JP3873229B2 - Thermal storage device - Google Patents

Thermal storage device Download PDF

Info

Publication number
JP3873229B2
JP3873229B2 JP2001325275A JP2001325275A JP3873229B2 JP 3873229 B2 JP3873229 B2 JP 3873229B2 JP 2001325275 A JP2001325275 A JP 2001325275A JP 2001325275 A JP2001325275 A JP 2001325275A JP 3873229 B2 JP3873229 B2 JP 3873229B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
medium
storage tank
latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001325275A
Other languages
Japanese (ja)
Other versions
JP2003130562A (en
Inventor
幸夫 内木
潔 峯浦
延王 金井
明登 町田
英男 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mayekawa Manufacturing Co
Original Assignee
Kansai Electric Power Co Inc
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mayekawa Manufacturing Co filed Critical Kansai Electric Power Co Inc
Priority to JP2001325275A priority Critical patent/JP3873229B2/en
Publication of JP2003130562A publication Critical patent/JP2003130562A/en
Application granted granted Critical
Publication of JP3873229B2 publication Critical patent/JP3873229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明は物質の潜熱を利用した蓄熱装置に関する。更に詳しくは、温度の高い領域の廃熱の回収若しくは深夜電力の有効利用などを可能とする温蓄熱装置に関する。
【0002】
【従来の技術】
潜熱蓄熱装置については、各種工業や廃棄物回収過程で排出する廃熱の回収、深夜電力の貯蔵などにとって、有効な手段であるので、適切、高効率である蓄熱材と、該蓄熱材のエンタルピ変化を円滑に授受可能な熱媒体の選択を含むその装置構成が従来多数の研究対象となってきた。
【0003】
潜熱蓄熱材は、該物質の持つ得意な相転移点におけるエンタルピ変化を利用して、熱を吸収させることにより、相変化した該物質に蓄熱し、必要時に、逆の相変化をさせて、熱を取り出す機能を果たす材料である。従来、この相転移点は物質の持つ融点を利用するケ−スがこの種の目的では大多数であるが、結晶転移点その他を利用する例もある。従って、前者の場合は、エンタルピ変化は融解熱(若しくは結晶化熱)であり、後者の場合は結晶転移熱である。
【0004】
従来、蓄熱材として知られ、利用されている物質は、無機系と有機系とに大別できる。無機系のものには、硫酸ナトリウム、塩化カルシウム、酢酸ナトリウムなどの無機塩水和物があり、これらは比較的低温度の相転移点を利用できるが、100℃付近で相変化するものには、水酸化バリウム、硝酸マグネシウム、などの無機塩水和物がある。
【0005】
これら、無機塩水和物は溶融状態から、次第に降温させていくと、本来の融点を過ぎても固化(結晶化)せず、放熱しない(熱を取り出せない)という過冷却現象を呈し、同時に融解時に不溶性物質が晶出し、融解〜固化のヒートサイクルを繰り返すことにより、不溶性物質が増加し続け、延いては相分離現象を来たす。これらの分離、過冷却対策も各種なされているが、未だ完全ではない。
【0006】
一方、有機系の蓄熱材には、低分子結晶性ポリオレフィン若しくは高分子ポリオレフィンがあり、熱的安定性は良好で腐食性・毒性はなく、潜熱も大だが、粘度が高く自体流動せず、熱伝導も低いので、工夫が必要である。例えばペレット、ストランド、フィルムなどの形状で利用するが、そのままでは形状が保持できないので、コストのかかる放射線、電子線、シラン架橋などが行われている。これらの分子構造における操作は、自ずと分子構造を変化させることにほかならないので、融点などの物理特性が変化してしまう。また、架橋高分子ポリオレフィンに結晶性物質を担持させて用いるケースもみうけられるが、該結晶性物質を溶出せずに、エンタルピ変化を取り出すための熱媒体の選定も問題である。
【0007】
前記したように、蓄熱材・熱媒体の選定と相俟って、それら特定な物質を有効に機能させるための、装置構成がさらに問題であって、それぞれの物性に適った装置の工夫がなされなけらばならない。
【0008】
【発明が解決しようとする課題】
本発明はかかる従来の問題点に鑑みてなされたものであって、特定の蓄熱材と該蓄熱材のエンタルピ変化を授受可能な特定の熱媒体とを用いて、廃熱の回収若しくは深夜電力の有効利用などを可能とする温蓄熱装置の提供を目的とする。
【0009】
【課題を解決するための手段】
本発明の温蓄熱装置は、潜熱蓄熱材として高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、ポリプロピレンからなる群から選ばれる少なくとも一つのポリオレフィンを容器に収納してなる潜熱蓄熱体と、プロピレングリコール、鉱油、廃油、動植物油、重油からなる群から選ばれる少なくとも一つの液体状熱媒体とを収容する蓄熱槽と、蓄熱槽中の熱媒体を加熱する加熱手段と、該熱媒体から伝熱壁を介して熱利用媒体側に熱回収を行う熱回収用熱交換器とを備え、前記加熱手段より与えられた熱量を液体状熱媒体を介して前記ポリオレフィンに蓄熱するよう構成するとともに、前記潜熱蓄熱体を所定間隔を持って蓄熱槽内に複数配置し、該複数配置した潜熱蓄熱体間の間隔内に熱回収用熱交換器の伝熱壁を浸漬配置したことを特徴とする。
【0010】
廃棄物の焼却廃熱やボイラ廃熱など、熱回収を必要とする廃熱源の温度は比較的高温で、少なくとも150℃を超えるケースが多い。これら廃熱源より有効に熱を吸収して蓄熱するには、熱源温度付近で、相転移を起して、大きなエンタルピ変化で吸熱する蓄熱材を用いるのが最も好ましい。また、深夜電力若しくは余剰電力などを熱源として蓄積する目的に置いても、適度な高温で行ったほうが、蓄熱槽の容積が小さくて済み効率的である。かかる第一条件に加えて、蓄熱材のヒートサイクル安定性、熱伝導性、価格、毒性、爆発火災に対する安全性、腐食性等を勘案し、更に蓄熱材の融解前後の形態変化に対応した装置構成を考案する必要がある。そして、かくして案出した蓄熱体と熱を円滑に授受できる熱媒体の選定も蓄熱材の場合と同様な選定要素を勘案する必要がある。
【0011】
本発明者等は、各種の蓄熱材を検討した結果、本発明の目的に適うには、高密度エチレンを蓄熱材に用い、プロピレングリコールを熱媒体として用いる組み合わせが最もよいことを見出した。しかも、高密度ポリエチレンは後記するように、適切な選別が施されていれば、廃プラスチックスの利用が可能であり、資源の有効利用にもなる。
【0012】
本発明に使用する高密度ポリエチレンは密度が0.94〜0.97g/ccの範囲であり、チーグラー・ナッタ系の触媒で重合された、結晶性の高いポリエチレンであって、その融点は約120℃と好ましい高さであり、その溶融潜熱は約50kcal/kgの大きさを持っている。また、毒性、腐食性はなく、適切な酸化防止措置さえあれば、ヒートサイクルに対する安定性は良好である。
【0013】
そして、溶融後は当然流体となるので、高密度ポリエチレンを容器に収納して用いる。容器の材質は特に問わないが、少なくとも200℃以上の温度に耐え、熱媒体に侵食されない材質である必要がある。通常金属が適当であり、好ましくは防錆性の金属板を溶接などの加工で缶体に加工して用いる。
【0014】
容器即ち蓄熱体の形状及び蓄熱槽内での配置方法は限定されないが、充分な伝熱面積が確保され、熱媒体の循環が出来るようにするのが必要である。更に、外部の熱源による加熱、蓄熱槽からの吸熱の手段が可能なように構成されねばならない。
【0015】
なお、前記蓄熱槽は、伝熱良好な仕切り板で区分された一側に、熱利用媒体を供給する供給口と蓄熱槽から吸熱した熱利用媒体を取り出す取り出し口を備えている熱交換室を形成し、他側には前記仕切り板から、ポリオレフィンを充填した厚板状蓄熱体が複数枚所定間隔で延在し且つ該潜熱蓄熱体間の間隔内に板状良熱伝導体からなるフィン若しくは熱交換パイプが複数延在しているのがよい。
【0016】
更に本発明の温蓄熱装置は、前記蓄熱槽が内部に厚板形状の前記潜熱蓄熱体の複数枚を等間隔に配置し、それにより形成され内部空間に前記熱媒体を満たしてなることを特徴とする。
【0017】
又前記潜熱蓄熱体は、薄い箱型の容器を作成し、これに高密度ポリエチレン等のポリオレフィンを充填して厚板状の潜熱蓄熱体とする。
【0018】
更に本発明の温蓄熱装置は、前記蓄熱槽が内部に肉厚中空円筒形状の前記潜熱蓄熱体の複数個を同軸に配置し、それにより形成される内部空間に熱媒体を満たしてなることを特徴とする。
【0019】
即ち、蓄熱体を同心円状に配置する構成であり、蓄熱槽を円筒型にする場合有用な構成である。この場合の蓄熱体間間隔(距離)においても、前記同様である。
【0020】
更に本発明の温蓄熱装置は、前記蓄熱槽が直方体であって、該直方体の方形断面を碁盤目状の隔壁で仕切って形成される複数の室を、交互に前記潜熱蓄熱材の容器とし、前記潜熱蓄熱材を収納し、別の室内に前記熱媒体を満たしてなることを特徴とする。
【0021】
なお、前記で説明した、先ず所望形状の容器を作成して該容器中にポリエチレン等のポリオレフィンを充填した構成に限らず、例えば、所望形状の蓄熱体にポリエチレン等のポリオレフィンを成形加工し、しかる後に被覆をした構成も、形状によっては可能であり、本発明の機能を果たしさえすれば差し支えない。
【0022】
【0023】
また、本発明の温蓄熱装置は、前記加熱手段が電気ヒータであり、該電気ヒータが、廃熱により蓄熱槽中の熱媒体を加熱する予備蓄熱を行ったのち、蓄熱温度の調整を行う調整手段であることを特徴とする。
【0024】
蓄熱すべき熱源が、深夜電力及び補助熱源としての廃熱の場合であり、電気ヒータを(伝熱壁を介して)蓄熱槽内部熱媒体内に挿入して、加熱手段とする。
【0025】
更に本発明の温蓄熱装置は、前記加熱手段が加熱側熱交換手段であることを特徴とする。
【0026】
この場合二つの方式が可能であり、その一つは蓄熱槽と外部の熱交換器との連絡手段を設け、本発明の熱媒体であるプロピレングリコールを強制循環し、外部の熱交換器で熱源と本発明の熱媒体との熱交換を行って加熱する方式である。前記連絡手段は例えば管路と、開閉弁と循環ポンプなどで形成される。
【0027】
他の一つは、本発明の熱媒体であるプロピレングリコールは蓄熱槽に封じおいて自然対流型の熱媒体として機能させ、蓄熱槽内に外部と連絡手段を持つ別の伝熱面を備え、外部から該連絡手段を通じて、熱源流体そのものを流通させ若しくは、熱源流体と熱交換した二次熱媒を流通させて、本発明の熱媒体との熱交換を行って加熱する方式である。やはり、前記連絡手段は例えば管路と、開閉弁と循環ポンプなどで形成される。
【0028】
蓄熱槽から吸熱して熱を回収する側の熱交換手段も加熱側同様二つの方式が可能であり、その一つは蓄熱槽と外部の熱交換器との連絡手段を設け、本発明の熱媒体であるプロピレングリコールを強制循環し、外部の熱交換器で回収熱量の利用側と熱交換して、吸熱する方式である。
【0029】
他の一つは、本発明の熱媒体であるプロピレングリコールは蓄熱槽に封じおいて自然対流型の熱媒体として機能させ、蓄熱槽内に外部と連絡手段を持つ別の伝熱面を備え、外部から該連絡手段を通じて、利用側の熱供給すべき流体そのものを流通させ若しくは、利用側と熱交換した二次熱媒を流通させて、本発明の熱媒体との熱交換を行って加熱する方式である。
【0030】
更に本発明の温蓄熱装置は、前記蓄熱槽中の前記潜熱蓄熱材間を満たす前記熱媒体層が少なくとも3mmを有することを特徴とする。これは本発明者等が各種検討実験の中で経験的に見出した数値であり、蓄熱槽内の配置間隔は少なくとも自然対流方式の場合、隣接間距離を3mm以上保つ必要があるのは、熱媒体の自然対流現象に関わる蓄熱体壁面での、温度勾配も含めての総括伝熱係数のなせる業に関連するものと考えられる。
