合は、温水返り温度高配管)」(以下、小温度差返り配管という)へ接続する。   Therefore, in the present invention, as shown in FIG. 1, a return pipe is provided for each return temperature characteristic, and the return of the cold water (hot water) of the air conditioning system group 1 is “a cold water return temperature high pipe (in the case of hot water, "Hot water return temperature low piping") (hereinafter referred to as large temperature differential return piping), the return of cold water (warm water) of the air conditioning system group 2 is "cold water return temperature low piping (in the case of hot water, hot water return temperature high) Piping) ”(hereinafter referred to as small temperature difference return piping).

また、建物用途の変更や負荷形態の変化により、「給気温度設定の変更」や「冬期の冷房が常態化」と同様の運転にせざるを得ない場合があるので、図1に示すように全ての空調システムの冷水(温水)の返りは、大温度差返り配管と小温度差返り配管の両方に接続しておき、夫々の配管に設置するバルブを切り替えて使用する。   In addition, as shown in FIG. 1, there is a case where the same operation as “change in supply air temperature setting” or “cooling in winter is normal” may be required due to changes in building usage or changes in load form. The return of cold water (hot water) of all air conditioning systems is connected to both the large temperature difference return pipe and the small temperature difference return pipe, and the valves installed in each pipe are switched for use.

次に図1の構成について説明する。冷凍機1を有する熱源部2と複数の空調システムグループ3a、3bを並列接続した負荷部4とが熱交換器5で接続されている構成となっている。これにより、熱源部2と負荷部4は縁切りされている。   Next, the configuration of FIG. 1 will be described. The heat source unit 2 having the refrigerator 1 and a load unit 4 in which a plurality of air conditioning system groups 3 a and 3 b are connected in parallel are connected by a heat exchanger 5. Thereby, the heat source part 2 and the load part 4 are cut off.

前記熱源部2は2台の冷凍機1を直列に接続しており、1台は高温用冷凍機1a、他の1台は低温用冷凍機1bである。また、一次ポンプ6により冷凍機1からの冷水が前記熱交換器5を通り前記冷凍機1に戻るようになっている。また、この熱源部2には前記熱交換器5と並列に、バルブ7aを有するバイパス配管7が設けられ、さらに、熱交換器5bの手前にバルブ8が設けられている。   The heat source section 2 connects two refrigerators 1 in series, one being a high-temperature refrigerator 1a and the other being a low-temperature refrigerator 1b. Further, cold water from the refrigerator 1 is returned to the refrigerator 1 through the heat exchanger 5 by the primary pump 6. Further, the heat source section 2 is provided with a bypass pipe 7 having a valve 7a in parallel with the heat exchanger 5, and further, a valve 8 is provided in front of the heat exchanger 5b.

また、負荷部4の各空調システムグループ3a、3bには、冷水供給管9を通して冷水が供給される。また、各空調システムグループ3a、3bを通過した冷水を戻す冷水返り管10が設けられている。なお、前記各空調システムグループ3a、3bの手前の各冷水供給管9にはバルブ9a、9bが夫々設けられている。   Further, cold water is supplied to the air conditioning system groups 3 a and 3 b of the load unit 4 through the cold water supply pipe 9. Moreover, the cold water return pipe | tube 10 which returns the cold water which passed each air conditioning system group 3a, 3b is provided. Each cold water supply pipe 9 in front of the air conditioning system groups 3a and 3b is provided with valves 9a and 9b, respectively.

また、各空調システムグループ3a又は3bは、前記空調シテムグループ1、2に相応し、空調システムグループ3aは、負荷が小さくなるにつれて冷水(温水)返り温度が空調機の入口空気温度に近づいていく特性をもつ空調機から構成されたもので、空調システムグループ3bは、負荷が小さくなるにつれて冷水(温水)返り温度が空調機の出口空気温度に近づいていく特性をもつ空調機から構成されたものである。   Each air conditioning system group 3a or 3b corresponds to the air conditioning system group 1 or 2, and the air conditioning system group 3a has a cold water (hot water) return temperature that approaches the inlet air temperature of the air conditioner as the load decreases. The air conditioning system group 3b is composed of air conditioners having characteristics such that the return temperature of the cold water (hot water) approaches the outlet air temperature of the air conditioner as the load decreases. It is.

