JP3872010B2 - Structure reinforcing method and structure - Google Patents

Structure reinforcing method and structure Download PDF

Info

Publication number
JP3872010B2
JP3872010B2 JP2002372191A JP2002372191A JP3872010B2 JP 3872010 B2 JP3872010 B2 JP 3872010B2 JP 2002372191 A JP2002372191 A JP 2002372191A JP 2002372191 A JP2002372191 A JP 2002372191A JP 3872010 B2 JP3872010 B2 JP 3872010B2
Authority
JP
Japan
Prior art keywords
reinforcing
high ductility
sheet
reinforcement
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002372191A
Other languages
Japanese (ja)
Other versions
JP2003221930A (en
Inventor
俊一 五十嵐
Original Assignee
構造品質保証研究所株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 構造品質保証研究所株式会社 filed Critical 構造品質保証研究所株式会社
Priority to JP2002372191A priority Critical patent/JP3872010B2/en
Publication of JP2003221930A publication Critical patent/JP2003221930A/en
Application granted granted Critical
Publication of JP3872010B2 publication Critical patent/JP3872010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • E04G2023/0262Devices specifically adapted for anchoring the fiber reinforced plastic elements, e.g. to avoid peeling off

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、構築物の補強方法および補強構造に関し、更に詳細には、建造物や各種のインフラ施設(以下、総称して「構築物」という)の部材(梁、桁、スラブ,壁、柱等の構築物の構成要素)が、地震力や風力などの作用、取り壊しに伴う過度の荷重等の突発的な外力の作用、あるいは老朽化による耐力不足によって破壊し、目に見えるほどの変形が生じた後であっても、構築物が崩壊して内部や周辺の人、及び財産に大きな損害を与えることを防止することのできる構築物の補強方法および補強構造に関する。
【0002】
【従来の技術】
構築物が地震等の突発的な外力、老朽化による耐力不足によって突然崩壊し、生命及び財産を損ねることが過去に何度も繰り返されている。
【0003】
構築物の崩壊現象は、構築物を構成する部材が過度の荷重や耐力不足によって破壊され、これが全体構造の安定性を損なって構造物の形状を著しく変形させ、内部の空間が減少することによって起こる。建物の場合には、パンケーキのように床が折り重なったり、倒壊したりすることが多い。高架橋などでは、橋脚が破壊され、落橋する事例が多い。したがって、構造部材等の各種の部材を補強して破壊を制御し、該部材が破壊された後も構造の全体的な安定性が損なわれることを回避できるならば、構築物の内部や周辺の人命や財産を損ねる可能性を小さくすることができる。
【0004】
ところで、従来は、構築物の崩壊を回避させてその安全性を確保するために、次のような手法が採用されていた。
▲1▼構造部材が自重と突発的な外力を合わせて考慮してあらかじめ設定した必要荷重にて破壊されないように断面等を決定する。
▲2▼設置後予想される突発的な外力が増加するか、部材が老朽化等で耐力を減じたとき、構造部材の断面積を増やしたり、材料の強度を上げる。また、構造部材の周面に鉄板や炭素繊維等の高強度部材を設置し、構造部材の降伏強度や破壊されるに至るまでのエネルギー吸収性能(靭性)を増す。
▲3▼地震力に対する免震装置を構築物に設置してその力を減ずる。
また、地震等の突発的な外力によって構築物が損傷を受けた場合には、応急被災判定を行い損傷の程度によって立ち入り禁止措置を講じていた。さらに、設計基準が改定され、想定される地震荷重が増加した場合には、既存の構築物に対して耐震診断を実施し、危険と判定されたものに対しては耐震改修、補強を推奨していた。
【0005】
しかし、上記▲1▼〜▲3▼の従来手法は、そのいずれもがあらかじめ設定されている地震等の突発的な外力の想定レベル(設計値)との関係に依拠するものであり、この想定レベルを超えた外力が部材に作用した場合には、部材が破壊してしまうため構造全体の安定性を確保できる保証はなかった。
【0006】
また、上記従来手法による場合には、工事にかかる費用、時間、材料が新設費用と同等とはいわないまでも、その何割にも達してしまい、そのコスト負担に耐えられないことも多くある。また、それでなくともその確保が難しくなっている溶接工、鉄筋工、仕上げ工等の熟練工を必要とする場合も多い。したがって、既存の構築物が、老朽化、旧基準による設計、地震等の突発的な外力による損傷等で、危険性が高いことが知られている場合であっても、経済的、物理的制約から、補強を行えないことが多かった。さらに、地震等の突発的な災害後に応急危険度判定を行う際に、構築物内に立ち入った調査員が余震等で構築物の崩壊に巻き込まれたり、軽微な損傷であるために安全であると判定された建物に居住者や使用者が立ち入り、その後の余震等で崩壊し多数の死傷者を出した事例などもある。
【0007】
図21は、代表的な構造部材である柱1に作用する代表的な荷重と対応する変位とを示す。荷重の作用方法には、端部に作用するもの、部材全体に集中または分布して作用するものがあり、荷重の種類は力とモーメントとがある。図21には、これらのうちの代表的なものだけを示している。図22は、上記従来手法との関係で図21に示した部材に作用する荷重と変位との関係を示している。同図によれば、補強前の強度及び/又は靭性に対し補強後の強度及び/又は靭性を増加させることはできるものの、靭性限界を超えた後の上部荷重を支える保証のなかったことが判明する。
【0008】
【発明が解決しようとする課題】
つまり、上記従来手法による場合には、変形の小さい範囲(2〜3%以内)で部材が荷重を支え構築物の全体の安定を確保することができるが、変形がこれを超えた場合には、荷重を支える機構を失って急速に変形が進み、構築物が崩壊することが不可避となる問題があった。例えば、図24(a)に示した柱1の例では、変形の小さい範囲(数%以内)である許容範囲内の軸力(鉛直力)Pによって発生する周方向張力Tとせん断応力Sとを鉄筋コンクリート製の柱1内の帯鉄筋で保持させることができるものの、せん断応力Sによって柱1がせん断破壊し剛性が低下するか、過度の軸力の作用によって帯鉄筋が破断もしくは外れてしまうために周方向張力Tを保持できなくなり、図24(b)に示すように急速に変形が進み、図24(c)に示すように完全に圧壊され、前記パンケーキ破壊現象の発生が不可避的となる問題があった。また、図25に示すように部材15が梁16であれば、ヒビ割れ20と鉄筋の降伏とにより、同図中に破線で囲繞した部位が圧縮破壊されてしまうという問題があった。
【0009】
また、上記従来手法による場合には、地震等の突発的な災害が発生した直後や、耐震基準が改定されて、大量の構築物が既存不適格となり補強が必要になった場合に、迅速に対処して安全を確保する手法としては不向きであるという問題があった。
【0010】
本発明は従来手法にみられた上記課題に鑑み、新設の構築物の構造部材を含む各種の部材に新設当初から適用しておいたり、既設の構築物の構造部材を含む各種の部材に事後的に適用することにより、破壊を制御してその進行を遅延させるとともに、空間的に破壊領域を徐々に拡大させることによって、部材が局部的に破壊し荷重分担能力を完全に失うことを避け、目に見えるほどの変形が生じた後も構造の崩壊を避け得る程度の荷重分担力を確保できる構造物の補強材料を提供することを目的としている。さらに、本発明の他の目的は、構造物の補強を有効に行うことのできる補強材料と接着剤の組み合わせを提供することにある。
【0011】
【課題を解決するための手段】
本発明は上記目的を達成すべくなされたものであり、構造部材を含む各種の部材を構成するコンクリート、木材、土、レンガ等の材料が破壊に伴って見かけの体積が膨張する性質を利用し、これを構造部材を含む各種の部材の周辺に設置される高延性材(高延性被覆材)で構成される補強材料で弾性的に拘束することによって破壊の進行を遅延させ、突発的な外力の作用が停止した後、構築物の重量を分担し、その形状を概ね保持し得るようにすることに構成上の特徴がある。ここにいう見かけの体積とは、部材端面と部材側面とを滑らかに包む面(包絡面)で囲まれた部分の体積をさす。これが破壊によって膨張するとは、図23(a)に示すように部材端面2,2と部材側面3とを備える破壊前の部材15が、破壊面4により分断された破壊片9,9の発生と移動とによって図23(b)に示すように包絡面10が広がり、見かけの体積が増大する現象をさす。図23(b)にて明らかなように、包絡面10と破壊した部材15との間には空隙tが存在する。高延性材(高延性被覆材)によって部材15を被覆するときに該部材15との間に弱層(空隙tを含む)を設けることによって、部材15が破壊した後にも高延性材(高延性被覆材)が包絡面状に変形することを可能にしている。
【0012】
すなわち、上記課題は、下記(1)〜(18)のいずれかの構成により達成することができる。
(1) 補強材料を構築物における部材に設置、前記部材の破壊に伴う見かけの体積膨張を拘束してその破壊を制御する構築物の補強方法であって、前記補強材料が、繊維系もしくはゴム系のシート材で構成され、該シート材の強度が、前記部材を粒状体として近似した場合の内部摩擦角から計算されることを特徴とする構築物の補強方法
(2) 前記補強材料が、前記シート材を2枚以上重ねて構成したものであり、重ね数は、補強材料の必要強度と許容歪みから決定される上記(1)に記載の補強方法
(3) 前記部材がコンクリートを主材とするものである上記(1)または(2)に記載の補強方法
(4) 前記部材が木を主材とするものである上記(1)または(2)に記載の補強方法
(5) 前記部材が土を主材とするものである上記(1)または(2)に記載の補強方法
(6) 前記部材がレンガを主材とするものである上記(1)または(2)に記載の補強方法
(7) 前記補強材料が、適宜長さの縦幅と横幅とが付与されているシート部を本体とし、その周方向で相互が突き合わされる二つの縁部を備えている上記(1)〜(6)のいずれかに記載の補強方法。
(8) 前記補強材料が、前記部材の両側に配置される少なくとも2枚のシート材と、これらのシート材を前記部材に設けられた通孔を介して連結する連結用紐材とを備えている上記(1)〜(7)のいずれかに記載の補強方法。
(9) 前記シート材が、少なくとも15%までの伸び歪を有することを特徴とする上記(1)〜(8)のいずれかに記載の構築物の補強方法。
(10) 補強材料を構築物における部材に設置し、前記部材の破壊に伴う見かけの体積膨張を拘束してその破壊を制御する構築物の補強構造であって、前記補強材料が、繊維系もしくはゴム系のシート材で構成され、該シート材の強度が、前記部材を粒状体として近似した場合の内部摩擦角から計算されていることを特徴とする構築物の補強構造。
(11) 前記補強材料が、前記シート材を2枚以上重ねて構成したものであり、重ね数は、補強材料の必要強度と許容歪みから決定される上記(10)に記載の補強構造。
(12) 前記部材がコンクリートを主材とするものである上記(10)または(11)に記載の補強構造。
(13) 前記部材が木を主材とするものである上記(10)または(11)に記載の補強構造。
(14) 前記部材が土を主材とするものである上記(10)または(11)に記載の補強構造。
(15) 前記部材がレンガを主材とするものである上記(10)または(11)に記載の補強構造。
(16) 前記補強材料が、適宜長さの縦幅と横幅とが付与されているシート部を本体とし、その周方向で相互が突き合わされる二つの縁部を備えている上記(10)〜(15)のいずれかに記載の補強構造。
(17) 前記補強材料が、前記部材の両側に配置される少なくとも2枚のシート材と、これらのシート材を前記部材に設けられた通孔を介して連結する連結用紐材とを備えている上記(10)〜(16)のいずれかに記載の補強構造。
(18) 前記シート材が、少なくとも15%までの伸び歪を有することを特徴とする上記(10)〜(17)のいずれかに記載の構築物の補強構造。
【0013】
【発明の実施の形態】
図1は、本発明において、構築物の構造部材等からなる各種の部材の破壊に伴う体積膨張を拘束してその破壊を制御すべく用いられる高延性材から構成される補強材料(以下、高延性材と称することがある)の構造例を示す全体斜視図である。
【0014】
同図によれば、高延性材21は、適宜長さの縦幅と横幅とが付与されてなるシート部22を本体とし、その周方向で相互が突き合わされる一側縁部23と他側縁部24とを備えて形成されている。
【0015】
また、シート部22における一側縁部23と他側縁部24とのそれぞれには、その縦幅方向に沿わせて芯紐25が挿通配置されており、該芯紐25により一側縁部23と他側縁部24とが各別に補強され、引張り方向での耐久性を高めることができる。
【0016】
さらに、一側縁部23と他側縁部23とのそれぞれの近傍位置には、その長さ方向に沿わせて連結用紐材30のための挿通孔26がそれぞれ所定間隔で設けられている。また、これらの各挿通孔26には、例えば鳩目28などの適宜の補強部材27が付設されており、該補強部材27により各挿通孔26の周縁部が各別に補強され、連結用紐材30を確実に固着できる。
【0017】
しかも、シート部22における一側縁部23と他側縁部24との少なくともいずれか一方の側、図示例では一側縁部23には、シート部22の縦幅と略同長の縦幅を有する舌片状の当て布部29が一側縁部23の長さ方向に沿わせてその裏側に縫着されており、該当て布部29により一側縁部23と他側縁部24との間を裏側から覆うことができるようになっている。なお、図示は省略してあるが、当て布部29は、一側縁部23と他側縁部24とに各別に配設し、一側縁部23と他側縁部24との間を裏側から交互に二重構造で覆うことができるようにしてもよい。
【0018】
高延性材21を構成しているシート部22や当て布部29は、周方向と鉛直方向とに均質な材料が用いられ、特に延性が高く初期弾性係数が鉄やコンクリートに比較して小さな繊維材やゴム材などを好適に用いることができる。具体的には、延性に富み、かつ、荷重を保持し得る強度を有している合成繊維材(例えば、東レ株式会社製の商品名「トレシート」等)やゴム材(例えば株式会社ブリヂストン製の商品名「ジオライナー」等)からなるシート材を好適に用いることができる。
【0019】
このため、高延性材21は、例えば図12(a)に模式的に示す構築物(建築物)11の床12等を支えるべく立設されている例えば図13(a)に示す構造部材15としての柱13の外周面14に対し、柱13とシート部22との間に当て布部29が位置し、かつ、一側縁部23と他側縁部24とが相互が突き合わされる配置関係のもとで巻き付けることができる。
【0020】
また、構造部材15としての柱13に巻き付けられた高延性材21は、一側縁部23と他側縁部24とのそれぞれの挿通孔26を介して架け渡された連結用紐材30を介して当て布部29で裏打ちした状態のもとで一体化させることにより簡単に周回配置することができる。このように簡単な施工で短時間に設置することにより、高延性材21は、柱13の周囲をすっぽりと袋状に包み込んだ状態を維持できることになる。
【0021】
図1は、部材15がコンクリートもしくは木、土、レンガ等を主材とする柱13である場合の本発明の適用例を示しているが、構築物11が建造中の場合であれば、例えば図12(a)に示されている梁(桁)16や図2(a)に示されている壁17に対しても同様にして、つまりその周囲を袋状に覆うことにより高延性材21をその周面に巻き付けておくことができる。
【0022】
なお、上記連結構造は、荷重を受けた際に一側縁部23と他側縁部24とが引き離されることのないように一体的に止着できる構造を備えるものであれば、図示例に限らず、縫合や接合など、その他の公知の止着構造を適宜採用することができる。
【0023】
一方、図2(a)〜(c)は、構築物11の部材15がコンクリートを主材とする既設の構造部材である壁17を例に本発明の適用例を示す要部横断面図である。
【0024】
図2(a)によれば、図12(a)に示される構築物(建築物)11の空間19を仕切っている壁17の一側面15aと他側面15bとの双方に高延性材21が各別に配設される(建築中の壁17の場合は、その周囲に図1に示すように高延性材21を囲繞配置することもできる。)。
【0025】
該壁17には、図2(b)に示されているように、高延性材21,21相互を連結するために必要な連結用紐材30を挿通できる口径が付与された通孔18が一側面15aと他側面15bとの間に所定間隔をおいて水平方向に進むようにして各別に設けられている。これらの通孔18は、図示例においては明らかでないが、水平方向に1条のみではなく、壁15の上下方向に所定間隔をおいて相互が略平行となる位置関係のもとで複数条にわたり設けられることになる。また、各通孔18には、図1に示す鳩目28のような補強部材を配設しておくことにより、その周縁部を補強しておくのが望ましい。
【0026】
このため、高延性材21,21相互は、通孔18を挿通させて固着された連結用紐材30を介して例えば図2(c)に示されるように確実に連結することができる。なお、連結用紐材30は、各通孔18毎に高延性材21,21相互を個別に連結したり、図示例のように1本で各通孔18を順次挿通させながら高延性材21,21相互を縫い付けるようにして連結するものであってもよい。
【0027】
図2は、部材15がコンクリートもしくは木、土、レンガ等を主材とする構造部材である壁17を例に示したものであるが、構築物11が既設のものであれば、図12(a)に示されている梁(桁)16に対しても同様に連結用紐材30を介して高延性材21,21相互を確実に連結することができる。
【0028】
図3(a)は、弾性のある帯状の高延性材21を構築物における部材(図示例では柱13に適用)15に対しテニスラケットのグリップにおけるテープ巻き構造と略同様にして相互に重なり合う当接部21aを有して螺旋状に巻き付けた例を示すものである。この場合、巻き付け後の高延性材21がずれ落ちないように、例えば次のような取り付け構造を採用するのが好ましい。
▲1▼適度の張力を与えながら巻き付ける。
▲2▼弾性のある高延性材21と部材15との間、もしくは包袋巻きのように螺旋状に巻き付けた際に重なり合う高延性材21の当接部21a,21a相互を接着剤で接合したり、溶着することにより接合固着する。
▲3▼部材15に対し高延性材21をくぎ等の固定部材を用いて止着する。
【0029】
また、部材15の端部に対する固定処理に関しては、上記▲2▼と▲3▼の方法で固着するほか、例えば医療用の弾性包袋の端部固定法として採用されているように、高延性材21の側に図1に示すような鳩目を形成し、該鳩目を介して紐を挿通することにより固定するものであってもよい。
【0030】
図3(a)に示す手法を採用することにより、その一部が損傷したコンクリートもしくは木、土、煉瓦等を主材とする部材15に対しても、外表面に沿わせて高延性材21を螺旋状に巻き付けてこれを覆うことができる。つまり、高延性材21は、図3(b)に示すようにロール状に巻いた状態であらかじめ準備しておくことにより、地震等の突発災害に対しても即座に対応できることになる。災害時の緊急対策としては、機械力に依存することなく、人力により簡単に、かつ、迅速に施工できる手法が最も望ましく、かかる観点からも図3に示す手法を用いる利点がある。また、一例としてトレシート800T(厚さ1.26mm、重さ930g/m)からなる高延性材21のロールを用いる場合には、その幅を50cm程度とし、長さを20m程度とすると、その全体重量が10kg前後となり、人手を介して持ち運ぶことにより、上記緊急対応の目的に適合させることができる。
【0031】
図4は、図3に示した螺旋状に巻き付けるパターンの他例を示す説明図であり、この場合、高延性材21は、図5に示すように部材15の上端部32側の一重巻き(図中の▲1▼)から開始されて順次、二重(図中の▲2▼)、三重(図中の▲3▼)となるようにその積層部位の巻き数を増加させながら巻き付け、所定の最大巻き数となって積層される四重の状態(図中の▲4▼)を維持させた状態で所要範囲に繰り返し巻き付けられた後、三重(図中の▲3▼)、二重(図中の▲2▼)を経て下端部33側が一重巻き(図中の▲1▼)となるように巻き付けられている。図5では、巻き方をわかりやすくするために部材15との間に間隔をおいて高延性材21が配置されているが、実際には部材15に対し密に巻き付けられることになる。さらに、部材15の端部(上端部32と下端部33)には、螺旋状の最大巻き数Nから1を減じた巻き数のロール巻き、図5に示す例では、螺旋状の最大巻き数Nの4から1を減じた三重巻きのロール巻きで巻き付けられている。これによって、端部(上端部32と下端部33)は、最大巻き数N重巻きから2N−1重巻きまでで巻き付けることができる。部材15の端部(上端部32と下端部33)には応力が集中するので、こうすることにより部材15に対し安全余裕度を与えることができることになる。また、螺旋状に巻き付けられる高延性材21相互は、部材15の長さ方向に沿わせた一側面と他側面との2面に所要以上の引っ張り張力(強度)Tが得られる適宜の幅をそれぞれ付与して介在させた例えばトーヨーポリマー株式会社製の商品名「ルビロン」等の接着剤35により部材15側に接合されて一体化される。
【0032】
図6は、図4に示す螺旋状の巻付けパターンが図5に示すよう最大の巻き数(積層数)がN重となっている場合に好適に使用することができるように、木製や樹脂製など、適宜の材料を用いて形成された芯材49に高延性材21をロール状に巻き付けた例を示すものである。この場合、高延性材21には、その横幅Wをその長さ方向に等分割できるように、1/2(最大幅)、1/3、1/4、・・・1/N、・・・1/10(通常の場合における最大巻き数が得られるように等分割する際の最小幅)程度にまで至る複数本の区画線50が高延性材21の側縁21bとの間に描示されている。例えば、最大巻き数がNの場合には、最初の一周で1/N(図4ではw )分だけずらし、以下、上から1/Nの線に沿って巻き付けていくことにより図4に示すように巻き上げることができる。なお、区画線50は、各等分の別を容易に判別できるように、色分けしたり線の類類を異にしたり、触覚による区別ができるように隆状(凸部)としたり、蛍光塗料を塗布するなどして描示しておくのが望ましい。
【0033】
図6に示すロール状に巻き付けた高延性材21は、図4に示すように部材15の上端部(下端部33からであってもよい)32から一周でその幅Wの1/4(w)がずれるようにして長さ方向に螺旋状に巻き付け、巻き終わりも幅Wの1/4(w)以内の幅が残るようにしてその全周にわたって少なくとも一重以上、最大で四重となって巻き付けられている。
【0034】
図4〜図5は、高延性材21の最大の巻き数が四重である場合を例として示すものであり、最大の巻き数(積層数)を任意のNとするとき、図4に示す高延性材21は一周で1/Nずれて螺旋状に巻き付けられることになる。なお、最適な巻き数Nは、後述する計算式において示されている必要強度Tと許容歪み量X とから決定される。
【0035】
図7は、高延性材21を既設の柱13や新築の柱13などの部材15に対し3重のロール巻き状に巻き付けた際の状態説明図であり、そのうちの(a)は要部斜視図を、(b)は(a)の横断面図をそれぞれ示す。
【0036】
同図によれば、高延性材21は、繊維系もしくはゴム系の帯状シート材が用いられ、部材15の外周面に対し少なくとも周方向での始端部42が接着剤35aを介して接合され、さらに始端部42とその上に位置する2枚目の対面部位44とが同様に接着剤35aを介して接合されている。また、高延性材21の終端部43側にあって重なり合っている対面部位45,46相互も接着剤35を介して接合させることにより、三重巻きとなった層を形成してロール状に密に巻き付けられている。なお、始端部42に用いられている接着剤35aは、部材15に対し高延性材21を仮付けするために用いるものであり、高延性材21,21相互を接着する接着剤35と同一の材料を用いる必要は必ずしもない。また、接着剤35aとして接着剤35を用いる場合には、部材15に対し高延性材21が過度に接着されることがないように接着面を狭小にするなどの工夫を施す必要がある。
【0037】
この場合、部材15の外周面に対しロール状に巻き付けられた高延性材21は、中間層、図示例では高延性材21の始端部42と終端部43とが位置している面とは反対側に位置する高延性材21の1枚目と2枚目との対面部位47,48相互が位置する一条の帯状領域を部材15の長さ方向に向けて接着剤35を用いて接合することにより巻き付けられている。
【0038】
図7は、高延性材21を三重巻きした場合を例示するものであるが、所要の強度得るために必要な巻き数はこれに限定されるものではなく、最適な巻き数Nは、後述する計算式において示されている必要強度Tと許容歪み量X とから決定される。
【0039】
すなわち、高延性材21の一枚当たりの材料強度をT、この強度が発現するときの歪みをSとすれば、所要強度得るために必要な巻き数N は、次のようになる。
=T/T 1)
また、許容歪み量X以内に周方向の変形が収まるために必要な巻き数N は、
=TS/T 2)
ただし、シート状の高延性材21の歪みと張力とは、材料強度発現まで比例すると仮定しているが、かかる比例関係は合成繊維系の材料では概ね当てはまる。ゴム系材料や粘性材を吹き付けるなどして塗着することにより高延性材21を形成する場合には、上記の計算をそれぞれの材料の張力〜歪み関係に基づいて行えばよい。
すなわち、材料の張力y〜歪みxの間の関係が、y=f(x)という数値関数、もしくはグラフ等で表現されるとき、N 回巻いたときの一枚当たりの張力yは、次のようになる
y=T/N 3)
このときの許容歪み量がX であるので、必要な巻き数Nは、T/N=f(X )の関係から、次のようにして求めることができる。
=T/f(X ) 4)
なお、最適な巻き数Nは、上記で求めたN とN とのうちの大きいほうを採用する。
【0040】
図8は、部材15の内法高さが例えば図6に示すようにロール状に巻かれたシート状の高延性材21の幅よりも大きいときにおける設置例を示したものであり、それぞれの高延性材21はいずれも図7に示す要領で部材15の長さ方向に帯状となった接着剤35を介在させながら巻き付けられている。
【0041】
すなわち、部材15の中央部34には、図7に示す要領でまず高延性材21が巻き付けられ、該中央部34に位置する高延性材21の上縁部51にその下縁部52を接着剤35で接合させながら部材15の上端部32側に高延性材21が、中央部34の高延性材21の下縁部52にその上縁部51を接着剤35で接合させながら部材15の下端部33側に高延性材21がそれぞれ巻き付けられる。
【0042】
これにより、3カ所にて各別に部材15に巻き付けられた高延性材21のそれぞれは、相互に張力が伝達されることになる。接着面の幅は、接合部の接着強度が所要の周方向での引っ張り張力T以上となることを条件に具体的に決定される。この場合、接着剤35を用いる接合のほか、縫着や溶着などの適宜の固着手法を用いることができる。また、この場合に必要となる高延性材21の巻き数Nは、図7に示す例と同様にして決定される。
【0043】
また、高延性材21は、その被覆対象である部材15の設置状況や施工上の制約等を考慮して、該部材15に対し袋状に覆ったり、螺旋状に巻き付けたり、シリコーンゴム等のゴム質系もしくは塩化ビニール等の樹脂系(各種の素材からなる短繊維を加えたものを含む)の粘性材を塗着したりすることにより設置できる。この場合、高延性材21が袋状に覆ったり、螺旋状に巻き付けることができる構造を備えるものであれば、少なくともその片面に接着層をあらかじめ形成しておき、該接着層を介して部材15に貼着するならば、その設置作業をより円滑化できる。なお、接着層は、必要により高延性材21の両面に形成しておくこともできる。また、ゴム質系もしくは樹脂系の粘性材を塗着してなる被覆材により高延性材21を設置する場合には、手作業により塗り付けることもできるが、作業性を考慮するならば適宜の吹付け器具を用いてゴム質系もしくは樹脂系の粘性材を吹付け塗着するのが好ましい。さらに、部材15の一部がすでに損傷していたり、特に応力が集中して部材15の一部に破壊が予測されるような場合には、該損傷部位や破壊予測部位を含む周囲に対し高延性材21を部分的に被覆して設置しておくこともできる。この場合には、接着層を有する繊維材からなる高延性材21や、ゴム質系もしくは樹脂系の粘性材を塗着してなる高延性材21をとりわけ好適に用いることができる。
【0044】
高延性材21は、部材15が破壊された後も包絡面10を形成し続けることが、部材15の破壊に伴う見かけの体積膨張を拘束してその破壊を制御する上での必要条件である。これは、図23(b)にて明らかなように、包絡面10と破壊された後の破壊片9との間に空隙tを生ずることによって可能になる。
【0045】
図1、図2及び図3に示したような方法で部材15の外周面に高延性材21を、両者を接着することなく設置した場合には、相互間に空隙(弱層)が存在する結果、上記したような包絡面10が円滑に形成されることになる。
【0046】
さらに、図4〜8に例示した方法・構造のほか、吹き付けなどの塗着手法により高延性材21を形成する際においても、部材15との間に空隙を介在させることなく直に接着される場合には、この接着層により部材15が破壊された後も高延性材21を図22(b)に示す破壊片9,9の外周に完全に接着させ続けることとなり、鋭角の発生、応力の集中により、高延性材21が、破壊片9により破断される可能性が高いことを銘記しておく必要がある。
【0047】
したがって、その対策としては、形成される接着層が高延性材21の強度より十分に低い接着強度をもつ接着剤を用いたり、形成される接着層が高延性材21より十分に低い弾性係数をもつ接着剤を用いることにより、部材15と高延性材21との間に弱層を介在させておくことが考えられる。
【0048】
部材15の破壊に伴って、見かけの体積が膨張することにより、部材15と高延性材21との間の圧縮力が増大するので、両者が接着されていなくても、部材15の破壊後は支圧作用により両者はずれ落ちることはない。したがって、両者の間の接着は、設置してから部材15が破壊されるまでの期間に高延性材21が部材15から剥れ落ちるのを防止するために行われることになり、高延性材21の自重を部材15の外周面で支え得る程度の所謂仮付けでよい。
【0049】
一方、図9(a),(b)は、本発明における第3の発明についての一例を示す概略斜視図であり、このうちの(a)は、図12(a)に模式的に示す構築物(建築物)11の床12等を支えるべく鉄筋コンクリートなどで形成されている既存の柱13と帯鉄筋よりも弾性係数の低い素材からなる高延性被覆材121との配置関係を、また(b)は、該柱13の外周面14に高延性被覆材121を巻き付けて固定した後の状態をそれぞれ示す。
【0050】
この場合に用いられる高延性被覆材121は、延性に富み、かつ、荷重を保持し得る強度を有している合成繊維材(例えば、東レ株式会社製の商品名「トレシート」等)やゴム材(例えば株式会社ブリヂストン製の商品名「ジオライナー」等)からなるシート材122により形成されているものを好適に用いることができる。また、高延性被覆材121は、柱13の外周面14をすっぽりと袋状に包み込んだ状態を維持させておかなければならない。したがって、柱13への覆設した後の高延性被覆材121は、荷重を受けた際に突合せ端部121a,121b相互が引き離されることのないように一体に止着し、かつ、柱13の外周面14に直接にもしくは適宜の介装材を介在させた上で接着剤等を用いて接合固着しておく必要がある。具体的には、シート材122が合成繊維材であれば突合せ端部121a,121b相互の裏側に当て布を当てて縫着し、シート材122がゴム材であれば突合せ端部121a,121b相互の裏側に当てゴムを当てて接合したり、ヒートシールを施すなどして一体に止着されることになる。なお、高延性被覆材121は、柱13の全長にわたり巻き付けておくのが好ましいが、必要に応じて上部を除く残余部位に巻き付けて固定させておくこともできる。また、高延性被覆材121としては、周方向と鉛直方向とに均質な材料が用いられ、特に延性が高く初期弾性係数が鉄やコンクリートに比較して小さな繊維材やゴム材などを好適に用いることができる。
【0051】
さらに、高延性被覆材121は、柱13の外周面14に巻き付けた後にずり落ちることがないように、接着剤を用いたり、柱13の側に釘やねじ等の適宜の固着手段を用いて確実に固着させておくのが望ましい。
【0052】
図10(a),(b)は、本発明における第4の発明についての一例を示す説明図であり、このうちの(a)は概略斜視図を、また(b)は(a)におけるY−Y線矢視方向での横断面図をそれぞれ示す。
【0053】
これらの図によれば、図12(a)に示す構築物(建築物)11の床12等を支える柱13は、空隙17を介在させて大理石模様を付すなどして形成された化粧用囲壁材115を周回配置することにより、柱13自体が隠蔽された状態となっている。しかも、化粧用囲壁材115の内周面116側には、帯鉄筋よりも弾性係数の低い素材、例えば周方向と鉛直方向とに均質で、初期弾性係数がさほど低くない合成繊維材(例えば、東レ株式会社製の商品名「トレシート」等)やゴム材(例えば株式会社ブリヂストン製の商品名「ジオライナー」等)を用いて袋状に形成された高延性被覆材131が設置されている。
【0054】
図11は、上記発明に用いられる高延性被覆材131の他例を示すものであり、該高延性被覆材131としては、柱13の周囲に空隙17を介して上下方向に所定間隔をおいて多段に配設される適宜外径の鉄筋や輪状弾性材により形成された周回芯材133と、隣り合う周回芯材133,133相互を鉛直方向にて一体的に縫着することにより連結させた適宜の合成繊維材(例えば、東レ株式会社製の商品名「トレシート」等)やゴム材(例えば株式会社ブリヂストン製の商品名「ジオライナー」等)からなるシート材134とで連続形成された蛇腹状補強材132が用いられている。
【0055】
この場合、上下方向に配設される周回芯材133は、柱13の長さとの関係で定まる所要の本数が用いられ、これら多数本の周回芯材133には、その全周を覆うようにシート材134を連結することができるほか、図11に示すように間隔をおきながら上下方向に帯状のシート材134を各別に配置して連結させることもできる。なお、第3の発明においても高延性被覆材121に代え上記高延性被覆材131を用いることができる。
【0056】
次に本発明の作用・効果を説明する。
【0057】
すなわち、図12(a)に示すように構築物(建築物)11を支える既存の部材15、つまり構造部材としての柱12を補強する前と、図1に示す本発明による補強をした後とにおける変形挙動を示した図15によれば、靭性限界を超えても補強後の高延性材21により必要荷重を支え得る上部荷重の支持機能を付与することができる。このため、図17(a)〜(c)に示す経過を経て、図12(b)に示すように柱13が破壊されて構築物(建築物)11が崩壊した後においても床12と床12との間に空間19を確保できることになる。つまり、本発明によれば、材料費や設置工事費を大幅に低くするなかで、構造部材15に対してかかる外力レベルの如何によらず、人間が圧死を免れ得る空間19を確保して安全性に富むフェイルセイフ効果を得ることができる。
【0058】
このような空間19の確保は、構築物11における構造部材等の部材15を構成し、圧縮力を分担する要素として広く用いられているコンクリート、砂礫、土、レンガ等の材料には、圧縮力やせん断力を受けて変形する時に見かけの体積膨張を伴うという性質を制御することにより得られる。すなわち、上記性質は、構造部材等の部材15の一部または全部が破壊し、大きく変形する際に顕著に現れる。したがって、構造部材等の部材15が見かけの体積を膨張しようとする変化は、高延性被覆材21により拘束することができ、結果的に構造部材等の部材15を構成する材料が破壊した後も当該部材15に外力を保持させ、構築物11が大きく変形して崩壊してしまうのを効果的に防止できることになる。
【0059】