【0031】
更に前記ポリオレフィンが高密度ポリエチレンからなる廃プラスチックスであることを特徴とする。これにより廃棄物の再資源化が促進され、本発明の根底にあるエネルギの有効利用とともに、資源枯渇、地球温暖化の対策をさらに促進する。なお、廃ポリエチレンを利用する際には、特に塩素含有ポリマーの混入を避けることが肝要である。
【0032】
【発明の実施の形態】
次に図面を参照しつつ、本発明の実施の形態を例示的に詳述する。ただし、この実施例に記載されている構成部品の寸法、形状、その相対的位置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
【0033】
[実施例1]
図1は本発明の温蓄熱装置の第1の例の略図である。図1において、15は保温された蓄熱槽で、上部と下部に伝熱良好な仕切り板で区分され、上部は熱交換室14とし、二次熱媒として水を供給する供給口、及び蓄熱槽から吸熱した高温の水を取り出す取り出し口を備えている。下部には前記仕切り板から、容器に高密度ポリエリチレンを充填した厚板状蓄熱体10が複数枚等間隔で下方に延在している。同時に板状良熱伝導体からなる放熱・吸熱フィン13が複数枚前記蓄熱体間を下方に延在し熱回収側熱交換手段を構成し、更に、該蓄熱槽底部付近には加熱手段として電気ヒータ12が装備されている。残りの蓄熱槽下部空間は、プロピレングリコールからなる熱媒体11で満たされている。
【0034】
電気ヒータ12を加熱手段として用い、深夜電力により蓄熱槽内熱媒体11を150℃以上の所定温度に加熱した。それにより蓄熱体の高密度ポリエチレンを溶融し、溶融熱として蓄熱した。なお、当然ながら、熱媒体及び蓄熱体の顕熱分も貯えられている。昼間になって、ポンプPを稼動して調節弁16を調節しつつ、二次熱媒体としての熱回収前の水17(約25℃)を熱交換室14に導入し、約50℃の温水(熱回収後水18)を得た。なお、二次熱媒体は水に限らず、熱利用側の事情によって、適宜変更ができる。
【0035】
[実施例2]
図2は本発明の温蓄熱装置の第2の例の略図である。本例は実施例1の構成を基本に、更に熱交換手段の伝熱面積及び総括伝熱係数を改善したものである。図2において、Aは本発明の温蓄熱装置の第2の例の立面図、Bは平面図、CはA−A’矢視図である。図において、他の図と共通の部材、部品には同じ記号を付してある。本例では、熱交換室14が隔壁21で区分され、Aにおいて手前、即ちBにおいては下方(Cにおいては左方)の室に水(二次熱媒体)17が流入し、熱交換パイプへの開口22(複数)からパイプ20(複数)を通過し、Aにおいて向こう、即ちBにおいては上方(Cにおいては右方)の室に熱交換パイプへの開口22(複数)から流出し、熱回収後水(二次熱媒体)18として熱が得られるよう構成されている。
【0036】
即ち、実施例1のフィンに変わって、仕切り板からは、熱交換パイプが下垂して蛇行し、二次熱媒体が流通するようになっている。更に、パイプ間にはパイプ間フィン23を設けて伝熱面積を増やしている。なお、熱交換手段の諸元はすべて実施例1と同一である。
【0037】
本装置で、電気ヒータ12を加熱手段として用い、深夜電力により蓄熱槽内熱媒体11を150℃以上の所定温度に加熱した。それにより蓄熱体の高密度ポリエチレンを溶融し、溶融熱として蓄熱した。なお、当然ながら、熱媒体及び蓄熱体の顕熱分も貯えられている。昼間になって、ポンプPを稼動して調節弁16を調節して流速を実施例1と同じにしつつ、二次熱媒体としての熱回収前の水17(約25℃)を熱交換室14に導入し、約80℃の温水(熱回収後水18)を得た。なお、この場合も、二次熱媒体は水に限らず、熱利用側の事情によって、適宜変更ができる。
【0038】
[実施例3]
図3は本発明の温蓄熱装置の第3の例の概念図であって、蓄熱槽に熱を付与、若しくは吸収する本発明の熱交換手段の変化について説明した図である。
【0039】
図3において(A)は、蓄熱槽内に伝熱壁を液体状熱媒体内に浸漬した一つの加熱側熱回収側兼用熱交換手段31を備えており、11はプロピレングリコールからなる熱媒体、10は高密度ポリエチレンからなる蓄熱体、15は蓄熱槽である。先ず蓄熱プロセスではバルブ32の切り換えにより加熱源流体33のみが加熱側熱回収側兼用熱交換手段31に流れるようにして、それにより熱媒体11を蓄熱体10の溶融温度以上に加熱する。取り出しプロセスでは、バルブ32の切り換えにより熱回収源流体34のみが該加熱側熱回収側兼用熱交換手段31に流れるようにして、それにより蓄熱体10等の熱を熱媒体11から取り出す。
【0040】
図3において(B)は、蓄熱槽内に伝熱壁を液体状熱媒体内に浸漬した一対の加熱側交換手段37と熱回収用熱交換器38を備えており、同じく11はプロピレングリコールからなる熱媒体、10は高密度ポリエチレンからなる蓄熱体、15は蓄熱槽である。蓄熱プロセスでは加熱源流体33を加熱側交換手段37に流して、それにより熱媒体を蓄熱体10の溶融温度以上に加熱する。取り出しプロセスでは、熱回収源流体34を熱回収用熱交換器38に流して、それにより蓄熱体10等の熱を熱媒体11から取り出す。
【0041】
図3において(C)は、蓄熱槽内に伝熱壁を液体状熱媒体内に浸漬した一対の加熱側交換手段37と熱回収用熱交換器38を備えており、更に加熱側熱交換手段37と管路で接続された、加熱側二次熱交換手段39と、熱回収用熱交換器38と管路で接続された、熱回収側二次熱交換手段40とを備えている。前記同様、11はプロピレングリコールからなる熱媒体、10は高密度ポリエチレンからなる蓄熱体、15は蓄熱槽である。また、35は二次熱媒体であり、36は35と同じ若しくは別の二次熱媒体である。蓄熱プロセス、取り出しプロセスともこの場合は間接的に熱交換器39、40を介して蓄熱、取り出しを行う。加熱源流体33若しくは熱回収源流体34が腐食性などの理由で、直接蓄熱槽15に通したくないない場合に適切な構成である。
【0042】
[実施例4]
図4は本発明の温蓄熱装置の第4の例の略図であって、蓄熱体の形体の変化について説明したものである。
【0043】
図において(A)は厚板状の蓄熱体10を複数枚等間隔で蓄熱槽15内に配置して、熱媒体11を満たしたもので、実施例1、2の場合に相当する。
【0044】
図において(B)は肉厚円筒状の蓄熱体10を複数個同軸に円筒状蓄熱槽15内に配置して、熱媒体11を満たしたものである。
【0045】
図において(C)は直方体の蓄熱槽15の断面碁盤目状に、縦方向の隔壁で仕切り、これにより形成される室に、図のように交互に蓄熱材である高密度ポリエチレンを充填して蓄熱体10とし別の室にプロピレングリコールの熱媒体11を満たして蓄熱槽15を構成したものである。
【0046】
【発明の効果】
以上説明したように、本発明により、特に高密度ポリエチレン(ポリオレフィン)を蓄熱材とし、該蓄熱材のエンタルピ変化を授受可能なプロピレングリコール(プロピレングリコール、鉱油、廃油、動植物油、重油からなる群から選ばれる少なくとも一つの液体状熱媒体)を熱媒体として用い、廃熱の回収若しくは深夜電力の有効利用などを可能とする温蓄熱装置の提供を可能とした。
【図面の簡単な説明】
【図1】 本発明の温蓄熱装置の第1の例の略図である。
【図2】 本発明の温蓄熱装置の第2の例の略図である。
【図3】 本発明の温蓄熱装置の第3の例の概念図である。
【図4】 本発明の温蓄熱装置の第4の例の略図である。
【符号の説明】
10 蓄熱体(高密度ポリエチレン)
11 熱媒体(プロピレングリコール)
12 電気ヒータ
13 放熱・吸熱フィン
14 熱交換室
15 蓄熱槽
16 調節弁
17 熱回収前水(二次熱媒体)
18 熱回収後水(二次熱媒体)
20 熱交換パイプ
21 熱交換室仕切り
22 熱交換パイプへの開口
23 パイプ間フィン
31 加熱側熱回収側兼用熱交換手段
32 切り換え兼調節バルブ
33 加熱源流体
34 熱回収源流体
35 加熱側二次熱媒体
36 熱回収側二次熱媒体
37 加熱側熱交換手段
38 熱回収用熱交換器
39 加熱側二次熱交換手段
40 熱回収側二次熱交換手段
[0001]
[Field of the Invention]
The present invention relates to a heat storage device using latent heat of a substance. More specifically, the present invention relates to a heat storage device that enables recovery of waste heat in a high temperature region or effective use of late-night power.
[0002]
[Prior art]
Since the latent heat storage device is an effective means for recovering waste heat discharged in various industries and waste recovery processes, storing midnight power, etc., an appropriate and highly efficient heat storage material and the enthalpy of the heat storage material are used. The device configuration including selection of a heat medium that can smoothly exchange changes has been the subject of many studies.
[0003]
The latent heat storage material uses the enthalpy change at the special phase transition point of the substance to absorb heat, thereby storing the substance in the phase-changed substance and, if necessary, causing the opposite phase change to generate heat. It is a material that fulfills the function of extracting. Conventionally, most cases of this kind of phase transition point utilizing the melting point of a substance are used for this type of purpose, but there are also examples using the crystal transition point and others. Therefore, in the former case, the enthalpy change is heat of fusion (or heat of crystallization), and in the latter case, heat of crystal transition.
[0004]
Conventionally, substances known and used as heat storage materials can be broadly classified into inorganic and organic materials. Inorganic materials include inorganic salt hydrates such as sodium sulfate, calcium chloride, sodium acetate, etc., which can use a phase transition point at a relatively low temperature. There are inorganic salt hydrates such as barium hydroxide and magnesium nitrate.
[0005]
When these inorganic salt hydrates are gradually cooled from the molten state, they exhibit a subcooling phenomenon that does not solidify (crystallize) and do not dissipate heat (cannot extract heat) even when the original melting point is exceeded, and simultaneously melt. Insoluble substances sometimes crystallize out, and by repeating the heat cycle of melting to solidification, the insoluble substances continue to increase and eventually phase separation occurs. Various measures for separation and supercooling have been made, but they are not yet complete.