また、前記各冷水返り管10の終端部には、各空調機コイルの冷水の出口温度特性で分けた複数の返り配管、すなわち、大温度差返り配管11、小温度差返り配管12が夫々接続されている。そしてこれらの大温度差返り配管11、小温度差返り配管12を返り温度差の大きな順に配管し、これらの各大温度差返り配管11、小温度差返り配管12の他端に設けた熱交換器5a、5bを直列に接続し、これらがさらに一次ヘッダ13に接続されている。また、前記冷水供給管9には、二次ポンプ14により、二次ヘッダ15を介して冷水が供給される。   Further, a plurality of return pipes divided by the outlet temperature characteristics of the cold water of each air conditioner coil, that is, a large temperature difference return pipe 11 and a small temperature difference return pipe 12 are connected to the end portion of each cold water return pipe 10. Has been. Then, the large temperature difference return pipe 11 and the small temperature difference return pipe 12 are arranged in the descending order of the return temperature difference, and heat exchange provided at the other end of each of the large temperature difference return pipe 11 and the small temperature difference return pipe 12 is performed. The devices 5 a and 5 b are connected in series, and these are further connected to the primary header 13. Further, cold water is supplied to the cold water supply pipe 9 by a secondary pump 14 via a secondary header 15.

また、前述のように、2個の熱交換器5a、5bを用いて小温度差返り配管12は、大温度差用の熱交換器5aで熱交換された後の下流側配管に接続し、小温度差用の熱交換器5bの上流側配管に接続している。前記大温度差返り配管11は、最も上流の大温度差用の熱交換器5aの入口側に接続し、熱源部2側の返り温度を所定以上(温水の場合は所定以下)の温度とする。最も下流の小温度差用の熱交換器5bの出口側は、熱源部2側との熱交換により、所定温度に制御し、送水する。
図1のバルブ8は。熱源部2側との熱交換により、所定温度に制御する構成であるが、バルブ8をなくし、最も下流の小温度差用の熱交換器5bの出口側を一次ポンプ6のインバータで制御する場合もある。
In addition, as described above, the small temperature difference return pipe 12 using the two heat exchangers 5a and 5b is connected to the downstream pipe after heat exchange is performed in the heat exchanger 5a for large temperature difference, It is connected to the upstream piping of the heat exchanger 5b for small temperature difference. The large temperature difference return pipe 11 is connected to the inlet side of the heat exchanger 5a for the most upstream large temperature difference, and the return temperature on the heat source unit 2 side is set to a predetermined temperature (or lower than that in the case of hot water). . The outlet side of the heat exchanger 5b for the small temperature difference at the most downstream side is controlled to a predetermined temperature by the heat exchange with the heat source unit 2 side, and water is supplied.
The valve 8 in FIG. Although it is the structure which controls to predetermined temperature by heat exchange with the heat-source part 2 side, when the valve | bulb 8 is lose | eliminated and the exit side of the heat exchanger 5b for the small temperature differences most downstream is controlled by the inverter of the primary pump 6 There is also.

また、各冷水返り管10は、大温度差返り配管11及び小温度差返り管12の両方に接続されているが、各接続部手前の冷水返り管10各枝管にバルブ16を夫々設け、各冷水返り管10に設けた温度計によって計測した出口温度特性により、一方のバルブ16を閉めて、他方を開放し、大温度差返り配管11か又は小温度差返り配管12かに冷水を選択的に流す構成となっている。   In addition, each cold water return pipe 10 is connected to both the large temperature return pipe 11 and the small temperature return pipe 12, but a valve 16 is provided in each branch pipe before each connection portion, Depending on the outlet temperature characteristics measured by the thermometer provided in each chilled water return pipe 10, one valve 16 is closed and the other is opened, and cold water is selected as the large temperature return pipe 11 or the small temperature return pipe 12. It is the composition which flows.