このような作用を、図12(a)における部材(構造部材)15のひとつである梁(桁)16に適用した場合を例に図14(a)に示すならば、地震等の外力により梁(桁)16の圧縮側の部位が圧縮破壊された際、図25に示す従来構造とは異なり、こぶのように膨らんだ状態で高延性材21に保持させることができるので、曲げモーメントを負担する能力を保持できることが判明する。また、図14(b)は、図12(a)における部材(構造部材)15のひとつである床12に適用した場合を、図14(c)は、同様に壁17に適用した場合をそれぞれ示す。これら図14(b),(c)によれば、補強部材27にて高延性材21,21が連結されているので、地震等の外力により圧縮破壊された際、あたかも座布団や体育マットのような膨らみができた状態のもとで、高延性材21に保持させ得ることが判明する。なお、部材(構造部材)15が床12である場合には、梁16のメカニズムを使うので、一辺が1m程度の四角形の各隅に補強部材27が設置され、部材(構造部材)15が壁17である場合には、柱13のメカニズムを使うので、床12と同様の配置関係のもとで補強部材27が設置される。
【0060】
つまり、構造部材等の部材15の外周面14に高延性材21を図1〜図8に示すように袋状に覆うほか、螺旋状やロール状に巻き付けて設置することにより、部材15の一部または全部が曲げ、せん断、圧縮によって破壊し、体積膨張を伴って変形すると、高延性材21の弾性によって周方向の圧縮力を部材15に作用させることができる。この周方向での圧縮力は、部材15の見かけの体積膨張を拘束する効果を有するので、部材15が曲げ、せん断、圧縮により変形するときにこれを抑制するように作用する。その結果、部材15は、その破壊後も曲げ、せん断、圧縮に抵抗することが可能となる。しかも、設置後の取り外しも簡単な作業で行うことができる。
【0061】
一方、第4の発明のように高延性被覆材121を用いる場合には、図12(a)に示すように構築物(建築物)11を支える既存の柱12の外周面14に対し高延性被覆材121を図13(a)に示すように袋状に巻付けて固定することにより、図13(b)に示すように変形後の柱13を高延性被覆材21で包み込んで荷重を保持できることになる。
【0062】
この場合も図15に示すように靭性限界を超えても補強後の高延性被覆材121により必要荷重を支え得る上部荷重の支持機能を付与することができので、図17(a)〜(c)に示す経過を経て、図12(b)に示すように柱13が破壊されて構築物(建築物)11が崩壊した後においても床12と床12との間に空間19を確保できることになる。
【0063】
また、第5の発明のように、図12(a)に示す構築物11を支える既存の柱13に空隙117を介在させて化粧用囲壁材115を図5(a),(b)に示すようにして周回配置する場合には、該化粧用囲壁材115の内周面116に高延性被覆材131を設置することにより、図13(b)に示すように変形後の柱13を高延性被覆材131で包み込んで荷重を保持できることになる。
【0064】
この場合、高延性被覆材131は、空隙117を介して上下方向に所定間隔をおいて周回芯材133を多段に配設し、隣り合う周回芯材133,133相互を鉛直方向にて合成繊維材もしくはゴム材からなるシート材134で一体的に連結して連続させた蛇腹状補強材132により形成して用いるのが好ましい。なお、第3の発明においても高延性被覆材121に代え上記高延性被覆材131を用いることができる。
【0065】
このように柱13と化粧用囲壁材115との間に介在している空隙117内に高延性被覆材131を設置することにより、鉄筋コンクリート製の柱13の靭性限界までの変形に対しては、高延性被覆材131の側に負担をかけることはなく、それ以降の変形に対して高延性被覆材131の延性で抵抗することにより、より確実に変形後の柱13を包み込んで荷重の保持ができる。このため、第3発明と同様に図17(a)〜(c)に示す経過を経て、図12(b)に示すように柱13が破壊されて構築物(建築物)11が崩壊した後においても床12と床12との間に空間19を確保できることになる。
【0066】
図16は、従来構造と本発明とによるそれぞれの変形挙動を示したグラフ図である。同図によれば、従来構造による場合には、周方向張力が増大して靭性限界を超えると帯鉄筋が破断したり外れて崩壊(同図における▲1▼のグラグ図参照)してしまうのに対し、本発明において部材(構造部材)15のひとつである柱13に高延性材21もしくは高延性被覆材121を巻き付けた場合には、変位の開始と同時に高延性材21もしくは高延性被覆材121に負担がかかりはするものの、帯鉄筋が破断したり外れても崩壊を免れて荷重を保持できる(同図における▲2▼のグラグ図参照)ことが判明する。また、本発明のうち、柱13と化粧用囲壁材115との間の空隙117に高延性被覆材131を設置した場合には、柱13の靭性限界を超えないうちは高延性被覆材131に負担がかかることがなく、靭性限界を超えて帯鉄筋が破断したり外れた後に初めて高延性被覆材31に負担がかかるものの、崩壊を免れて荷重を保持できる(同図における▲3▼のグラグ図参照)ことが判明する。
【0067】
次に、本発明に用いられる高延性材もしくは高延性被覆材が備えるべき引張り強度につき以下に計算例とともに具体的に説明する。なお、構造部材等の部材(例えば柱)が破壊されてコンクリートの塊と、変形した鉄筋とになると、その力学的な挙動は複雑化するが、概ね内部摩擦のある粒状体と見做すことができる。したがって、高延性材には、部材(例えば柱)が破壊された後にこれを保持し、軸力に抵抗させる網または袋となり得る力学的機能を備えていることが求められる。また、軸力により袋内に発生する圧力によっても破れないことが必要になる。
【0068】
図18は、かかる関係を明確にすべく、土やれき等の粒状体の軸力と拘束圧との関係を試験するために土質力学の分野で広く採用されている3軸試験装置を模式的に示した説明図である。この場合、天蓋6と有底周側面7とからなる容器5内に粒状体を充填し、側面8から薄膜を介して水圧Wを作用させた状態のもとで軸力Pを作用させる。粒状体の内部摩擦をφとすれば、鉛直方向の軸力Pと拘束圧Sとの間には、次の関係があることが知られている。ただし、Aは天蓋6の面積(容器1の横断面面積)を示す。
P/A=(1+sinφ)/(1−sinφ)S 5)
また、容器5の平面方向での直径をDとすれば、拘束圧Sと単位幅あたりの張力Tとの間には、次の関係がある。
=1/2DS 6)
本発明において高延性材(高延性被覆材)が奏する効果は、崩壊した鉄筋コンクリート製の柱が上記粒状体に相当すると考え、上記関係式5)と6)とから高延性材(高延性被覆材)が構築物の崩壊を避けるために必要な軸力Pを受けたときに破断しない必要強度Tとの関係を求めると、次のようになる。ただし、Bは柱の頭部の断面積を示す。
T=(1−sinφ)D・P/2(1+sinφ)B 7)
また、構築物の崩壊を避けるために必要な軸力Pは、次の算式で算出することができる。
P=fW/N 8)
ただし、Wは構築物の当該階から上の総重量を、Nは当該階の柱の総数を、fは1本当たりの受持ち荷重のばらつきを考慮した安全係数をそれぞれ示しており、具体的な構築物の平面図から計算することができる。
以上のように高延性材の所要引張強度を計算で求めることができる。しかし、高延性材の周方向歪みを許容値以内におさえることによって、構築物に過度な変形が生ずることを防止する観点からは、式7)で計算した所要強度Tと高延性材の許容歪みXから前記式2)もしくは前記式4)の要領で高延性材の所要巻き数又は厚さを定めることができる。
【0069】
次に、以上の算式を具体例に適用した計算例を示す。すなわち、日本に一般的にみられる鉄筋コンクリート構造のうち、1980年以前に建築された建物は、通常、各階約11.8kN/mの重量を持っている。このうち、中規模のもので、一階あたりの床面積200mの4階建てで、頭部断面積3500cmの柱12本を持つものを例にとって以下に計算する。
支えるべき総重量 W=200×11.8×4=9440kN
柱一本当たりの軸力 P=2×9440/12=1573kN
ただし、式8)にてf=2として計算。
高延性材(高延性被覆材)の必要強度 T=327N/mm
ただし、式7)でφ=40度、D=67cm、B=3500cm
P=1573kNとして計算。ここで、Dは、断面積Bの直径として計算した。
以上の計算例の所要強度をもつ繊維織物からなるシート材としては、例えば東レ株式会社製の商品名「トレシート」中の品番「NSB2000」(厚さ4.7mm)がある。また、同商品名中の品番「800T」(厚さ1.26mm)は、283N/mmの強度を有するので、これを2枚重ねて用いると566N/mmの引張り力まで耐えることができ、上記の補強例に十分用いることができる。このようにシート材が繊維系シート材である場合には、厚さ1〜5mm、特に1.2〜4.7mm程度のものを好ましく用いることが出きる。また、ゴム材からなるシート材としては、例えば株式会社ブリヂストン製の合成高分子系・加硫ゴム系の商品名「ジオライナー」などがある。商品名「ジオライナー」においては、13.2N/mm2 の強度試験結果が得られている。これを2.5cm程度の厚さで用いれば所要強度を得ることができる。
上記「トレシート」の公称強度は、15%歪みで発現し、この間は歪みと張力とがほぼ比例関係にある。したがって、800Tを2枚重ねて用いた場合、所要強度が発現する歪みは、327/566×15%=8.7%となる。もし、周方向歪みを5%以内におさえようとする場合には、800Tを4枚重ねて用いることにより、所要強度で発現する歪みを327/(283×4)×15%=4.3%とすることができる。ゴム系の材料を用いる場合には、張力と歪みとが非線形関係となるが、前記式3)及び4)の要領で、上記の例と同様に許容歪み以内に高延性材の歪みをおさえることができる必要厚さを計算して得ることができる。
【0070】
特に、本発明においては、ひずみ2%(鉄の破断ひずみ)以上の変形に対応させることができ、特に、高延性材(高延性被覆材)として合成繊維系のシート材を用いる場合には15%までの変形に、ゴム系のシート材を用いる場合には100%以上(材料の品質特性上の上限は690%まで)の変形であっても、それぞれ対応させることができる。また、上記シート材を用いた場合においても、該シート材の破断後も周辺のまだ破れていない部位のシート材の効果で、破壊領域が周辺に徐々に拡大する結果、軸ひずみで50%以上の変形下でも破壊を制御できることが実験的に認められている。
【0071】
また、図19(a),(b)に示すように、地震時には、構築物11に慣性力が作用し変位を生ずる。これに応じ部材(構造部材)15である各々の柱13に力Fが繰り返し作用し、エネルギーを吸収しつつも変位Xを生ずる。図20(a)は、その際の無補強の場合や従来手法での補強例により得られる1サイクル当たりの吸収エネルギーの状態を、図20(b)は、本発明により得られる1サイクル当たりの吸収エネルギーの状態をそれぞれ示すグラフ図である。なお、図20(a),(b)中の▲1▼で示す実線は単調載荷を、▲2▼で示す領域は繰り返し載荷をそれぞれ示す。
【0072】
これらの図からも明らかなように、本発明により補強された構造部材等の部材(例えば柱13)15は、大きな変形に耐えるために吸収エネルギーが大きくなる。地震の作用によって構築物11に蓄えられた運動エネルギーが構築物11の内部や周辺地盤Gとの間で生ずる摩擦などの非可逆的な運動によってすべてが吸収されたときに構築物11の振動は止まる。本発明により補強された部材(例えば柱13)15は、1サイクル当たりの吸収エネルギーが大きいため、無補強の構築物や従来手法により補強した構築物に比べて少ないサイクル数、すなわち、短時間で振動を終了するという制振効果を得ることができる。また、部材の破壊を制御することにより、周辺に伝達される荷重の上限値が抑えられ、この荷重下で大きな変形・ひずみを生じさせることができる結果、地震等の突発的な外力が構築物に入力する量を制限する所謂免震効果も得ることができる。
【0073】
さらに、本発明は、構築物の建替えや必要な補強工事が行われるまでの間の応急補強工事に適用することもできる。すなわち、本発明は、ビルの解体工事を行う際の崩壊防止手法としても有効であるばかりでなく、従来手法による補強工事に長い期間がかかり、補強を終えた部分と補強未着部分との間に強度的なアンバランスが生じている状態下での地震時における危険性の増大に対する緊急対策としても有効に寄与させることができる。しかも、本発明によれば、構築物を構成する構造部材を含む各種の部材自体の寸法や材質強度の仕様を小さくすることができるので、それだけ従来手法に比べ建設費を少なく抑えることができる。
【0074】
さらにまた、本発明は、コンクリート打設時に布製型枠として用いた後、脱型せずに崩壊防止効果を得ることも可能である。
【0075】
【発明の効果】
以上述べたように本発明によれば、構築物における構造部材を含む各種の部材に高延性材もしくは高延性被覆材を固定した場合には、変位の開始と同時に高延性材もしくは高延性被覆材に負担がかかるものの、帯鉄筋が破断したり外れて構築物が崩壊しても天井と床もしくは床相互間に空間を確保しながら荷重を支持できるので、震災時等における人命救助に有効なフェイルセイフ効果を得ることができる。
【0076】
また、本発明によれば、構築物における構造部材を含む部材に大きな変形が生じても構築物の重量を支持する機能をもたせることができるため、従来の補強法や無補強の場合に比べ大きな振動エネルギーを吸収することができ、地震動による構築物の振動を抑える制振効果を得ることができる。さらに、部材の破壊を制御することにより周辺に伝達される荷重の上限値が抑えられ、この荷重下で大きな変形・ひずみを生じさせることができる結果、地震等の突発的な外力が構築物に入力する量を制限する所謂免震効果も得ることができる。
【0077】
さらにまた、本発明は、ビルの解体工事を行う際の崩壊防止手法としても有効であるばかりでなく、従来手法による補強工事に長い期間がかかって補強済み部分と補強未着部分との間に強度的なアンバランスが生じている状況下での地震発生に伴う危険性の増大に対する緊急対策としても有効に寄与させることができる。つまり、本発明は、構築物の建替えや必要な補強工事が行われるまでの間の応急補強工事にも好適に適用することができる。
【0078】
しかも、本発明によれば、簡単な施工で短時間に設置できるので設置工事費を小さくすることができるほか、構造部材を含む各種の部材自体の寸法や材質強度の仕様を小さくして材料費を大幅に削減することもできるので、従来手法に比べ構築物自体の建設費を小さくすることができる。
【0079】
また、本発明によれば、熟練工を必要とすることなく簡易、迅速に施工できるほか、部分的に損傷した部材に対しても容易に施工することができる。このため、あらかじめ高延性材もしくは高延性被覆材と接着剤等の固着部材とを備蓄しておくことにより、地震等の突発的な災害発生時に大量の構築物に必要となる緊急補強を迅速に行うことができる。また、緊急危険度判定と並行して施工しておくことにより、仮に判定員が余震等による構築物の崩壊に巻き込まれるようなことがあっても、死傷する危険性を大幅に減少することができる。
【0080】
また、柱と化粧用囲壁材との間の空隙に高延性被覆材を設置した場合には、柱の靭性限界を超えないうちは高延性被覆材に負担がかからず、靭性限界を超えて帯鉄筋が破断したり外れた後に初めて高延性被覆材に負担がかかるものの、構築物が崩壊した後であっても天井と床もしくは上下の床相互間に空間を確保しながら荷重を支持できるので、人命救済に有効に寄与させることができる。
【0081】
さらに、本発明に係るロール状芯巻き高延性材を用いる場合には、部材に対する螺旋状での最大巻き数を計測器具等の機器を用いることなく簡単に把握できるので、効率よく施工することができる。このような簡便な施工は、新築や既存の部材への補強を迅速、かつ、正確に行うことができるのみならず、非常災害時に即応できる備蓄品としても効果的に用いることができることを意味している。すなわち、部材に対する高延性材の巻き数は、部材が支えるべき最大荷重によって決定される関係にあるものの、適用する構築物が異なればその巻き数も変動してしまう。このような場合においても、本発明に係るロール状芯巻き高延性材を用いることにより、一重巻きから多重巻きに至るまで同一の高延性材で即応できるので、事前に適用する構築物との関係を問うことなく備蓄しておき、被災時の構築物に即座に適用することができることになる。特に各区画線を視覚や触覚により区別できるように描示してある場合には、施工現場で個々の区画線の別を容易に判別することができ、さらには、凸部により区画線を形成し、該凸部に高延性材の端部を沿わせることにより、一層確実、かつ、容易に巻き付けることができるようにすることで、作業効率の向上により有効に寄与させることができる。
【0082】
なお、本発明において高延性材を螺旋状やロール状に巻き付けるに際に、一周に一カ所ずつの割合のもとで部材の長さ方向での高延性材相互の対面部位を接着剤を介して接合するならば、高延性材のある層が破断した後においても残余の層により直ちに張力を喪失する事態の発生を有効に回避させることができる。
【図面の簡単な説明】
【図1】構築物の部材(構造部材)がコンクリートを主材とする新設もしくは既設の柱に本発明を適用する際に用いられる高延性材の構造例を示す全体斜視図。
【図2】構築物の部材がコンクリートを主材とする既設の構造部材である壁を例に本発明の適用例を示す要部横断面図であり、そのうちの(a)は、壁の両外側面に高延性材を各別に配設した状態を、(b)は、高延性材相互を連結するための連結用紐材を挿通するために必要な通孔を設けた状態を、(c)は、該通孔を挿通させた連結用紐材により高延性材相互を連結させた状態をそれぞれ示す。
【図3】構築物の部材がコンクリートを主材とする既設の柱を例に本発明の他例を示すものであり、そのうちの(a)は柱の外周面に帯状に形成された高延性材を螺旋状に巻き付けた際の状態を、(b)は備蓄時における荷姿をそれぞれ示す。
【図4】高延性材を螺旋状に巻き付けた際の状態についての他例を示す全体斜視図。
【図5】図4に示す他例についての高延性材の巻付け状況を模式的に示す説明図。
【図6】本発明に係るロール状芯巻き高延性材の一例を示す説明図。
【図7】高延性材を三重のロール巻き状に巻き付けた際の状態説明図であり、そのうちの(a)は要部斜視図を、(b)は(a)の横断面図をそれぞれ示す。
【図8】図7に示す例を部材に3分割して形成した際の状態を示す全体斜視図。
【図9】本発明の他例を示す概略斜視図であり、そのうちの(a)は既存の柱と高延性被覆材との配置関係を、(b)は柱に高延性被覆材を巻き付けた後の状態をそれぞれ示す。
【図10】本発明のさらなる他例を示す説明図であり、そのうちの(a)は概略斜視図を、(b)は(a)におけるA−A線矢視方向での横断面図をそれぞれ示す。
【図11】図10に示されている高延性被覆材を蛇腹状補強材により形成した場合の一例を示す要部斜視図。
【図12】本発明を適用した構築物(建造物)の状態説明図であり、そのうちの(a)は崩壊前の状態を、(b)は崩壊後の状態をそれぞれ示す。
【図13】本発明を適用した部材(構造部材)が柱である場合の状態説明図であり、そのうちの(a)は破壊前の状態を、(b)は破壊後の状態をそれぞれ示す。
【図14】(a)は、本発明を適用した部材(構造部材)が梁である場合の荷重,変形を受けた後の状態説明図を、(b)は、床である場合の荷重,変形を受けた後の状態説明図を、(c)は、壁である場合の荷重,変形を受けた後の状態説明図をそれぞれ示す。
【図15】本発明を適用した部材(構造部材)が柱である場合の変形して破壊されるまでの変形挙動を示すグラフ図。
【図16】部材(構造部材)が柱である場合の変形して破壊されるまでの挙動を従来構造と本発明構造とを比較して示すグラフ図。
【図17】本発明を適用した部材(構造部材)が柱である場合の変形する様を示す状態説明図であり、このうちの(a)は平常時を、(b)は変形開始後を、(c)は破壊された状態をそれぞれ示す。
【図18】土質力学の分野で広く採用されている3軸試験装置を示す概略説明図。
【図19】地震時に構築物及び部材(構造部材)としての柱に作用する力と変位の関係を(a),(b)として示す説明図。
【図20】部材(構造部材)としての柱の1サイクル当たりの吸収エネルギーの状況を示すグラフ図であり、そのうちの(a)は従来からある柱による場合を、(b)は本発明による柱の場合をそれぞれ示す。
【図21】部材(構造部材)としての柱に作用する荷重、変位を受ける方向を示す説明図。
【図22】部材(構造部材)としての柱に対し図20に示す荷重、変位が発生した際における従来構造による補強前との補強後との変形挙動を示すグラフ図。
【図23】部材の破壊に伴い見かけの体積が増大する現象につき、破壊前を(a)として、破壊後を(b)としてそれぞれ示す。
【図24】図21に示す変形挙動に対応させた部材(構造部材)としての柱が変形する様を示す状態説明図であり、このうちの(a)は平常時を、(b)は変形開始後を、(c)は破壊された状態をそれぞれ示す。
【図25】本発明が適用されていない部材(構造部材)としての梁が変形した後の状態を示す説明図。
【符号の説明】
1 柱(従来例)
2 部材端面
3 部材側面
4 破壊面
5 容器
6 天蓋
7 有底周側面
8 側面
9 破壊片
10 包絡面
11 構築物
12 床
13 柱(本発明適用例)
14 外周面
15 部材(構造部材を含む)
15a 一側面
15b 他側面
16 梁(桁)
17 壁
18 通孔
19 空間
20 ヒビ割れ
21 高延性材
21a 当接部
21b 側縁
22 シート部
23 一側端部
24 他側端部
25 芯紐
26 挿通孔
27 補強部材
28 鳩目
29 当て布部
30 連結用紐材
32 上端部
33 可鍛部
34 中央部
35 接着剤
35,35a 接着剤
42 始端部
43 終端部
44,45,46,47,48 対面部位
49 芯材
50 区画線
51 上縁部
52 下縁部
121 高延性被覆材
121a,121b 突合せ端部
122 シート材
131 高延性被覆材
132 蛇腹状補強材
133 周回芯材
134 シート材
[0001]
BACKGROUND OF THE INVENTION
  The present invention reinforces a structureMethod and reinforcement structureIn more detail, the components (construction elements such as beams, girders, slabs, walls, pillars, etc.) of buildings and various infrastructure facilities (hereinafter collectively referred to as “structures”) Even after an appreciable external force such as an excessive load accompanying demolition, or due to a lack of proof stress due to aging, the structure collapses to the inside even after visible deformation has occurred. Reinforcement of structures that can prevent major damage to people, surrounding people and propertyMethod and reinforcement structureAbout.
[0002]
[Prior art]
It has been repeated many times in the past that the structure suddenly collapses due to sudden external forces such as earthquakes, lack of proof strength due to aging, and damages life and property.
[0003]
The collapse phenomenon of the structure occurs when members constituting the structure are broken due to an excessive load or insufficient proof stress, which deteriorates the stability of the entire structure, significantly deforms the shape of the structure, and reduces the internal space. In the case of buildings, the floor is often folded or collapsed like pancakes. In viaducts, there are many cases where bridge piers are destroyed and dropped. Therefore, if various members such as structural members are reinforced to control the destruction and it is possible to avoid losing the overall stability of the structure even after the members are broken, the human lives inside and around the structure can be avoided. And the possibility of damage to property can be reduced.
[0004]
By the way, conventionally, in order to avoid the collapse of the structure and ensure its safety, the following method has been adopted.
(1) The cross-section and the like are determined so that the structural member will not be broken at a predetermined load set in consideration of its own weight and sudden external force.
(2) Increase the cross-sectional area of the structural member or increase the strength of the material when the sudden external force expected after installation increases or the strength of the member decreases due to aging. In addition, a high strength member such as an iron plate or carbon fiber is installed on the peripheral surface of the structural member to increase the yield strength of the structural member and the energy absorption performance (toughness) until it is destroyed.
(3) Reduce the force by installing seismic isolation devices in the structure.
In addition, when a structure was damaged by sudden external forces such as an earthquake, emergency damage was judged and entry prohibition measures were taken depending on the degree of damage. Furthermore, when the design standards are revised and the estimated seismic load increases, seismic diagnosis is performed on existing structures, and seismic retrofitting and reinforcement are recommended for those that are judged dangerous. It was.
[0005]
However, the conventional methods (1) to (3) above all depend on the relationship with the assumed level (design value) of a sudden external force such as an earthquake set in advance. When an external force exceeding the level is applied to the member, the member is destroyed, so there is no guarantee that the stability of the entire structure can be secured.
[0006]
In addition, in the case of the above conventional method, even if the cost, time, and materials for the construction are not equivalent to the cost of the new construction, it will reach several tens of the cost and often cannot bear the cost burden. . In many cases, skilled workers such as a welder, a reinforcing bar, and a finisher, which are difficult to secure, are required. Therefore, even if existing structures are known to be highly dangerous due to aging, design based on old standards, damage due to sudden external forces such as earthquakes, etc. In many cases, reinforcement was not possible. Furthermore, when performing emergency risk assessment after a sudden disaster such as an earthquake, the investigator who entered the structure was judged to be safe because it was involved in the collapse of the structure due to aftershocks, etc., or minor damage. There are also cases in which residents and users entered the buildings, which collapsed after the aftershock, etc., resulting in a large number of casualties.
[0007]
FIG. 21 shows a typical load acting on the column 1 which is a typical structural member and a corresponding displacement. There are two methods of applying the load, one acting on the end portion and the other acting in a concentrated or distributed manner on the entire member. The types of load include force and moment. FIG. 21 shows only representative ones of these. FIG. 22 shows the relationship between the load acting on the member shown in FIG. 21 and the displacement in relation to the conventional method. According to the figure, it was found that although the strength and / or toughness after reinforcement could be increased relative to the strength and / or toughness before reinforcement, there was no guarantee to support the upper load after exceeding the toughness limit. To do.
[0008]
[Problems to be solved by the invention]
That is, in the case of the above conventional method, the member supports the load in a small deformation range (within 2 to 3%) and can ensure the overall stability of the structure, but when the deformation exceeds this, There was a problem that it was inevitable that the structure rapidly collapsed due to the loss of the mechanism that supported the load and the structure collapsed. For example, in the example of the pillar 1 shown in FIG. 24A, the circumferential tension T and the shear stress S generated by the axial force (vertical force) P within an allowable range that is a small deformation range (within several%). Can be held by the rebar in the reinforced concrete column 1, but the column 1 is sheared and broken due to the shear stress S, or the band rebar is broken or detached by the action of excessive axial force. In this case, the circumferential tension T cannot be maintained, the deformation rapidly proceeds as shown in FIG. 24 (b), and is completely crushed as shown in FIG. 24 (c), so that the occurrence of the pancake breaking phenomenon is unavoidable. There was a problem. Further, if the member 15 is the beam 16 as shown in FIG. 25, there is a problem that the part surrounded by the broken line in the figure is compressed and broken by the crack 20 and the yield of the reinforcing bar.
[0009]
In addition, in the case of the above conventional method, immediately after a sudden disaster such as an earthquake, or when a seismic standard is revised and a large number of structures are ineligible for existing construction and reinforcement is required, it can be dealt with promptly. Therefore, there is a problem that it is not suitable as a method for ensuring safety.