[0006]
On the other hand, organic heat storage materials include low-molecular crystalline polyolefins or high-molecular polyolefins, which have good thermal stability, no corrosiveness / toxicity, high latent heat, high viscosity, no flow of themselves, Since the conduction is low, it needs to be devised. For example, it is used in the form of pellets, strands, films, etc., but since the shape cannot be maintained as it is, costly radiation, electron beam, silane crosslinking, etc. are performed. Since these operations in the molecular structure are nothing other than changing the molecular structure, physical properties such as the melting point are changed. In some cases, a crystalline polymer is supported on a crosslinked polymer polyolefin. However, there is a problem in selecting a heat medium for extracting enthalpy change without eluting the crystalline substance.
[0007]
As described above, in combination with the selection of the heat storage material / heat medium, the device configuration for effectively functioning these specific substances is a further problem, and the device suitable for each physical property has been devised. Must be.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of such conventional problems, and uses a specific heat storage material and a specific heat medium capable of giving and receiving an enthalpy change of the heat storage material to recover waste heat or midnight power. The purpose is to provide a thermal storage device that enables effective use.
[0009]
[Means for Solving the Problems]
The thermal heat storage device of the present invention is a latent heat storage material in which at least one polyolefin selected from the group consisting of high-density polyethylene, medium-density polyethylene, low-density polyethylene, and polypropylene is stored in a container as a latent heat storage material, propylene glycol, A heat storage tank that contains at least one liquid heat medium selected from the group consisting of mineral oil, waste oil, animal and vegetable oils, heavy oil, heating means for heating the heat medium in the heat storage tank, and a heat transfer wall from the heat medium. A heat recovery heat exchanger that performs heat recovery on the heat utilization medium side, and is configured to store heat in the polyolefin through the liquid heat medium, and to store the latent heat storage A plurality of bodies are arranged in the heat storage tank with a predetermined interval, and the heat transfer wall of the heat recovery heat exchanger is immersed in the interval between the plurality of arranged latent heat storage bodies. The features.
[0010]
The temperature of waste heat sources that require heat recovery, such as waste incineration waste heat and boiler waste heat, is relatively high and often exceeds at least 150 ° C. In order to effectively store heat and store heat from these waste heat sources, it is most preferable to use a heat storage material that undergoes a phase transition near the heat source temperature and absorbs heat by a large enthalpy change. Further, even if the purpose is to store midnight power or surplus power as a heat source, it is more efficient to perform at a moderately high temperature because the volume of the heat storage tank is small. In addition to the first condition, taking into account the heat cycle stability, thermal conductivity, price, toxicity, safety against explosion and fire, corrosiveness, etc. of the heat storage material, and equipment that responds to morphological changes before and after melting of the heat storage material It is necessary to devise a configuration. And it is necessary to consider the selection factors similar to the case of the heat storage material when selecting the heat medium that can smoothly exchange heat with the heat storage body thus devised.
[0011]
As a result of studying various heat storage materials, the present inventors have found that a combination using high-density ethylene as a heat storage material and propylene glycol as a heat medium is the best to meet the object of the present invention. In addition, as will be described later, if the high-density polyethylene is appropriately selected, waste plastics can be used, and resources can be effectively used.
[0012]
The high density polyethylene used in the present invention has a density in the range of 0.94 to 0.97 g / cc, and is a highly crystalline polyethylene polymerized with a Ziegler-Natta based catalyst having a melting point of about 120. It has a preferred height of ° C., and its latent heat of fusion has a magnitude of about 50 kcal / kg. Moreover, there is no toxicity and corrosiveness, and the stability to heat cycle is good as long as there is an appropriate antioxidant.
[0013]
And since it naturally becomes a fluid after melting, high-density polyethylene is used in a container. The material of the container is not particularly limited, but it needs to be a material that can withstand a temperature of at least 200 ° C. and is not eroded by the heat medium. Usually, a metal is suitable, and preferably a rust-proof metal plate is processed into a can body by a process such as welding.
[0014]
The shape of the container, that is, the heat storage body and the arrangement method in the heat storage tank are not limited, but it is necessary to ensure a sufficient heat transfer area and to circulate the heat medium. Furthermore, it must be constructed so as to enable heating by an external heat source and heat absorption means from the heat storage tank.
[0015]
The heat storage tank is provided with a heat exchange chamber having a supply port for supplying a heat utilization medium and a takeout port for taking out the heat utilization medium absorbed from the heat storage tank on one side divided by a partition plate with good heat transfer. A plurality of thick plate heat accumulators filled with polyolefin extend at a predetermined interval from the partition plate on the other side, and fins made of a plate-like good heat conductor in the interval between the latent heat accumulators or A plurality of heat exchange pipes may be extended.
[0016]
Furthermore, the thermal storage device of the present invention is characterized in that the thermal storage tank has a plurality of thick plate-shaped latent heat storage bodies arranged therein at equal intervals, and is formed thereby to fill the internal space with the heat medium. And
[0017]
The latent heat storage body is a thick plate-shaped latent heat storage body by preparing a thin box-shaped container and filling it with polyolefin such as high-density polyethylene.
[0018]
Furthermore, in the heat storage device of the present invention, the heat storage tank is configured such that a plurality of the latent heat storage bodies having a thick hollow cylindrical shape are coaxially disposed therein, and the internal space formed thereby is filled with a heat medium. Features.
[0019]
That is, it is the structure which arrange | positions a thermal storage body concentrically, and is a useful structure when making a thermal storage tank cylindrical. The same applies to the interval (distance) between the heat storage bodies in this case.
[0020]
Further, in the heat storage device of the present invention, the heat storage tank is a rectangular parallelepiped, and a plurality of chambers formed by partitioning a rectangular cross section of the rectangular parallelepiped with a grid-like partition wall are alternately used as the container of the latent heat storage material, The latent heat storage material is accommodated, and the heat medium is filled in another room.
[0021]
The above-described configuration is not limited to a configuration in which a container having a desired shape is first prepared and a polyolefin such as polyethylene is filled therein. For example, a polyolefin such as polyethylene is molded into a heat storage body having a desired shape. A configuration in which coating is performed later is also possible depending on the shape, and as long as the function of the present invention is performed, there is no problem.
[0022]
[0023]
Also, temperature thermal storage device of the present invention, the heating means is an electric heater, after the electric heater is subjected to preliminary heat storage for heating a heat medium in the heat storage tank by the waste heat, adjusting for adjusting the heat storage temperature It is a means.
[0024]
The heat source to store heat is the case of late-night power and waste heat as an auxiliary heat source, and an electric heater is inserted into the heat medium inside the heat storage tank (via the heat transfer wall) to form a heating means.
[0025]
Further, in the heat storage device of the present invention, the heating means is a heating side heat exchange means.
[0026]
In this case, two methods are possible, one of which is provided with a communication means between the heat storage tank and an external heat exchanger, forcibly circulating propylene glycol as the heat medium of the present invention, and the external heat exchanger And heating with heat exchange of the present invention. The communication means is formed by, for example, a pipeline, an on-off valve, a circulation pump, and the like.
[0027]
The other one is propylene glycol, which is the heat medium of the present invention, sealed in a heat storage tank to function as a natural convection type heat medium, and provided with another heat transfer surface having a communication means with the outside in the heat storage tank, In this method, the heat source fluid itself is circulated from the outside through the communication means, or a secondary heat medium heat-exchanged with the heat source fluid is circulated, and heat is exchanged with the heat medium of the present invention for heating. The communication means is formed by, for example, a pipe line, an on-off valve, a circulation pump, and the like.
[0028]
The heat exchange means on the side that absorbs heat from the heat storage tank and recovers the heat can have two methods, similar to the heating side, one of which is provided with a communication means between the heat storage tank and an external heat exchanger. In this method, propylene glycol, which is a medium, is forcibly circulated, and heat is exchanged with the use side of the recovered heat amount by an external heat exchanger to absorb heat.
[0029]
The other one is propylene glycol, which is the heat medium of the present invention, sealed in a heat storage tank to function as a natural convection type heat medium, and provided with another heat transfer surface having a communication means with the outside in the heat storage tank, Through the communication means from the outside, the fluid itself to be supplied with heat is circulated or the secondary heat medium exchanged with the user side is circulated, and heat is exchanged with the heat medium of the present invention for heating. It is a method.
[0030]