この発明の実施例2は、図2に示すように、運用の特性等で、空調システムグループ3c及び中温度差返り配管17を設け、これに対応する熱交換器5cを設けたものである。他の構成は実施例1と同じである。この様に確実に温度差を確保するために、返り温度帯を綿密に計画し、数本乃至はそれ以上の数の返り配管を設けても良い。   In the second embodiment of the present invention, as shown in FIG. 2, an air conditioning system group 3c and an intermediate temperature return pipe 17 are provided, and a heat exchanger 5c corresponding to the air conditioning system group 3c is provided due to operational characteristics and the like. Other configurations are the same as those of the first embodiment. In order to ensure a temperature difference in this way, the return temperature zone may be carefully planned, and several or more return pipes may be provided.

また、この発明の実施例3は、実施例1に代えて、図3に示すように、前記冷水供給管9を低温用、中温用に分けたものである。そして、前記熱交換器5bと低水供給管9bを接続し、熱交換器5cと中温水供給管9cを接続し、夫々の空調システムグループ3a又は空調システムグループ3bに冷温熱媒を供給し、各出口温度によって大温度差返り配管11又は小温度差返り配管12に戻すように構成されている。他の構成は実施例1と同じである。この様に、冷水往き配管を低温(例えば6°C)と中温(例えば12°C)の2系統送水システムとすれば、更なる熱供給設備のシステムCOPの向上を図ることができる。   Further, in the third embodiment of the present invention, instead of the first embodiment, as shown in FIG. 3, the cold water supply pipe 9 is divided into a low temperature and a medium temperature. Then, the heat exchanger 5b and the low-water supply pipe 9b are connected, the heat exchanger 5c and the medium-temperature water supply pipe 9c are connected, and a cooling / heating medium is supplied to the air conditioning system group 3a or the air-conditioning system group 3b, It is configured to return to the large temperature difference return pipe 11 or the small temperature difference return pipe 12 according to each outlet temperature. Other configurations are the same as those of the first embodiment. In this way, if the cold water outlet pipe is a two-line water supply system having a low temperature (for example, 6 ° C.) and an intermediate temperature (for example, 12 ° C.), it is possible to further improve the system COP of the heat supply facility.

前記実施例において、空調機のコイルの列数は、空気側の入口・出口温度と水側の入口・出口温度及び交換熱量によって算出される。冷水の場合、冷水入口温度は空気側出口温度より低温度が必要であり、冷水出口は、空気側入口温度以下となる。温水の場合は、温水入口温度は空気側出口温度より高温度が必要であり、温水出口は、空気側入口温度以上となる。この水側と空気側のそれぞれの温度差が大きい方がコイル列数は小さくなり、温度差が小さくなればなるほど、コイル列数は大きくなっていき、水側と空気側の夫々の温度が等しくなると無限大の列数が必要となる。   In the above embodiment, the number of coils of the air conditioner is calculated from the air side inlet / outlet temperature, the water side inlet / outlet temperature, and the amount of exchange heat. In the case of cold water, the cold water inlet temperature needs to be lower than the air side outlet temperature, and the cold water outlet is equal to or lower than the air side inlet temperature. In the case of hot water, the hot water inlet temperature needs to be higher than the air side outlet temperature, and the hot water outlet is equal to or higher than the air side inlet temperature. The greater the temperature difference between the water side and the air side, the smaller the number of coil arrays. The smaller the temperature difference, the greater the number of coil arrays, and the temperature on the water and air sides are equal. Then, an infinite number of columns is required.

