JP3874871B2 - Manufacturing method of liquid crystal display device - Google Patents

Manufacturing method of liquid crystal display device Download PDF

Info

Publication number
JP3874871B2
JP3874871B2 JP02640697A JP2640697A JP3874871B2 JP 3874871 B2 JP3874871 B2 JP 3874871B2 JP 02640697 A JP02640697 A JP 02640697A JP 2640697 A JP2640697 A JP 2640697A JP 3874871 B2 JP3874871 B2 JP 3874871B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
sealing material
display device
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02640697A
Other languages
Japanese (ja)
Other versions
JPH10221700A (en
Inventor
国広 田代
有広 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP02640697A priority Critical patent/JP3874871B2/en
Publication of JPH10221700A publication Critical patent/JPH10221700A/en
Application granted granted Critical
Publication of JP3874871B2 publication Critical patent/JP3874871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、一対の透明基板間に液晶を封入した液晶表示装置の製造方法に関し、特に一対の基板を接合するシール材として紫外線硬化型樹脂を用いた液晶表示装置の製造方法に関する。
【0002】
【従来の技術】
液晶表示装置は、薄くて軽量であるとともに低電圧で駆動できて消費電力が少ないという長所があり、各種電子機器に広く使用されている。
特に、近年、TFT(Thin Film Transistor:薄膜トランジスタ)等の能動素子が画素毎に設けられたアクティブマトリクス方式の液晶表示装置は、表示品質の点でもCRT(Cathode-Ray Tube)に匹敵するほど優れたものが得られるようになり、携帯テレビやパーソナルコンピュータ等のディスプレイにも使用されている。
【0003】
一般的に、液晶表示装置は2枚の透明基板の間に液晶を封入した構造を有している。それらの透明基板の相互に対向する2つの面(対向面)のうち、一方の面側には対向電極、カラーフィルタ及び配向膜等が形成され、また他方の面側にはアクティブマトリクス回路、画素電極及び配向膜等が形成されている。更に、各透明基板の対向面と反対側の面には、それぞれ偏光板が貼り付けられている。これらの2枚の偏光板は、例えば偏光板の偏光軸が互いに直交するように配置され、これによれば、電界をかけない状態では光を透過し、電界を印加した状態では遮光するモード、すなわちノーマリーホワイトモードとなる。また、2枚の偏光板の偏光軸が平行な場合には、ノーマリーブラックモードとなる。
【0004】
通常、液晶表示装置の製造工程では、対向電極、カラーフィルタ及び配向膜等が形成された基板(以下、CF基板という)と、アクティブマトリクス回路、画素電極及び配向膜等が形成された基板(以下、TFT基板という)とを接合するシール材として、紫外線硬化型樹脂が使用されている。
図10(a)は従来の液晶表示装置の製造方法を示す断面図、図10(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。但し、図10(a)では、対向電極64及び配向膜54,65の図示を省略している。
【0005】
TFT基板50は、ガラス基板51と、このガラス基板51の一方の面上にマトリクス状に配置された複数の画素電極52と、各画素電極52にそれぞれ接続されたTFT(図示せず)と、これらの画素電極52及びTFTを覆う配向膜54とにより構成されている。
また、CF基板60は、ガラス基板61と、このガラス基板61の一方の面上に形成され、TFT基板50の画素電極52に対応する開口部が設けられたブラックマトリクス62と、ブラックマトリクス62の各開口部に対応して設けられ、開口部毎にR(赤)・G(緑)・B(青)のいずれか一色を有するカラーフィルタ63と、ブラックマトリクス62及びカラーフィルタ63上の全面を覆う対向電極64と、この対向電極64を覆う配向膜65とにより構成されている。なお、画素電極52及び対向電極64は、いずれも透明なITO(インジウム酸化スズ)膜により形成されている。
【0006】
これらのTFT基板50及びCF基板60を接合する際には、まず、CF基板60の内面の表示領域(画素電極がマトリクス状に配置された領域)を囲むように額縁状にシール材(紫外線硬化型樹脂)58を塗布する。このとき、後工程で基板間に液晶を注入するための液晶注入口として、一部分樹脂を塗布しない部分を設けておく。
【0007】
次に、基板50,60間にスペーサ57を散布し、TFT基板50とCF基板60とを対向させてシール材58により接合する。
次に、CF基板60上に表示領域を覆う遮光マスク67を配置し、CF基板60側から紫外線を照射してシール材58を硬化させ、TFT基板50及びCF基板60が接合されてなる液晶パネル(空パネル)を形成する。このとき、配向膜54,65は、遮光マスク67により紫外線に照射されることが防止される。
【0008】
次いで、遮光マスク67を取り外し、液晶パネルを真空チャンバ内に入れる。そして、チャンバ内を真空にして液晶注入口を液晶が入った容器中に浸漬した後、チャンバ内を大気圧に戻す。そうすると、圧力差により液晶がパネル内に充填される。その後、液晶注入口に封止材として紫外線硬化型樹脂を充填し、紫外線を照射して樹脂を硬化させる。このようにして、液晶表示装置が形成される。
【0009】
ところで、配向膜54,65や液晶に紫外線が照射されると、配向膜54,65や液晶が劣化し、焼き付きや表示むらが発生して表示性能が低下してしまう。このため、上述の如く、CF基板60の外面側に遮光マスク67を設け、紫外線硬化樹脂を硬化させる際に配向膜54,65や液晶に紫外線が照射されることを防止している。
【0010】
なお、特開昭52−73757号には、金属酸化物の皮膜により、波長が450nm以下の可視光及び紫外線をカットする技術が提案されている。また、特開平8−176549号には、紫外線吸収材を液晶中に添加し、液晶の劣化及び異性化を防止する技術が提案されており、特開平5−150223号には、紫外線硬化型樹脂に替えて可視光線硬化型樹脂を使用する技術が提案されている。
【0011】
【発明が解決しようとする課題】
しかしながら、上述した従来の技術では、図11に示すように、遮光マスク67の縁部から回り込んだ紫外線により配向膜54,65や液晶が劣化してしまうという欠点がある。例えば、配向膜54,65の縁部の部分が紫外線に照射された場合であっても、配向膜54,65に液晶中の不純物が付着しやすくなって、長時間使用するとこれらの不純物が配向膜54,65の端部から画素電極側に拡散し、焼き付きや色むら等の原因になる。
【0012】
また、特開昭52−73757号に開示された技術では、金属酸化物の被膜を形成するときに高温(500〜600℃)を要し、本発明のように特定領域のみに被膜を形成する場合、そのエッチング工程はかなり煩雑なものになる。
特開平8−176549号に開示された技術では、液晶に添加する紫外線吸収材により液晶の電気的特性が変化するという問題点がある。また、紫外線吸収材の添加により液晶の色づきや配向膜の劣化が発生するという問題点もある。
【0013】
特開平5−150223号に開示された技術では、一般的に可視光線硬化型樹脂の強度が紫外線硬化型樹脂に比べて劣ることから、用途が限定され、高強度が要求される部分に使用するシール材として適用することは難しい。
紫外線硬化樹脂をメインシール及び封止材に用いた液晶表示装置では、樹脂部に硬化に必要な紫外線を当て、且つ樹脂境界部の液晶劣化を最小限に食い止めるため、上記の紫外線カットフィルタや吸収材ではなく、樹脂硬化に必要な紫外線の特定波長域を透過し、それ以外の波長をカットするバンドパスフィルタ機能が必要になる。また、プロセス的にも、パネル基板上の特定領域に容易に形成可能であることが条件になる。
【0014】
【課題を解決するための手段】
上記した課題は、一対の基板のいずれか一方の基板の表示領域に画素電極を形成する工程と、他方の基板に、前記画素電極に対応する部分が開口されたブラックマトリクスを形成する工程と、前記他方の基板の前記画素電極に対応する位置に赤、緑及び青の各カラーフィルタを形成する工程と、前記他方の基板の表示領域とシール材塗布領域との間に、前記ブラックマトリクスの外側の縁部及び前記シール材塗布領域の前記表示領域側の縁部に重なるように、波長が330nm以下の紫外線に対する透過率が50%以下であり且つ波長が380nm以上の紫外線に対する透過率が50%以上のバンドパスフィルタを形成する工程と、前記他方の基板の全面にITOからなる対向電極を形成する工程と、前記バンドパスフィルタを形成した面を内側にして、前記一対の基板を前記シール材塗布領域に塗布したシール材により接合する工程と、前記他方の基板側から紫外線を照射して前記シール材を硬化させる工程とを有することを特徴とする液晶表示装置の製造方法により解決する。
【0016】
以下、本発明の作用について説明する。
本発明においては、一方の透明基板の表示領域の外側にバンドパスフィルタを形成する。従って、遮光マスクの縁部から紫外線が配向膜又は液晶側に回り込んだとしても、バンドパスフィルタにより有害な紫外線短波長はカットされ、配向膜及び液晶の光劣化は最小限に抑えられる。