Furthermore, the heat storage device of the present invention is characterized in that the heat medium layer that fills between the latent heat storage materials in the heat storage tank has at least 3 mm. This is a numerical value that the present inventors have found empirically in various examination experiments. When the arrangement interval in the heat storage tank is at least a natural convection method, it is necessary to keep the distance between adjacent areas 3 mm or more. It is thought that it is related to the work that can make the overall heat transfer coefficient including the temperature gradient on the wall surface of the heat storage body related to the natural convection phenomenon of the medium.
[0031]
Furthermore, the polyolefin is waste plastics made of high-density polyethylene . This promotes the recycling of waste, and further promotes countermeasures against resource depletion and global warming, as well as effective use of the energy underlying the present invention. When waste polyethylene is used, it is important to avoid mixing chlorine-containing polymers.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Next, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, unless otherwise specified, the dimensions, shapes, relative positions, and the like of the components described in this embodiment are merely illustrative examples, and are not intended to limit the scope of the present invention. Absent.
[0033]
[Example 1]
FIG. 1 is a schematic view of a first example of the heat storage device of the present invention. In FIG. 1, reference numeral 15 denotes a heat storage tank which is kept warm, and is divided into a heat transfer chamber 14 in the upper part and the lower part, the upper part is a heat exchange chamber 14, a supply port for supplying water as a secondary heat medium, and a heat storage tank It is equipped with a take-out port for taking out the hot water that has absorbed heat. In the lower part, a plurality of thick plate-like heat accumulators 10 filled with high-density polyerythylene in the container extend downward from the partition plate at equal intervals. At the same time, a plurality of heat radiation / heat absorption fins 13 made of a plate-like good heat conductor extend downward between the heat accumulators to constitute a heat recovery side heat exchanging means. A heater 12 is provided. The remaining heat storage tank lower space is filled with a heat medium 11 made of propylene glycol.
[0034]
The electric heater 12 was used as a heating means, and the heat storage tank heat medium 11 was heated to a predetermined temperature of 150 ° C. or higher by midnight power. Thereby, the high-density polyethylene of the heat storage body was melted and stored as melting heat. Of course, the sensible heat of the heat medium and the heat storage body is also stored. In the daytime, while operating the pump P and adjusting the control valve 16, water 17 (about 25 ° C.) before heat recovery as a secondary heat medium is introduced into the heat exchange chamber 14, and hot water of about 50 ° C. (Water 18 after heat recovery) was obtained. The secondary heat medium is not limited to water, and can be changed as appropriate depending on the circumstances on the heat utilization side.
[0035]
[Example 2]
FIG. 2 is a schematic view of a second example of the heat storage device of the present invention. In this example, the heat transfer area and the overall heat transfer coefficient of the heat exchange means are further improved based on the configuration of the first embodiment. In FIG. 2, A is an elevation view of a second example of the heat storage device of the present invention, B is a plan view, and C is an AA ′ arrow view. In the figure, the same symbols are affixed to members and parts common to the other figures. In this example, the heat exchange chamber 14 is divided by a partition wall 21, and water (secondary heat medium) 17 flows into a chamber in front of A, that is, in a lower side in B (left side in C), and enters a heat exchange pipe. From the opening 22 (s) to the heat exchange pipe 22 (s), passing through the pipe 20 (s) from the opening 22 (s) to the upper chamber (right side in C). Heat is obtained as recovered water (secondary heat medium) 18.
[0036]
That is, instead of the fins of the first embodiment, the heat exchange pipes hang down and meander from the partition plate so that the secondary heat medium flows. Furthermore, the inter-pipe fins 23 are provided between the pipes to increase the heat transfer area. The specifications of the heat exchange means are all the same as in the first embodiment.
[0037]
In this apparatus, the electric heater 12 was used as a heating means, and the heat storage tank heat medium 11 was heated to a predetermined temperature of 150 ° C. or higher by midnight power. Thereby, the high-density polyethylene of the heat storage body was melted and stored as melting heat. Of course, the sensible heat of the heat medium and the heat storage body is also stored. In the daytime, the pump P is operated and the control valve 16 is adjusted so that the flow rate is the same as that of the first embodiment, and the water 17 (about 25 ° C.) before heat recovery as the secondary heat medium is converted into the heat exchange chamber 14. To obtain about 80 ° C. warm water (water 18 after heat recovery). In this case as well, the secondary heat medium is not limited to water, and can be changed as appropriate depending on the heat utilization side.
[0038]
[Example 3]
FIG. 3 is a conceptual diagram of a third example of the thermal heat storage device of the present invention, and is a diagram illustrating a change in the heat exchange means of the present invention that applies or absorbs heat to the heat storage tank.
[0039]
In FIG. 3, (A) includes one heating side heat recovery side combined heat exchange means 31 in which a heat transfer wall is immersed in a liquid heat medium in a heat storage tank, 11 is a heat medium made of propylene glycol, 10 is a heat storage body made of high-density polyethylene, and 15 is a heat storage tank. First, in the heat storage process, only the heat source fluid 33 flows to the heating side heat recovery side combined heat exchanging means 31 by switching the valve 32, thereby heating the heat medium 11 to the melting temperature of the heat storage body 10 or higher. In the extraction process, only the heat recovery source fluid 34 flows to the heating side heat recovery side combined heat exchanging means 31 by switching the valve 32, thereby extracting heat from the heat storage body 10 and the like from the heat medium 11.
[0040]
In FIG. 3, (B) includes a pair of heating side exchange means 37 and a heat recovery heat exchanger 38 in which a heat transfer wall is immersed in a liquid heat medium in a heat storage tank. A heat storage medium 10 is a heat storage body made of high-density polyethylene, and 15 is a heat storage tank. In the heat storage process, the heating source fluid 33 is caused to flow through the heating side exchange means 37, thereby heating the heat medium to the melting temperature of the heat storage body 10 or higher. In the extraction process, the heat recovery source fluid 34 is caused to flow through the heat recovery heat exchanger 38, thereby extracting heat from the heat storage body 10 and the like from the heat medium 11.
[0041]
In FIG. 3, (C) includes a pair of heating side exchange means 37 and a heat recovery heat exchanger 38 in which a heat transfer wall is immersed in a liquid heat medium in a heat storage tank, and further includes a heating side heat exchange means. 37, a heating side secondary heat exchanging means 39 connected by a pipe line, and a heat recovery side secondary heat exchanging means 40 connected by a pipe line with a heat recovery heat exchanger 38. Similarly to the above, 11 is a heat medium made of propylene glycol, 10 is a heat storage body made of high-density polyethylene, and 15 is a heat storage tank. 35 is a secondary heat medium, and 36 is the same or different secondary heat medium as 35. In this case, both the heat storage process and the extraction process indirectly store and extract heat via the heat exchangers 39 and 40. This configuration is appropriate when the heating source fluid 33 or the heat recovery source fluid 34 is not to be directly passed through the heat storage tank 15 for reasons such as corrosivity.
[0042]
[Example 4]
FIG. 4 is a schematic diagram of a fourth example of the heat storage device of the present invention, and illustrates the change in the shape of the heat storage body.
[0043]
In the figure, (A) shows a case in which a plurality of thick plate-like heat storage bodies 10 are arranged in the heat storage tank 15 at equal intervals and the heat medium 11 is filled, and corresponds to the cases of the first and second embodiments.
[0044]
In the figure, (B) shows a case where a plurality of thick cylindrical heat accumulators 10 are coaxially arranged in a cylindrical heat accumulator 15 to fill the heat medium 11.
[0045]
In the figure, (C) is a grid-like cross section of a rectangular parallelepiped heat storage tank 15, partitioned by vertical partition walls, and the chamber formed thereby is alternately filled with high-density polyethylene as a heat storage material as shown in the figure. A heat storage tank 15 is formed by filling a heat storage 11 of propylene glycol in another chamber as the heat storage body 10.
[0046]
【The invention's effect】
As described above, according to the present invention, in particular, high-density polyethylene (polyolefin) is used as a heat storage material, and propylene glycol (propylene glycol, mineral oil, waste oil, animal and vegetable oils, heavy oil that can give and receive the enthalpy change of the heat storage material. Using at least one selected liquid heat medium) as a heat medium, it has become possible to provide a heat storage device that can recover waste heat or effectively use midnight power.
[Brief description of the drawings]
FIG. 1 is a schematic view of a first example of a heat storage device of the present invention.
FIG. 2 is a schematic view of a second example of the heat storage device of the present invention.
FIG. 3 is a conceptual diagram of a third example of the heat storage device of the present invention.
FIG. 4 is a schematic view of a fourth example of the heat storage device of the present invention.
[Explanation of symbols]
10 Thermal storage (high density polyethylene)
11 Heat medium (propylene glycol)
12 Electric Heater 13 Heat Dissipation / Heat Absorption Fin 14 Heat Exchange Chamber 15 Heat Storage Tank 16 Control Valve 17 Heat Recovery Water (Secondary Heat Medium)
18 Water after heat recovery (secondary heat medium)
DESCRIPTION OF SYMBOLS 20 Heat exchange pipe 21 Heat exchange chamber partition 22 Opening to heat exchange pipe 23 Fin between pipes 31 Heating side heat recovery side combined heat exchange means 32 Switching and adjustment valve 33 Heating source fluid 34 Heat recovery source fluid 35 Heating side secondary heat Medium 36 Heat recovery side secondary heat medium 37 Heating side heat exchange means 38 Heat recovery heat exchanger 39 Heating side secondary heat exchange means 40 Heat recovery side secondary heat exchange means

Claims (7)

潜熱蓄熱材として高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、ポリプロピレンからなる群から選ばれる少なくとも一つのポリオレフィンを容器に収納してなる潜熱蓄熱体と、プロピレングリコール、鉱油、廃油、動植物油、重油からなる群から選ばれる少なくとも一つの液体状熱媒体とを収容する蓄熱槽と、蓄熱槽中の熱媒体を加熱する加熱手段と、該熱媒体から伝熱壁を介して熱利用媒体側に熱回収を行う熱回収用熱交換器とを備え、前記加熱手段より与えられた熱量を液体状熱媒体を介して前記ポリオレフィンに蓄熱するよう構成するとともに、前記潜熱蓄熱体を所定間隔を持って蓄熱槽内に複数配置し、該複数配置した潜熱蓄熱体間の間隔内に熱回収用熱交換器の伝熱壁を浸漬配置したことを特徴とする温蓄熱装置。A latent heat storage material comprising at least one polyolefin selected from the group consisting of high density polyethylene, medium density polyethylene, low density polyethylene and polypropylene as a latent heat storage material, and propylene glycol, mineral oil, waste oil, animal and vegetable oil, heavy oil A heat storage tank containing at least one liquid heat medium selected from the group consisting of: heating means for heating the heat medium in the heat storage tank; and heat from the heat medium to the heat utilization medium side through the heat transfer wall. A heat recovery heat exchanger for performing recovery, and configured to store the amount of heat given by the heating means in the polyolefin through a liquid heat medium, and store the latent heat storage body at a predetermined interval. a plurality placed in the bath, temperature heat storage instrumentation, characterized in that the immersion arranged a heat transfer wall of the heat recovery heat exchanger into the gap between the latent heat store arranged plurality of . 前記蓄熱槽は、伝熱良好な仕切り板で区分された一側に、熱利用媒体を供給する供給口と蓄熱槽から吸熱した熱利用媒体を取り出す取り出し口を備えている熱交換室を形成し、他側には前記仕切り板から、ポリオレフィンを充填した厚板状蓄熱体が複数枚所定間隔で延在し且つ該潜熱蓄熱体間の間隔内に板状良熱伝導体からなるフィン若しくは熱交換パイプが複数延在していることを特徴とする請求項1記載の温蓄熱装置。 The heat storage tank forms a heat exchange chamber having a supply port for supplying a heat utilization medium and a takeout port for taking out the heat utilization medium that has absorbed heat from the heat storage tank on one side divided by a partition plate with good heat transfer. On the other side, a plurality of thick plate-like heat storage bodies filled with polyolefin extend from the partition plate at a predetermined interval, and fins or heat exchange made of a plate-like good heat conductor within the interval between the latent heat storage bodies 2. The heat storage device according to claim 1, wherein a plurality of pipes are extended . 前記蓄熱槽が内部にポリオレフィンを容器に収納してなる厚板形状の前記潜熱蓄熱体の複数枚を等間隔に配置し、それにより形成される内部空間に前記熱媒体を満たしてなることを特徴とする請求項1記載の温蓄熱装置。The heat storage tank has a plurality of thick plate-like latent heat storage bodies each containing polyolefin stored in a container at equal intervals, and an internal space formed thereby is filled with the heat medium. The heat storage device according to claim 1. 前記蓄熱槽が内部に高密度ポリエチレンを容器に収納してなる肉厚中空円筒形状の前記潜熱蓄熱体の複数個を同軸に配置し、それにより形成される内部空間に前記熱媒体を満たしてなることを特徴とする請求項1記載の温蓄熱装置。  The heat storage tank is coaxially arranged with a plurality of the thick hollow cylindrical latent heat storage bodies in which high-density polyethylene is housed in a container, and the internal space formed thereby fills the heat medium. The thermal heat storage device according to claim 1. 前記蓄熱槽が直方体であって、該直方体の方形断面を碁盤目状の隔壁で仕切って形成される複数の室を、交互に前記潜熱蓄熱材の容器とし、高密度ポリエチレンからなる前記潜熱蓄熱材を収納し、別の室内に前記熱媒体を満たしてなることを特徴とする請求項1記載の温蓄熱装置。  The heat storage tank is a rectangular parallelepiped, and a plurality of chambers formed by partitioning a rectangular cross section of the rectangular parallelepiped with grid-like partition walls are alternately used as the latent heat storage material container, and the latent heat storage material made of high-density polyethylene is used. The heat storage device according to claim 1, wherein the heat medium is stored in another room. 前記加熱手段が電気ヒータであり、該電気ヒータが、廃熱により蓄熱槽中の熱媒体を加熱する予備蓄熱を行ったのち、蓄熱温度の調整を行う調整手段であることを特徴とする請求項記載の温蓄熱装置。 Said heating means is an electric heater, claim said electrical heater, after performing a preliminary heat storage for heating a heat medium in the heat storage tank by the waste heat, characterized in that an adjustment means for adjusting the heat storage temperature 1. The heat storage device according to 1 . 前記ポリオレフィンが高密度ポリエチレンからなる廃プラスチックスであることを特徴とする請求項1記載の温蓄熱装置。 The heat storage device according to claim 1, wherein the polyolefin is waste plastics made of high-density polyethylene .
JP2001325275A 2001-10-23 2001-10-23 Thermal storage device Expired - Fee Related JP3873229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325275A JP3873229B2 (en) 2001-10-23 2001-10-23 Thermal storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325275A JP3873229B2 (en) 2001-10-23 2001-10-23 Thermal storage device

Publications (2)

Publication Number Publication Date
JP2003130562A JP2003130562A (en) 2003-05-08
JP3873229B2 true JP3873229B2 (en) 2007-01-24

Family

ID=19141869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325275A Expired - Fee Related JP3873229B2 (en) 2001-10-23 2001-10-23 Thermal storage device

Country Status (1)

Country Link
JP (1) JP3873229B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162636A (en) * 2011-04-11 2011-08-24 中国科学院电工研究所 High-temperature heat storage and evaporation integrated device
CN104258790A (en) * 2014-09-11 2015-01-07 无锡市巍栋生化设备制造有限公司 Thermosensitive organic compound heating smelting device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127505A (en) * 2008-11-26 2010-06-10 Keio Gijuku Method of forming hydrate, heat storage material and heat storage device
DE102009030541A1 (en) * 2009-06-25 2010-12-30 Li-Tec Battery Gmbh Vehicle with drive device
JP2011038750A (en) * 2009-08-18 2011-02-24 Ngk Insulators Ltd Honeycomb type latent-heat heat reservoir
KR101185449B1 (en) 2010-07-23 2012-10-02 삼성중공업 주식회사 Heat exchanger
CN105222345A (en) * 2015-10-27 2016-01-06 江苏启能新能源材料有限公司 A kind of phase-change heat-storage material heating system
CN109631127A (en) * 2018-12-06 2019-04-16 天津大学 A kind of phase change thermal storage heat exchanger

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124981A (en) * 1982-12-29 1984-07-19 Fujikura Ltd Latent thermal energy storage material
JPS62135588A (en) * 1985-12-10 1987-06-18 Agency Of Ind Science & Technol Heat storing material
JPS6358059A (en) * 1986-08-27 1988-03-12 Hitachi Ltd Heat accumulator
JPH06207705A (en) * 1993-01-08 1994-07-26 Matsushita Electric Ind Co Ltd Burner
JP3605139B2 (en) * 1994-04-08 2004-12-22 中央化学株式会社 Permeable composite pavement material and its manufacturing method
JPH0827460A (en) * 1994-05-12 1996-01-30 Matsushita Electric Works Ltd Heat storage material
JPH109781A (en) * 1996-06-26 1998-01-16 Matsushita Electric Works Ltd Regenerative heat exchanger
JP2000063815A (en) * 1998-08-25 2000-02-29 Mitsubishi Chemicals Corp Heat accumulating process and heat accumulating device using this
JP3106314B1 (en) * 1999-07-15 2000-11-06 ナックス株式会社 Heat storage
JP2001041585A (en) * 1999-07-30 2001-02-16 Kokusai Gijutsu Kaihatsu Kk Heat storage tank
JP2001207163A (en) * 1999-11-15 2001-07-31 Mitsubishi Chemicals Corp Heat storage tank and heat storage apparatus using the same
JP2001183082A (en) * 1999-12-27 2001-07-06 Ohbayashi Corp Heat accumulating member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162636A (en) * 2011-04-11 2011-08-24 中国科学院电工研究所 High-temperature heat storage and evaporation integrated device
CN104258790A (en) * 2014-09-11 2015-01-07 无锡市巍栋生化设备制造有限公司 Thermosensitive organic compound heating smelting device
CN104258790B (en) * 2014-09-11 2016-08-17 无锡市巍栋生化设备制造有限公司 A kind of heat-sensitive organic compound heating melting appartus

Also Published As

Publication number Publication date
JP2003130562A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
Seddegh et al. Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems
US9841243B2 (en) Thermal energy storage system combining sensible heat solid material and phase change material
US4329407A (en) Electrochemical storage battery
US20110083459A1 (en) Heat exchanger with integral phase change material for heating and cooling applications
Malan et al. Solar thermal energy storage in power generation using phase change material with heat pipes and fins to enhance heat transfer
US20100051227A1 (en) Thermal energy storage
JP3873229B2 (en) Thermal storage device
Murali et al. Effect of Latent Thermal Energy storage and inlet locations on enhancement of stratification in a solar water heater under discharging mode
JP5931086B2 (en) Solar water heater
JP2016142514A (en) Thermal storage device
JP4714923B2 (en) Heat storage device
KR102079910B1 (en) Latent heat storage apparatus using phase change material
JP2000292085A (en) Heat storage body, heat storage device and manufacture thereof
JPH1123065A (en) Heat storing heat dissipating device
JP5594752B2 (en) Heat storage device
Sevault et al. Phase change materials for thermal energy storage in low-and high-temperature applications: a state-of-the-art
WO2014137275A1 (en) Method and device for heating a building using a solar collector
Alhamdo et al. Finned double-tube PCM system as a waste heat storage
EP3147618B1 (en) Heat energy accumulator based on solid-liquid phase-change materials, and method for producing the unit
Dannemand et al. Laboratory test of a cylindrical heat storage module with water and sodium acetate trihydrate
JP2003240465A (en) Latent heat storage device
JP2004232897A (en) Complex heat storage device
Khobragade et al. Impact of flow direction and mass flow rate on the melting process for simultaneous charging and discharging based latent heat storage system
RU2753067C1 (en) Heat storage device
JP2015169366A (en) Solar heat collection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061012

R150 Certificate of patent or registration of utility model

Ref document number: 3873229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees