JP3874470B2 - Methyl methacrylate production equipment - Google Patents

Methyl methacrylate production equipment Download PDF

Info

Publication number
JP3874470B2
JP3874470B2 JP27132096A JP27132096A JP3874470B2 JP 3874470 B2 JP3874470 B2 JP 3874470B2 JP 27132096 A JP27132096 A JP 27132096A JP 27132096 A JP27132096 A JP 27132096A JP 3874470 B2 JP3874470 B2 JP 3874470B2
Authority
JP
Japan
Prior art keywords
liquid
reaction
solid
channel
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27132096A
Other languages
Japanese (ja)
Other versions
JPH1094705A (en
Inventor
建 大石
浩明 塚島
知由 久我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Engineering Corp
Original Assignee
Asahi Kasei Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Engineering Corp filed Critical Asahi Kasei Engineering Corp
Priority to JP27132096A priority Critical patent/JP3874470B2/en
Publication of JPH1094705A publication Critical patent/JPH1094705A/en
Application granted granted Critical
Publication of JP3874470B2 publication Critical patent/JP3874470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、反応槽と、固液を傾斜流路内において連続分離し、液成分のみを連続的に分離する装置とからなり、反応槽の周壁部に該連続的に分離する装置を配置したメタクリル酸メチル製造装置に関する。
【0002】
【従来の技術】
化学工業においては、微粒子の固体触媒スラリー液を用いた反応方式、例えば、気液固相反応もしくは液固相反応などの反応方式が採用されている。通常、この反応方式のための装置は反応を行う反応槽と触媒スラリー液と反応液とを分離する分離装置から成っている。
【0003】
ところで、気液固相より液成分を分離するに、沈降分離、遠心分離、フィルター濾過機による分離、等種々の方法がある。
しかるに、沈降分離では、固体の沈降速度にもよるが通常は多大な面積を必要とし反応装置の大型化が避けられず、遠心分離では、機械的な設備を必要とし、また、摺動部分、シール部分があるためそこでの詰まり、機械的な触媒の破壊の問題等があり高圧系や危険物を取扱う系では使用できない場合があり、更にフィルター濾過機による分離では、フィルターの詰まりやスケーリング等を起こし濾過速度が低下し、逆洗浄を頻繁に行う必要があり、安定な連続運転ができないという問題点がある。
【0004】
例えば、気液固相の反応例として、シリカ、アルミナ、けいそう土、活性炭またはゼオライトなどの担体にパラジウムなどを担持させた触媒とアルデヒドとしてメタクロレイン、アルコールとしてメタノールとを懸濁させ、これに分子状酸素含有ガスを吹き込んでアルデヒド(メタクロレイン)を液相酸化すると同時にエステル化を行わせるカルボン酸エステル(メタクリル酸メチル)の製造方法が知られている(例えば、特公昭45−34368号公報、特公昭57−35858号公報、特公昭57−35859号公報、特公昭61−60820号公報、特公昭62−7902号公報等参照)。
【0005】
【発明が解決しようとする課題】
本発明は、上記通常の反応装置が有する種々の問題点を解決する反応装置を提供するものであり、例えば、上記気液固系の反応例に示した化学反応においては、触媒の存在下で酸素濃度の低い領域において副反応としてメタクロレインの還元によるイソブチルアルデヒドや、イソ酪酸メチルエステルなどが生成してくる。これらの副生物は、主反応生成物を重合しポリマーを製造するに際し、重合反応を阻害する物質であるため精製分離を充分に行わなければならない。即ち、これら副生物の選択率が高くなることは、精製設備が大型となり、精製エネルギーも大きくなる。また、主反応成分の選択率の低下による原料の損失や、大型のエステル化反応器が必要となる。この為イソブチルアルデヒドや、イソ酪酸メチルエステルの選択率は極力抑えなければならない。副反応を抑制する為には、気体(酸素)を分離した状態で存在する部分の容積を小さくするか、分離部分における滞留時間を短くする(液の通過流速を速くする。)必要がある。
【0006】
この問題を解決するために本発明者らは当初、図1に示すような円筒状反応槽の側面部に、分離装置として多段傾斜板を設け、図2に示すように流路1における気体の上昇脱気後のスラリー液と反応槽内の気体を含む液による比重差、により流路1内にスラリー液の循環流路を形成し、その一部分(反応器内に供給した液量に略等しい量)を傾斜板内に流入させ、固液を沈降分離し、液成分の分離を試みた。
しかし、図3に示すような液の流れによって生じた流路1の上部と下部の圧力差、および傾斜板内において触媒が沈降したことによる密度差により、傾斜板内においての液の循環が生じ、傾斜板内における流れが乱流域となり、沈降分離した固体触媒が再度巻き上げられたりして分離が不可能であった。
【0007】
【課題を解決するための手段】
そこで、本発明者らは、前記課題を解決するため、反応槽の側壁部に配置した混合物循環流路に隣接して設けた多段傾斜流路について鋭意研究した結果、適当な絞りを傾斜流路の流路内に設置することにより該流路内の流れを層流域にし、それにより流路で反応液成分を分離し、沈降した粒子を混合物循環流路に乗せて反応槽内部に連続的に戻し得ることを見出し、本発明を完成するに到った。
【0008】
即ち、本発明は、触媒とメタクロレイン、メタノールとを懸濁させ、これに分子状酸素含有ガスを吹き込んでメタクロレインを液相酸化すると同時にエステル化反応を行わせ、メタクリル酸メチルとする反応槽と反応後の気液固混合物からメタクリル酸メチル液成分を連続的に分離する分離装置とからなるメタクリル酸メチル製造装置であって、反応槽の周壁部に、混合物導入域と混合物排出域とを有する混合物循環流路を設け、かつ循環流路の上部混合物導入域において流路を広げて液の下降流速より気体の上昇速度が大きくなるような巾にし、気体の酸素含有ガスを固液より分離可能とするとともに、該循環流路に対して一定の傾斜を持った多段の流路を隣接し、該傾斜流路に適当な絞りを設け、該流路内の液固混合物の流れを層流域とすることにより固体の触媒を沈降させ、該傾斜流路からメタクリル酸メチルを含む液成分を分離し、かつ固体の触媒を循環流路に乗せて反応槽内部に連続的に循環するようにした連続分離装置を配置したことを特徴とするメタクリル酸メチル製造装置、である。
【0009】
本発明に関して、更に詳細に説明する。
本発明は、反応槽と気液固混合物もしくは液固混合物から液成分を連続的に分離する装置とからなる反応装置であり、図1に示す如く、(A)は反応槽内で気液固相反応を行う場合の例を示し、反応槽の周壁部に設ける分離装置を配置した反応装置であり、該装置は図1(A)に示す如く反応槽の全周にわたって設けてもよく、また周壁部の一部に設けてもよい。
まず、図2に基づき液の流れについて説明する。反応槽内より導入域を経て循環流路1に連続的に供給される反応液(スラリー液)は循環流路1を通過後排出域を経て反応槽内部へと戻る。
【0010】
反応系が気液固反応系である場合〔図1の(A)〕には流路1の導入域を比較的大きな断面積にすることにより該域での流速を遅くすることが出来、該帯域で気体が容易に上昇し、脱気される。混合物の流下速度を気体上昇速度より小さくすれば気体は上昇脱気され流路に気体が混入することはない。
【0011】
反応槽内の反応液(スラリー液)が循環流路1を流下するとき、その流れの一部分が連続的に多段傾斜流路内に流入し、該流入液の流れは層流域を形成する。傾斜流路内を流れる液速は、流路断面積および反応装置より流出する反応液量により決まる(供給する反応液量とほぼ同じ量である。)。図2に示すように傾斜流路内で沈降した固体粒子は傾斜板上を滑落し、循環流路1に乗って装置内へ還流し、分離された反応液は傾斜流路を上昇し溢流域を上昇し溢流することにより流出する。
【0012】
次に、具体的に説明すると、まず、図4に示す如く、固体分離域を形成する傾斜流路の形状は固液混合物(スラリー液)中の固相成分、例えば触媒粒子が堆積しないようにその傾斜角度θを安息角以上の傾斜角度を持った形にする必要がある。そして、固液混合物中の固体が液体より比重が重い場合には、90°〜0°の範囲であって、固体の安息角以上であり、逆に固体が液体より比重が軽い場合には、0°〜−90°の範囲であって、固体の安息角以上(若しくは以下)である。即ち、本発明においては、傾斜流路を形成する傾斜板の傾斜角度は90°〜−90°の範囲で、かつ固体が流路に滞留しない角度である。
具体的には、固体が液体より比重が重い場合には、例えば、45°〜85°、好ましくは50°〜80°、更には好ましくは60°〜75°の範囲である。該角度が大きいと固体の沈降滑落速度は大きくなるが、該角度があまり大きいと分離装置が大きくなる為該角度は必要により適宜選択する。これによって前記固相成分、例えば触媒を滞留させることなく流動状態を確保することができる。
【0013】
触媒自体の沈降速度を増加させるためには、触媒粒子の粒径及び密度を大きくし、沈降速度をなるべく速くした方が分離時間を短縮し、副反応を抑制する上で望ましいが、粒径があまり大きいと触媒の比表面積が小さくなり、反応速度が低下する場合もあり、また、密度があまり大きいと反応器内の均一分散に必要な動力が増加するため適当なサイズが選択される。
傾斜流路の流路方向に対する垂直断面形状は、平行板で形成した細長矩形構造でも、例えば、図5に示す如き管構造でもハニカム構造などでもよい。
【0014】
次に、対象物が気液固混合物の場合には、循環流路1の上部においてまず気体を固液より分離するため流路を広げて液の下降流速より気体の上昇速度が大きくなるような巾にする、例えば図2の導入域に示す如くロート状とするのがよい。傾斜流路内に気泡を巻き込むと固体(触媒)を同伴してしまい、固体の沈降分離の妨げとなる場合もあるが、該妨げとならない範囲で少量の気泡の混入は特に問題とならない。
【0015】
次に、循環流路1において下降する部分の液の流速は特に限定されない。しかしながら、前述のような反応系における触媒は反応場の環境から離れた状態においては触媒の変質や副反応が起こるため、気体を分離した循環流路1内では可能な限り滞留時間を短くする、即ち、なるべく速く通過させることが好ましい。
また、傾斜流路の垂直方向の流路巾は固体の沈降にかかる時間を小さくするため、できるだけ狭くしたほうが好ましいが、固体の詰まり、および装置の加工上の制限等により適当な巾にする必要があり、それらの値は固液の各々の比重、固体の粒径、液性(粘性等)等により定まる値である。
【0016】
傾斜流路内における液の流れは層流域である必要がありこの部分の流速は反応装置よりの抜出し量と傾斜板流路全段の断面積とにより決まるため(厳密に言えば各流路の流速は
、次に述べる圧力差、密度差と流動抵抗物により決まる)、反応装置の大きさ、反応液の流出量等により傾斜流路の大きさ、および傾斜流路段数が決定される。
流路1における液の流れにより生じる傾斜流路入口の圧力(流路上部と下部では圧力差が生じる)と傾斜流路出口における圧力との圧力差、および傾斜流路内で固体(触媒)が沈降した場合の傾斜流路内における流路入口付近の混合物と出口付近の液成分との密度差により、溢流量が各傾斜流路間を流れる流速に配分される。
【0017】
ここで、垂直方向に2段以上の傾斜流路を設ける場合に、傾斜流路のみで絞りを設けない分離装置においては、上記圧力差および密度差により各傾斜流路内を均等な流速で流れることはなく、複数の傾斜流路において液の循環が生じるため固液の分離が良好でなく、傾斜流路内において圧力損失を与える絞りを設置し、それにより液をある程度均等に流すことを可能とする。
ここで、圧力損失を与える絞りの形状は特に限定されず、例えば図6に示すような形状であればよく、その開口比率は均等である必要はなく、例えば、下段側の方が上段側よりも開口比率を小さくするなど、その絞り程度を適宜変更してもよい。
【0018】
傾斜流路内において沈降分離した固体(触媒)は、傾斜板上を滑落し流路1を通過する混合液と同伴し、装置内部へと連続的に戻る。
好ましくは、流路1の排出口においては、傾斜板最下部よりある程度の距離をとることで流路の変化による圧力上昇により最下段付近の傾斜流路内の流速を上昇させることを抑制することができる。また、流路1の排出域に1乃至数枚の邪魔板を設け、それにより流路1の下部からの気泡の分離部への流入を抑制することができる。
以上のように、本発明の反応装置の分離装置においては、気液固反応系から液成分のみを分離し抽出し得るのであるから、固体である触媒は反応液から分離され、連続的に反応装置内に戻される。
【0019】
【実施例】
以下、本発明を実施例を用いて更に具体的に説明するが、本発明はこれら実施例等により何ら限定されるものではない。
(実施例1)
原料のアルデヒドとしてメタクロレイン、アルコールとしてメタノールを用い、酸素の存在下に連続酸化的エステル反応によるメタクリル酸メチルの製造を、以下に示す反応条件下において行った。
【0020】
使用した装置は、内径133mm、内容積5.5リットルのステンレス製攪拌機付き反応器を用いて反応を行った。反応器は、還流コンデンサー、液フィード口、液抜き出し口、ガス導入口を備えており、攪拌機により攪拌される。反応温度は内部に挿入した温度計により測定し、温度調整は温水ジャケットにより行った。
また、装置内液面は反応液出口配管に接続された装置よりオーバーフロー部の高さを調節して調整した。
反応器からの反応液が傾斜流路に供給され、固液分離を行い、反応液を抜き出す様にした。ここで傾斜流路の傾斜角を水平面に対し流動方向上向きに60度とし、傾斜流路の形状は液の流れ方向に垂直に縦20mm、横20mmとし、その流路を垂直方向に4分割し、各々の傾斜流路出口部に絞りを設け、その開口率を3.7%とした。
【0021】
反応器に、シリカゲルにパラジュウム5.0重量%、鉛3.3重量%、マグネシウム4.0重量%、アルミニウム4.5重量%を担持した触媒1kgを仕込み、温度80℃、圧力4kg/cm2 ゲージの条件において以下の3通りの条件においてテストを行った。
(1)該反応器に35%メタクロレイン/メタノール液を0.8リットル/Hr供給し、空気+N2 を1034Nリットル/Hrで通気しながら反応を行った。反応液のPHは5〜7に保つ様にNaOHの添加量を調整した。
(2)該反応器に(1)と同濃度のメタクロレイン/メタノール液を2.1リットル/Hr供給し、空気+N2 を1038Nリットル/Hrで通気しながら反応を行った。反応液のPHは5〜7に保つ様にNaOHの添加量を調整した。
【0022】
(3)該反応器に(1)と同濃度のメタクロレイン/メタノール液を4.3リットル/Hr供給し、空気+N2 を1044Nリットル/Hrで通気しながら反応を行った。反応液のPHは5〜7に保つ様にNaOHの添加量を調整した。
その結果、反応器本体内部液と傾斜流路出口液とを分析、比較したところ上記3通りの条件全てにおいて副生成物の濃度の差はみられなかった。
ここで、本反応はある時点で空気の供給を停止し無酸素反応条件下で反応を行った結果、副生成物であるイソブチルアルデヒドおよびイソ酪酸メチルエステルの濃度の急激な増加および触媒変質が発生することが判っている。
これより、本発明の反応装置を用い、気液分離後の無酸素領域において速やかな触媒分離を達成することにより、副生成物の生成がなかったことを示している。
【0023】
(実施例2)
実施例1と同様の原料および装置を用い、以下に示す反応条件下において反応を行った。
反応器に、γ−アルミナにパラジュウム2.5重量%、鉛5.0重量%、マグネシウム2.0重量%を担持した触媒1kgを仕込み、反応器に実施例1の(3)と同条件のメタクロレイン/メタノール液、空気+N2 、温度、圧力において反応を行った。反応液のPHは5〜7に保つ様にNaOH量を調整した。
この結果、反応器本体内部液と傾斜流路出口液とを分析し、比較したところ副生成物の濃度の差はみられなかった。
また、この反応における触媒においても、無酸素反応条件下で実施例1と同様の副生成物の急激な増加、および触媒の変質が見られることが判っている。
これより、本発明の装置を用い、気液分離後の無酸素領域において速やかな触媒分離を達成することにより、副生成物の生成がなかったことを示している。
【0024】
【発明の効果】
本発明により、触媒とメタクロレイン、メタノールとを懸濁させ、これに分子状酸素含
有ガスを吹き込んでメタクロレインを液相酸化すると同時にエステル化反応を行わせ、メタクリル酸メチルを製造する際に副反応生成物の抑制による反応収率の向上や、触媒の変質劣化の防止が可能となった。また、該装置を運転するに際しては、動力等を必要とせず、細かな調節が不要で、安定的に連続的に分離し得る装置を提供することができた。
【図面の簡単な説明】
【図1】 本発明の実施態様を示す正面断面図であり、(A)は気液固系の装置に分離装置を設置した槽(気泡塔)である。
【図2】 図1の分離装置、およびその気固液の流れを示す図である。
【図3】 循環流路1の流動圧力損失で発生する静圧差、および傾斜流路で触媒が沈降することにより発生する密度差により生じる傾斜流路内の流れ分布を示す図である。
【図4】 傾斜流路における傾斜角度を示す図である。
【図5】離装置部分の傾斜流路に垂直な断面図である。
【図6】 傾斜流路に設ける絞りの形状を示す図である。
【符号の説明】
1:循環流路
[0001]
BACKGROUND OF THE INVENTION
The present invention is arranged and anti応槽, solid-liquid continuously separated in the inclined channel and consists only of continuously separating device the liquid components, a device for the continuous separation wall portion of the reaction vessel The present invention relates to an apparatus for producing methyl methacrylate .
[0002]
[Prior art]
In the chemical industry, a reaction method using a solid catalyst slurry liquid of fine particles, for example, a reaction method such as a gas-liquid solid phase reaction or a liquid solid phase reaction is employed. Usually, the apparatus for this reaction system consists of a reaction tank for carrying out the reaction, and a separator for separating the catalyst slurry liquid and the reaction liquid.
[0003]
Meanwhile, in order to separate the gas-liquid solid phase goodness Ri liquid component, sedimentation, centrifugation, separation by filtration machines, and the like various methods.
However, in sedimentation separation, although it depends on the sedimentation rate of solids, usually a large area is required, and an increase in the size of the reaction apparatus is unavoidable. Centrifugal separation requires mechanical equipment, and includes sliding parts, Since there is a seal part, there is a problem of clogging there and mechanical catalyst destruction, etc., it may not be used in systems that handle high pressure systems or hazardous materials, and filter separation and filter clogging and scaling may not be possible. This raises the problem that the filtration speed is lowered, the back washing needs to be performed frequently, and stable continuous operation is not possible.
[0004]
For example, as a gas-liquid solid phase reaction example, a catalyst in which palladium or the like is supported on a carrier such as silica, alumina, diatomaceous earth, activated carbon or zeolite, and methacrolein as an aldehyde and methanol as an alcohol are suspended. A method for producing a carboxylic acid ester (methyl methacrylate) in which molecular oxygen-containing gas is blown to cause liquid phase oxidation of aldehyde (methacrolein) and esterification at the same time is known (for example, Japanese Examined Patent Publication No. 45-34368). JP-B-57-35858, JP-B-57-35859, JP-B-61-60820, JP-B-62-7902, etc.).
[0005]
[Problems to be solved by the invention]
The present invention provides a reaction apparatus that solves various problems of the above-mentioned ordinary reaction apparatus. For example, in the chemical reaction shown in the above-mentioned gas-liquid solid reaction example, in the presence of a catalyst. As a side reaction, isobutyraldehyde, methyl isobutyrate, and the like are generated as a side reaction in a low oxygen concentration region. These by-products are substances that inhibit the polymerization reaction when the main reaction product is polymerized to produce a polymer, and thus purification and separation must be sufficiently performed. That is, when the selectivity of these by-products increases, the refining equipment becomes larger and the refining energy also increases. Moreover, the loss of the raw material by the fall of the selectivity of a main reaction component and a large sized esterification reactor are needed. For this reason, the selectivity of isobutyraldehyde and isobutyric acid methyl ester must be suppressed as much as possible. In order to suppress the side reaction, it is necessary to reduce the volume of the portion existing in a state where the gas (oxygen) is separated or shorten the residence time in the separation portion (increase the flow rate of the liquid).
[0006]
In order to solve this problem, the present inventors initially provided a multistage inclined plate as a separation device on the side surface of a cylindrical reaction tank as shown in FIG. 1, and the gas in the flow path 1 as shown in FIG. Due to the difference in specific gravity between the slurry liquid after ascending degassing and the liquid containing the gas in the reaction tank, a circulation flow path of the slurry liquid is formed in the flow path 1, and a part thereof (substantially equal to the amount of liquid supplied into the reactor) Amount) was allowed to flow into the inclined plate, the solid liquid was settled and separated, and the liquid components were separated.
However, due to the pressure difference between the upper and lower portions of the flow path 1 caused by the liquid flow as shown in FIG. 3 and the density difference due to the catalyst settling in the inclined plate, the circulation of the liquid in the inclined plate occurs. The flow in the inclined plate became a turbulent region, and the separated solid catalyst was wound up again, so that the separation was impossible.
[0007]
[Means for Solving the Problems]
Accordingly, the present inventors in order to solve the above problems, the results of extensive studies on a multi-stage inclined channel provided adjacent to the mixture circulation channel arranged on the side wall of the reaction vessel, inclined channel suitable aperture In the flow path to make the flow in the flow path laminar, thereby separating the reaction liquid components in the flow path, placing the settled particles on the mixture circulation flow path, and continuously inside the reaction tank The present invention has been found to be able to be restored, and the present invention has been completed.
[0008]
That is, the present invention is a reaction vessel in which a catalyst, methacrolein, and methanol are suspended, and molecular oxygen-containing gas is blown into this to cause liquid phase oxidation of methacrolein and at the same time an esterification reaction is performed to obtain methyl methacrylate. And a separation device for continuously separating the methyl methacrylate liquid component from the gas-liquid solid mixture after the reaction , and a mixture introduction area and a mixture discharge area at the peripheral wall of the reaction tank. A mixture circulation channel is provided, and in the upper mixture introduction area of the circulation channel, the channel is widened so that the gas rising speed is larger than the liquid descending flow rate, and the gaseous oxygen-containing gas is separated from the solid liquid. with the possible adjacent the multistage flow path having a constant inclination with respect to the circulation flow passage, provided the appropriate aperture to the said inclined channel, the layer flow liquid-solid mixture in the flow channel Basin and Continuous precipitated a solid catalyst by Rukoto, separating the liquid component comprising methyl methacrylate from the inclined channel, and was set to continuously circulate inside the reaction vessel of a solid catalyst placed on a circulation flow path An apparatus for producing methyl methacrylate, comprising a separation device .
[0009]
The present invention will be described in more detail.
The present invention is a reaction apparatus comprising a reaction vessel and a device for continuously separating liquid components from a gas-liquid solid mixture or liquid-solid mixture. As shown in FIG. 1, (A) is a gas-liquid solid solution in the reaction vessel. an example of a case of performing phase reaction, a reactor in which to place the separating device is provided in the peripheral wall portion of the anti応槽, the apparatus may be provided over the entire circumference of the reactor as shown in FIG. 1 (a), it may be provided in a part of or the peripheral wall portion.
First, the flow of the liquid will be described with reference to FIG. The reaction liquid (slurry liquid) continuously supplied from the inside of the reaction tank to the circulation flow path 1 through the introduction area passes through the circulation flow path 1 and returns to the inside of the reaction tank through the discharge area.
[0010]
When the reaction system is a gas-liquid solid reaction system ((A) in FIG. 1), the flow rate in the region can be reduced by making the introduction region of the flow channel 1 have a relatively large cross-sectional area. The gas rises easily in the zone and is degassed . If the falling speed of the mixed compounds smaller than the gas rise velocity gas rising gas degassed channel will not be mixed.
[0011]
When the reaction liquid (slurry liquid) in the reaction tank flows down the circulation flow path 1, a part of the flow continuously flows into the multi-stage inclined flow path, and the flow of the inflow liquid forms a laminar flow region. The speed of the liquid flowing in the inclined flow path is determined by the cross-sectional area of the flow path and the amount of the reaction liquid flowing out from the reaction device (approximately the same amount as the amount of the reaction liquid to be supplied). As shown in FIG. 2, the solid particles settled in the inclined channel slide down on the inclined plate, ride on the circulation channel 1 and return to the apparatus, and the separated reaction liquid rises in the inclined channel and overflows the area. Escaping and overflowing.
[0012]
More specifically, first, as shown in FIG. 4, the shape of the inclined flow path forming the solid separation zone is such that solid phase components in the solid-liquid mixture (slurry liquid), for example, catalyst particles are not deposited. It is necessary to make the inclination angle θ have an inclination angle greater than the repose angle. When the solid in the solid-liquid mixture has a higher specific gravity than the liquid, it is in the range of 90 ° to 0 ° and is greater than the angle of repose of the solid. It is in the range of 0 ° to −90 ° and is greater than (or less than) the angle of repose of the solid. That is, in the present invention, the inclination angle of the inclined plate forming the inclined flow path is in the range of 90 ° to −90 °, and the solid does not stay in the flow path.
Specifically, when the specific gravity of the solid is heavier than that of the liquid, the range is, for example, 45 ° to 85 °, preferably 50 ° to 80 °, and more preferably 60 ° to 75 °. If the angle is large, the solid sedimentation speed increases, but if the angle is too large, the separation apparatus becomes large, and therefore the angle is appropriately selected as necessary. As a result, a fluid state can be secured without retaining the solid phase component, for example, the catalyst.
[0013]
In order to increase the sedimentation rate of the catalyst itself, it is desirable to increase the particle size and density of the catalyst particles and increase the sedimentation rate as much as possible in order to shorten the separation time and suppress side reactions. If it is too large, the specific surface area of the catalyst will be small and the reaction rate may be reduced. If the density is too large, the power required for uniform dispersion in the reactor will increase, so an appropriate size is selected.
The vertical cross-sectional shape of the inclined channel with respect to the channel direction may be an elongated rectangular structure formed of parallel plates, for example, a tube structure as shown in FIG. 5 or a honeycomb structure.
[0014]
Next, when the object is a gas-liquid solid mixture, the gas is first separated from the solid-liquid at the upper part of the circulation channel 1 so that the channel is widened so that the gas rising speed becomes larger than the liquid descending flow rate. to width, it is preferable to funnel-shaped as shown in the introduction zone of Figure 2 if e example. When bubbles are entrained in the inclined flow path, solids (catalyst) are entrained, which may hinder settling and separation of solids. However, mixing of a small amount of bubbles is not particularly problematic as long as it does not hinder.
[0015]
Next, the flow rate of the liquid that descends in the circulation channel 1 is not particularly limited. However, since the catalyst in the reaction system as described above undergoes alteration and side reaction of the catalyst in a state away from the environment of the reaction field, the residence time is shortened as much as possible in the circulation channel 1 from which the gas is separated. That is, it is preferable to pass through as fast as possible.
In addition, the vertical channel width of the inclined channel is preferably as narrow as possible in order to reduce the time required for sedimentation of the solid. However, it is necessary to set the width to an appropriate width due to clogging of the solid and processing limitations of the apparatus. These values are determined by the specific gravity of each solid-liquid, the particle size of the solid, the liquidity (viscosity, etc.), etc.
[0016]
The liquid flow in the inclined channel must be a laminar flow area, and the flow velocity of this part is determined by the amount of extraction from the reactor and the cross-sectional area of all stages of the inclined plate channel (strictly speaking, the flow rate of each channel) The flow rate is determined by the pressure difference, density difference and flow resistance described below), the size of the reaction device, the outflow amount of the reaction liquid, and the like, and the size of the inclined flow channel and the number of inclined flow channel stages are determined.
The pressure difference between the pressure at the inlet of the inclined channel due to the flow of the liquid in the channel 1 (a pressure difference occurs between the upper and lower parts of the channel) and the pressure at the outlet of the inclined channel, and the solid (catalyst) in the inclined channel. Due to the difference in density between the mixture near the inlet of the channel and the liquid component near the outlet in the inclined channel when settling, the overflow flow is distributed to the flow velocity flowing between the inclined channels.
[0017]
Here, in the case of providing the inclined channel two or more stages in a vertical direction, the separator is not provided Rio down only inclined channel is each inclined passage by the pressure difference and the density difference at equal flow rates not flow, not good separation of the solid-liquid for circulation of liquid takes place in a plurality of inclined channel, and aperture to set up giving the pressure loss in the inclined channel, whereby a certain degree evenly flow that the liquid Is possible.
Here, Rino shape grain gives the pressure loss is not particularly limited, for example, may be a shape as shown in FIG. 6, the opening ratio need not be uniform, for example, toward the lower side is the upper side The aperture degree may be appropriately changed, for example, by reducing the aperture ratio.
[0018]
The solid (catalyst) settled and separated in the inclined channel flows along the inclined plate and is accompanied by the mixed liquid passing through the channel 1 and continuously returns to the inside of the apparatus.
Preferably, at the discharge port of the flow channel 1, taking a certain distance from the lowermost part of the inclined plate suppresses an increase in the flow velocity in the inclined flow channel near the lowest stage due to a pressure increase due to a change in the flow channel. Can do. In addition, one or several baffle plates are provided in the discharge area of the flow path 1, thereby suppressing the inflow of bubbles from the lower part of the flow path 1 to the separation portion.
As described above, in the separator of the reactor of the present invention, since as it can be separated only gas-liquid-solid reaction system or al-liquid component extraction, the catalyst is a solid is separated from the reaction solution, continuously Returned to reactor.
[0019]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
Production of methyl methacrylate by continuous oxidative ester reaction in the presence of oxygen using methacrolein as raw material aldehyde and methanol as alcohol was carried out under the following reaction conditions.
[0020]
The apparatus used was reacted using a stainless steel reactor equipped with a stirrer having an inner diameter of 133 mm and an internal volume of 5.5 liters. The reactor includes a reflux condenser, a liquid feed port, a liquid discharge port, and a gas introduction port, and is stirred by a stirrer. The reaction temperature was measured with a thermometer inserted inside, and the temperature was adjusted with a hot water jacket.
Moreover, the liquid level in the apparatus was adjusted by adjusting the height of the overflow part from the apparatus connected to the reaction solution outlet pipe.
The reaction solution from the reactor was supplied to the inclined channel, and solid-liquid separation was performed to extract the reaction solution. Here, the inclination angle of the inclined channel is set to 60 degrees upward in the flow direction with respect to the horizontal plane, the shape of the inclined channel is set to 20 mm vertically and 20 mm horizontally to the liquid flow direction, and the channel is divided into four in the vertical direction. A throttle was provided at each inclined channel outlet, and the aperture ratio was 3.7%.
[0021]
A reactor was charged with 1 kg of a catalyst in which 5.0% by weight of palladium, 3.3% by weight of lead, 4.0% by weight of magnesium, and 4.5% by weight of aluminum were loaded on silica gel, and the temperature was 80 ° C. and the pressure was 4 kg / cm 2. The test was performed under the following three conditions under the gauge conditions.
(1) A 35% methacrolein / methanol solution was supplied to the reactor at 0.8 liter / Hr, and the reaction was carried out while aeration of air and N 2 at 1034 N liter / Hr. The addition amount of NaOH was adjusted so that the pH of the reaction solution was kept at 5-7.
(2) The reaction was performed while supplying 2.1 liter / Hr of methacrolein / methanol solution having the same concentration as in (1) to the reactor and ventilating air + N 2 at 1038 Nl / Hr. The addition amount of NaOH was adjusted so that the pH of the reaction solution was kept at 5-7.
[0022]
(3) The reaction was performed while supplying 4.3 liter / Hr of methacrolein / methanol solution having the same concentration as in (1) to the reactor and venting air + N 2 at 1044 N liter / Hr. The addition amount of NaOH was adjusted so that the pH of the reaction solution was kept at 5-7.
As a result, when the reactor internal liquid and the inclined channel outlet liquid were analyzed and compared, there was no difference in the concentration of by-products under all three conditions.
Here, as a result of stopping the supply of air at a certain point in time and performing the reaction under anoxic reaction conditions, the concentration of isobutyraldehyde and isobutyric acid methyl ester, which are by-products, rapidly increases and catalyst alteration occurs. I know you will.
This indicates that by using the reaction apparatus of the present invention to achieve rapid catalyst separation in the oxygen-free region after gas-liquid separation, no by-product was produced.
[0023]
(Example 2)
Using the same raw materials and equipment as in Example 1, the reaction was carried out under the following reaction conditions.
A reactor was charged with 1 kg of a catalyst in which 2.5% by weight of palladium, 5.0% by weight of lead and 2.0% by weight of magnesium were supported on γ-alumina, and the reactor was subjected to the same conditions as in (3) of Example 1. The reaction was carried out in methacrolein / methanol solution, air + N 2 , temperature and pressure. The amount of NaOH was adjusted so that the pH of the reaction solution was kept at 5-7.
As a result, the reactor main body liquid and the inclined channel outlet liquid were analyzed and compared, and no difference in by-product concentration was found.
In addition, it has been found that, in the catalyst in this reaction, a rapid increase of by-products similar to that in Example 1 and alteration of the catalyst are observed under the oxygen-free reaction conditions.
This indicates that by using the apparatus of the present invention, rapid catalyst separation was achieved in the oxygen-free region after gas-liquid separation, and no by-product was produced.
[0024]
【The invention's effect】
According to the present invention, the catalyst, methacrolein, and methanol are suspended, and this is suspended in molecular oxygen.
Blowing in gas and liquid-phase oxidation of methacrolein at the same time as the esterification reaction can be performed to improve the reaction yield by preventing side reaction products when producing methyl methacrylate and prevent deterioration of the catalyst It became. Further, when operating the device does not require power, etc., requires no fine adjusted, it is possible to provide a that equipment obtained stably continuously separated.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing an embodiment of the present invention, in which (A) is a tank (bubble column ) in which a separation device is installed in a gas-liquid solid system.
FIG. 2 is a diagram showing the separation device of FIG. 1 and the flow of the gas-solid liquid thereof.
FIG. 3 is a diagram showing a flow distribution in the inclined flow path caused by a static pressure difference generated by a flow pressure loss in the circulation flow path 1 and a density difference generated when a catalyst settles in the inclined flow path.
FIG. 4 is a diagram showing an inclination angle in an inclined channel.
5 is a cross-sectional view perpendicular to the inclined channel of partial release device parts.
6 is a diagram illustrating a grain Rino shape provided inclined channel.
[Explanation of symbols]
1: Circulation channel

Claims (1)

触媒とメタクロレイン、メタノールとを懸濁させ、これに分子状酸素含有ガスを吹き込んでメタクロレインを液相酸化すると同時にエステル化反応を行わせ、メタクリル酸メチルとする反応槽と反応後の気液固混合物からメタクリル酸メチル液成分を連続的に分離する分離装置とからなるメタクリル酸メチル製造装置であって、反応槽の周壁部に、混合物導入域と混合物排出域とを有する混合物循環流路を設け、かつ循環流路の上部混合物導入域において流路を広げて液の下降流速より気体の上昇速度が大きくなるような巾にし、気体の酸素含有ガスを固液より分離可能とするとともに、該循環流路に対して一定の傾斜を持った多段の流路を隣接し、該傾斜流路に適当な絞りを設け、該流路内の液固混合物の流れを層流域とすることにより固体の触媒を沈降させ、該傾斜流路からメタクリル酸メチルを含む液成分を分離し、かつ固体の触媒を循環流路に乗せて反応槽内部に連続的に循環するようにした連続分離装置を配置したことを特徴とするメタクリル酸メチル製造装置。 A catalyst, methacrolein, and methanol are suspended, and molecular oxygen-containing gas is blown into the catalyst to liquid-phase oxidize methacrolein, and at the same time, an esterification reaction is carried out to form a methyl methacrylate and a post-reaction gas-liquid. A methyl methacrylate production apparatus comprising a separation apparatus for continuously separating a methyl methacrylate liquid component from a solid mixture , wherein a mixture circulation channel having a mixture introduction area and a mixture discharge area is provided on a peripheral wall portion of the reaction tank. And the width of the upper mixture introduction area of the circulation channel is widened so that the rising speed of the gas is larger than the descending flow rate of the liquid so that the gaseous oxygen-containing gas can be separated from the solid liquid, and the multi-stage flow path having a constant inclination with respect to the circulation flow passage adjacent, provided appropriate aperture to the said inclined channel, solid by the flow of the liquid-solid mixture in the flow channel and laminar flow Allowed to settle catalyst, arranged continuous separation device the liquid components were separated, and was set to continuously circulate inside the reaction vessel of a solid catalyst placed on a circulation passage comprising a methyl methacrylate from the inclined channel An apparatus for producing methyl methacrylate .
JP27132096A 1996-09-24 1996-09-24 Methyl methacrylate production equipment Expired - Lifetime JP3874470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27132096A JP3874470B2 (en) 1996-09-24 1996-09-24 Methyl methacrylate production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27132096A JP3874470B2 (en) 1996-09-24 1996-09-24 Methyl methacrylate production equipment

Publications (2)

Publication Number Publication Date
JPH1094705A JPH1094705A (en) 1998-04-14
JP3874470B2 true JP3874470B2 (en) 2007-01-31

Family

ID=17498419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27132096A Expired - Lifetime JP3874470B2 (en) 1996-09-24 1996-09-24 Methyl methacrylate production equipment

Country Status (1)

Country Link
JP (1) JP3874470B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453705B1 (en) * 2001-08-28 2004-10-20 주식회사 엔비켐 An apparatus and a method for treating waste water using a settling filter tank
JP4437436B2 (en) * 2003-12-22 2010-03-24 株式会社日本触媒 Separation apparatus, separation system provided with the same, and method of using the separation apparatus
DE102006015538A1 (en) * 2006-03-31 2007-10-11 H. C. Starck Gmbh & Co. Kg Apparatus and process for the preparation of compounds by precipitation
JP5640493B2 (en) * 2009-07-01 2014-12-17 三菱レイヨン株式会社 Separation unit, separation apparatus, separation method and method for producing α, β-unsaturated carboxylic acid
EP3235560A1 (en) 2016-04-22 2017-10-25 Evonik Röhm GmbH Method for performing a heterogeneously catalysed reaction
EP4347548A1 (en) 2021-05-28 2024-04-10 Röhm GmbH Reactor and process for producing alkyl (meth)acrylates
KR20240014487A (en) 2021-05-28 2024-02-01 룀 게엠베하 Reactor and method for producing alkyl methacrylates
WO2023058339A1 (en) * 2021-10-08 2023-04-13 メタウォーター株式会社 Mixing and turbidity-removing device, and method for forming flocs in mixing and turbidity-removing device

Also Published As

Publication number Publication date
JPH1094705A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
US4648999A (en) Apparatus for contacting fluid with solid
CA2634025C (en) Dynamic settler
SA97170707B1 (en) Method for separating a liquid from a slurry
JP3874470B2 (en) Methyl methacrylate production equipment
JP4203129B2 (en) Method for producing a liquid product and optionally a gaseous product from a gaseous reactant
EP0642373B1 (en) Method and apparatus for separating gaseous bubbles and sand fro m a liquid flow
US6966985B2 (en) Self-diluting feedwell including a vertical education mechanism
US4579718A (en) Apparatus for continuous production of polymer beads of controlled size
AU615728B2 (en) Settling vessel for an activated-sludge/sewage suspension
JP3874442B2 (en) Liquid component continuous separator
US3129066A (en) Mixer-settler apparatus
US5124049A (en) Liquid purification methods
KR20040015133A (en) Reactor for gas/liquid or gas/liquid/solid reactions
US3873283A (en) Vapor-liquid separator
CN210474279U (en) System for grading graphite and diamond mixed powder
US8389585B2 (en) Slurry reactor fines segregation and removal
US3853929A (en) Method for continuously effecting solid-catalyzed liquid phase reactions in a bubble column-cascade reactor
US6403729B1 (en) Process for heterophase reactions in a liquid or supercritical dispersion medium
JP4437436B2 (en) Separation apparatus, separation system provided with the same, and method of using the separation apparatus
US11661395B2 (en) Reactor and process for producing alkyl methacrylates
JPH0113897B2 (en)
JPH06154643A (en) Hydraulic classifier
JPH06154645A (en) Hydraulic classifier
US4111662A (en) Arrangement for preparing alkylaluminums
HU195258B (en) Process and hydroseparator for the separation of mixed hydrate pulp of alumina factories

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

EXPY Cancellation because of completion of term