【0017】
カラー液晶表示装置の場合、バンドパスフィルタは、例えば青のカラーフィルタと同一の材料により同時に形成することができる。通常使用されている青のカラーフィルタは、一般的な紫外線硬化型樹脂の反応波長域(約330〜380nm)の光を透過し、反応波長域よりも短い波長(250〜330nm)の光を殆ど透過しない。従って、青のカラーフィルタは、本発明において使用するバンドパスフィルタとして、極めて好適である。また、バンドパスフィルタを、青のカラーフィルタと同一の材料により形成することにより、製造工程数の増加が回避される。
【0018】
この場合に、通常、青のカラーフィルタは、色純度を確保するために1.0〜2.5μmの厚さに形成される。しかし、前記バンドパスフィルの厚さをカラーフィルタと同じにすると、バンドパスフィルタ下のシール材に十分な紫外線を照射することが困難になる。従って、青のカラーフィルタと同一材料によりバンドパスフィルタを形成するときは、バンドパスフィルタの厚さをカラーフィルタの厚さよりも薄くすることが好ましい。
【0019】
また、一方の透明基板に画素電極及びTFTとともにブラックマトリクスを形成し、他方の基板にカラーフィルタを形成するいわゆるBMオンTFT方式の液晶表示装置の場合、他方の透明基板のバンドパスフィルタをブラックマトリクスの縁部よりも内側に配置することが可能になる。これにより、表示領域のサイズを変えることなく、基板サイズを縮小することが可能になる。更に、このとき、基板上に液晶を滴下した後、液晶を一対の基板で挟み込んで封入するいわゆる滴下注入法を用いることにより、製造に要する時間が著しく短縮される。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について、添付の図面を参照して説明する。
(第1の実施の形態)
図1(a)は本発明の第1の実施の形態の液晶表示装置の製造方法を示す断面図、図1(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。但し、図1(b)では、対向電極24及び配向膜13,25の図示を省略する。
【0021】
TFT基板10は、従来と同様に形成する。すなわち、ガラス基板11上にTFT(図示せず)及び画素電極12を形成し、これらのTFT及び画素電極12上に配向膜13を形成する。そして、配向膜13の表面をラビング処理する。
一方、CF基板20は以下のように形成する。すなわち、まず、ガラス基板21上に、画素電極12に対応する部分が開口されたブラックマトリクス22を形成する。また、ガラス基板21上の画素電極12に対応する位置に、R(赤)・G(緑)・B(青)の各カラーフィルタ23を約1.0〜2.5μmの厚さで形成するとともに、ブラックマトリクス22の縁部からその外側の領域を覆うバンドパスフィルタ23aを形成する。このバンドパスフィルタ23aは青のカラーフィルタと同じ材料により形成し、露光量を調整することにより約0.6μmの厚さに形成する
その後、基板21上の全面にITOからなる対向電極24を形成し、更に対向電極24上に配向膜25を形成する。そして、配向膜25の表面をラビング処理する。
【0022】
次に、CF基板20のバンドパスフィルタ23aの縁部に沿って額縁状にシール材(紫外線硬化型樹脂)18を約1mmの幅で塗布する。このとき、後工程で液晶を注入するための液晶注入口として、一部にシール材18を塗布しない領域を設けておく。そして、TFT基板10とCF基板20との間に球形のスペーサ17を散布し、両方の基板10,20を配向膜13,25が形成されている面を内側にして対向配置し、シール材18により接合する。
【0023】
次に、CF基板20の外側に表示領域を覆う遮光マスク(遮光性の金属膜又はフィルム等)27を配置し、CF基板20側から紫外線を照射してシール材18を硬化させる。これにより、2枚の基板10,20が接合されてなる液晶パネル(空パネル)が形成される。この場合に、遮光マスク27の端部から回り込んだ紫外線短波長はバンドパスフィルタ23aによりカットされ、配向膜13,25の光劣化は最小限に抑えられる。
【0024】
その後、液晶パネルを真空チャンバ内に入れ、チャンバ内を真空にした後、液晶注入口を液晶中に浸漬し、チャンバ内を大気圧に戻す。そうすると、パネル内の圧力と大気圧との差により、パネル内に液晶が充填される。
次いで、液晶注入口に封止材として紫外線硬化型樹脂を充填し、CF基板20の外側に遮光マスク27を配置した後、紫外線を照射して封止材を硬化させる。このようにして、液晶表示装置が製造される。
【0025】
図2は、横軸に波長をとり、縦軸に相対強度をとって、シール材の硬化に使用されている水銀ショートアークランプの輝線スペクトルを示す図である。紫外線硬化型樹脂は、主に波長が330〜380nmの光により硬化し、液晶や配向膜の劣化は主にそれよりも短い波長(図中Aで示す波長域)の光により発生する。図3及び図4は、横軸に波長をとり、縦軸に透過率をとって、ガラス(無アルカリガラス)基板の光透過率特性を示す図である。なお、図3はガラス基板のみの光透過率特性を示し、図4は表面にITO膜を有するガラス基板の光透過率特性を示す。図3に示すようにITO膜がないガラス基板では波長が約250nmよりも長い光を透過するのに対し、図4に示すようにITO膜を有するガラス基板では波長が約280nmよりも長い波長の光を透過する。すなわち、ITO膜を有するガラス基板では、波長が280nm以下の光はほぼ100%カットされる。
【0026】
図5は、横軸に波長をとり、縦軸に光の透過率をとって、青のカラーフィルタの透過率特性を示す図である。但し、このカラーフィルタは、顔料分散法により形成したものであり、フィルタの厚さは約1.3μmである。この図に示すように、青のカラーフィルタは、波長が約320〜590nmの光を透過し、波長が約460nmの光を最もよく透過する。このカラーフィルタをバンドパスフィルタとして使用した場合、紫外線硬化樹脂の硬化に有効な波長が330〜380nmの光は比較的多く(図中斜線で示す)透過し、液晶及び配向膜の劣化の原因となる波長が330nm以下の光はほぼ遮断される。この図から、青のカラーフィルタと同一材料により形成したバンドパスフィルタは、シール材の硬化に必要な波長の光を比較的よく透過し、液晶及び配向膜の劣化の原因となる紫外線短波長を効率よく遮断することが明らかである。
【0027】
本実施の形態では、紫外線照射時に遮光マスクの端部から紫外線が回り込んだとしても、バンドパスフィルタ23aにより液晶及び配向膜に有害な紫外線短波長が照射されることが抑制される。これにより、液晶及び配向膜の光劣化は最小限に抑えられ、表示品質の劣化は回避される。また、本実施の形態では、バンドパスフィルタ23aは、青のカラーフィルタと同一材料により同時に形成するので、工程数の増加が抑制される。
【0028】
以下、バンドパスフィルタの厚さの最適値について調べた結果について説明する。
第1の実施の形態においては、バンドパスフィルタは、青のカラーフィルタと同一材料により同時に形成する。そこで、カラーフィルタに使用するレジストの膜厚と紫外線の遮蔽特性との関係について調べた。なお、通常、カラーフィルタは、色純度を確保するために、1.0〜2.5μmの厚さに形成される。
【0029】
まず、ネガ型アクリル樹脂の感光性レジスト(CB−2000:富士ハント社製)に青の顔料を分散させ、このレジストをローラコータによりガラス基板上に塗布した。そして、ガラス基板をホットプレート上で110℃の温度で90秒間加熱し予備硬化させた後、露光及び現像処理を施した。その後、230℃の温度で10分間加熱することによりレジストを本硬化させて、青のバンドパスフィルタを得た。
【0030】
この場合、紫外線露光量を調整して、種々の膜厚のバンドパスフィルタを形成した。図6は横軸に紫外線露光量をとり、縦軸にバンドパスフィルタの膜厚をとって、両者の関係を示す図である。この図6に示すように、紫外線露光量を調整することにより、所望の膜厚のバンドパスフィルタを形成することができる。
次に、分光器(キャノン製LC−SP)を使用し、膜厚が0.3μm、0.6μm及び1.3μmのバンドパスフィルタの分光特性を調べた。図7は、横軸に波長をとり、縦軸に光の透過率をとって、バンドパスフィルタの膜厚と透過率との関係を示す図である。この図7に示すように、バンドパスフィルタの膜厚を薄くすると光の透過率は上昇するが、過度に薄くすると液晶や配向膜の劣化の原因となる波長の光も透過して、バンドパスフィルタとしての性能が低下する。一方、バンドパスフィルタの厚さを厚くすると、シール材の硬化に有効な波長の光も遮断されて、バンドパスフィルタの下のシール材を十分に硬化させることができなくなる。第1の実施の形態では、紫外線硬化樹脂の硬化に寄与する波長が約330〜380nmの光をできるだけ透過し、且つ液晶及び配向膜に対し有害な短波長成分をカットできるバンドパスフィルタとして、約0.6μmの厚さのカラーフィルタが好適である。しかし、この図5に示すように、膜厚が0.3〜1.3μmのカラーフィルタでもバンドパスフィルタとして使用することができる。
【0031】
次に、上記のようにして形成したバンドパスフィルタに対するシール材(紫外線硬化樹脂)の接合強度について調べた結果について説明する。
まず、15×50mmの2枚のガラス基板の中央に紫外線硬化型樹脂を直径が3mmの点状に塗布し、直径が約5μmの球形スペーサ(SP−205:積水ファインケミカル製)散布して、これらの基板を貼合わせた。これと同様に、2枚のガラス基板にカラーフィルタ用レジストの膜を形成し、このレジスト膜上に紫外線硬化型樹脂を塗布し、基板間にスペーサを散布して2枚の基板を貼合わせた。更に、ガラス基板にカラーフィルタ用レジストの膜をストライプ状に形成し、紫外線硬化樹脂を半分がガラス基板に接触し、残りがレジスト膜に接触するように塗布して、基板間にスペーサを散布した後、貼合わせた。
【0032】
そして、これらの基板に対し、3000mJ/cm2 の光量で紫外線を照射して樹脂を硬化させた。その後、剥離試験機を使用して剥離強度を測定した。