また、コイル列数が大きくなると、空調機の空気側、水側の抵抗が増加し、空気・水搬送動力が増加してしまう。よって、往き温度と返り温度の設計は、建物の負荷特性や空調機システムの特性及び熱供給システムの特性を考慮し、十分な総合的検討が必要である。例えば、表1は、一般的仕様条件における冷水の温度差ごとの必要なコイル列数を算出したものである。表1より、冷水温度差が12〜13°C差のところでコイル列数は大きくなるので、最適温度差の一つの目安としては、12〜13°C差と言える。   In addition, when the number of coil arrays increases, the resistance on the air side and water side of the air conditioner increases, and the air / water conveyance power increases. Therefore, the design of the return temperature and the return temperature needs to be sufficiently comprehensively considered in consideration of the load characteristics of the building, the characteristics of the air conditioner system, and the characteristics of the heat supply system. For example, Table 1 shows the number of coil arrays required for each temperature difference of cold water under general specification conditions. From Table 1, since the number of coil arrays becomes large when the chilled water temperature difference is 12 to 13 ° C., it can be said that the difference of 12 to 13 ° C. is one guideline for the optimum temperature difference.

Figure 0005584052
Figure 0005584052





また、この発明のシステムを採用すると、従来システムの水側往き・返り温度差(5〜6°C差)の2倍程度(10〜13°C差)となり、配管サイズの減少等のイニシャルコストが削減されるだけでなく、空気側の搬送動力を増加させることもなく、水側の搬送動力を1/2〜1/8程度に削減することが可能となる。また、熱供給設備のシステムCOPの向上に大きく貢献する。   In addition, when the system of the present invention is adopted, it becomes about twice (10-13 ° C difference) of the water side going back / return temperature difference (5-6 ° C difference) of the conventional system, and the initial cost such as reduction of the pipe size. As a result, not only the air-side transport power but also the water-side transport power can be reduced to about 1/2 to 1/8. In addition, it greatly contributes to the improvement of the system COP of the heat supply equipment.

一般的な冷熱供給システムにおいて、従来は低負荷時の温度差縮小の懸念もあったため、往き・返り温度差をあまり大きく出来なく(せいぜい7〜8°C差程度)、図14に示すような並列配置として、全ての冷凍機の冷水出口温度を低い温度にせざるを得なかった。しかし、冷水往き・返り温度差が年間を通じて確実に10°C以上取れれば、冷凍機の直列配置も可能となる。図1に示すように冷水の高温側(例えば17°C→11°C)を処理する冷凍機(高)1aと低温側(例えば11°C→5°C)を処理する冷凍機(低)1bを直列配置することにより、大温度差(10°C以上)冷熱供給システムが構築できる。冷凍機効率が大きく向上し(冷熱源機の特性:COPは冷水温度が高いほど良くなる)、搬送動力の低減だけでなく熱供給設備のシステムCOPも向上する。また、ポンプ台数の削減や配管サイズの縮小等によりイニシャルコストも削減される。   In general cold heat supply systems, there has been a concern that the temperature difference at the time of low load has been reduced in the past, so it is not possible to make the difference between the return and return temperatures very large (a difference of 7-8 ° C at most). As a parallel arrangement, the chilled water outlet temperature of all refrigerators had to be lowered. However, if the temperature difference between the return and return temperatures of the cold water is reliably 10 ° C or more throughout the year, the refrigerators can be arranged in series. As shown in FIG. 1, a refrigerator (high) 1a that processes the high temperature side (for example, 17 ° C → 11 ° C) of cold water and a refrigerator (low) that processes the low temperature side (for example, 11 ° C → 5 ° C). By arranging 1b in series, a large temperature difference (10 ° C or more) cold heat supply system can be constructed. The efficiency of the refrigerator is greatly improved (characteristic of the cold heat source machine: COP is improved as the chilled water temperature is higher), and not only the conveyance power is reduced but also the system COP of the heat supply equipment is improved. Also, the initial cost can be reduced by reducing the number of pumps and piping size.

なお、前記各実施例では冷水の高温側(例えば17°C→11°C)を処理する冷凍機(高)1aと低温側(例えば11°C→5°C)を処理する冷凍機(低)1bを直列配置しているが、この様に単純に冷凍機1aと冷凍機1bとを直列接続するものに限らず、1台の冷凍機に2台分の冷凍機能を具備するものや、その他、実質的に複数の冷温熱源製造手段を備えているものが含まれる。   In each of the above embodiments, the refrigerator (high) 1a that processes the high temperature side (for example, 17 ° C. → 11 ° C.) of the cold water and the refrigerator (low) that processes the low temperature side (for example, 11 ° C. → 5 ° C.). ) Although 1b is arranged in series, it is not limited to simply connecting the refrigerator 1a and the refrigerator 1b in series as described above, and one refrigerator has a refrigeration function for two units, In addition, what is provided with the some cold / heat source manufacturing means substantially is contained.

この発明の実施例1の概略構成図である。It is a schematic block diagram of Example 1 of this invention. この発明の実施例2の概略構成図である。It is a schematic block diagram of Example 2 of this invention. この発明の実施例3の概略構成図である。It is a schematic block diagram of Example 3 of this invention. この発明の実施例1〜3の空調システムグループ1の定風量循環空調機システムの概略構成図である。It is a schematic block diagram of the constant air volume circulation air conditioner system of the air-conditioning system group 1 of Examples 1-3 of this invention. この発明の実施例1〜3の空調システムグループ1の定風量外気混合循環空調機システムの概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the constant air volume external air mixing circulation air conditioner system of the air conditioning system group 1 of Examples 1-3 of this invention. この発明の実施例1〜3の空調システムグループ1の変風量循環空調機システムの概略構成図である。It is a schematic block diagram of the variable air volume circulation air conditioner system of the air conditioning system group 1 of Examples 1-3 of this invention. この発明の実施例1〜3の空調システムグループ1の空気出口の動きを示すグラフ図である。It is a graph which shows a motion of the air outlet of the air-conditioning system group 1 of Examples 1-3 of this invention. この発明の実施例1〜3の空調システムグループ1の冷水出口温度例を示すグラフ図である。It is a graph which shows the cold water exit temperature example of the air conditioning system group 1 of Examples 1-3 of this invention. この発明の実施例1〜3の空調システムグループ2の定風量外気処理空調機システムの概略構成図である。It is a schematic block diagram of the constant air volume outside air processing air conditioner system of the air conditioning system group 2 of Examples 1-3 of this invention. この発明の実施例1〜3の空調システムグループ2の変風量外気処理空調機システムの概略構成図である。It is a schematic block diagram of the variable air volume outside air processing air conditioner system of the air conditioning system group 2 of Examples 1-3 of this invention. この発明の実施例1〜3の空調システムグループ2の空気出口の動きを示すグラフ図である。It is a graph which shows a motion of the air outlet of the air-conditioning system group 2 of Examples 1-3 of this invention. この発明の実施例1〜3の空調システムグループ2の冷水出口温度例1を示すグラフ図である。It is a graph which shows the cold water exit temperature example 1 of the air conditioning system group 2 of Examples 1-3 of this invention. この発明の実施例1〜3の空調システムグループ2の冷水出口温度例2を示すグラフ図である。It is a graph which shows the cold water exit temperature example 2 of the air conditioning system group 2 of Examples 1-3 of this invention. 従来例を示す概略構成図である。It is a schematic block diagram which shows a prior art example. 地域冷暖房システムの概念図である。It is a conceptual diagram of a district air conditioning system. 年間における冷暖房の累積負荷曲線(関東地区の例)グラフ図である。It is a cumulative load curve (example of Kanto district) of an air conditioning in the year. 冷熱負荷率と冷水温度差を示すグラフ図である。It is a graph which shows a cold-heating load factor and a cold water temperature difference. 給気温度設定と冷水出口温度を示すグラフ図である。It is a graph which shows supply air temperature setting and cold water exit temperature. 空調機システムと冷水返り温度の特性を示すグラフ図である。It is a graph which shows the characteristic of an air-conditioner system and cold water return temperature. 空調機システムと温水返り温度の特性を示すグラフ図である。It is a graph which shows the characteristic of an air-conditioner system and warm water return temperature.

1 冷凍機 2 熱源部
3a 空調システムグループ 3b 空調システムグループ
4 負荷部 5 熱交換器
6 一次ポンプ 7 バイパス配管
8 バルブ 9 冷温水供給管
10 冷温水返り管 11 大温度差返り配管
12 小温度差返り配管 13 一次ヘッダ
14 二次ポンプ 15 二次ヘッダ
16 バルブ 17 中温度差返り配管
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Heat source part 3a Air conditioning system group 3b Air conditioning system group 4 Load part 5 Heat exchanger 6 Primary pump 7 Bypass piping 8 Valve 9 Chilled / hot water supply pipe 10 Chilled / hot water return pipe 11 Large temperature return pipe 11
12 Small temperature return piping 13 Primary header 14 Secondary pump 15 Secondary header 16 Valve 17 Medium temperature return piping

Claims (4)

冷温熱源機を有する熱源部と複数の空調系統を並列接続した負荷部とを熱交換器を介して接続し、前記熱源部から熱交換器を介して負荷部の前記各空調系統に冷温熱媒を供給し、各空調系統の空調機から再び熱交換器を介して熱供給側に冷温熱媒が戻ってくる空調システムにおいて、
各空調系統の空調機コイルの冷温熱媒の入口温度と出口温度の差に基づく出口温度特性で分けた複数の返り配管を設け、これらの配管を負荷側の返り温度差の大きな順に配管し、これらの各返り配管に夫々設けた前記各熱交換器を直列に接続したことを特徴とする、高効率熱搬送装置。
A heat source unit having a cooling / heating source and a load unit in which a plurality of air conditioning systems are connected in parallel are connected via a heat exchanger, and the cooling / heating medium is transferred from the heat source unit to each air conditioning system of the load unit via the heat exchanger. In the air conditioning system in which the cooling / heating medium returns from the air conditioner of each air conditioning system to the heat supply side again through the heat exchanger,
Provide multiple return pipes divided by the outlet temperature characteristics based on the difference between the inlet temperature and outlet temperature of the cooling / heating medium of the air conditioning coil of each air conditioning system, and pipe these pipes in descending order of the return temperature difference on the load side, A high-efficiency heat transfer device characterized in that the heat exchangers provided in the return pipes are connected in series.
前記各空調系統の空調機コイルの冷温熱媒の出口温度を計測する温度計を設け、当該各温度計によって計測した出口温度特性によって、当該空調機の返り管の終端部を前記複数の返り配管に選択的に接続できる切り替手段を設けたことを特徴とする、請求項1に記載の高効率熱搬送装置。   A thermometer that measures the outlet temperature of the cooling / heating medium of the air conditioner coil of each air conditioning system is provided, and the end portion of the return pipe of the air conditioner is connected to the plurality of return pipes according to the outlet temperature characteristic measured by each thermometer. The high-efficiency heat transfer device according to claim 1, further comprising a switching unit that can be selectively connected to the device. 前記複数の空調系統に冷温水を送る配管を、各空調系統の求める温度によって複数に分けて設けたことを特徴とする、請求項1又は2に記載の高効率熱搬送装置。   The high-efficiency heat transfer device according to claim 1 or 2, wherein piping for supplying cold / hot water to the plurality of air conditioning systems is divided into a plurality of pipes according to temperatures required by each air conditioning system. 前記熱源部に、各空調系統の求める温度に対応する異なる温度の冷温水を供給できる複数の冷温熱源製造手段を、直列又は/及び並列に配置したことを特徴とする、請求項1、2又は3のいずれかに記載の高効率熱搬送装置。   A plurality of cold / hot heat source manufacturing means capable of supplying cold / hot water having different temperatures corresponding to temperatures required by each air conditioning system are arranged in series or / and in parallel to the heat source unit. The high efficiency heat transfer apparatus according to any one of 3.
JP2010185606A 2010-08-20 2010-08-20 High efficiency heat transfer device in air conditioning system Active JP5584052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010185606A JP5584052B2 (en) 2010-08-20 2010-08-20 High efficiency heat transfer device in air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010185606A JP5584052B2 (en) 2010-08-20 2010-08-20 High efficiency heat transfer device in air conditioning system

Publications (2)

Publication Number Publication Date
JP2012042162A JP2012042162A (en) 2012-03-01
JP5584052B2 true JP5584052B2 (en) 2014-09-03

Family

ID=45898700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010185606A Active JP5584052B2 (en) 2010-08-20 2010-08-20 High efficiency heat transfer device in air conditioning system

Country Status (1)

Country Link
JP (1) JP5584052B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994130B2 (en) 2012-11-19 2016-09-21 公立大学法人大阪市立大学 Thermal energy transfer system, thermal accommodation system, and thermal energy transfer method
KR102207327B1 (en) * 2018-05-11 2021-01-25 주식회사 경동나비엔 Method and system for determining hot water use by using temperature gap

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053698B2 (en) * 1992-06-22 2000-06-19 株式会社竹中工務店 District heating and cooling system
JPH0752503Y2 (en) * 1992-11-24 1995-11-29 高砂熱学工業株式会社 Air conditioning heat source system
JP3774615B2 (en) * 2000-05-08 2006-05-17 東京瓦斯株式会社 Test run control method for hot water heater
JP3738993B2 (en) * 2002-05-20 2006-01-25 株式会社前川製作所 Cooling apparatus and process cooling wastewater recovery method using the apparatus

Also Published As

Publication number Publication date
JP2012042162A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
CN110325804B (en) System and method for controlling a refrigeration system
US20190316788A1 (en) Thermal energy network
EP1387988B1 (en) Air-conditioning system
US5351502A (en) Combination ancillary heat pump for producing domestic hot h20 with multimodal dehumidification apparatus
AU2002310859A1 (en) Air-conditioning system
US11454404B2 (en) Energy distributing system
EP2182296A2 (en) District heating arrangement and method
EP3726146B1 (en) Combined heating and cooling system
WO2012096265A1 (en) Heat source system, control method therfor, and program therefor
CN111795481A (en) Air conditioning system and control method therefor
JP5584052B2 (en) High efficiency heat transfer device in air conditioning system
US11060738B2 (en) Heating system
CN1888637A (en) Hot pump type air conditioner set with water heater
CN102506473B (en) Direct-evaporating type ice cold accumulation refrigerating system and refrigerating method thereof
JP5096803B2 (en) Air conditioning system
JP6118065B2 (en) Water-cooled air conditioning system and operation control method thereof
JP2000111105A (en) Air-conditioning system for office building
JP7322219B1 (en) heat source system
CN220771272U (en) Four-pipe air conditioner cold recovery system of ground source heat pump
JP2006189180A (en) Heat supply system having a plurality of heat source machines and a group of pumps
WO2011042887A1 (en) Independent system for dehumidifying air
JPH0391658A (en) Thermal air conditioning system
JP2017156071A (en) Water to steam heat exchange system and its operational method
EP2787288A1 (en) Apparatus and process for air conditioning and for production of hot sanitary water
CN104251572A (en) Multifunctional heat pump air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5584052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150