[0010]
The present invention has been applied to various members including structural members of newly constructed structures in view of the above-mentioned problems found in the conventional methods, or has been applied to various members including structural members of existing structures. By applying it, controlling the breakage and delaying its progress, and gradually expanding the breakage area spatially, the member avoids local breakage and completely loses its load sharing ability, An object of the present invention is to provide a reinforcing material for a structure capable of securing a load sharing force that can avoid the collapse of the structure even after a visible deformation has occurred. Another object of the present invention is to provide a combination of a reinforcing material and an adhesive that can effectively reinforce a structure.
[0011]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and utilizes the property that the apparent volume of a material such as concrete, wood, earth, brick, etc. constituting various members including a structural member expands with destruction. The breakage progress is delayed by elastically constraining this with a reinforcing material composed of high ductility material (high ductility coating material) installed around various members including structural members, and sudden external force There is a structural feature in that the weight of the structure can be shared and the shape of the structure can be generally maintained after the operation of (2) stops. The apparent volume here refers to the volume of the portion surrounded by the surface (envelope surface) that smoothly wraps the member end surface and the member side surface. When this expands due to breakage, as shown in FIG. 23A, the unbreakable member 15 including the member end surfaces 2 and 2 and the member side surface 3 generates breakage pieces 9 and 9 divided by the breakage surface 4. As a result of the movement, the envelope surface 10 spreads as shown in FIG. 23B, and the apparent volume increases. As apparent from FIG. 23B, there is a gap t between the envelope surface 10 and the broken member 15. When the member 15 is covered with a highly ductile material (highly ductile coating material), a weak layer (including the gap t) is provided between the member 15 and the highly ductile material (high ductility) even after the member 15 is broken. The covering material) can be deformed into an envelope shape.
[0012]
  That is, the above-mentioned problems are as follows (1) to(18)This can be achieved by any one of the configurations.
    (1)Reinforcement materialInstalled on components in structuresShi, A structure for controlling the destruction by restraining the apparent volume expansion accompanying the destruction of the member.Reinforcement methodBecauseThe reinforcing material isConsists of fiber or rubber sheet material,The strength of the sheet material is calculated from the internal friction angle when the member is approximated as a granular material.Reinforcement of structures characterized byMethod.
    (2)The reinforcing material isThe sheet material is configured by stacking two or more sheets, and the number of layers is determined from the required strength and allowable strain of the reinforcing material, and the reinforcement according to (1) aboveMethod.
    (3) The above (1), wherein the member is mainly composed of concrete.Or (2)Reinforcement described inMethod.
    (4) The above (1), wherein the member is mainly made of wood.Or (2)Reinforcement described inMethod.
    (5) The above (1), wherein the member is mainly composed of soil.Or (2)Reinforcement described inMethod.
    (6) The above (1), wherein the member is mainly made of brick.Or (2)Reinforcement described inMethod.
    (7) The reinforcing material comprises a sheet portion to which a longitudinal width and a lateral width of appropriate lengths are appropriately provided as a main body, and includes two edges that face each other in the circumferential direction. The reinforcing method according to any one of (6).
    (8) The reinforcing material includes at least two sheet members disposed on both sides of the member, and a connecting string member that connects these sheet members through through holes provided in the member. The reinforcing method according to any one of the above (1) to (7).
    (9) The method for reinforcing a structure according to any one of (1) to (8), wherein the sheet material has an elongation strain of at least 15%.
    (10) A reinforcing structure for a structure in which a reinforcing material is installed on a member in a structure, and the apparent volume expansion associated with the destruction of the member is restricted to control the destruction, wherein the reinforcing material is a fiber-based or rubber-based material A reinforcing structure for a structure, characterized in that the strength of the sheet material is calculated from the internal friction angle when the member is approximated as a granular material.
    (11) The reinforcing structure according to (10), wherein the reinforcing material is configured by stacking two or more of the sheet materials, and the number of the overlapping is determined from the required strength and allowable strain of the reinforcing material.
    (12) The reinforcing structure according to (10) or (11), wherein the member is mainly made of concrete.
    (13) The reinforcing structure according to (10) or (11), wherein the member is mainly made of wood.
    (14) The reinforcing structure according to (10) or (11), wherein the member is mainly made of soil.
    (15) The reinforcing structure according to (10) or (11), wherein the member is mainly made of brick.
    (16) The above (10) to (10), wherein the reinforcing material includes a sheet portion to which a vertical width and a horizontal width of appropriate lengths are provided as a main body, and includes two edge portions that face each other in the circumferential direction. (15) The reinforcing structure according to any one of the above.
    (17) The reinforcing material includes at least two sheet members disposed on both sides of the member, and a connecting string member that connects these sheet members through through holes provided in the member. The reinforcing structure according to any one of (10) to (16).
    (18) The reinforcing structure for a structure according to any one of (10) to (17), wherein the sheet material has an elongation strain of at least 15%.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a reinforcing material composed of a high ductility material (hereinafter referred to as “high ductility”) used in the present invention to restrain the volume expansion accompanying the destruction of various members composed of structural members of a structure and control the destruction. FIG.
[0014]
According to the figure, the high ductility material 21 has a sheet portion 22 to which a longitudinal width and a lateral width of appropriate lengths are appropriately provided as a main body, and one side edge portion 23 and the other side that are abutted with each other in the circumferential direction. And an edge portion 24.
[0015]
Further, a core string 25 is inserted and disposed along each of the one side edge part 23 and the other side edge part 24 in the sheet portion 22 along the longitudinal width direction. 23 and the other side edge portion 24 are reinforced separately, and durability in the tensile direction can be enhanced.
[0016]
Furthermore, insertion holes 26 for the connecting string members 30 are provided at predetermined intervals in the vicinity of the one side edge portion 23 and the other side edge portion 23 along the length direction thereof. . In addition, an appropriate reinforcing member 27 such as an eyelet 28 is attached to each insertion hole 26, and the peripheral portion of each insertion hole 26 is reinforced separately by the reinforcing member 27, and the connecting string 30 Can be securely fixed.
[0017]
Moreover, at least one side of the one side edge 23 and the other side edge 24 in the sheet portion 22, in the illustrated example, the one side edge 23 has a vertical width that is substantially the same as the vertical width of the sheet portion 22. A tongue-like patch cloth part 29 having a length of one side edge part 23 is sewn on the back side along the length direction of the one side edge part 23, and the one side edge part 23 and the other side edge part 24 are correspondingly sewn by the cloth part 29. Can be covered from the back side. Although not shown in the drawing, the baffle portion 29 is disposed separately on the one side edge portion 23 and the other side edge portion 24, and between the one side edge portion 23 and the other side edge portion 24. It may be possible to cover with a double structure alternately from the back side.
[0018]
The sheet portion 22 and the baffle portion 29 constituting the highly ductile material 21 are made of a homogeneous material in the circumferential direction and the vertical direction, and are fibers that are particularly ductile and have a smaller initial elastic modulus than iron or concrete. A material, a rubber material, etc. can be used conveniently. Specifically, a synthetic fiber material (for example, a trade name “Toresheet” manufactured by Toray Industries, Inc.) or a rubber material (for example, manufactured by Bridgestone Corporation) that has high ductility and has a strength capable of holding a load. A sheet material made of a trade name “Geoliner” or the like can be suitably used.
[0019]
For this reason, the high ductility material 21 is erected to support the floor 12 of the structure (building) 11 schematically shown in FIG. 12A, for example, as the structural member 15 shown in FIG. An arrangement relationship in which the batter 29 is positioned between the column 13 and the sheet portion 22 and the one side edge 23 and the other side edge 24 face each other with respect to the outer peripheral surface 14 of the column 13 Can be wound under.
[0020]
Further, the high ductility material 21 wound around the column 13 as the structural member 15 includes the connecting string material 30 spanned through the insertion holes 26 of the one side edge portion 23 and the other side edge portion 24. Therefore, it is possible to arrange the circuit easily by integrating them under the condition that they are lined by the patch 29. By installing in such a simple manner in a short time, the high ductility material 21 can maintain a state in which the periphery of the pillar 13 is completely wrapped in a bag shape.
[0021]
FIG. 1 shows an application example of the present invention when the member 15 is a pillar 13 mainly made of concrete or wood, earth, brick or the like. If the structure 11 is under construction, for example, FIG. Similarly to the beam (girder) 16 shown in FIG. 12 (a) and the wall 17 shown in FIG. 2 (a), that is, by covering the periphery of the high ductility material 21 in a bag shape, It can be wound around the peripheral surface.
[0022]
In addition, if the said connection structure is equipped with the structure which can be fastened integrally so that the one side edge part 23 and the other side edge part 24 may not be pulled apart when receiving a load, it will be shown in the example of illustration. Not limited to this, other known fastening structures such as stitching and bonding can be appropriately employed.
[0023]
On the other hand, FIGS. 2A to 2C are main part cross-sectional views showing an example of application of the present invention, taking as an example the wall 17 which is an existing structural member in which the member 15 of the structure 11 is mainly made of concrete. .
[0024]
According to Fig.2 (a), the high ductility material 21 is each on both the one side 15a and the other side 15b of the wall 17 which partitions the space 19 of the structure (building) 11 shown by Fig.12 (a). (In the case of the wall 17 under construction, a highly ductile material 21 can be placed around the wall 17 as shown in FIG. 1).
[0025]
As shown in FIG. 2 (b), the wall 17 has a through hole 18 provided with a diameter through which a connecting string member 30 necessary for connecting the highly ductile members 21 and 21 can be inserted. The first side surface 15a and the second side surface 15b are provided separately from each other so as to proceed in the horizontal direction at a predetermined interval. These through-holes 18 are not clearly shown in the illustrated example, but are not limited to a single line in the horizontal direction, but extend over a plurality of lines under a positional relationship in which the walls 15 are substantially parallel to each other at a predetermined interval in the vertical direction. Will be provided. In addition, it is desirable to reinforce the peripheral edge of each through hole 18 by providing a reinforcing member such as the eyelet 28 shown in FIG.
[0026]
For this reason, the high ductility materials 21 and 21 can be reliably connected to each other through the connecting string material 30 inserted through the through holes 18 and fixed, for example, as shown in FIG. In addition, the string material 30 for a connection connects the high ductility material 21 and 21 mutually for every each through-hole 18, or it inserts each through-hole 18 one by one like an example of illustration, and the highly ductile material 21 , 21 may be connected so as to be sewn together.
[0027]
FIG. 2 shows an example of the wall 17 in which the member 15 is a structural member mainly composed of concrete or wood, earth, brick, or the like. However, if the structure 11 is an existing one, FIG. Similarly, the high ductility materials 21 and 21 can be reliably connected to the beam (girder) 16 shown in FIG.
[0028]
FIG. 3 (a) shows the contact between the elastic strip-like high ductility material 21 and the member (applied to the pillar 13 in the illustrated example) 15 in the structure, which overlap each other in substantially the same manner as the tape winding structure in the grip of the tennis racket. The example which has the part 21a and was wound helically is shown. In this case, it is preferable to employ, for example, the following attachment structure so that the highly ductile material 21 after winding does not fall off.
(1) Wind while applying an appropriate tension.
(2) Join the abutting portions 21a and 21a of the high ductility material 21 that overlap each other between the elastic high ductility material 21 and the member 15 or when spirally wound like a wrapping bag. Or bonded by welding.
(3) The high ductility material 21 is fixed to the member 15 using a fixing member such as a nail.
[0029]
Further, regarding the fixing process to the end portion of the member 15, in addition to fixing by the above methods (2) and (3), for example, as adopted as a method for fixing the end portion of a medical elastic bag, it has high ductility. 1 may be formed on the side of the material 21 and fixed by inserting a string through the eyelet.
[0030]
By adopting the method shown in FIG. 3 (a), the highly ductile material 21 along the outer surface is also applied to the member 15 whose main material is concrete, wood, earth, brick, or the like partially damaged. Can be wrapped in a spiral to cover it. That is, the high ductility material 21 can immediately cope with a sudden disaster such as an earthquake by preparing in advance in a state wound in a roll shape as shown in FIG. As an emergency measure at the time of a disaster, a method that can be easily and quickly constructed by human power without depending on mechanical force is most desirable, and from this point of view, there is an advantage of using the method shown in FIG. Also, as an example, the tray sheet 800T (thickness 1.26 mm, weight 930 g / m2When the roll of the highly ductile material 21 is used, the width is about 50 cm and the length is about 20 m, and the total weight is about 10 kg. Can be adapted to the purpose.
[0031]
FIG. 4 is an explanatory view showing another example of the spirally wound pattern shown in FIG. 3. In this case, the highly ductile material 21 is a single winding (on the upper end 32 side of the member 15 as shown in FIG. 5). Starting from (1) in the figure, the winding is sequentially performed while increasing the number of turns of the laminated portion so as to be double ((2) in the figure) and triple ((3) in the figure). After being wound around the required range while maintaining the quadruple state ((4) in the figure) stacked with the maximum number of turns, the triple ((3) in the figure) and double ( The lower end 33 side is wound in a single winding ((1) in the figure) through (2) in the figure. In FIG. 5, the high ductility material 21 is disposed with a space between the member 15 in order to make the winding method easy to understand, but actually, the member 15 is tightly wound around the member 15. Furthermore, the end of the member 15 (the upper end 32 and the lower end 33) is wound with a number of turns obtained by subtracting 1 from the spiral maximum number of turns N. In the example shown in FIG. It is wound with a triple roll roll obtained by subtracting 1 from 4 of N. As a result, the end portions (upper end portion 32 and lower end portion 33) can be wound with a maximum number of turns N to 2N-1 turns. Since stress concentrates on the end portions (the upper end portion 32 and the lower end portion 33) of the member 15, a safety margin can be given to the member 15 by doing so. Further, the high ductility materials 21 wound in a spiral form have an appropriate width at which a tensile tension (strength) T greater than necessary can be obtained on the two sides of the one side and the other side along the length direction of the member 15. They are joined and integrated on the member 15 side with an adhesive 35 such as “Rubilon” manufactured by Toyo Polymer Co., Ltd., which is provided and interposed.
[0032]
6 is a wooden or resin so that the spiral winding pattern shown in FIG. 4 can be suitably used when the maximum number of turns (number of layers) is N as shown in FIG. An example in which the high ductility material 21 is wound in a roll shape around a core material 49 formed using an appropriate material such as a product is shown. In this case, the high ductility material 21 has 1/2 (maximum width), 1/3, 1/4,... 1 / N, so that the lateral width W can be equally divided in the length direction. -A plurality of dividing lines 50 reaching about 1/10 (minimum width when equally dividing so as to obtain the maximum number of windings in a normal case) are drawn between the side edges 21b of the high ductility material 21. Has been. For example, when the maximum number of windings is N, 1 / N in the first round (w in FIG. 4)1 ), And then winding along the 1 / N line from the top, as shown in FIG. The dividing line 50 is color-coded so that it can be easily distinguished from each other, the line type is different, a ridge (convex portion) is provided so that it can be distinguished by touch, or a fluorescent paint. It is desirable to draw it by applying etc.
[0033]
As shown in FIG. 4, the high ductility material 21 wound in a roll shape shown in FIG. 6 is ¼ (w) of the width W in one turn from the upper end portion (may be from the lower end portion 33) 32 of the member 15.1) Is wound spirally in the length direction, and the end of winding is also 1/4 (w1) Is wound around the entire circumference so as to leave at least one layer and a maximum of four layers.
[0034]
FIGS. 4-5 shows as an example the case where the maximum number of turns of the high ductility material 21 is quadruple, and when the maximum number of turns (number of layers) is arbitrary N, it is shown in FIG. The high ductility material 21 is wound spirally with a shift of 1 / N in one round. Note that the optimum number N of windings is the required strength T and allowable distortion amount X shown in the calculation formula described later.0 And determined from
[0035]
FIG. 7 is a state explanatory view when the high ductility material 21 is wound around the member 15 such as the existing pillar 13 or the newly built pillar 13 in a triple roll form, and (a) of which is a perspective view of the main part. (B) shows a cross-sectional view of (a).
[0036]
According to the figure, the high ductility material 21 is a fiber-based or rubber-based belt-like sheet material, and at least the start end 42 in the circumferential direction is joined to the outer peripheral surface of the member 15 via an adhesive 35a. Further, the start end portion 42 and the second facing portion 44 located thereon are similarly joined via an adhesive 35a. Further, the facing portions 45 and 46 which are overlapped on the end portion 43 side of the high ductility material 21 are also bonded to each other through the adhesive 35, thereby forming a triple-wound layer and forming a dense roll. It is wound. The adhesive 35a used for the start end portion 42 is used for temporarily attaching the highly ductile material 21 to the member 15, and is the same as the adhesive 35 that bonds the highly ductile materials 21 and 21 to each other. It is not always necessary to use materials. Further, when the adhesive 35 is used as the adhesive 35 a, it is necessary to devise measures such as narrowing the adhesive surface so that the highly ductile material 21 is not excessively adhered to the member 15.
[0037]
In this case, the high ductility material 21 wound around the outer peripheral surface of the member 15 in a roll shape is opposite to the surface on which the intermediate layer, in the illustrated example, the start end portion 42 and the end end portion 43 of the high ductility material 21 are located. A single strip-like region where the first and second facing portions 47 and 48 of the high ductility material 21 located on the side are located in the longitudinal direction of the member 15 is joined using the adhesive 35. It is wound by.
[0038]
FIG. 7 illustrates a case where the highly ductile material 21 is triple-wound, but the number of turns necessary to obtain the required strength is not limited to this, and the optimum number of turns N will be described later. Necessary strength T and allowable strain amount X shown in the calculation formula0 And determined from
[0039]
That is, the material strength per sheet of the high ductility material 21 is T1The strain when this strength is expressed is S1If so, the number of turns N required to obtain the required strength1 Is as follows.
N1 = T / T1            1)
Also, the allowable distortion amount X0Number of turns N required to keep the circumferential deformation within2 Is
N2 = TS1/ T1X0               2)
However, although it is assumed that the strain and tension of the sheet-like high ductility material 21 are proportional to the development of the material strength, this proportional relationship is generally applicable to synthetic fiber materials. When the highly ductile material 21 is formed by applying a rubber material or a viscous material by spraying, the above calculation may be performed based on the tension-strain relationship of each material.
That is, when the relationship between the tension y and the strain x of the material is expressed by a numerical function y = f (x) or a graph or the like, N2 The tension per sheet when rolled is as follows:
y = T / N2              3)
The allowable distortion at this time is X0 Therefore, the required number of turns N2T / N2= F (X0 ) Can be obtained as follows.
N2 = T / f (X0 4)
Note that the optimum number of windings N is N determined above.1 And N2 The larger of and is adopted.
[0040]
FIG. 8 shows an installation example when the inner height of the member 15 is larger than the width of the sheet-like highly ductile material 21 wound in a roll shape as shown in FIG. 6, for example. Each of the high ductility materials 21 is wound with an adhesive 35 formed in a band shape in the length direction of the member 15 in the manner shown in FIG.
[0041]
That is, the high ductility material 21 is first wound around the central portion 34 of the member 15 in the manner shown in FIG. 7, and the lower edge portion 52 is bonded to the upper edge portion 51 of the high ductility material 21 located at the central portion 34. The high ductility material 21 is joined to the upper end 32 side of the member 15 while being joined with the agent 35, and the upper edge 51 is joined to the lower edge 52 of the high ductility material 21 in the center portion 34 with the adhesive 35. The high ductility material 21 is wound around the lower end 33 side.
[0042]
Thereby, each of the high ductility material 21 wound around the member 15 separately at three places transmits the tension to each other. The width of the bonding surface is specifically determined on condition that the bonding strength of the bonding portion is equal to or higher than the required tensile tension T in the circumferential direction. In this case, in addition to the bonding using the adhesive 35, an appropriate fixing method such as sewing or welding can be used. Further, the number N of turns of the high ductility material 21 required in this case is determined in the same manner as in the example shown in FIG.
[0043]
In addition, the high ductility material 21 is formed by covering the member 15 in a bag shape, winding it in a spiral shape, or taking a silicone rubber, etc. It can be installed by applying a rubber-based or resin-based viscous material such as vinyl chloride (including short fibers made of various materials). In this case, if the highly ductile material 21 has a structure that can be covered in a bag shape or wound in a spiral shape, an adhesive layer is formed in advance on at least one surface thereof, and the member 15 is interposed via the adhesive layer. If it sticks to, the installation work can be made smoother. The adhesive layer can be formed on both surfaces of the highly ductile material 21 as necessary. In addition, when the high ductility material 21 is installed by a coating material formed by applying a rubber-based or resin-based viscous material, it can be applied manually, but if workability is taken into consideration, an appropriate blower can be used. It is preferable to spray and apply a rubber-based or resin-based viscous material using an attaching device. Furthermore, when a part of the member 15 has already been damaged, or particularly when stress is concentrated and a part of the member 15 is predicted to be broken, the surroundings including the damaged part and the part including the predicted part of damage are high. The ductile material 21 may be partially covered and installed. In this case, the high ductility material 21 made of a fiber material having an adhesive layer and the high ductility material 21 formed by applying a rubber-based or resin-based viscous material can be particularly preferably used.
[0044]
The high ductility material 21 is a necessary condition for controlling the breakage by restraining the apparent volume expansion accompanying the breakage of the member 15 to continue forming the envelope surface 10 after the breakage of the member 15. . This is made possible by creating an air gap t between the envelope surface 10 and the broken piece 9 after being broken, as is apparent in FIG.
[0045]
When the highly ductile material 21 is installed on the outer peripheral surface of the member 15 without adhering them by the method shown in FIGS. 1, 2 and 3, there is a gap (weak layer) between them. As a result, the envelope surface 10 as described above is smoothly formed.
[0046]
Furthermore, in addition to the method and structure illustrated in FIGS. 4 to 8, when the highly ductile material 21 is formed by a coating technique such as spraying, it is directly bonded without interposing a gap with the member 15. In this case, even after the member 15 is broken by the adhesive layer, the high ductility material 21 is kept completely adhered to the outer periphery of the broken pieces 9 and 9 shown in FIG. It should be noted that the high ductility material 21 is likely to be broken by the broken piece 9 due to the concentration.
[0047]
Therefore, as a countermeasure, the adhesive layer to be formed uses an adhesive having an adhesive strength sufficiently lower than the strength of the high ductility material 21, or the formed adhesive layer has an elastic modulus sufficiently lower than that of the high ductility material 21. It is conceivable that a weak layer is interposed between the member 15 and the high ductility material 21 by using an adhesive.
[0048]
As the apparent volume expands with the destruction of the member 15, the compressive force between the member 15 and the highly ductile material 21 increases, so even after the members 15 are not adhered, The two do not fall off due to the bearing effect. Therefore, the bonding between the two is performed in order to prevent the highly ductile material 21 from being peeled off from the member 15 during the period from installation until the member 15 is broken. The so-called temporary attachment may be sufficient to support the own weight of the member 15 by the outer peripheral surface of the member 15.
[0049]
On the other hand, FIG. 9 (a), (b) is a schematic perspective view which shows an example about 3rd invention in this invention, (a) of these is the structure typically shown to FIG. 12 (a) (Building) The arrangement relationship between the existing columns 13 formed of reinforced concrete and the like to support the floor 12 of the building 11 and the high ductility covering material 121 made of a material having a lower elastic modulus than that of the strip reinforcing bar, and (b) These show the state after winding and fixing the highly ductile covering material 121 around the outer peripheral surface 14 of the pillar 13 respectively.
[0050]
The highly ductile coating material 121 used in this case is a synthetic fiber material (for example, a trade name “Toretsuto” manufactured by Toray Industries, Inc.) or a rubber material that is rich in ductility and has a strength capable of holding a load. What is formed with the sheet | seat material 122 which consists of (For example, brand name "Geoliner" by Bridgestone Corporation etc.) can be used conveniently. Moreover, the highly ductile coating material 121 must maintain the state where the outer peripheral surface 14 of the column 13 is completely wrapped in a bag shape. Therefore, the high ductility covering material 121 after covering the column 13 is integrally fixed so that the butt end portions 121a and 121b are not pulled apart when receiving a load, and the column 13 It is necessary to bond and fix directly to the outer peripheral surface 14 or with an appropriate intervening material using an adhesive or the like. Specifically, if the sheet material 122 is a synthetic fiber material, the butt end portions 121a and 121b are sewn with a backing cloth on the back side, and if the sheet material 122 is a rubber material, the butt end portions 121a and 121b are mutually connected. The rubber is applied to the back side of the rubber and bonded together, or heat sealed, etc., so that it is fixed integrally. In addition, although it is preferable to wind the highly ductile coating | covering material 121 over the full length of the pillar 13, it can also be wound and fixed to the remainder site | parts except an upper part as needed. Further, as the highly ductile coating material 121, a homogeneous material is used in the circumferential direction and the vertical direction, and a fiber material, a rubber material, or the like that has a particularly high ductility and a smaller initial elastic modulus than iron or concrete is preferably used. be able to.
[0051]
Further, the high ductility covering material 121 is securely used by using an adhesive or by using an appropriate fixing means such as a nail or a screw on the side of the column 13 so as not to slip after being wound around the outer peripheral surface 14 of the column 13. It is desirable to fix to.
[0052]
FIGS. 10A and 10B are explanatory views showing an example of the fourth invention in the present invention, in which (a) is a schematic perspective view, and (b) is Y in (a). A cross-sectional view in the direction of the arrow Y is shown.
[0053]
According to these figures, the pillar 13 that supports the floor 12 and the like of the structure (building) 11 shown in FIG. 12A is formed with a marble pattern with a gap 17 interposed, and the like. By arranging 115 around, the column 13 itself is concealed. Moreover, on the inner peripheral surface 116 side of the decorative wall material 115, a material having a lower elastic modulus than that of the band reinforcing bar, for example, a synthetic fiber material that is homogeneous in the circumferential direction and the vertical direction and has an initial elastic modulus that is not so low (for example, A high ductility coating material 131 formed in a bag shape using a rubber material (for example, a product name “Geoliner” manufactured by Bridgestone Co., Ltd.) is installed.
[0054]
FIG. 11 shows another example of the high ductility coating material 131 used in the above-described invention. The high ductility coating material 131 has a predetermined interval in the vertical direction around the pillar 13 via the gap 17. The circumferential core material 133 formed by appropriately reinforced outer diameter reinforcing bars and ring-shaped elastic members arranged in multiple stages and the adjacent circumferential core materials 133 and 133 are connected together by sewing together in the vertical direction. A bellows continuously formed with a sheet material 134 made of an appropriate synthetic fiber material (for example, trade name “Tresheet” manufactured by Toray Industries, Inc.) or a rubber material (for example, product name “Geoliner” manufactured by Bridgestone Co., Ltd.). A stiffener 132 is used.
[0055]
In this case, the required number of circular cores 133 arranged in the vertical direction is determined by the relationship with the length of the column 13, and the multiple circular cores 133 cover the entire circumference. In addition to being able to connect the sheet material 134, as shown in FIG. 11, it is also possible to arrange and connect the strip-shaped sheet material 134 in the vertical direction with intervals. In the third invention, the high ductility coating material 131 can be used instead of the high ductility coating material 121.
[0056]
Next, the operation and effect of the present invention will be described.
[0057]
That is, as shown in FIG. 12A, before reinforcing the existing member 15 that supports the structure (building) 11, that is, the column 12 as the structural member, and after reinforcing according to the present invention shown in FIG. According to FIG. 15 showing the deformation behavior, it is possible to provide a support function of the upper load that can support the necessary load by the highly ductile material 21 after reinforcement even if the toughness limit is exceeded. For this reason, even after the pillar 13 is destroyed and the structure (building) 11 is collapsed as shown in FIG. The space 19 can be secured between the two. That is, according to the present invention, while significantly reducing the material cost and the installation work cost, it is possible to secure a space 19 where a human can escape from crushing death regardless of the level of external force applied to the structural member 15. A fail-safe effect rich in nature can be obtained.
[0058]
Securing such a space 19 constitutes a member 15 such as a structural member in the structure 11, and is used for materials such as concrete, gravel, earth, brick, etc. that are widely used as elements that share the compressive force. It can be obtained by controlling the property of apparent volume expansion when deformed under shear. In other words, the above-mentioned property is noticeable when a part or all of the member 15 such as the structural member is broken and greatly deformed. Therefore, the change in which the member 15 such as the structural member tries to expand the apparent volume can be restrained by the high ductility covering material 21, and as a result, even after the material constituting the member 15 such as the structural member is destroyed. It is possible to effectively prevent the structure 11 from being greatly deformed and collapsed by holding the member 15 with an external force.
[0059]
If such an action is applied to a beam (girder) 16 which is one of the members (structural members) 15 in FIG. 12A, as shown in FIG. 14A, the beam is caused by an external force such as an earthquake. Unlike the conventional structure shown in FIG. 25, when the part on the compression side of the (girder) 16 is compressed and broken, it can be held in the highly ductile material 21 in a bulged state, thus bearing a bending moment. It turns out that it can hold the ability to do. FIG. 14B shows a case where it is applied to the floor 12, which is one of the members (structural members) 15 in FIG. 12A, and FIG. 14C shows a case where it is similarly applied to the wall 17. Show. According to these FIGS. 14 (b) and 14 (c), since the highly ductile materials 21 and 21 are connected by the reinforcing member 27, when the material is compressed and broken by an external force such as an earthquake, it looks like a cushion or a physical education mat. It is found that the highly ductile material 21 can hold the material in a state in which the bulge is formed. In addition, when the member (structural member) 15 is the floor 12, the mechanism of the beam 16 is used. Therefore, a reinforcing member 27 is installed at each corner of a square having a side of about 1 m, and the member (structural member) 15 is a wall. In the case of 17, since the mechanism of the pillar 13 is used, the reinforcing member 27 is installed under the same arrangement relationship as that of the floor 12.
[0060]
That is, the high ductility material 21 is covered on the outer peripheral surface 14 of the member 15 such as a structural member in a bag shape as shown in FIGS. When a part or the whole is broken by bending, shearing, or compressing and deformed with volume expansion, the compressive force in the circumferential direction can be applied to the member 15 by the elasticity of the high ductility material 21. Since the compressive force in the circumferential direction has an effect of restraining the apparent volume expansion of the member 15, it acts to suppress the member 15 when it is deformed by bending, shearing, or compression. As a result, the member 15 can resist bending, shearing, and compression even after its destruction. Moreover, removal after installation can be performed with a simple operation.
[0061]
On the other hand, when using the highly ductile covering material 121 as in the fourth invention, the highly ductile covering is applied to the outer peripheral surface 14 of the existing column 12 that supports the structure (building) 11 as shown in FIG. By winding and fixing the material 121 in a bag shape as shown in FIG. 13 (a), the deformed column 13 can be wrapped with the high ductility coating material 21 as shown in FIG. 13 (b) to hold the load. become.
[0062]
Also in this case, as shown in FIG. 15, even if the toughness limit is exceeded, the support function of the upper load that can support the necessary load can be provided by the highly ductile coating material 121 after reinforcement, so that FIGS. ), The space 19 can be secured between the floor 12 and the floor 12 even after the pillar 13 is destroyed and the structure (building) 11 is collapsed as shown in FIG. .
[0063]
Further, as in the fifth aspect of the invention, the decorative wall material 115 is shown in FIGS. 5A and 5B with the gap 117 interposed in the existing column 13 that supports the structure 11 shown in FIG. In this case, by installing a highly ductile coating material 131 on the inner peripheral surface 116 of the decorative surrounding wall material 115, the post-deformed column 13 is coated with a high ductility as shown in FIG. 13 (b). The load can be held by being wrapped in the material 131.
[0064]
In this case, the highly ductile covering material 131 is formed by arranging the surrounding core members 133 in multiple stages at predetermined intervals in the vertical direction through the gap 117, and the adjacent surrounding core members 133 and 133 are synthetic fibers in the vertical direction. It is preferable to form and use a bellows-like reinforcing material 132 that is integrally connected by a sheet material 134 made of a material or a rubber material. In the third invention, the high ductility coating material 131 can be used instead of the high ductility coating material 121.
[0065]
Thus, by installing the highly ductile covering material 131 in the gap 117 interposed between the pillar 13 and the decorative surrounding wall material 115, for deformation to the toughness limit of the reinforced concrete pillar 13, There is no burden on the side of the highly ductile coating material 131, and resistance to subsequent deformation is resisted by the ductility of the high ductility coating material 131, so that the post-deformed column 13 can be more securely wrapped and the load can be maintained. it can. For this reason, after the process shown in FIGS. 17A to 17C as in the third invention, the pillar 13 is destroyed and the structure (building) 11 is collapsed as shown in FIG. 12B. Also, a space 19 can be secured between the floor 12 and the floor 12.
[0066]
FIG. 16 is a graph showing respective deformation behaviors according to the conventional structure and the present invention. According to the figure, in the case of the conventional structure, when the circumferential tension increases and the toughness limit is exceeded, the band reinforcement breaks or comes off and collapses (see (1) Gragg diagram in the figure). On the other hand, when the high ductility material 21 or the high ductility coating material 121 is wound around the column 13 which is one of the members (structural members) 15 in the present invention, the high ductility material 21 or the high ductility coating material is simultaneously with the start of the displacement. Although the load is applied to 121, it is found that even if the band reinforcing bar breaks or comes off, the load can be retained without being collapsed (see the Gragg diagram of (2) in the figure). Further, in the present invention, when the high ductility coating material 131 is installed in the gap 117 between the column 13 and the decorative surrounding wall material 115, the high ductility coating material 131 is used as long as the toughness limit of the column 13 is not exceeded. Although the load is not applied and the high ductility coating material 31 is loaded only after the band rebar breaks or comes off beyond the toughness limit, the load can be retained without being collapsed (see (3) in FIG. (See the figure).
[0067]
Next, the tensile strength that the highly ductile material or the highly ductile coating material used in the present invention should have will be specifically described below together with calculation examples. If a member such as a structural member (for example, a pillar) is destroyed to become a concrete lump and a deformed reinforcing bar, its mechanical behavior becomes complicated, but it is generally regarded as a granular body with internal friction. Can do. Therefore, a highly ductile material is required to have a mechanical function that can be a net or bag that holds a member (for example, a column) after it is broken and resists axial force. In addition, it is necessary that it is not broken by the pressure generated in the bag by the axial force.
[0068]
FIG. 18 schematically shows a three-axis test apparatus widely used in the field of soil mechanics in order to test the relationship between the axial force of a granular material such as soil and debris and the restraint pressure in order to clarify such a relationship. It is explanatory drawing shown in. In this case, the container 5 composed of the canopy 6 and the bottomed peripheral side surface 7 is filled with the granular material, and the axial force P is applied from the side surface 8 through the thin film through the water pressure W. If the internal friction of the granular material is φ, it is known that the following relationship exists between the axial force P and the restraint pressure S in the vertical direction. However, A shows the area of the canopy 6 (cross sectional area of the container 1).
P / A = (1 + sinφ) / (1-sinφ) S 5)
Further, if the diameter of the container 5 in the planar direction is D, the restraint pressure S and the tension T per unit widthSHas the following relationship:
TS= 1 / 2DS 6)
In the present invention, the effect of the high ductility material (high ductility coating material) is considered to be that the collapsed reinforced concrete column corresponds to the granular material, and from the above relational expressions 5) and 6), the high ductility material (high ductility coating material). ) Shows the relationship with the necessary strength T that does not break when the axial force P necessary to avoid the collapse of the structure is received, it becomes as follows. However, B shows the cross-sectional area of the head of a pillar.
T = (1-sinφ) D · P / 2 (1 + sinφ) B 7)
Further, the axial force P necessary to avoid the collapse of the structure can be calculated by the following formula.
P = fW / Np                                            8)
Where W is the total weight of the structure above the floor, NpIndicates the total number of pillars on the floor, and f indicates a safety factor that takes into account variations in the load carried on each floor, and can be calculated from a plan view of a specific structure.
As described above, the required tensile strength of the high ductility material can be obtained by calculation. However, from the viewpoint of preventing excessive deformation of the structure by keeping the circumferential strain of the high ductility material within an allowable value, the required strength T calculated by Equation 7) and the allowable strain X of the high ductility material are used.0From the above formula 2) or formula 4), the required number of turns or thickness of the highly ductile material can be determined.
[0069]
Next, a calculation example in which the above formula is applied to a specific example is shown. That is, among the reinforced concrete structures commonly found in Japan, buildings built before 1980 usually have about 11.8 kN / m on each floor.2Have the weight of Of these, medium-sized, with a floor area of 200m per floor24 floors, head cross section 3500cm2The following calculation is performed using an example having 12 pillars.
Total weight to be supported W = 200 × 11.8 × 4 = 9440 kN
Axial force per column P = 2 × 9440/12 = 1573kN
However, calculation is made with f = 2 in equation 8).
Required strength of high ductility material (high ductility coating material) T = 327 N / mm
However, in Formula 7), φ = 40 degrees, D = 67 cm, B = 3500 cm2,
Calculated as P = 1573 kN. Here, D was calculated as the diameter of the cross-sectional area B.
As a sheet material made of a fiber fabric having the required strength in the above calculation example, for example, there is a product number “NSB2000” (thickness: 4.7 mm) in a trade name “Tresheet” manufactured by Toray Industries, Inc. In addition, the product number “800T” (thickness 1.26 mm) in the same product name has a strength of 283 N / mm. Therefore, when two of them are used in an overlapping manner, it can withstand a tensile force of 566 N / mm. It can be used sufficiently for the reinforcement example. Thus, when the sheet material is a fiber-based sheet material, it is preferable to use one having a thickness of 1 to 5 mm, particularly about 1.2 to 4.7 mm. Further, as a sheet material made of a rubber material, for example, there is a trade name “Geoliner” manufactured by Bridgestone Co., Ltd., which is a synthetic polymer type / vulcanized rubber type. In the product name “Geoliner”, 13.2 N / mm2 Strength test results were obtained. If this is used at a thickness of about 2.5 cm, the required strength can be obtained.
The nominal strength of the “Tresheet” is expressed at 15% strain, and the strain and tension are approximately proportional to each other during this period. Therefore, when two 800Ts are used in an overlapping manner, the strain at which the required strength appears is 327/566 × 15% = 8.7%. If the circumferential strain is to be kept within 5%, the 800T is used in an overlapping manner, so that the strain developed at the required strength is 327 / (283 × 4) × 15% = 4.3%. It can be. When rubber-based materials are used, the tension and strain are in a non-linear relationship, but in the manner of the above formulas 3) and 4), the strain of the high ductility material is suppressed within the allowable strain as in the above example. Can be obtained by calculating the required thickness.
[0070]
In particular, in the present invention, it is possible to cope with a deformation of 2% (strain of fracture of iron) or more, and in particular, when a synthetic fiber-based sheet material is used as the high ductility material (high ductility coating material). In the case of using a rubber-based sheet material, even when the deformation is 100% or more (the upper limit on the quality characteristics of the material is up to 690%), it is possible to cope with the deformation up to%. In addition, even when the above sheet material is used, the fracture region gradually expands to the periphery due to the effect of the sheet material in the surrounding area that has not yet been broken even after the sheet material is ruptured, resulting in an axial strain of 50% or more. It has been experimentally confirmed that fracture can be controlled even under deformation.
[0071]
Further, as shown in FIGS. 19 (a) and 19 (b), during an earthquake, inertial force acts on the structure 11 to cause displacement. In response to this, a force F is repeatedly applied to each column 13 which is a member (structural member) 15 to generate a displacement X while absorbing energy. FIG. 20 (a) shows the state of absorbed energy per cycle obtained in the case of no reinforcement at that time or the example of reinforcement by the conventional technique, and FIG. 20 (b) shows the state per cycle obtained by the present invention. It is a graph which shows the state of absorbed energy, respectively. In FIGS. 20A and 20B, the solid line indicated by (1) indicates monotonous loading, and the area indicated by (2) indicates repeated loading.
[0072]
As is clear from these figures, the member (for example, the column 13) 15 such as a structural member reinforced by the present invention has a large absorbed energy in order to withstand a large deformation. When all of the kinetic energy stored in the structure 11 by the action of the earthquake is absorbed by irreversible motion such as friction generated inside the structure 11 and the surrounding ground G, the vibration of the structure 11 stops. The member (for example, the column 13) reinforced by the present invention has a large absorbed energy per cycle, and therefore, the number of cycles is smaller than that of an unreinforced structure or a structure reinforced by a conventional method, that is, vibration is generated in a short time. It is possible to obtain a vibration suppression effect that ends. In addition, by controlling the destruction of members, the upper limit value of the load transmitted to the surrounding area can be suppressed, and large deformations and strains can be generated under this load. As a result, sudden external forces such as earthquakes are applied to the structure. A so-called seismic isolation effect that limits the amount to be input can also be obtained.
[0073]
Furthermore, the present invention can also be applied to emergency reinforcement work until the rebuilding of a structure or necessary reinforcement work is performed. In other words, the present invention is not only effective as a collapse prevention method for building demolition work, but it takes a long period of time for the reinforcement work by the conventional method, and between the part that has been reinforced and the part that has not been reinforced. It is possible to make an effective contribution as an emergency measure against an increase in danger in the event of an earthquake under the condition that a strong imbalance occurs. In addition, according to the present invention, since the specifications of the dimensions and material strength of various members including the structural members constituting the structure can be reduced, the construction cost can be reduced as compared with the conventional method.
[0074]
Furthermore, the present invention can obtain an effect of preventing collapse without being removed after being used as a cloth mold at the time of placing concrete.
[0075]
【The invention's effect】
As described above, according to the present invention, when a high ductility material or a high ductility coating material is fixed to various members including a structural member in a structure, the high ductility material or the high ductility coating material is applied simultaneously with the start of displacement. Although it is burdensome, even if the reinforcing bars break or come off and the structure collapses, it can support the load while securing a space between the ceiling and the floor or between the floors, so it is effective for lifesaving in the event of an earthquake disaster etc. An effect can be obtained.
[0076]
In addition, according to the present invention, even if a member including a structural member in the structure is greatly deformed, the function of supporting the weight of the structure can be provided. Can be absorbed, and the vibration control effect of suppressing the vibration of the structure due to the earthquake motion can be obtained. Furthermore, by controlling the destruction of members, the upper limit value of the load transmitted to the surrounding area can be suppressed, and large deformations and strains can be generated under this load. As a result, sudden external forces such as earthquakes are input to the structure. A so-called seismic isolation effect that limits the amount to be performed can also be obtained.
[0077]
Furthermore, the present invention is not only effective as a collapse prevention method for building demolition work, but it takes a long period of time for the reinforcement work by the conventional method, and between the reinforced part and the unreinforced part. It can also be effectively contributed as an emergency measure against an increase in the danger associated with the occurrence of an earthquake in a situation where a strong imbalance has occurred. In other words, the present invention can also be suitably applied to emergency reinforcement work until the rebuilding of a structure or necessary reinforcement work is performed.
[0078]
In addition, according to the present invention, the installation cost can be reduced because it can be installed in a short time with simple construction, and the material cost can be reduced by reducing the dimensions and material strength specifications of various members including structural members. As a result, the construction cost of the structure itself can be reduced compared to the conventional method.
[0079]
Moreover, according to this invention, it can construct easily and rapidly, without requiring a skilled worker, and can also construct easily with respect to the partially damaged member. For this reason, emergency reinforcement necessary for a large number of structures is quickly performed by storing a high ductility material or a high ductility covering material and a fixing member such as an adhesive in advance in the event of a sudden disaster such as an earthquake. be able to. In addition, by constructing in parallel with the emergency risk determination, even if the judge is involved in the collapse of the structure due to aftershocks etc., the risk of death or injury can be greatly reduced. .
[0080]
In addition, when a high ductility coating material is installed in the gap between the column and the decorative wall material, the high ductility coating material is not burdened until the toughness limit of the column is exceeded, and the toughness limit is exceeded. Although the high ductility coating material is burdened only after the band rebar breaks or comes off, it can support the load while securing a space between the ceiling and the floor or the upper and lower floors even after the structure collapses, It is possible to make an effective contribution to lifesaving.
[0081]
Furthermore, when using the roll-shaped core-winding high ductility material according to the present invention, the maximum number of spiral turns on the member can be easily grasped without using a device such as a measuring instrument, so that the construction can be performed efficiently. it can. Such simple construction means that not only can new and new members be reinforced quickly and accurately, but it can also be used effectively as a stockpile that can be used immediately in the event of an emergency. ing. That is, the number of turns of the high ductility material on the member is determined by the maximum load that the member should support, but the number of turns varies if the applied structure is different. Even in such a case, by using the roll-shaped core wound high ductility material according to the present invention, it is possible to immediately respond with the same highly ductile material from single winding to multiple winding, so the relationship with the structure to be applied in advance It is possible to store the stock without question and apply it immediately to the structure at the time of the disaster. In particular, if each lane marking is drawn so that it can be distinguished visually or tactilely, it is possible to easily distinguish the individual lane markings at the construction site. By making the end portion of the highly ductile material along the convex portion, it is possible to more effectively and easily contribute to the improvement of work efficiency by enabling the winding to be performed more reliably and easily.
[0082]
In the present invention, when the highly ductile material is wound in a spiral shape or a roll shape, the facing portions of the highly ductile materials in the length direction of the member are placed via an adhesive at a rate of one place per circumference. Thus, even after a layer with a high ductility material breaks, it is possible to effectively avoid occurrence of a situation in which tension is immediately lost due to the remaining layer.
[Brief description of the drawings]
FIG. 1 is an overall perspective view showing a structural example of a highly ductile material used when a structure member (structural member) is applied to a new or existing pillar whose main material is concrete.
FIG. 2 is a cross-sectional view of an essential part showing an example of application of the present invention, taking as an example a wall that is an existing structural member whose main component is a concrete material, (a) of which is the outside of the wall (B) shows a state in which high ductility materials are separately arranged on the side surfaces, and (b) shows a state in which through holes necessary for inserting the connecting string materials for connecting the high ductility materials to each other are provided. These show the state which mutually connected the highly ductile material with the string material for connection which penetrated this through-hole.
FIG. 3 shows another example of the present invention with an example of an existing pillar whose main component is a concrete, (a) of which is a highly ductile material formed in a strip shape on the outer peripheral surface of the pillar. (B) shows the state of packing when stockpiling.
FIG. 4 is an overall perspective view showing another example of a state when a highly ductile material is spirally wound.
5 is an explanatory view schematically showing a winding state of a highly ductile material in another example shown in FIG.
FIG. 6 is an explanatory view showing an example of a roll-shaped core-wound highly ductile material according to the present invention.
FIGS. 7A and 7B are explanatory diagrams of a state when a high ductility material is wound in a triple roll shape, in which (a) shows a perspective view of the main part and (b) shows a cross-sectional view of (a). .
8 is an overall perspective view showing a state when the example shown in FIG. 7 is divided into three parts.
FIG. 9 is a schematic perspective view showing another example of the present invention, in which (a) shows an arrangement relationship between an existing column and a highly ductile coating material, and (b) shows a high ductility coating material wound around the column. Each subsequent state is shown.
10A and 10B are explanatory views showing still another example of the present invention, in which FIG. 10A is a schematic perspective view, and FIG. 10B is a cross-sectional view in the direction of arrows AA in FIG. Show.
11 is a perspective view of a main part showing an example in which the highly ductile covering material shown in FIG. 10 is formed of a bellows-like reinforcing material.
FIG. 12 is a diagram for explaining the state of a structure (building) to which the present invention is applied, in which (a) shows a state before collapse and (b) shows a state after collapse.
FIGS. 13A and 13B are diagrams illustrating a state in which a member (structural member) to which the present invention is applied is a column, in which (a) shows a state before destruction and (b) shows a state after destruction.
FIG. 14A is an explanatory diagram of a state after receiving a load and deformation when a member (structural member) to which the present invention is applied is a beam, and FIG. 14B is a load when a member is a floor; FIG. 4C is a state explanatory diagram after being subjected to deformation, and FIG. 6C is a state explanatory diagram after being subjected to a load and deformation in the case of a wall.
FIG. 15 is a graph showing deformation behavior until deformation and destruction when a member (structural member) to which the present invention is applied is a column.
FIG. 16 is a graph showing the behavior of a member (structural member) until it is deformed and destroyed when it is a column by comparing the conventional structure and the structure of the present invention.
FIGS. 17A and 17B are state explanatory views showing deformation when a member (structural member) to which the present invention is applied is a pillar, in which (a) shows normal times, and (b) shows after deformation starts. , (C) shows the state of being destroyed.
FIG. 18 is a schematic explanatory view showing a three-axis test apparatus widely adopted in the field of soil mechanics.
FIGS. 19A and 19B are explanatory diagrams showing the relationship between the force and displacement acting on a structure and a column as a member (structural member) at the time of an earthquake, as FIGS.
20 is a graph showing the state of absorbed energy per cycle of a column as a member (structural member), of which (a) shows a case of a conventional column and (b) shows a column according to the present invention. Each case is shown.
FIG. 21 is an explanatory diagram showing a direction of receiving a load and displacement acting on a column as a member (structural member).
FIG. 22 is a graph showing the deformation behavior before and after reinforcement by the conventional structure when the load and displacement shown in FIG. 20 occur with respect to a column as a member (structural member).
FIG. 23 shows the phenomenon in which the apparent volume increases with the destruction of the member, as (a) before destruction and (b) after destruction.
FIGS. 24A and 24B are state explanatory views showing that a column as a member (structural member) corresponding to the deformation behavior shown in FIG. 21 is deformed, in which (a) is a normal state and (b) is a deformed state. After the start, (c) shows a destroyed state.
FIG. 25 is an explanatory view showing a state after a beam as a member (structural member) to which the present invention is not applied is deformed.
[Explanation of symbols]
1 pillar (conventional example)
2 Member end face
3 Member side
4 Fracture surface
5 containers
6 Canopy
7 Bottom side surface
8 side
9 Destruction pieces
10 Envelope surface
11 Construction
12 floors
13 pillar (application example of the present invention)
14 Outer surface
15 members (including structural members)
15a One side
15b Other side
16 Beam (girder)
17 Wall
18 through holes
19 space
20 Cracks
21 High ductility material
21a Contact part
21b Side edge
22 Seat part
23 One end
24 End on the other side
25 core string
26 Insertion hole
27 Reinforcing member
28 Eyelet
29 Application part
30 String material for connection
32 Upper end
33 Malleable part
34 Central part
35 Adhesive
35,35a Adhesive
42 Start
43 Terminal
44, 45, 46, 47, 48 Face to face
49 Core
50 lane markings
51 Upper edge
52 Lower edge
121 High ductility coating
121a, 121b Butt end
122 Sheet material
131 High ductility coating
132 Bellows reinforcement
133 orbit core material
134 Sheet material

Claims (18)

補強材料を構築物における部材に設置、前記部材の破壊に伴う見かけの体積膨張を拘束してその破壊を制御する構築物の補強方法であって、前記補強材料が、繊維系もしくはゴム系のシート材で構成され、該シート材の強度が、前記部材を粒状体として近似した場合の内部摩擦角から計算されることを特徴とする構築物の補強方法 Installing reinforcing material member in construction, a reinforcing method of a construct controlling their destruction by constraining the volume expansion of the apparent due to the destruction of the member, the reinforcing material is fiber-based or rubber-based sheet material A method for reinforcing a structure, characterized in that the strength of the sheet material is calculated from an internal friction angle when the member is approximated as a granular body . 前記補強材料が、前記シート材を2枚以上重ねて構成したものであり、重ね数は、補強材料の必要強度と許容歪みから決定される請求項1に記載の補強方法 It said reinforcing material is obtained by formed by stacking the sheet material two or more, stacked number of methods reinforcement according to claim 1, which is determined from the required strength and strain capacity of the reinforcement material. 前記部材がコンクリートを主材とするものである請求項1または2に記載の補強方法 The method of reinforcing a part recited in claim 1 or 2 wherein the member is to concrete composed primarily. 前記部材が木を主材とするものである請求項1または2に記載の補強方法 The method of reinforcing a part recited in claim 1 or 2 wherein the member is to mainly including wood. 前記部材が土を主材とするものである請求項1または2に記載の補強方法 The method of reinforcing a part recited in claim 1 or 2 wherein the member is to mainly including soil. 前記部材がレンガを主材とするものである請求項1または2に記載の補強方法The reinforcing method according to claim 1 or 2 , wherein the member is mainly made of brick. 前記補強材料が、適宜長さの縦幅と横幅とが付与されているシート部を本体とし、その周方向で相互が突き合わされる二つの縁部を備えている請求項1〜6のいずれかに記載の補強方法。The reinforcing material according to any one of claims 1 to 6, wherein the reinforcing material includes a sheet portion to which a longitudinal width and a lateral width of appropriate lengths are provided as a main body, and includes two edges that face each other in the circumferential direction. Reinforcing method described in 1. 前記補強材料が、前記部材の両側に配置される少なくとも2枚のシート材と、これらのシート材を前記部材に設けられた通孔を介して連結する連結用紐材とを備えている請求項1〜7のいずれかに記載の補強方法。The reinforcing material includes at least two sheet members disposed on both sides of the member, and a connecting string member that connects these sheet members through through holes provided in the member. The reinforcing method according to any one of 1 to 7. 前記シート材が、少なくとも15%までの伸び歪を有することを特徴とする請求項1〜8のいずれかに記載の構築物の補強方法。The method for reinforcing a structure according to any one of claims 1 to 8, wherein the sheet material has an elongation strain of at least 15%. 補強材料を構築物における部材に設置し、前記部材の破壊に伴う見かけの体積膨張を拘束してその破壊を制御する構築物の補強構造であって、前記補強材料が、繊維系もしくはゴム系のシート材で構成され、該シート材の強度が、前記部材を粒状体として近似した場合の内部摩擦角から計算されていることを特徴とする構築物の補強構造。A reinforcing structure of a structure in which a reinforcing material is placed on a member in a structure, and the apparent volume expansion accompanying the destruction of the member is restricted to control the destruction, wherein the reinforcing material is a fiber-based or rubber-based sheet material A structure reinforcing structure, wherein the strength of the sheet material is calculated from an internal friction angle when the member is approximated as a granular body. 前記補強材料が、前記シート材を2枚以上重ねて構成したものであり、重ね数は、補強材料の必要強度と許容歪みから決定される請求項10に記載の補強構造。The reinforcing structure according to claim 10, wherein the reinforcing material is configured by stacking two or more sheets of the sheet material, and the number of overlapping is determined from the required strength and allowable strain of the reinforcing material. 前記部材がコンクリートを主材とするものである請求項10または11に記載の補強構造。The reinforcing structure according to claim 10 or 11, wherein the member is mainly made of concrete. 前記部材が木を主材とするものである請求項10または11に記載の補強構造。The reinforcing structure according to claim 10 or 11, wherein the member is mainly made of wood. 前記部材が土を主材とするものである請求項10または11に記載の補強構造。The reinforcing structure according to claim 10 or 11, wherein the member is mainly made of soil. 前記部材がレンガを主材とするものである請求項10または11に記載の補強構造。The reinforcing structure according to claim 10 or 11, wherein the member is mainly made of brick. 前記補強材料が、適宜長さの縦幅と横幅とが付与されているシート部を本体とし、その周方向で相互が突き合わされる二つの縁部を備えている請求項10〜15のいずれかに記載の補強構造。The reinforcing material according to any one of claims 10 to 15, wherein the reinforcing material includes a sheet portion to which a vertical width and a horizontal width of appropriate lengths are provided as a main body, and includes two edge portions that face each other in the circumferential direction. Reinforcement structure as described in. 前記補強材料が、前記部材の両側に配置される少なくとも2枚のシート材と、これらのシート材を前記部材に設けられた通孔を介して連結する連結用紐材とを備えている請求項10〜16のいずれかに記載の補強構造。The reinforcing material includes at least two sheet members disposed on both sides of the member, and a connecting string member that connects these sheet members through through holes provided in the member. The reinforcement structure in any one of 10-16. 前記シート材が、少なくとも15%までの伸び歪を有することを特徴とする請求項10〜17のいずれかに記載の構築物の補強構造。The reinforcing structure for a structure according to any one of claims 10 to 17, wherein the sheet material has an elongation strain of at least 15%.
JP2002372191A 1999-12-27 2002-12-24 Structure reinforcing method and structure Expired - Lifetime JP3872010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372191A JP3872010B2 (en) 1999-12-27 2002-12-24 Structure reinforcing method and structure

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP37061499 1999-12-27
JP2000121405 2000-04-21
JP2000-147916 2000-05-19
JP2000-121405 2000-05-19
JP2000147916 2000-05-19
JP11-370614 2000-05-19
JP2002372191A JP3872010B2 (en) 1999-12-27 2002-12-24 Structure reinforcing method and structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000324464A Division JP3484156B2 (en) 1999-12-27 2000-10-24 Building reinforcement method and structure

Publications (2)

Publication Number Publication Date
JP2003221930A JP2003221930A (en) 2003-08-08
JP3872010B2 true JP3872010B2 (en) 2007-01-24

Family

ID=27761502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372191A Expired - Lifetime JP3872010B2 (en) 1999-12-27 2002-12-24 Structure reinforcing method and structure

Country Status (1)

Country Link
JP (1) JP3872010B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675073B2 (en) * 2004-08-24 2011-04-20 旭化成ホームズ株式会社 Connection reinforcement structure of wooden members
JP2006057420A (en) * 2004-08-24 2006-03-02 Shimizu Corp Reinforcing structure of masonry columnar body
WO2006088184A1 (en) * 2005-02-21 2006-08-24 Osaka University Reinforcement for building structure, reinforced building structure, and method of reinforcing building structure
WO2007037535A1 (en) * 2005-09-30 2007-04-05 Structural Quality Assurance, Inc. Reinforcement method, reinforcement material, adhesive agent, and reinforcement structure for construction
CN105115634B (en) * 2015-08-17 2017-07-07 青岛理工大学 Cylindrical annular strain soil pressure sensor and measuring method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132323A (en) * 1978-04-05 1979-10-15 Rasa Tokushiyu Kouji Kk Waterrproof repair method of structure wall surface
US5924262A (en) * 1994-03-04 1999-07-20 Fawley; Norman C. High elongation reinforcement for concrete
JPH0978850A (en) * 1995-09-08 1997-03-25 Mitsubishi Rayon Co Ltd Fiber reinforced concrete structure and production thereof
JPH108423A (en) * 1996-06-19 1998-01-13 Mitsubishi Jisho Kk Reinforcement method of concrete structure
JP3767023B2 (en) * 1996-07-23 2006-04-19 株式会社大林組 How to reinforce wood joints
JPH10259665A (en) * 1997-03-18 1998-09-29 Tomen Constr Kk Reinforcing method for building
JP3484156B2 (en) * 1999-12-27 2004-01-06 構造品質保証研究所株式会社 Building reinforcement method and structure

Also Published As

Publication number Publication date
JP2003221930A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
JP3484156B2 (en) Building reinforcement method and structure
Kiakojouri et al. Strengthening and retrofitting techniques to mitigate progressive collapse: A critical review and future research agenda
JP2005330802A (en) Frame with buckling-restrained brace
US8881491B2 (en) Coupling member for damping vibrations in building structures
AU2011291563B2 (en) Improved building structure, method of making, and components
US9175469B2 (en) Self-reinforced masonry blocks, walls made from self-reinforced masonry blocks, and method for making self-reinforced masonry blocks
US20060272251A1 (en) Composite floor system with fully-embedded studs
US8991126B2 (en) Fall protection systems and methods
JP3872010B2 (en) Structure reinforcing method and structure
JP2015004229A (en) Pc earthquake-poof joining structure and pc earthquake-proof joining method of column-beam of using steel frame pin
JP2012526936A (en) Flexible material
JP2003321946A (en) Structural body for earthquake-resistant building
JP5990003B2 (en) Structure and reinforcing method thereof
KR100471509B1 (en) Method, material and construction for reinforcing a structure
JP2004003346A (en) Method of reinforcing construction and its structure
JP2007040023A (en) Earthquake resisting and damping structure in building
JP2014074264A (en) Aseismic/insulation-coated reinforced-concrete structure and structure employing the same
JP4242300B2 (en) Reinforcement method of concrete structure using continuous fiber sheet
JP4676569B1 (en) Building collapse prevention method and building collapse prevention device
JP2001140343A (en) Theree-storied dwelling house
JPH07119489B2 (en) Impact force absorbing structure and its construction method
JP2000328810A (en) Vibration control frame
JP6031632B1 (en) Displacement limiting device used for seismic isolation structure and method of introducing pre-compression
JP2006070668A (en) Reinforcing method of steel structure
JP3943252B2 (en) Steel reinforced concrete columns

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

R150 Certificate of patent or registration of utility model

Ref document number: 3872010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370