その結果、ガラス基板に直接紫外線硬化型樹脂を塗布した場合の剥離強度は1.5kgf/cm2 であった。また、レジスト膜上に紫外線硬化型樹脂を塗布した場合の剥離強度は0.7kgf/cm2 であった。さらに、半分がガラス基板に接触し、残りがレジスト膜に接触するように紫外線硬化型樹脂を塗布した場合の剥離強度は1.2kgf/cm2 であった。
【0033】
図8は、横軸にシール材とカラーフィルタ用レジスト膜との重ね合わせの割合をとり、縦軸に剥離強度をとって、両者の関係を示す図である。通常、液晶表示装置では、パネル強度や耐湿性の点から、剥離強度は1.0kgf/cm2 以上必要であるとされている。この図8から、シール材がガラス基板に直接接触している部分が30%以上であれば、剥離強度は1.0kgf/cm2 以上になり、十分な剥離強度を確保することができることがわかる。
【0034】
(第2の実施の形態)
図9(a)は本発明の第2の実施の形態の液晶表示装置を示す断面図、図9(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。本実施の形態は、TFT基板側にブラックマトリクスを形成するいわゆるBMオンTFT方式の液晶表示装置に本発明を適用したものである。なお、図9(a)では、対向電極44及び配向膜34,45の図示を省略している。
【0035】
TFT基板30は、以下のように形成する。すなわち、まず、ガラス基板31上に、ブラックマトリクス32を所定のパターンで形成する。その後、各画素領域にそれぞれ画素電極33とTFT(図示せず)とを形成する。そして、基板31上に、これらの画素電極33及びTFTを覆う配向膜34を形成した後、配向膜34の表面をラビング処理する。
【0036】
一方、CF基板40は以下のように形成する。すなわち、ガラス基板41の上に、各画素領域毎に、R(赤)・G(緑)・B(青)のいずれか一色のカラーフィルタ43を形成する。このとき、青のカラーフィルタと同一の材料により、表示領域の縁部に沿って額縁状にバンドパスフィルタ43aを形成する。次に、基板41の表示領域上を覆う対向電極44を形成し、この対向電極44上に配向膜45を形成する。その後、配向膜45の表面をラビング処理する。
【0037】
なお、画素電極33及び対向電極44はいずれもITOにより形成し、カラーフィルタ43は約1.0〜2.5μm、バンドパスフィルタ43aは約0.6μmの厚さに形成する。
次に、CF基板40のバンドパスフィルタ43aの縁部に沿って額縁状にシール材(紫外線硬化型樹脂)を塗布し、TFT基板30とCF基板40との間にスペーサ37を散布するとともに、液晶を滴下し、両方の基板30,40を配向膜34,45が形成されている面を内側にして対向配置し、シール材18により接合する。
【0038】
その後、CF基板40上に表示領域を覆う遮光マスク47を配置し、CF基板40側から紫外線を照射してシール材38を硬化させる。このようにして液晶表示装置が形成される。
本実施の形態においては、ブラックマトリクス32がTFT基板30側に形成されており、バンドパスフィルタ43aはブラックマトリクス32の縁部よりも内側に配置することができるので、狭額縁化が達成でき、第1の実施の形態に比べ基板の寸法を削減できる。また、TFT基板30とCF基板40とを接合するときに両者の間に液晶を滴下し、TFT基板30とCF基板40との接合と同時に基板間に液晶を封入するので、第1の実施の形態に比べて製造に要する時間が著しく短縮される。
【0039】
以下、第2の実施の形態の液晶表示装置を実際に形成し、表示部のセル厚のばらつき、イオン密度及び残留DC電圧を測定した結果について説明する。液晶表示装置の劣化は、イオン密度及び残留DC電圧に関係し、イオン密度又は残留DC電圧が高いほど劣化しやすいということが知られている。
実施例のパネルとして、上記の方法によりBMオンTFT方式の液晶表示装置を形成した。パネル内に充填した液晶には、標準液晶ZLI−4792(メルク社製)を用いた。なお、シールに混入させるファイバスペーサの径は青のカラーフィルタ膜厚分だけ小さくした。また、ブラックマトリクスの外縁部(額縁部)の幅は4.5mm、バンドパスフィルタ43aの幅は3mm、バンドパスフィルタ43aの外縁からブラックマトリクス32の外縁までの距離は0.5mmである。
【0040】
また、従来例として、バンドパスフィルタを有しないこと以外は実施例と同様の液晶表示装置を形成した。
そして、これらの実施例及び従来例の液晶表示装置について、セル厚のばらつき、イオン密度及び残留DC電圧を調べた。その結果を、下記表1に示す。但し、セル厚のばらつきは、シール端部から3.5mmの位置(表示部端)におけるセル厚と、表示領域の中央の厚さを測定し、その差を求めることによって評価した。また、イオン密度は、温度が50℃の条件で電極間に波高値が10V、周波数が0.05Hzの三角波電圧を印加して測定した。更に残留DC電圧は、温度が50℃の条件で、波高値が2.0V、周波数が30Hz、オフセット電圧が4Vの矩形波電圧を電極間に約10分間印加した後、測定した。
【0041】
【表1】

Figure 0003874871
【0042】
この表1に示すように、実施例及び従来例の液晶表示装置は、いずれもセル厚のばらつきは±0.1μmの範囲であり、実施例と従来例との間で差異は認められなかった。
また、実施例の液晶表示パネルは、イオン密度が従来例の1/6〜1/7、残留DC電圧が従来例の約1/3と低い値を示した。このことから、実施例の液晶表示装置は、従来例に比べて、紫外線による液晶及び配向膜の劣化が発生しにくいことが明らかである。
【0043】
【発明の効果】
以上説明したように、本発明によれば、一方の透明基板の表示領域の外側にバンドパスフィルタを設け、このバンドパスフィルタを形成した面を内側にして一対の基板をシール材で接合し、前記一方の基板の外側に遮光マスク配置して紫外線を照射することによりシール材を硬化させるので、遮光マスクの端部から回り込んだ紫外線短波長がバンドパスフィルタによりカットされ、配向膜及び液晶の光劣化を最小限に抑えることができ、焼き付きや表示むらのない液晶表示装置を製造できる。
【0044】
また、青のカラーフィルタと同一材料で前記バンドパスフィルタを形成することにより、工程数の増加を回避できる。
更に、本発明をBMオンTFT方式の液晶表示装置に適用することにより、表示領域の外側の寸法を縮小することができるという。更にまた、滴下注入法により基板間に液晶を封入することにより、製造に要する時間が著しく短縮される。
【図面の簡単な説明】
【図1】(a)は本発明の第1の実施の形態の液晶表示装置の製造方法を示す断面図、(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。
【図2】水銀ショートアークランプの輝線スペクトルを示す図である。
【図3】ガラス基板のみの光透過率特性を示す図である。
【図4】ITO膜を有するガラス基板の光透過率特性を示す図である。
【図5】青のカラーフィルタの透過率特性を示す図である。
【図6】紫外線露光量とバンドパスフィルタの膜厚との関係を示す図である。
【図7】バンドパスフィルタの膜厚と透過率との関係を示す図である。
【図8】シール材及びフィルタの重ね合わせの割合と剥離強度との関係を示す図である。
【図9】(a)は本発明の第2の実施の形態の液晶表示装置を示す断面図、(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。
【図10】(a)は従来の液晶表示装置の製造方法を示す断面図、(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。
【図11】従来の問題点を示す図である。
【符号の説明】
10,30,50 TFT基板
11,21,31,42,51,61 ガラス基板
12,33,52 画素電極
13,25,34,45,54,65 配向膜
17,37,57 スペーサ
18,38,58 シール材
20,40,60 CF基板
22,32,62 ブラックマトリクス
23,43,63 カラーフィルタ
24,44,64 対向電極
27,47,67 遮光マスク
23a,43a バンドパスフィルタ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a liquid crystal display device in which liquid crystal is sealed between a pair of transparent substrates, and more particularly to a method for manufacturing a liquid crystal display device using an ultraviolet curable resin as a sealing material for bonding a pair of substrates.
[0002]
[Prior art]
A liquid crystal display device is advantageous in that it is thin and lightweight, can be driven at a low voltage and consumes less power, and is widely used in various electronic devices.
In particular, in recent years, an active matrix type liquid crystal display device in which an active element such as a TFT (Thin Film Transistor) is provided for each pixel is superior in terms of display quality to comparable to a CRT (Cathode-Ray Tube). Products can be obtained, and they are also used for displays such as portable televisions and personal computers.
[0003]
In general, a liquid crystal display device has a structure in which liquid crystal is sealed between two transparent substrates. A counter electrode, a color filter, an alignment film, and the like are formed on one of the two surfaces (opposing surfaces) of the transparent substrate facing each other, and an active matrix circuit and a pixel are formed on the other surface. An electrode, an alignment film, and the like are formed. Furthermore, a polarizing plate is attached to the surface opposite to the facing surface of each transparent substrate. These two polarizing plates are, for example, arranged so that the polarizing axes of the polarizing plates are orthogonal to each other, and according to this, a mode that transmits light when no electric field is applied and shields light when an electric field is applied, That is, the normally white mode is set. Further, when the polarization axes of the two polarizing plates are parallel, the normally black mode is set.
[0004]
Usually, in a manufacturing process of a liquid crystal display device, a substrate (hereinafter referred to as a CF substrate) on which a counter electrode, a color filter, an alignment film, and the like are formed, and a substrate (hereinafter referred to as an active matrix circuit, a pixel electrode, an alignment film, and the like). UV curable resin is used as a sealing material for bonding to a TFT substrate.
FIG. 10A is a cross-sectional view showing a conventional method for manufacturing a liquid crystal display device, and FIG. 10B is an enlarged view showing the vicinity of the substrate bonding portion in detail. However, in FIG. 10A, the counter electrode 64 and the alignment films 54 and 65 are not shown.
[0005]
The TFT substrate 50 includes a glass substrate 51, a plurality of pixel electrodes 52 arranged in a matrix on one surface of the glass substrate 51, TFTs (not shown) connected to the pixel electrodes 52, The pixel electrode 52 and the alignment film 54 covering the TFT are configured.
The CF substrate 60 includes a glass substrate 61, a black matrix 62 formed on one surface of the glass substrate 61, and an opening corresponding to the pixel electrode 52 of the TFT substrate 50. A color filter 63 provided corresponding to each opening and having any one color of R (red), G (green), and B (blue) for each opening, and the entire surface on the black matrix 62 and the color filter 63 The counter electrode 64 is covered, and the alignment film 65 covers the counter electrode 64. The pixel electrode 52 and the counter electrode 64 are both formed of a transparent ITO (indium tin oxide) film.
[0006]
When bonding the TFT substrate 50 and the CF substrate 60, first, a sealing material (ultraviolet curing) is formed in a frame shape so as to surround a display region (region in which pixel electrodes are arranged in a matrix) on the inner surface of the CF substrate 60. Mold resin) 58 is applied. At this time, as a liquid crystal injection port for injecting liquid crystal between the substrates in a later process, a part where no resin is applied is provided.
[0007]
Next, spacers 57 are dispersed between the substrates 50 and 60, and the TFT substrate 50 and the CF substrate 60 are opposed to each other and bonded by a sealing material 58.
Next, a light shielding mask 67 that covers the display area is disposed on the CF substrate 60, and the sealing material 58 is cured by irradiating ultraviolet rays from the CF substrate 60 side, and the TFT substrate 50 and the CF substrate 60 are bonded to each other. (Empty panel) is formed. At this time, the alignment films 54 and 65 are prevented from being irradiated with ultraviolet rays by the light shielding mask 67.
[0008]
Next, the light shielding mask 67 is removed, and the liquid crystal panel is placed in the vacuum chamber. Then, after the chamber is evacuated and the liquid crystal inlet is immersed in a container containing liquid crystal, the chamber is returned to atmospheric pressure. Then, the liquid crystal is filled in the panel due to the pressure difference. Thereafter, the liquid crystal injection port is filled with an ultraviolet curable resin as a sealing material, and the resin is cured by irradiation with ultraviolet rays. In this way, a liquid crystal display device is formed.
[0009]
By the way, when the alignment films 54 and 65 and the liquid crystal are irradiated with ultraviolet rays, the alignment films 54 and 65 and the liquid crystal are deteriorated, burn-in and display unevenness occur, and display performance is deteriorated. For this reason, as described above, the light shielding mask 67 is provided on the outer surface side of the CF substrate 60 to prevent the alignment films 54 and 65 and the liquid crystal from being irradiated with ultraviolet rays when the ultraviolet curable resin is cured.
[0010]
JP-A-52-73757 proposes a technique for cutting visible light and ultraviolet light having a wavelength of 450 nm or less by a metal oxide film. Japanese Patent Application Laid-Open No. 8-176549 proposes a technique for adding an ultraviolet absorber to the liquid crystal to prevent deterioration and isomerization of the liquid crystal. Japanese Patent Application Laid-Open No. 5-150223 discloses an ultraviolet curable resin. Instead of this, a technique using a visible light curable resin has been proposed.
[0011]
[Problems to be solved by the invention]
However, the conventional technique described above has a drawback that the alignment films 54 and 65 and the liquid crystal are deteriorated by the ultraviolet rays that wrap around from the edge of the light shielding mask 67 as shown in FIG. For example, even when the edge portions of the alignment films 54 and 65 are irradiated with ultraviolet rays, impurities in the liquid crystal easily adhere to the alignment films 54 and 65, and these impurities are aligned when used for a long time. Diffusion from the end portions of the films 54 and 65 to the pixel electrode side may cause burn-in or color unevenness.
[0012]
In the technique disclosed in Japanese Patent Laid-Open No. 52-73757, a high temperature (500 to 600 ° C.) is required when forming a metal oxide film, and the film is formed only in a specific region as in the present invention. In that case, the etching process becomes quite complicated.
The technique disclosed in Japanese Patent Application Laid-Open No. 8-176549 has a problem that the electrical characteristics of the liquid crystal change depending on the ultraviolet absorbing material added to the liquid crystal. In addition, there is a problem that the addition of an ultraviolet absorber causes coloring of the liquid crystal and deterioration of the alignment film.
[0013]
In the technique disclosed in Japanese Patent Laid-Open No. 5-150223, since the strength of a visible light curable resin is generally inferior to that of an ultraviolet curable resin, its use is limited and it is used for a portion requiring high strength. It is difficult to apply as a sealing material.
In liquid crystal display devices that use UV curable resin as the main seal and sealing material, the above UV cut filter and absorption are used to irradiate the resin part with UV light necessary for curing and to minimize liquid crystal deterioration at the resin boundary. A band-pass filter function that transmits a specific wavelength region of ultraviolet rays necessary for resin curing, and cuts other wavelengths, is required. Also, in terms of process, it is a condition that it can be easily formed in a specific region on the panel substrate.
[0014]
[Means for Solving the Problems]
The above issues are Forming a pixel electrode in a display region of one of the pair of substrates, forming a black matrix having an opening corresponding to the pixel electrode on the other substrate, and Forming each color filter of red, green and blue at a position corresponding to the pixel electrode; and the other substrate Between the display area and the sealant application area An outer edge of the black matrix; and A band pass having a transmittance of 50% or less for ultraviolet rays having a wavelength of 330 nm or less and a transmittance of 50% or more for ultraviolet rays having a wavelength of 380 nm or more so as to overlap the edge of the sealing material application region on the display region side. Forming a filter; Forming a counter electrode made of ITO on the entire surface of the other substrate; The step of bonding the pair of substrates with the sealing material applied to the sealing material application region, with the surface on which the bandpass filter is formed inside, The other substrate And a step of curing the sealing material by irradiating ultraviolet rays from the side.
[0016]
The operation of the present invention will be described below.
In the present invention, a bandpass filter is formed outside the display area of one transparent substrate. Therefore, even if ultraviolet rays enter the alignment film or the liquid crystal side from the edge of the light shielding mask, the harmful ultraviolet short wavelength is cut by the bandpass filter, and the optical deterioration of the alignment film and the liquid crystal is minimized.
[0017]
In the case of a color liquid crystal display device, the band-pass filter can be simultaneously formed of the same material as the blue color filter, for example. The blue color filter that is usually used transmits light in the reaction wavelength range (about 330 to 380 nm) of a general ultraviolet curable resin, and almost emits light in a shorter wavelength (250 to 330 nm) than the reaction wavelength range. Not transparent. Therefore, the blue color filter is very suitable as a bandpass filter used in the present invention. Further, by forming the bandpass filter with the same material as the blue color filter, an increase in the number of manufacturing steps can be avoided.
[0018]
In this case, the blue color filter is usually formed to a thickness of 1.0 to 2.5 μm in order to ensure color purity. However, if the thickness of the bandpass fill is the same as that of the color filter, it is difficult to irradiate the sealing material under the bandpass filter with sufficient ultraviolet rays. Therefore, when the band pass filter is formed of the same material as the blue color filter, it is preferable that the thickness of the band pass filter is smaller than the thickness of the color filter.
[0019]
In the case of a so-called BM-on-TFT type liquid crystal display device in which a black matrix is formed on one transparent substrate together with pixel electrodes and TFTs and a color filter is formed on the other substrate, the bandpass filter on the other transparent substrate is replaced with a black matrix. It becomes possible to arrange | position inside the edge part. As a result, the substrate size can be reduced without changing the size of the display area. Further, at this time, the time required for manufacturing is remarkably shortened by using a so-called dropping injection method in which the liquid crystal is dropped onto the substrate and then sandwiched and sealed between the pair of substrates.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1A is a cross-sectional view showing a method of manufacturing a liquid crystal display device according to the first embodiment of the present invention, and FIG. 1B is an enlarged view showing the vicinity of the substrate bonding portion in detail. However, illustration of the counter electrode 24 and the alignment films 13 and 25 is omitted in FIG.
[0021]
The TFT substrate 10 is formed in a conventional manner. That is, TFTs (not shown) and pixel electrodes 12 are formed on the glass substrate 11, and the alignment film 13 is formed on these TFTs and pixel electrodes 12. Then, the surface of the alignment film 13 is rubbed.
On the other hand, the CF substrate 20 is formed as follows. That is, first, a black matrix 22 having openings corresponding to the pixel electrodes 12 is formed on the glass substrate 21. Further, R (red), G (green), and B (blue) color filters 23 are formed at a thickness of about 1.0 to 2.5 μm at positions corresponding to the pixel electrodes 12 on the glass substrate 21. At the same time, a band pass filter 23 a is formed to cover the region outside the edge of the black matrix 22. The band-pass filter 23a is formed of the same material as the blue color filter, and is formed to a thickness of about 0.6 μm by adjusting the exposure amount.
Thereafter, a counter electrode 24 made of ITO is formed on the entire surface of the substrate 21, and an alignment film 25 is formed on the counter electrode 24. Then, the surface of the alignment film 25 is rubbed.
[0022]
Next, a sealing material (ultraviolet curable resin) 18 is applied in a frame shape along the edge of the bandpass filter 23a of the CF substrate 20 with a width of about 1 mm. At this time, a region where the sealing material 18 is not applied is provided in part as a liquid crystal injection port for injecting liquid crystal in a later step. Then, a spherical spacer 17 is dispersed between the TFT substrate 10 and the CF substrate 20, both the substrates 10 and 20 are disposed facing each other with the surface on which the alignment films 13 and 25 are formed, and the sealing material 18. To join.
[0023]
Next, a light-shielding mask (light-shielding metal film or film) 27 that covers the display area is disposed outside the CF substrate 20, and the sealing material 18 is cured by irradiating ultraviolet rays from the CF substrate 20 side. Thereby, a liquid crystal panel (empty panel) formed by joining the two substrates 10 and 20 is formed. In this case, the ultraviolet short wavelength that wraps around from the end of the light shielding mask 27 is cut by the bandpass filter 23a, and the optical deterioration of the alignment films 13 and 25 is minimized.
[0024]
Thereafter, the liquid crystal panel is placed in a vacuum chamber, the inside of the chamber is evacuated, and then the liquid crystal inlet is immersed in the liquid crystal to return the inside of the chamber to atmospheric pressure. Then, the liquid crystal is filled in the panel due to the difference between the pressure in the panel and the atmospheric pressure.
Next, the liquid crystal injection port is filled with an ultraviolet curable resin as a sealing material, and a light shielding mask 27 is disposed outside the CF substrate 20. Then, the sealing material is cured by irradiating ultraviolet rays. In this way, a liquid crystal display device is manufactured.
[0025]
FIG. 2 is a diagram showing an emission line spectrum of a mercury short arc lamp used for curing a sealing material, with the wavelength on the horizontal axis and the relative intensity on the vertical axis. The ultraviolet curable resin is mainly cured by light having a wavelength of 330 to 380 nm, and the deterioration of the liquid crystal and the alignment film is mainly caused by light having a shorter wavelength (wavelength range indicated by A in the figure). 3 and 4 are graphs showing the light transmittance characteristics of a glass (non-alkali glass) substrate with the horizontal axis representing wavelength and the vertical axis representing transmittance. 3 shows the light transmittance characteristics of only the glass substrate, and FIG. 4 shows the light transmittance characteristics of the glass substrate having an ITO film on the surface. As shown in FIG. 3, a glass substrate without an ITO film transmits light having a wavelength longer than about 250 nm, whereas a glass substrate having an ITO film as shown in FIG. 4 has a wavelength longer than about 280 nm. Transmits light. That is, in a glass substrate having an ITO film, light having a wavelength of 280 nm or less is cut almost 100%.
[0026]
FIG. 5 is a diagram showing the transmittance characteristics of a blue color filter, where the horizontal axis represents wavelength and the vertical axis represents light transmittance. However, this color filter is formed by a pigment dispersion method, and the thickness of the filter is about 1.3 μm. As shown in this figure, the blue color filter transmits light having a wavelength of about 320 to 590 nm, and best transmits light having a wavelength of about 460 nm. When this color filter is used as a bandpass filter, a relatively large amount of light having a wavelength of 330 to 380 nm effective for curing the ultraviolet curable resin is transmitted (indicated by hatching in the figure), which causes deterioration of the liquid crystal and the alignment film. Light having a wavelength of 330 nm or less is substantially blocked. From this figure, the bandpass filter made of the same material as the blue color filter transmits light with a wavelength necessary for curing the sealing material relatively well, and has a short ultraviolet wavelength that causes deterioration of the liquid crystal and the alignment film. It is clear that the blocking is efficient.
[0027]
In the present embodiment, even if ultraviolet rays circulate from the edge of the light shielding mask during ultraviolet irradiation, the bandpass filter 23a suppresses the irradiation of harmful ultraviolet short wavelengths to the liquid crystal and the alignment film. Thereby, the optical deterioration of the liquid crystal and the alignment film is minimized, and the deterioration of the display quality is avoided. In the present embodiment, since the band-pass filter 23a is simultaneously formed of the same material as the blue color filter, an increase in the number of steps is suppressed.
[0028]
Hereinafter, the result of examining the optimum value of the thickness of the bandpass filter will be described.
In the first embodiment, the band-pass filter is simultaneously formed of the same material as the blue color filter. Therefore, the relationship between the film thickness of the resist used for the color filter and the ultraviolet shielding property was examined. In general, the color filter is formed to a thickness of 1.0 to 2.5 μm in order to ensure color purity.
[0029]
First, a blue pigment was dispersed in a photosensitive resist of negative acrylic resin (CB-2000: manufactured by Fuji Hunt), and this resist was applied onto a glass substrate by a roller coater. Then, the glass substrate was heated on a hot plate at a temperature of 110 ° C. for 90 seconds to be pre-cured, and then exposed and developed. Thereafter, the resist was fully cured by heating at a temperature of 230 ° C. for 10 minutes to obtain a blue bandpass filter.
[0030]
In this case, bandpass filters with various film thicknesses were formed by adjusting the amount of ultraviolet light exposure. FIG. 6 is a diagram showing the relationship between the UV exposure amount on the horizontal axis and the film thickness of the bandpass filter on the vertical axis. As shown in FIG. 6, a bandpass filter having a desired film thickness can be formed by adjusting the amount of ultraviolet light exposure.
Next, using a spectroscope (LC-SP manufactured by Canon), the spectral characteristics of bandpass filters having film thicknesses of 0.3 μm, 0.6 μm, and 1.3 μm were examined. FIG. 7 is a diagram showing the relationship between the film thickness and the transmittance of the bandpass filter, with the wavelength on the horizontal axis and the light transmittance on the vertical axis. As shown in FIG. 7, when the film thickness of the band-pass filter is reduced, the light transmittance is increased. However, when the band-pass filter is excessively thin, light having a wavelength that causes deterioration of the liquid crystal and the alignment film is also transmitted. The performance as a filter is reduced. On the other hand, when the thickness of the bandpass filter is increased, light having a wavelength effective for curing the sealing material is also blocked, and the sealing material under the bandpass filter cannot be sufficiently cured. In the first embodiment, as a bandpass filter that transmits light having a wavelength of about 330 to 380 nm that contributes to the curing of the ultraviolet curable resin as much as possible and that can cut short wavelength components harmful to the liquid crystal and the alignment film, A color filter having a thickness of 0.6 μm is preferable. However, as shown in FIG. 5, even a color filter having a film thickness of 0.3 to 1.3 μm can be used as a bandpass filter.
[0031]
Next, the results of examining the bonding strength of the sealing material (ultraviolet curable resin) to the bandpass filter formed as described above will be described.
First, an ultraviolet curable resin is applied to the center of two 15 × 50 mm glass substrates in the form of dots having a diameter of 3 mm, and spherical spacers (SP-205: manufactured by Sekisui Fine Chemical) having a diameter of about 5 μm are sprayed. The substrates were bonded together. Similarly, a color filter resist film is formed on two glass substrates, an ultraviolet curable resin is applied on the resist film, and spacers are scattered between the substrates to bond the two substrates together. . Furthermore, a color filter resist film is formed in a stripe shape on a glass substrate, and UV curable resin is applied so that half of the resin is in contact with the glass substrate and the rest is in contact with the resist film, and spacers are dispersed between the substrates. After that, they were pasted together.
[0032]
And for these substrates, 3000 mJ / cm 2 The resin was cured by irradiating with ultraviolet rays at a quantity of. Thereafter, peel strength was measured using a peel tester.
As a result, the peel strength when UV curable resin is directly applied to the glass substrate is 1.5 kgf / cm. 2 Met. The peel strength when an ultraviolet curable resin is applied on the resist film is 0.7 kgf / cm. 2 Met. Furthermore, the peel strength when UV curable resin is applied so that half is in contact with the glass substrate and the rest is in contact with the resist film is 1.2 kgf / cm. 2 Met.
[0033]
FIG. 8 is a diagram showing the relationship between the horizontal axis representing the overlapping ratio of the sealing material and the color filter resist film and the vertical axis representing the peel strength. Usually, in a liquid crystal display device, the peel strength is 1.0 kgf / cm from the viewpoint of panel strength and moisture resistance. 2 It is said that this is necessary. From FIG. 8, if the portion where the sealing material is in direct contact with the glass substrate is 30% or more, the peel strength is 1.0 kgf / cm. 2 Thus, it can be seen that sufficient peel strength can be ensured.
[0034]
(Second Embodiment)
FIG. 9A is a cross-sectional view showing a liquid crystal display device according to a second embodiment of the present invention, and FIG. 9B is an enlarged view similarly showing details of the vicinity of the substrate bonding portion. In the present embodiment, the present invention is applied to a so-called BM-on-TFT type liquid crystal display device in which a black matrix is formed on the TFT substrate side. In FIG. 9A, the counter electrode 44 and the alignment films 34 and 45 are not shown.
[0035]
The TFT substrate 30 is formed as follows. That is, first, the black matrix 32 is formed in a predetermined pattern on the glass substrate 31. Thereafter, a pixel electrode 33 and a TFT (not shown) are formed in each pixel region. Then, after forming an alignment film 34 covering these pixel electrodes 33 and TFTs on the substrate 31, the surface of the alignment film 34 is rubbed.
[0036]
On the other hand, the CF substrate 40 is formed as follows. That is, the color filter 43 of any one color of R (red), G (green), and B (blue) is formed on the glass substrate 41 for each pixel region. At this time, the band pass filter 43a is formed in a frame shape along the edge of the display region with the same material as the blue color filter. Next, a counter electrode 44 covering the display area of the substrate 41 is formed, and an alignment film 45 is formed on the counter electrode 44. Thereafter, the surface of the alignment film 45 is rubbed.
[0037]
The pixel electrode 33 and the counter electrode 44 are both formed of ITO, the color filter 43 is formed to a thickness of about 1.0 to 2.5 μm, and the band pass filter 43a is formed to a thickness of about 0.6 μm.
Next, a sealing material (ultraviolet curable resin) is applied in a frame shape along the edge of the bandpass filter 43a of the CF substrate 40, and a spacer 37 is dispersed between the TFT substrate 30 and the CF substrate 40, and The liquid crystal is dropped, and both the substrates 30 and 40 are arranged to face each other with the surface on which the alignment films 34 and 45 are formed inside, and are bonded by the sealing material 18.
[0038]
Thereafter, a light shielding mask 47 covering the display area is disposed on the CF substrate 40, and the sealing material 38 is cured by irradiating ultraviolet rays from the CF substrate 40 side. In this way, a liquid crystal display device is formed.
In the present embodiment, the black matrix 32 is formed on the TFT substrate 30 side, and the band-pass filter 43a can be arranged on the inner side of the edge of the black matrix 32, so that a narrow frame can be achieved. Compared with the first embodiment, the size of the substrate can be reduced. Further, when the TFT substrate 30 and the CF substrate 40 are bonded, liquid crystal is dropped between them, and the liquid crystal is sealed between the substrates simultaneously with the bonding of the TFT substrate 30 and the CF substrate 40. Compared to the form, the time required for production is significantly reduced.
[0039]
Hereinafter, the result of actually forming the liquid crystal display device of the second embodiment and measuring the cell thickness variation, the ion density, and the residual DC voltage of the display unit will be described. It is known that the deterioration of the liquid crystal display device is related to the ion density and the residual DC voltage, and the deterioration is more likely as the ion density or the residual DC voltage is higher.
As the panel of the example, a BM-on-TFT type liquid crystal display device was formed by the above method. Standard liquid crystal ZLI-4792 (manufactured by Merck) was used as the liquid crystal filled in the panel. The diameter of the fiber spacer mixed in the seal was reduced by the thickness of the blue color filter. Further, the width of the outer edge portion (frame portion) of the black matrix is 4.5 mm, the width of the bandpass filter 43a is 3 mm, and the distance from the outer edge of the bandpass filter 43a to the outer edge of the black matrix 32 is 0.5 mm.
[0040]
In addition, as a conventional example, a liquid crystal display device similar to the example was formed except that the band-pass filter was not provided.
And about the liquid crystal display device of these Examples and a prior art example, the dispersion | variation in cell thickness, ion density, and residual DC voltage were investigated. The results are shown in Table 1 below. However, the variation in cell thickness was evaluated by measuring the cell thickness at a position 3.5 mm from the seal end (display end) and the thickness of the center of the display area, and obtaining the difference. The ion density was measured by applying a triangular wave voltage having a peak value of 10 V and a frequency of 0.05 Hz between the electrodes at a temperature of 50 ° C. Further, the residual DC voltage was measured after applying a rectangular wave voltage having a peak value of 2.0 V, a frequency of 30 Hz, and an offset voltage of 4 V between the electrodes under a temperature of 50 ° C. for about 10 minutes.
[0041]
[Table 1]
Figure 0003874871
[0042]
As shown in Table 1, in the liquid crystal display devices of the example and the conventional example, the cell thickness variation was in the range of ± 0.1 μm, and no difference was found between the example and the conventional example. .
In addition, the liquid crystal display panel of the example showed a low ion density of 1/6 to 1/7 of the conventional example and a residual DC voltage of about 1/3 of the conventional example. From this, it is clear that the liquid crystal display device of the example is less likely to cause deterioration of the liquid crystal and the alignment film due to ultraviolet rays than the conventional example.
[0043]
【The invention's effect】
As described above, according to the present invention, a bandpass filter is provided outside the display area of one transparent substrate, and a pair of substrates are bonded with a sealing material with the surface on which the bandpass filter is formed inside, Since the sealing material is cured by placing a light shielding mask on the outside of the one substrate and irradiating ultraviolet rays, the ultraviolet short wavelength that wraps around from the edge of the light shielding mask is cut by the bandpass filter, and the alignment film and the liquid crystal Light deterioration can be minimized, and a liquid crystal display device free from burn-in and display unevenness can be manufactured.
[0044]
In addition, an increase in the number of steps can be avoided by forming the bandpass filter with the same material as the blue color filter.
Furthermore, by applying the present invention to a BM-on-TFT type liquid crystal display device, the dimensions outside the display area can be reduced. Furthermore, the time required for manufacturing is remarkably shortened by sealing the liquid crystal between the substrates by the dropping injection method.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view showing a method for manufacturing a liquid crystal display device according to a first embodiment of the present invention, and FIG. 1B is an enlarged view similarly showing in detail the vicinity of a substrate junction.
FIG. 2 is a diagram showing an emission line spectrum of a mercury short arc lamp.
FIG. 3 is a diagram showing light transmittance characteristics of only a glass substrate.
FIG. 4 is a diagram showing light transmittance characteristics of a glass substrate having an ITO film.
FIG. 5 is a diagram illustrating transmittance characteristics of a blue color filter.
FIG. 6 is a diagram showing a relationship between an ultraviolet exposure amount and a film thickness of a band pass filter.
FIG. 7 is a diagram showing the relationship between the film thickness and transmittance of a bandpass filter.
FIG. 8 is a graph showing the relationship between the overlapping ratio of the sealing material and the filter and the peel strength.
FIG. 9A is a cross-sectional view showing a liquid crystal display device according to a second embodiment of the present invention, and FIG. 9B is an enlarged view similarly showing details of the vicinity of the substrate bonding portion.
FIG. 10A is a cross-sectional view showing a conventional method for manufacturing a liquid crystal display device, and FIG. 10B is an enlarged view showing the vicinity of the substrate bonding portion in detail.
FIG. 11 is a diagram showing a conventional problem.
[Explanation of symbols]
10, 30, 50 TFT substrate
11, 21, 31, 42, 51, 61 Glass substrate
12, 33, 52 Pixel electrode
13, 25, 34, 45, 54, 65 Alignment film
17, 37, 57 Spacer
18, 38, 58 Sealing material
20, 40, 60 CF substrate
22, 32, 62 Black matrix
23, 43, 63 Color filter
24, 44, 64 Counter electrode
27, 47, 67 Shading mask
23a, 43a Band pass filter

Claims (6)

一対の基板のいずれか一方の基板の表示領域に画素電極を形成する工程と、
他方の基板に、前記画素電極に対応する部分が開口されたブラックマトリクスを形成する工程と、
前記他方の基板の前記画素電極に対応する位置に赤、緑及び青の各カラーフィルタを形成する工程と、
前記他方の基板の表示領域とシール材塗布領域との間に、前記ブラックマトリクスの外側の縁部及び前記シール材塗布領域の前記表示領域側の縁部に重なるように、波長が330nm以下の紫外線に対する透過率が50%以下であり且つ波長が380nm以上の紫外線に対する透過率が50%以上のバンドパスフィルタを形成する工程と、
前記他方の基板の全面にITOからなる対向電極を形成する工程と、
前記バンドパスフィルタを形成した面を内側にして、前記一対の基板を前記シール材塗布領域に塗布したシール材により接合する工程と、
前記他方の基板側から紫外線を照射して前記シール材を硬化させる工程と
を有することを特徴とする液晶表示装置の製造方法。
Forming a pixel electrode in a display region of one of the pair of substrates;
Forming a black matrix having an opening corresponding to the pixel electrode on the other substrate;
Forming red, green and blue color filters at positions corresponding to the pixel electrodes on the other substrate;
UV light having a wavelength of 330 nm or less so as to overlap the outer edge of the black matrix and the edge of the sealing material application area on the display area side between the display area of the other substrate and the sealing material application area. Forming a band-pass filter having a transmittance with respect to UV light of 50% or less and a transmittance with respect to ultraviolet rays having a wavelength of 380 nm or more;
Forming a counter electrode made of ITO on the entire surface of the other substrate;
The step of bonding the pair of substrates with the sealing material applied to the sealing material application region, with the surface on which the bandpass filter is formed inside,
And a step of curing the sealing material by irradiating ultraviolet rays from the other substrate side.
前記バンドパスフィルタは、前記シール材の反応波長の紫外線を透過し、それよりも短い波長の紫外線をカットするものであることを特徴とする請求項1に記載の液晶表示装置の製造方法。The method of manufacturing a liquid crystal display device according to claim 1 , wherein the band-pass filter transmits ultraviolet light having a reaction wavelength of the sealing material and cuts ultraviolet light having a shorter wavelength. 前記シール材を硬化させる工程において、前記他方の基板の外側に、前記表示領域を覆い且つ前記バンドパスフィルタの前記表示領域側の縁部に重なるように遮光膜を配置することを特徴とする請求項1に記載の液晶表示装置の製造方法。In curing the sealing material, wherein the outside of the other substrate, characterized by arranging the light shielding film so as to overlap the edge of the display area side of and the bandpass filter covering the display region Item 2. A method for manufacturing a liquid crystal display device according to Item 1 . 前記バンドパスフィルタは、前記青のカラーフィルタと同一の材料により形成することを特徴とする請求項1に記載の液晶表示装置の製造方法。The method of manufacturing a liquid crystal display device according to claim 1, wherein the band-pass filter is formed of the same material as the blue color filter. 前記バンドパスフィルタは、前記青のカラーフィルタよりも薄く形成することを特徴とする請求項4に記載の液晶表示装置の製造方法。5. The method of manufacturing a liquid crystal display device according to claim 4 , wherein the band pass filter is formed thinner than the blue color filter. 前記一対の基板をシール材で接合する工程において、滴下注入法により前記一対の基板間に液晶を封入することを特徴とする請求項1に記載の液晶表示装置の製造方法。2. The method of manufacturing a liquid crystal display device according to claim 1 , wherein in the step of bonding the pair of substrates with a sealing material, liquid crystal is sealed between the pair of substrates by a dropping injection method.
JP02640697A 1997-02-10 1997-02-10 Manufacturing method of liquid crystal display device Expired - Fee Related JP3874871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02640697A JP3874871B2 (en) 1997-02-10 1997-02-10 Manufacturing method of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02640697A JP3874871B2 (en) 1997-02-10 1997-02-10 Manufacturing method of liquid crystal display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006234394A Division JP4387389B2 (en) 2006-08-30 2006-08-30 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH10221700A JPH10221700A (en) 1998-08-21
JP3874871B2 true JP3874871B2 (en) 2007-01-31

Family

ID=12192681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02640697A Expired - Fee Related JP3874871B2 (en) 1997-02-10 1997-02-10 Manufacturing method of liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3874871B2 (en)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459467B1 (en) 1998-05-15 2002-10-01 Minolta Co., Ltd. Liquid crystal light modulating device, and a manufacturing method and a manufacturing apparatus thereof
JP4862008B2 (en) * 1999-02-15 2012-01-25 シャープ株式会社 Liquid crystal display
JP2007041625A (en) * 1999-05-24 2007-02-15 Sharp Corp Liquid crystal display and method of fabricating the same
JP2001222017A (en) 1999-05-24 2001-08-17 Fujitsu Ltd Liquid crystal display device and its manufacturing method
KR100847809B1 (en) * 2001-08-30 2008-07-23 엘지디스플레이 주식회사 Method For Fabricating Liquid Crystal Display Device
US6819391B2 (en) 2001-11-30 2004-11-16 Lg. Philips Lcd Co., Ltd. Liquid crystal display panel having dummy column spacer with opened portion
US7292304B2 (en) 2001-12-17 2007-11-06 Lg.Philips Lcd Co., Ltd. Liquid crystal display panel and method for fabricating the same comprising a dummy column spacer to regulate a liquid crystal flow and a supplemental dummy column spacer formed substantially parallel and along the dummy column spacer
KR100652045B1 (en) 2001-12-21 2006-11-30 엘지.필립스 엘시디 주식회사 A Liquid Crystal Display Device And The Method For Manufacturing The Same
KR100685949B1 (en) 2001-12-22 2007-02-23 엘지.필립스 엘시디 주식회사 A Liquid Crystal Display Device And The Method For Manufacturing The Same
KR100510718B1 (en) 2002-02-04 2005-08-30 엘지.필립스 엘시디 주식회사 manufacturing device for manufacturing of liquid crystal device
KR100469354B1 (en) 2002-02-06 2005-02-02 엘지.필립스 엘시디 주식회사 Method for manufacturing liquid crystal display device
KR100469353B1 (en) 2002-02-06 2005-02-02 엘지.필립스 엘시디 주식회사 bonding device for liquid crystal display
KR100817129B1 (en) 2002-02-07 2008-03-27 엘지.필립스 엘시디 주식회사 Cutter of liquid crystal panel and cutting method thereof
KR100789454B1 (en) 2002-02-09 2007-12-31 엘지.필립스 엘시디 주식회사 Cutter of liquid crystal panel and cutting method thereof
KR100832292B1 (en) 2002-02-19 2008-05-26 엘지디스플레이 주식회사 Cutter of liquid crystal panel
KR100789455B1 (en) 2002-02-20 2007-12-31 엘지.필립스 엘시디 주식회사 Cutting method of liquid crystal display panel
KR100532083B1 (en) 2002-02-20 2005-11-30 엘지.필립스 엘시디 주식회사 A liquid crystal dispensing apparatus having an integrated needle sheet
KR100672641B1 (en) 2002-02-20 2007-01-23 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device and Method of manufacturing the same
KR100469359B1 (en) 2002-02-20 2005-02-02 엘지.필립스 엘시디 주식회사 bonding device for liquid crystal display
US6824023B2 (en) 2002-02-20 2004-11-30 Lg. Philips Lcd Co., Ltd. Liquid crystal dispensing apparatus
US7006202B2 (en) 2002-02-21 2006-02-28 Lg.Philips Lcd Co., Ltd. Mask holder for irradiating UV-rays
US6864948B2 (en) 2002-02-22 2005-03-08 Lg.Philips Lcd Co., Ltd. Apparatus for measuring dispensing amount of liquid crystal drops and method for manufacturing liquid crystal display device using the same
KR100469360B1 (en) 2002-02-22 2005-02-02 엘지.필립스 엘시디 주식회사 bonding device for liquid crystal display and operation method thereof
KR100469508B1 (en) 2002-02-22 2005-02-02 엘지.필립스 엘시디 주식회사 A liquid crystal dispensing apparatus having controlling function of dropping amount caused by controlling tension of spring
US6712883B2 (en) 2002-02-25 2004-03-30 Lg.Philips Lcd Co., Ltd. Apparatus and method for deaerating liquid crystal
US6803984B2 (en) 2002-02-25 2004-10-12 Lg.Philips Lcd Co., Ltd. Method and apparatus for manufacturing liquid crystal display device using serial production processes
US6774958B2 (en) 2002-02-26 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal panel, apparatus for inspecting the same, and method of fabricating liquid crystal display thereof
KR100511352B1 (en) 2002-02-27 2005-08-31 엘지.필립스 엘시디 주식회사 An apparatus for dispensing liquid crystal and a method of controlling liquid crystal dropping amount
US6784970B2 (en) 2002-02-27 2004-08-31 Lg.Philips Lcd Co., Ltd. Method of fabricating LCD
US6833901B2 (en) 2002-02-27 2004-12-21 Lg. Philips Lcd Co., Ltd. Method for fabricating LCD having upper substrate coated with sealant
KR100685951B1 (en) 2002-03-06 2007-02-23 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device and Method of manufacturing the same
KR100798320B1 (en) 2002-03-06 2008-01-28 엘지.필립스 엘시디 주식회사 Appratus and method for testing liquid crystal display panel
KR100606966B1 (en) 2002-03-06 2006-08-01 엘지.필립스 엘시디 주식회사 Production line of Liquid Crystal Display Device
KR100662495B1 (en) 2002-03-07 2007-01-02 엘지.필립스 엘시디 주식회사 Method of manufacturing Liquid Crystal Display Device
KR100720415B1 (en) 2002-03-08 2007-05-22 엘지.필립스 엘시디 주식회사 conveyance device for liquid crystal display
US7027122B2 (en) 2002-03-12 2006-04-11 Lg.Philips Lcd Co., Ltd. Bonding apparatus having compensating system for liquid crystal display device and method for manufacturing the same
US6892437B2 (en) 2002-03-13 2005-05-17 Lg. Philips Lcd Co., Ltd. Apparatus and method for manufacturing liquid crystal display device
KR100817130B1 (en) 2002-03-13 2008-03-27 엘지.필립스 엘시디 주식회사 Pattern for detecting grind amount of liquid crystal display panel and method for deciding grind defective using it
US6782928B2 (en) 2002-03-15 2004-08-31 Lg.Philips Lcd Co., Ltd. Liquid crystal dispensing apparatus having confirming function for remaining amount of liquid crystal and method for measuring the same
US6885427B2 (en) 2002-03-15 2005-04-26 Lg.Philips Lcd Co., Ltd. Substrate bonding apparatus for liquid crystal display device having alignment system with one end provided inside vacuum chamber
KR100817132B1 (en) 2002-03-15 2008-03-27 엘지.필립스 엘시디 주식회사 Liquid crystal dispensing apparatus
KR100480819B1 (en) 2002-03-20 2005-04-06 엘지.필립스 엘시디 주식회사 Method for cleaning chamber of bonding device
KR100832293B1 (en) 2002-03-20 2008-05-26 엘지디스플레이 주식회사 Grind table of liquid crystal display panel and grinder using it
US7040525B2 (en) 2002-03-20 2006-05-09 Lg.Philips Lcd Co., Ltd. Stage structure in bonding machine and method for controlling the same
KR100854378B1 (en) 2002-03-20 2008-08-26 엘지디스플레이 주식회사 Liquid crystal display panel and fabricating method thereof
KR100652050B1 (en) 2002-03-20 2006-11-30 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device and Method of manufacturing the same
US6874662B2 (en) 2002-03-21 2005-04-05 Lg. Philips Lcd Co., Ltd. Liquid crystal dispensing apparatus
US6827240B2 (en) 2002-03-21 2004-12-07 Lg.Philips Lcd Co., Ltd. Liquid crystal dispensing apparatus
KR100841623B1 (en) 2002-03-21 2008-06-27 엘지디스플레이 주식회사 Grinder of liquid crystal display panel
US6793756B2 (en) 2002-03-22 2004-09-21 Lg. Phillips Lcd Co., Ltd. Substrate bonding apparatus for liquid crystal display device and method for driving the same
KR100662496B1 (en) 2002-03-23 2007-01-02 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device and Method of manufacturing the same
JP4210139B2 (en) 2002-03-23 2009-01-14 エルジー ディスプレイ カンパニー リミテッド Liquid crystal dropping device capable of adjusting the dropping amount of liquid crystal depending on the height of the spacer and dropping method thereof
KR20030077070A (en) 2002-03-25 2003-10-01 엘지.필립스 엘시디 주식회사 A Cassette for Measuring Gravitation Badness
KR100720420B1 (en) 2002-03-25 2007-05-22 엘지.필립스 엘시디 주식회사 method for motion contoling in bonding device for LCD and device the same
KR100685923B1 (en) 2002-03-25 2007-02-23 엘지.필립스 엘시디 주식회사 Bonding devise and method for manufacturing liquid crystal display device using the same
KR100640994B1 (en) 2002-03-25 2006-11-02 엘지.필립스 엘시디 주식회사 Container used in removing bubble of sealant, and Device for removing bubble of sealant using the same
KR100518269B1 (en) 2002-03-25 2005-10-04 엘지.필립스 엘시디 주식회사 A method of dispensing liquid crystal using a plurality of liquid crystal dispensing device
KR100848556B1 (en) 2002-03-25 2008-07-25 엘지디스플레이 주식회사 Turn buffer of liquid crystal display panel and rubbing apparatus using it
KR100698040B1 (en) 2002-06-14 2007-03-23 엘지.필립스 엘시디 주식회사 Portable jig
US7295279B2 (en) 2002-06-28 2007-11-13 Lg.Philips Lcd Co., Ltd. System and method for manufacturing liquid crystal display devices
KR100488535B1 (en) 2002-07-20 2005-05-11 엘지.필립스 엘시디 주식회사 Apparatus for dispensing Liquid crystal and method for dispensing thereof
KR100675628B1 (en) 2002-10-16 2007-02-01 엘지.필립스 엘시디 주식회사 Apparatus and method for etching isolating film
KR100689310B1 (en) 2002-11-11 2007-03-08 엘지.필립스 엘시디 주식회사 Dispenser of liquid crystal display panel and method for controlling gap between substrate and nozzle using the same
KR100710163B1 (en) 2002-11-28 2007-04-20 엘지.필립스 엘시디 주식회사 method for manufacturing of LCD
KR100700176B1 (en) 2002-12-18 2007-03-27 엘지.필립스 엘시디 주식회사 Dispenser of liquid crystal display panel and method for controlling gap between substrate and nozzle using the same
KR100996576B1 (en) 2003-05-09 2010-11-24 주식회사 탑 엔지니어링 Liquid crystal dispensing system and method of dispensing liquid crystal material using thereof
KR100557500B1 (en) 2003-06-24 2006-03-07 엘지.필립스 엘시디 주식회사 Liquid crystal dispensing system which can read information of liqid crystal container and method of dispensing liquid crystal material using thereof
KR100495476B1 (en) 2003-06-27 2005-06-14 엘지.필립스 엘시디 주식회사 Liquid crystal dispensing system
KR100987910B1 (en) 2003-11-28 2010-10-13 엘지디스플레이 주식회사 An apparatus and method of dispensing liquid crystal
KR101026935B1 (en) 2003-12-10 2011-04-04 엘지디스플레이 주식회사 Apparatus for aligning dispenser and method thereof
JP2006201433A (en) * 2005-01-20 2006-08-03 Toppan Printing Co Ltd Method of manufacturing color filter for semi-transmissive liquid crystal display device and color filter for semi-transmissive liquid crystal display device
KR100824881B1 (en) 2006-11-10 2008-04-23 삼성에스디아이 주식회사 Organic light emitting display device and manufacturing method thereof and moving device therefor
KR100824880B1 (en) 2006-11-10 2008-04-23 삼성에스디아이 주식회사 Organic light emitting display device and manufacturing method thereof and moving device therefor
KR100824902B1 (en) * 2006-12-13 2008-04-23 삼성에스디아이 주식회사 Organic light emitting display device and manufacturing method thereof
JP5478817B2 (en) 2007-08-30 2014-04-23 株式会社ジャパンディスプレイ Liquid crystal display device and manufacturing method thereof
JP4912443B2 (en) * 2009-08-07 2012-04-11 シャープ株式会社 Manufacturing method of liquid crystal display device
JP5193328B2 (en) 2011-03-02 2013-05-08 株式会社ジャパンディスプレイイースト Liquid crystal display
WO2013027548A1 (en) * 2011-08-25 2013-02-28 シャープ株式会社 Method for manufacturing liquid crystal display device
JP5507715B2 (en) * 2013-02-01 2014-05-28 株式会社ジャパンディスプレイ Liquid crystal display

Also Published As

Publication number Publication date
JPH10221700A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
JP3874871B2 (en) Manufacturing method of liquid crystal display device
JP4177658B2 (en) Liquid crystal display
JPH0961829A (en) Production of liquid crystal display element
JPH11109373A (en) Liquid crystal display element
JP3381785B2 (en) Liquid crystal display panel and method of manufacturing the same
JP3937304B2 (en) Manufacturing method of liquid crystal display panel
US10705371B2 (en) Color filter substrate, manufacturing method thereof, display panel, manufacturing method thereof and bright spot defect correction method thereof, and display apparatus
JP2010204417A (en) Liquid crystal display device and method for manufacturing the same
KR20070119767A (en) Display substrate assembly and mehtod of manufacturing the same
US6879369B2 (en) Structure of LCD manufactured by one-drop fill technology including a substrate with transparent conductive patterns
JP4719289B2 (en) Liquid crystal display device
JPH0441810B2 (en)
JP3384964B2 (en) Liquid crystal display device and manufacturing method thereof
JP4387389B2 (en) Liquid crystal display
JP2010113377A (en) Liquid crystal display and method of fabricating the same
JP3683785B2 (en) Liquid crystal display device and manufacturing method thereof
JP2007025066A (en) Manufacturing method for liquid crystal display panel
JP2007041625A (en) Liquid crystal display and method of fabricating the same
KR20060110196A (en) Sealant for adhesion substrates, liquid crystal display device and fabricating method using the same
JP4053122B2 (en) Liquid crystal display element and method of manufacturing liquid crystal display element
TW589498B (en) Structure of liquid crystal display
JP2000019540A (en) Liquid crystal display device
JP3219482B2 (en) Liquid crystal panel and manufacturing method thereof
JP2007264102A (en) Liquid crystal display panel and method of manufacturing same
JP2002098981A (en) Liquid crystal device and method for manufacturing the same, and electronic device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees