JP2004003346A - Method of reinforcing construction and its structure - Google Patents

Method of reinforcing construction and its structure Download PDF

Info

Publication number
JP2004003346A
JP2004003346A JP2003177856A JP2003177856A JP2004003346A JP 2004003346 A JP2004003346 A JP 2004003346A JP 2003177856 A JP2003177856 A JP 2003177856A JP 2003177856 A JP2003177856 A JP 2003177856A JP 2004003346 A JP2004003346 A JP 2004003346A
Authority
JP
Japan
Prior art keywords
reinforcing
building
vertical direction
ductility
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003177856A
Other languages
Japanese (ja)
Inventor
Shunichi Igarashi
五十嵐 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Structural Quality Assurance Inc
Original Assignee
Structural Quality Assurance Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Structural Quality Assurance Inc filed Critical Structural Quality Assurance Inc
Priority to JP2003177856A priority Critical patent/JP2004003346A/en
Publication of JP2004003346A publication Critical patent/JP2004003346A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing method and a reinforcing structure for quickly preventing, at a low cost, occurrence of the situation that load sharing capacity is lost due to local fracture of members by controlling the fracture of various members of new and existing constructions to delay the progress of the fracture and gradually enlarging an area of spatial fracture. <P>SOLUTION: A high ductile material 21 or a high ductile coating material is placed on a peripheral surface of a member 15 of the construction. Apparent cubic volume of the member 15 is constrained by the high ductile material 21 or the high ductile coating material so that the fracture may be controlled. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、建造物や各種のインフラ施設(以下、総称して「構築物」という)の部材(梁、桁、スラブ,壁、柱等の構築物の構成要素)が、地震力や風力などの作用、取り壊しに伴う過度の荷重等の突発的な外力の作用、あるいは老朽化による耐力不足によって破壊し、目に見えるほどの変形が生じた後であっても、構築物が崩壊して内部や周辺の人、及び財産に大きな損害を与えることを防止する構築物の補強方法及びその構造に関する。
【0002】
【従来の技術】
構築物が地震等の突発的な外力、老朽化による耐力不足によって突然崩壊し、生命及び財産を損ねることが過去に何度も繰り返されている。
【0003】
構築物の崩壊現象は、構築物を構成する部材が過度の荷重や耐力不足によって破壊され、これが全体構造の安定性を損なって構造物の形状を著しく変形させ、内部の空間が減少することによって起こる。建物の場合には、パンケーキのように床が折り重なったり、倒壊したりすることが多い。高架橋などでは、橋脚が破壊され、落橋する事例が多い。したがって、構造部材等の各種の部材を補強して破壊を制御し、該部材が破壊された後も構造の全体的な安定性が損なわれることを回避できるならば、構築物の内部や周辺の人命や財産を損ねる可能性を小さくすることができる。
【0004】
ところで、従来は、構築物の崩壊を回避させてその安全性を確保するために、次のような手法が採用されていた。
(1)構造部材が自重と突発的な外力を合わせて考慮してあらかじめ設定した必要荷重にて破壊されないように断面等を決定する。
(2)設置後予想される突発的な外力が増加するか、部材が老朽化等で耐力を減じたとき、構造部材の断面積を増やしたり、材料の強度を上げる。また、構造部材の周面に鉄板や炭素繊維等の高強度部材を設置し、構造部材の降伏強度や破壊されるに至るまでのエネルギー吸収性能(靭性)を増す。
(3)地震力に対する免震装置を構築物に設置してその力を減ずる。
また、地震等の突発的な外力によって構築物が損傷を受けた場合には、応急被災判定を行い損傷の程度によって立ち入り禁止措置を講じていた。さらに、設計基準が改定され、想定される地震荷重が増加した場合には、既存の構築物に対して耐震診断を実施し、危険と判定されたものに対しては耐震改修、補強を推奨していた。
【0005】
しかし、上記(1)〜(3)の従来手法は、そのいずれもがあらかじめ設定されている地震等の突発的な外力の想定レベル(設計値)との関係に依拠するものであり、この想定レベルを超えた外力が部材に作用した場合には、部材が破壊してしまうため構造全体の安定性を確保できる保証はなかった。
【0006】
また、上記従来手法による場合には、工事にかかる費用、時間、材料が新設費用と同等とはいわないまでも、その何割にも達してしまい、そのコスト負担に耐えられないことも多くある。また、それでなくともその確保が難しくなっている溶接工、鉄筋工、仕上げ工等の熟練工を必要とする場合も多い。したがって、既存の構築物が、老朽化、旧基準による設計、地震等の突発的な外力による損傷等で、危険性が高いことが知られている場合であっても、経済的、物理的制約から、補強を行えないことが多かった。さらに、地震等の突発的な災害後に応急危険度判定を行う際に、構築物内に立ち入った調査員が余震等で構築物の崩壊に巻き込まれたり、軽微な損傷であるために安全であると判定された建物に居住者や使用者が立ち入り、その後の余震等で崩壊し多数の死傷者を出した事例などもある。
【0007】
図21は、代表的な構造部材である柱1に作用する代表的な荷重と対応する変位とを示す。荷重の作用方法には、端部に作用するもの、部材全体に集中または分布して作用するものがあり、荷重の種類は力とモーメントとがある。図21には、これらのうちの代表的なものだけを示している。図22は、上記従来手法との関係で図21に示した部材に作用する荷重と変位との関係を示している。同図によれば、補強前の強度及び/又は靭性に対し補強後の強度及び/又は靭性を増加させることはできるものの、靭性限界を超えた後の上部荷重を支える保証のなかったことが判明する。
【0008】
【発明が解決しようとする課題】
つまり、上記従来手法による場合には、変形の小さい範囲(2〜3%以内)で部材が荷重を支え構築物の全体の安定を確保することができるが、変形がこれを超えた場合には、荷重を支える機構を失って急速に変形が進み、構築物が崩壊することが不可避となる問題があった。例えば、図24(a)に示した柱1の例では、変形の小さい範囲(数%以内)である許容範囲内の軸力(鉛直力)Pによって発生する周方向張力Tとせん断応力Sとを鉄筋コンクリート製の柱1内の帯鉄筋で保持させることができるものの、せん断応力Sによって柱1がせん断破壊し剛性が低下するか、過度の軸力の作用によって帯鉄筋が破断もしくは外れてしまうために周方向張力Tを保持できなくなり、図24(b)に示すように急速に変形が進み、図24(c)に示すように完全に圧壊され、前記パンケーキ破壊現象の発生が不可避的となる問題があった。また、図25に示すように部材15が梁16であれば、ヒビ割れ20と鉄筋の降伏とにより、同図中に破線で囲繞した部位が圧縮破壊されてしまうという問題があった。
【0009】
また、上記従来手法による場合には、地震等の突発的な災害が発生した直後や、耐震基準が改定されて、大量の構築物が既存不適格となり補強が必要になった場合に、迅速に対処して安全を確保する手法としては不向きであるという問題があった。
【0010】
本発明は従来手法にみられた上記課題に鑑み、新設の構築物の構造部材を含む各種の部材に新設当初から適用しておいたり、既設の構築物の構造部材を含む各種の部材に事後的に適用することにより、破壊を制御してその進行を遅延させるとともに、空間的に破壊領域を徐々に拡大させることによって、部材が局部的に破壊し荷重分担能力を完全に失うことを避け、目に見えるほどの変形が生じた後も構造の崩壊を避け得る程度の荷重分担力を確保できる補強方法とその構造とを提供することを目的としている。さらに、本発明は、補強工事にかかる費用、時間、材料を従来手法に比べて大幅に節約することにより、大量の構築物に対する補強を迅速に行えるようにすることをも目的とするものである。
【0011】
【課題を解決するための手段】
本発明は上記目的を達成すべくなされたものであり、構造部材を含む各種の部材を構成するコンクリート、木材、土、レンガ等の材料が破壊に伴って見かけの体積が膨張する性質を利用し、これを構造部材を含む各種の部材の周辺に設置した補強材特に高延性補強材(以下、本明細書においては、補強材を被覆材とショウすることもある)で弾性的に拘束することによって破壊の進行を遅延させ、突発的な外力の作用が停止した後、構築物の重量を分担し、その形状を概ね保持し得るようにすることに構成上の特徴がある。ここにいう見かけの体積とは、部材端面と部材側面とを滑らかに包む面(包絡面)で囲まれた部分の体積をさす。これが破壊によって膨張するとは、図23(a)に示すように部材端面2,2と部材側面3とを備える破壊前の部材15が、破壊面4により分断された破壊片9,9の発生と移動とによって図23(b)に示すように包絡面10が広がり、見かけの体積が増大する現象をさす。図23(b)にて明らかなように、包絡面10と破壊した部材15との間には空隙tが存在する。本発明は、高延性材(高延性被覆材)によって部材15を被覆するときに該部材15との間に弱層(空隙tを含む)を設けることによって、部材15が破壊した後にも高延性材(高延性被覆材)が包絡面状に変形することを可能にしていることに構成上の特徴がある。
【0012】
本発明においては、前記高延性材は、繊維系もしくはゴム系のシート材(帯状シート材を含む)により形成されているものを好適に用いることができる。この場合、芯材と、該芯材にロール状に巻き付けられた高延性材とのうち、該高延性材の一側表面の長さ方向には、その横幅を少なくとも2以上の種類で等分に分割し得る複数本の相互の区別が自在な区画線を描示してなるロール状芯巻き高延性材として形成することにより、施工現場での判別を容易化して、作業効率の向上により有効に寄与させることができる。また、前記高延性材は、その被覆対象部材の設置状況や施工上の制約等を考慮して、前記部材に対し袋状に覆ったり、螺旋状やロール状に巻き付けたり、ゴム質系もしくは樹脂系の粘性材を吹き付けるなどの適宜手段により塗着したりして設置することができる。本発明においては、前記部材との間に空隙または弱層を介してこのような高延性材(被覆材)を設置したことを特徴とするものであって、この構造により、前記高延性材(被覆材)が前記部材により直接破断されてしまう不都合を回避させることができるので、前記高延性材(被覆材)による弾性的な拘束効果をより確実に発揮させることができる。また、前記高延性材(被覆材)は、上記した空隙または弱層を介在させることにより、前記部材の多様な破壊形態に対して包絡面を維持しつつ弾性的に前記部材の見かけの体積膨張をより一層確実に拘束できることになる(図23(b)では、部材15と包絡面10との間に空隙tがある。)。
【0013】
【発明の実施の形態】
図1は、本発明において、構築物の構造部材等からなる各種の部材の破壊に伴う体積膨張を拘束してその破壊を制御すべく用いられる高延性材の構造例を示す全体斜視図である。
【0014】
同図によれば、高延性材21は、適宜長さの縦幅と横幅とが付与されてなるシート部22を本体とし、その周方向で相互が突き合わされる一側縁部23と他側縁部24とを備えて形成されている。
【0015】
また、シート部22における一側縁部23と他側縁部24とのそれぞれには、その縦幅方向に沿わせて芯紐25が挿通配置されており、該芯紐25により一側縁部23と他側縁部24とが各別に補強され、引張り方向での耐久性を高めることができる。
【0016】
さらに、一側縁部23と他側縁部23とのそれぞれの近傍位置には、その長さ方向に沿わせて連結用紐材30のための挿通孔26がそれぞれ所定間隔で設けられている。また、これらの各挿通孔26には、例えば鳩目28などの適宜の補強部材27が付設されており、該補強部材27により各挿通孔26の周縁部が各別に補強され、連結用紐材30を確実に固着できる。
【0017】
しかも、シート部22における一側縁部23と他側縁部24との少なくともいずれか一方の側、図示例では一側縁部23には、シート部22の縦幅と略同長の縦幅を有する舌片状の当て布部29が一側縁部23の長さ方向に沿わせてその裏側に縫着されており、該当て布部29により一側縁部23と他側縁部24との間を裏側から覆うことができるようになっている。なお、図示は省略してあるが、当て布部29は、一側縁部23と他側縁部24とに各別に配設し、一側縁部23と他側縁部24との間を裏側から交互に二重構造で覆うことができるようにしてもよい。
【0018】
高延性材21を構成しているシート部22や当て布部29は、周方向と鉛直方向とに均質な材料が用いられ、特に延性が高く初期弾性係数が鉄やコンクリートに比較して小さな繊維材やゴム材などを好適に用いることができる。具体的には、延性に富み、かつ、荷重を保持し得る強度を有している合成繊維材(例えば、東レ株式会社製の商品名「トレシート」等)やゴム材(例えば株式会社ブリヂストン製の商品名「ジオライナー」等)からなるシート材を好適に用いることができる。
【0019】
図10(a),(b)は、本発明における第4の発明についての一例を示す説明図であり、このうちの(a)は概略斜視図を、また(b)は(a)におけるY−Y線矢視方向での横断面図をそれぞれ示す。
【0020】
これらの図によれば、図12(a)に示す構築物(建築物)11の床12等を支える柱13は、空隙17を介在させて大理石模様を付すなどして形成された化粧用囲壁材115を周回配置することにより、柱13自体が隠蔽された状態となっている。しかも、化粧用囲壁材115の内周面116側には、帯鉄筋よりも弾性係数の低い素材、例えば周方向と鉛直方向とに均質で、初期弾性係数がさほど低くない合成繊維材(例えば、東レ株式会社製の商品名「トレシート」等)やゴム材(例えば株式会社ブリヂストン製の商品名「ジオライナー」等)を用いて袋状に形成された高延性被覆材131が設置されている。
【0021】
図11は、上記発明に用いられる高延性被覆材131の他例を示すものであり、該高延性被覆材131としては、柱13の周囲に空隙17を介して上下方向に所定間隔をおいて多段に配設される適宜外径の鉄筋や輪状弾性材により形成された周回芯材133と、隣り合う周回芯材133,133相互を鉛直方向にて一体的に縫着することにより連結させた適宜の合成繊維材(例えば、東レ株式会社製の商品名「トレシート」等)やゴム材(例えば株式会社ブリヂストン製の商品名「ジオライナー」等)からなるシート材134とで連続形成された蛇腹状補強材132が用いられている。
【0022】
この場合、上下方向に配設される周回芯材133は、柱13の長さとの関係で定まる所要の本数が用いられ、これら多数本の周回芯材133には、その全周を覆うようにシート材134を連結することができるほか、図11に示すように間隔をおきながら上下方向に帯状のシート材134を各別に配置して連結させることもできる。
【0023】
次に本発明の作用・効果を説明する。
図12(a)に示す構築物11を支える既存の柱13に空隙117を介在させて化粧用囲壁材115を図5(a),(b)に示すようにして周回配置する場合には、該化粧用囲壁材115の内周面116に高延性被覆材131を設置することにより、図13(b)に示すように変形後の柱13を高延性被覆材131で包み込んで荷重を保持できることになる。
【0024】
この場合、高延性被覆材131は、空隙117を介して上下方向に所定間隔をおいて周回芯材133を多段に配設し、隣り合う周回芯材133,133相互を鉛直方向にて合成繊維材もしくはゴム材からなるシート材134で一体的に連結して連続させた蛇腹状補強材132により形成して用いるのが好ましい。なお、第3の発明においても高延性被覆材121に代え上記高延性被覆材131を用いることができる。
【0025】
このように柱13と化粧用囲壁材115との間に介在している空隙117内に高延性被覆材131を設置することにより、鉄筋コンクリート製の柱13の靭性限界までの変形に対しては、高延性被覆材131の側に負担をかけることはなく、それ以降の変形に対して高延性被覆材131の延性で抵抗することにより、より確実に変形後の柱13を包み込んで荷重の保持ができる。このため、第3発明と同様に図17(a)〜(c)に示す経過を経て、図12(b)に示すように柱13が破壊されて構築物(建築物)11が崩壊した後においても床12と床12との間に空間19を確保できることになる。
【0026】
図16は、従来構造と本発明とによるそれぞれの変形挙動を示したグラフ図である。同図によれば、従来構造による場合には、周方向張力が増大して靭性限界を超えると帯鉄筋が破断したり外れて崩壊(同図における▲1▼のグラグ図参照)してしまうのに対し、本発明において部材(構造部材)15のひとつである柱13に高延性材21もしくは高延性被覆材121を巻き付けた場合には、変位の開始と同時に高延性材21もしくは高延性被覆材121に負担がかかりはするものの、帯鉄筋が破断したり外れても崩壊を免れて荷重を保持できる(同図における▲2▼のグラグ図参照)ことが判明する。また、本発明のうち、柱13と化粧用囲壁材115との間の空隙117に高延性被覆材131を設置した場合には、柱13の靭性限界を超えないうちは高延性被覆材131に負担がかかることがなく、靭性限界を超えて帯鉄筋が破断したり外れた後に初めて高延性被覆材31に負担がかかるものの、崩壊を免れて荷重を保持できる(同図における▲3▼のグラグ図参照)ことが判明する。
【0027】
次に、本発明に用いられる高延性材もしくは高延性被覆材が備えるべき引張り強度につき以下に計算例とともに具体的に説明する。なお、構造部材等の部材(例えば柱)が破壊されてコンクリートの塊と、変形した鉄筋とになると、その力学的な挙動は複雑化するが、概ね内部摩擦のある粒状体と見做すことができる。したがって、高延性材には、部材(例えば柱)が破壊された後にこれを保持し、軸力に抵抗させる網または袋となり得る力学的機能を備えていることが求められる。また、軸力により袋内に発生する圧力によっても破れないことが必要になる。
【0028】
図18は、かかる関係を明確にすべく、土やれき等の粒状体の軸力と拘束圧との関係を試験するために土質力学の分野で広く採用されている3軸試験装置を模式的に示した説明図である。この場合、天蓋6と有底周側面7とからなる容器5内に粒状体を充填し、側面8から薄膜を介して水圧Wを作用させた状態のもとで軸力Pを作用させる。粒状体の内部摩擦をφとすれば、鉛直方向の軸力Pと拘束圧Sとの間には、次の関係があることが知られている。ただし、Aは天蓋6の面積(容器1の横断面面積)を示す。
P/A=(1+sinφ)/(1−sinφ)S      5)
また、容器5の平面方向での直径をDとすれば、拘束圧Sと単位幅あたりの張力Tとの間には、次の関係がある。
=1/2DS                     6)
本発明において高延性材(高延性被覆材)が奏する効果は、崩壊した鉄筋コンクリート製の柱が上記粒状体に相当すると考え、上記関係式5)と6)とから高延性材(高延性被覆材)が構築物の崩壊を避けるために必要な軸力Pを受けたときに破断しない必要強度Tとの関係を求めると、次のようになる。ただし、Bは柱の頭部の断面積を示す。
T=(1−sinφ)D・P/2(1+sinφ)B    7)
また、構築物の崩壊を避けるために必要な軸力Pは、次の算式で算出することができる。
P=fW/N                      8)
ただし、Wは構築物の当該階から上の総重量を、Nは当該階の柱の総数を、fは1本当たりの受持ち荷重のばらつきを考慮した安全係数をそれぞれ示しており、具体的な構築物の平面図から計算することができる。
以上のように高延性材の所要引張強度を計算で求めることができる。しかし、高延性材の周方向歪みを許容値以内におさえることによって、構築物に過度な変形が生ずることを防止する観点からは、式7)で計算した所要強度Tと高延性材の許容歪みXから前記式2)もしくは前記式4)の要領で高延性材の所要巻き数又は厚さを定めることができる。
【0029】
次に、以上の算式を具体例に適用した計算例を示す。すなわち、日本に一般的にみられる鉄筋コンクリート構造のうち、1980年以前に建築された建物は、通常、各階約11.8kN/mの重量を持っている。このうち、中規模のもので、一階あたりの床面積200mの4階建てで、頭部断面積3500cmの柱12本を持つものを例にとって以下に計算する。
支えるべき総重量    W=200×11.8×4=9440kN
柱一本当たりの軸力   P=2×9440/12=1573kN
ただし、式8)にてf=2として計算。
高延性材(高延性被覆材)の必要強度   T=327N/mm
ただし、式7)でφ=40度、D=67cm、B=3500cm
P=1573kNとして計算。ここで、Dは、断面積Bの直径として計算した。
以上の計算例の所要強度をもつ繊維織物からなるシート材としては、例えば東レ株式会社製の商品名「トレシート」中の品番「NSB2000」(厚さ4.7mm)がある。また、同商品名中の品番「800T」(厚さ1.26mm)は、283N/mmの強度を有するので、これを2枚重ねて用いると566N/mmの引張り力まで耐えることができ、上記の補強例に十分用いることができる。また、ゴム材からなるシート材としては、例えば株式会社ブリヂストン製の合成高分子系・加硫ゴム系の商品名「ジオライナー」などがある。商品名「ジオライナー」においては、13.2N/mm2 の強度試験結果が得られている。これを2.5cm程度の厚さで用いれば所要強度を得ることができる。
上記「トレシート」の公称強度は、15%歪みで発現し、この間は歪みと張力とがほぼ比例関係にある。したがって、800Tを2枚重ねて用いた場合、所要強度が発現する歪みは、327/566×15%=8.7%となる。もし、周方向歪みを5%以内におさえようとする場合には、800Tを4枚重ねて用いることにより、所要強度で発現する歪みを327/(283×4)×15%=4.3%とすることができる。ゴム系の材料を用いる場合には、張力と歪みとが非線形関係となるが、前記式3)及び4)の要領で、上記の例と同様に許容歪み以内に高延性材の歪みをおさえることができる必要厚さを計算して得ることができる。
【0030】
特に、本発明においては、ひずみ2%(鉄の破断ひずみ)以上の変形に対応させることができ、特に、高延性材(高延性被覆材)として合成繊維系のシート材を用いる場合には15%までの変形に、ゴム系のシート材を用いる場合には100%以上(材料の品質特性上の上限は690%まで)の変形であっても、それぞれ対応させることができる。また、上記シート材を用いた場合においても、該シート材の破断後も周辺のまだ破れていない部位のシート材の効果で、破壊領域が周辺に徐々に拡大する結果、軸ひずみで50%以上の変形下でも破壊を制御できることが実験的に認められている。
【0031】
また、図19(a),(b)に示すように、地震時には、構築物11に慣性力が作用し変位を生ずる。これに応じ部材(構造部材)15である各々の柱13に力Fが繰り返し作用し、エネルギーを吸収しつつも変位Xを生ずる。図20(a)は、その際の無補強の場合や従来手法での補強例により得られる1サイクル当たりの吸収エネルギーの状態を、図20(b)は、本発明により得られる1サイクル当たりの吸収エネルギーの状態をそれぞれ示すグラフ図である。なお、図20(a),(b)中の▲1▼で示す実線は単調載荷を、▲2▼で示す領域は繰り返し載荷をそれぞれ示す。
【0032】
これらの図からも明らかなように、本発明により補強された構造部材等の部材(例えば柱13)15は、大きな変形に耐えるために吸収エネルギーが大きくなる。地震の作用によって構築物11に蓄えられた運動エネルギーが構築物11の内部や周辺地盤Gとの間で生ずる摩擦などの非可逆的な運動によってすべてが吸収されたときに構築物11の振動は止まる。本発明により補強された部材(例えば柱13)15は、1サイクル当たりの吸収エネルギーが大きいため、無補強の構築物や従来手法により補強した構築物に比べて少ないサイクル数、すなわち、短時間で振動を終了するという制振効果を得ることができる。また、部材の破壊を制御することにより、周辺に伝達される荷重の上限値が抑えられ、この荷重下で大きな変形・ひずみを生じさせることができる結果、地震等の突発的な外力が構築物に入力する量を制限する所謂免震効果も得ることができる。
【0033】
さらに、本発明は、構築物の建替えや必要な補強工事が行われるまでの間の応急補強工事に適用することもできる。すなわち、本発明は、ビルの解体工事を行う際の崩壊防止手法としても有効であるばかりでなく、従来手法による補強工事に長い期間がかかり、補強を終えた部分と補強未着部分との間に強度的なアンバランスが生じている状態下での地震時における危険性の増大に対する緊急対策としても有効に寄与させることができる。しかも、本発明によれば、構築物を構成する構造部材を含む各種の部材自体の寸法や材質強度の仕様を小さくすることができるので、それだけ従来手法に比べ建設費を少なく抑えることができる。
【0034】
さらにまた、本発明は、コンクリート打設時に布製型枠として用いた後、脱型せずに崩壊防止効果を得ることも可能である。
【0035】
【発明の効果】
以上述べたように本発明によれば、構築物における構造部材を含む各種の部材に高延性材もしくは高延性被覆材を固定した場合には、変位の開始と同時に高延性材もしくは高延性被覆材に負担がかかるものの、帯鉄筋が破断したり外れて構築物が崩壊しても天井と床もしくは床相互間に空間を確保しながら荷重を支持できるので、震災時等における人命救助に有効なフェイルセイフ効果を得ることができる。
【0036】
また、本発明によれば、構築物における構造部材を含む部材に大きな変形が生じても構築物の重量を支持する機能をもたせることができるため、従来の補強法や無補強の場合に比べ大きな振動エネルギーを吸収することができ、地震動による構築物の振動を抑える制振効果を得ることができる。さらに、部材の破壊を制御することにより周辺に伝達される荷重の上限値が抑えられ、この荷重下で大きな変形・ひずみを生じさせることができる結果、地震等の突発的な外力が構築物に入力する量を制限する所謂免震効果も得ることができる。
【0037】
さらにまた、本発明は、ビルの解体工事を行う際の崩壊防止手法としても有効であるばかりでなく、従来手法による補強工事に長い期間がかかって補強済み部分と補強未着部分との間に強度的なアンバランスが生じている状況下での地震発生に伴う危険性の増大に対する緊急対策としても有効に寄与させることができる。つまり、本発明は、構築物の建替えや必要な補強工事が行われるまでの間の応急補強工事にも好適に適用することができる。
【0038】
しかも、本発明によれば、簡単な施工で短時間に設置できるので設置工事費を小さくすることができるほか、構造部材を含む各種の部材自体の寸法や材質強度の仕様を小さくして材料費を大幅に削減することもできるので、従来手法に比べ構築物自体の建設費を小さくすることができる。
【0039】
また、本発明によれば、熟練工を必要とすることなく簡易、迅速に施工できるほか、部分的に損傷した部材に対しても容易に施工することができる。このため、あらかじめ高延性材もしくは高延性被覆材と接着剤等の固着部材とを備蓄しておくことにより、地震等の突発的な災害発生時に大量の構築物に必要となる緊急補強を迅速に行うことができる。また、緊急危険度判定と並行して施工しておくことにより、仮に判定員が余震等による構築物の崩壊に巻き込まれるようなことがあっても、死傷する危険性を大幅に減少することができる。
【0040】
また、柱と化粧用囲壁材との間の空隙に高延性被覆材を設置した場合には、柱の靭性限界を超えないうちは高延性被覆材に負担がかからず、靭性限界を超えて帯鉄筋が破断したり外れた後に初めて高延性被覆材に負担がかかるものの、構築物が崩壊した後であっても天井と床もしくは上下の床相互間に空間を確保しながら荷重を支持できるので、人命救済に有効に寄与させることができる。
【0041】
さらに、本発明に係るロール状芯巻き高延性材を用いる場合には、部材に対する螺旋状での最大巻き数を計測器具等の機器を用いることなく簡単に把握できるので、効率よく施工することができる。このような簡便な施工は、新築や既存の部材への補強を迅速、かつ、正確に行うことができるのみならず、非常災害時に即応できる備蓄品としても効果的に用いることができることを意味している。すなわち、部材に対する高延性材の巻き数は、部材が支えるべき最大荷重によって決定される関係にあるものの、適用する構築物が異なればその巻き数も変動してしまう。このような場合においても、本発明に係るロール状芯巻き高延性材を用いることにより、一重巻きから多重巻きに至るまで同一の高延性材で即応できるので、事前に適用する構築物との関係を問うことなく備蓄しておき、被災時の構築物に即座に適用することができることになる。特に各区画線を視覚や触覚により区別できるように描示してある場合には、施工現場で個々の区画線の別を容易に判別することができ、さらには、凸部により区画線を形成し、該凸部に高延性材の端部を沿わせることにより、一層確実、かつ、容易に巻き付けることができるようにすることで、作業効率の向上により有効に寄与させることができる。
【0042】
なお、本発明において高延性材を螺旋状やロール状に巻き付けるに際に、一周に一カ所ずつの割合のもとで部材の長さ方向での高延性材相互の対面部位を接着剤を介して接合するならば、高延性材のある層が破断した後においても残余の層により直ちに張力を喪失する事態の発生を有効に回避させることができる。
【図面の簡単な説明】
【図1】構築物の部材(構造部材)がコンクリートを主材とする新設もしくは既設の柱に本発明を適用する際に用いられる高延性材の構造例を示す全体斜視図。
【図2】構築物の部材がコンクリートを主材とする既設の構造部材である壁を例に本発明の適用例を示す要部横断面図であり、そのうちの(a)は、壁の両外側面に高延性材を各別に配設した状態を、(b)は、高延性材相互を連結するための連結用紐材を挿通するために必要な通孔を設けた状態を、(c)は、該通孔を挿通させた連結用紐材により高延性材相互を連結させた状態をそれぞれ示す。
【図3】構築物の部材がコンクリートを主材とする既設の柱を例に本発明の他例を示すものであり、そのうちの(a)は柱の外周面に帯状に形成された高延性材を螺旋状に巻き付けた際の状態を、(b)は備蓄時における荷姿をそれぞれ示す。
【図4】高延性材を螺旋状に巻き付けた際の状態についての他例を示す全体斜視図。
【図5】図4に示す他例についての高延性材の巻付け状況を模式的に示す説明図。
【図6】本発明に係るロール状芯巻き高延性材の一例を示す説明図。
【図7】高延性材を三重のロール巻き状に巻き付けた際の状態説明図であり、そのうちの(a)は要部斜視図を、(b)は(a)の横断面図をそれぞれ示す。
【図8】図7に示す例を部材に3分割して形成した際の状態を示す全体斜視図。
【図9】本発明の他例を示す概略斜視図であり、そのうちの(a)は既存の柱と高延性被覆材との配置関係を、(b)は柱に高延性被覆材を巻き付けた後の状態をそれぞれ示す。
【図10】本発明のさらなる他例を示す説明図であり、そのうちの(a)は概略斜視図を、(b)は(a)におけるA−A線矢視方向での横断面図をそれぞれ示す。
【図11】図10に示されている高延性被覆材を蛇腹状補強材により形成した場合の一例を示す要部斜視図。
【図12】本発明を適用した構築物(建造物)の状態説明図であり、そのうちの(a)は崩壊前の状態を、(b)は崩壊後の状態をそれぞれ示す。
【図13】本発明を適用した部材(構造部材)が柱である場合の状態説明図であり、そのうちの(a)は破壊前の状態を、(b)は破壊後の状態をそれぞれ示す。
【図14】(a)は、本発明を適用した部材(構造部材)が梁である場合の荷重,変形を受けた後の状態説明図を、(b)は、床である場合の荷重,変形を受けた後の状態説明図を、(c)は、壁である場合の荷重,変形を受けた後の状態説明図をそれぞれ示す。
【図15】本発明を適用した部材(構造部材)が柱である場合の変形して破壊されるまでの変形挙動を示すグラフ図。
【図16】部材(構造部材)が柱である場合の変形して破壊されるまでの挙動を従来構造と本発明構造とを比較して示すグラフ図。
【図17】本発明を適用した部材(構造部材)が柱である場合の変形する様を示す状態説明図であり、このうちの(a)は平常時を、(b)は変形開始後を、(c)は破壊された状態をそれぞれ示す。
【図18】土質力学の分野で広く採用されている3軸試験装置を示す概略説明図。
【図19】地震時に構築物及び部材(構造部材)としての柱に作用する力と変位の関係を(a),(b)として示す説明図。
【図20】部材(構造部材)としての柱の1サイクル当たりの吸収エネルギーの状況を示すグラフ図であり、そのうちの(a)は従来からある柱による場合を、(b)は本発明による柱の場合をそれぞれ示す。
【図21】部材(構造部材)としての柱に作用する荷重、変位を受ける方向を示す説明図。
【図22】部材(構造部材)としての柱に対し図20に示す荷重、変位が発生した際における従来構造による補強前との補強後との変形挙動を示すグラフ図。
【図23】部材の破壊に伴い見かけの体積が増大する現象につき、破壊前を(a)として、破壊後を(b)としてそれぞれ示す。
【図24】図21に示す変形挙動に対応させた部材(構造部材)としての柱が変形する様を示す状態説明図であり、このうちの(a)は平常時を、(b)は変形開始後を、(c)は破壊された状態をそれぞれ示す。
【図25】本発明が適用されていない部材(構造部材)としての梁が変形した後の状態を示す説明図。
【符号の説明】
1 柱(従来例)
2 部材端面
3 部材側面
4 破壊面
5 容器
6 天蓋
7 有底周側面
8 側面
9 破壊片
10 包絡面
11 構築物
12 床
13 柱(本発明適用例)
14 外周面
15 部材(構造部材を含む)
15a 一側面
15b 他側面
16 梁(桁)
17 壁
18 通孔
19 空間
20 ヒビ割れ
21 高延性材
21a 当接部
21b 側縁
22 シート部
23 一側端部
24 他側端部
25 芯紐
26 挿通孔
27 補強部材
28 鳩目
29 当て布部
30 連結用紐材
32 上端部
33 可鍛部
34 中央部
35 接着剤
35,35a 接着剤
42 始端部
43 終端部
44,45,46,47,48 対面部位
49 芯材
50 区画線
51 上縁部
52 下縁部
121 高延性被覆材
121a,121b 突合せ端部
122 シート材
131 高延性被覆材
132 蛇腹状補強材
133 周回芯材
134 シート材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure or a member of a variety of infrastructure facilities (hereinafter, collectively referred to as a “building”) that is a member of a building such as a beam, a girder, a slab, a wall, a column, etc. Even if the structure is collapsed and collapsed inside and around even after being destroyed due to the action of sudden external force such as excessive load due to The present invention relates to a method for reinforcing a building and a structure thereof, which prevent a person and property from being seriously damaged.
[0002]
[Prior art]
It has been repeated many times in the past that structures collapse suddenly due to sudden external forces such as earthquakes, and shortage of strength due to aging and damage to life and property.
[0003]
The collapse phenomenon of a structure occurs when members constituting the structure are destroyed due to excessive load or insufficient proof stress, which impairs the stability of the entire structure, significantly deforms the shape of the structure, and reduces the internal space. In the case of a building, the floor is often folded or collapsed like pancakes. In viaducts, bridge piers are often destroyed and fall down. Therefore, if various members such as structural members can be reinforced to control the destruction and the overall stability of the structure can be prevented from being impaired even after the destruction of the members, human life inside and around the structure can be avoided. And the possibility of damaging property can be reduced.
[0004]
By the way, conventionally, the following method has been adopted in order to prevent the collapse of a building and to ensure its safety.
(1) The cross section and the like are determined so that the structural member is not broken by a predetermined required load in consideration of its own weight and a sudden external force.
(2) When the unexpected external force increases after installation or when the strength of the member is reduced due to aging or the like, the sectional area of the structural member is increased or the strength of the material is increased. In addition, a high-strength member such as an iron plate or carbon fiber is installed on the peripheral surface of the structural member to increase the yield strength of the structural member and the energy absorption performance (toughness) until the structural member is broken.
(3) Install a seismic isolation device against the seismic force on the structure to reduce the force.
In addition, when a building is damaged by an unexpected external force such as an earthquake, emergency damage judgment is performed, and entry control is taken depending on the degree of damage. In addition, when the design standards are revised and the estimated seismic load increases, seismic diagnosis is performed on existing structures, and seismic retrofitting and reinforcement are recommended for those determined to be dangerous. Was.
[0005]
However, the above-mentioned conventional methods (1) to (3) all rely on a relationship with an assumed level (design value) of a sudden external force such as an earthquake which is set in advance. When an external force exceeding the level acts on the member, the member is broken, and there is no guarantee that the stability of the entire structure can be secured.
[0006]
In addition, in the case of the above-described conventional method, the cost, time, and material required for construction work reach a large percentage, if not equal, of the new construction cost, and in many cases, the cost burden cannot be tolerated. . In addition, there are many cases where skilled workers such as welders, reinforcing bars, finishing works, etc., which are difficult to secure, are required. Therefore, even if the existing structure is known to be highly dangerous due to aging, design based on the old standard, sudden external damage such as an earthquake, etc., economic and physical constraints In many cases, reinforcement could not be performed. Furthermore, when conducting an emergency risk assessment after a catastrophic disaster such as an earthquake, the investigator who entered the structure was determined to be safe because it was involved in the collapse of the structure due to aftershocks or minor damage. In some cases, residents and users entered the damaged building and collapsed in the aftershocks, etc., causing many casualties.
[0007]
FIG. 21 shows a typical load acting on a column 1 which is a typical structural member and a corresponding displacement. The method of applying the load includes one that acts on the end portion and one that acts on the entire member in a concentrated or distributed manner, and the types of the load include a force and a moment. FIG. 21 shows only representative ones of these. FIG. 22 shows the relationship between the load acting on the member shown in FIG. 21 and the displacement in relation to the above-mentioned conventional method. According to the figure, it was found that although the strength and / or toughness after reinforcement could be increased with respect to the strength and / or toughness before reinforcement, there was no guarantee to support the upper load after exceeding the toughness limit. I do.
[0008]
[Problems to be solved by the invention]
In other words, in the case of the above-described conventional method, the member can support the load in a small deformation range (within 2 to 3%) and secure the stability of the entire structure, but when the deformation exceeds this, There has been a problem that the structure supporting the load is lost and the structure rapidly collapses due to the loss of the load supporting mechanism. For example, in the example of the column 1 shown in FIG. 24A, the circumferential tension T and the shear stress S generated by an axial force (vertical force) P within an allowable range which is a small deformation range (within several percent). Can be held by the strip reinforcing bars in the reinforced concrete column 1, but the shear stress S causes the column 1 to be shear-ruptured, resulting in reduced rigidity or an excessive axial force to break or detach the strip reinforcing bars. 24B, the circumferential tension T can no longer be maintained, and the deformation proceeds rapidly as shown in FIG. 24 (b), and is completely crushed as shown in FIG. 24 (c), and the occurrence of the pancake destruction phenomenon is inevitable. There was a problem. Further, if the member 15 is the beam 16 as shown in FIG. 25, there is a problem that the portion surrounded by the broken line in FIG. 25 is compressed and broken due to the crack 20 and the yield of the reinforcing bar.
[0009]
In addition, in the case of the conventional method described above, immediately after a sudden disaster such as an earthquake, or when the seismic standards are revised and a large number of structures are ineligible for existing and need to be reinforced, prompt response is required. There is a problem that it is not suitable as a technique for ensuring safety.
[0010]
The present invention has been applied to various members including structural members of a newly-constructed structure from the beginning, and has been applied to various members including structural members of an existing structure retroactively in view of the above-described problems encountered in the conventional method. By controlling the fracture and delaying its progress by applying it, and by gradually expanding the fracture area spatially, it is possible to avoid local failure of the member and complete loss of the load sharing capacity, An object of the present invention is to provide a reinforcement method and a structure capable of securing a load sharing force that can prevent collapse of a structure even after visible deformation occurs. Another object of the present invention is to make it possible to rapidly reinforce a large number of structures by greatly reducing the cost, time, and material required for the reinforcement work as compared with the conventional method.
[0011]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and utilizes the property that materials such as concrete, wood, soil, and bricks constituting various members including structural members expand in apparent volume with destruction. Elastically restrained by a reinforcing material installed around various members including a structural member, particularly a highly ductile reinforcing material (hereinafter, in this specification, the reinforcing material may be referred to as a covering material). This has a structural characteristic in that the progress of destruction is delayed, and after the sudden external force stops, the weight of the structure is shared and its shape can be generally maintained. The apparent volume here refers to the volume of a portion surrounded by a surface (envelope surface) that smoothly wraps the member end surface and the member side surface. The expansion due to the destruction means that the member 15 before destruction having the member end surfaces 2 and 2 and the member side surface 3 is broken by the destruction surface 4 as shown in FIG. As shown in FIG. 23B, the envelope surface 10 expands due to the movement and the apparent volume increases. As is clear from FIG. 23B, a gap t exists between the envelope surface 10 and the broken member 15. The present invention provides a high ductility even after the member 15 is broken by providing a weak layer (including a gap t) between the member 15 and the member 15 when the member 15 is coated with a high ductility material (high ductility coating material). There is a structural feature in that the material (high ductility coating material) can be deformed into an envelope shape.
[0012]
In the present invention, as the high ductility material, a material formed of a fiber-based or rubber-based sheet material (including a belt-shaped sheet material) can be suitably used. In this case, of the core material and the high ductility material wound in a roll shape around the core material, the width of the high ductility material is equally divided into at least two or more types in the length direction on one side surface. By forming it as a roll-shaped core-wound high-ductility material that draws division lines that can be distinguished from each other that can be divided into multiple pieces, it facilitates discrimination at the construction site and improve work efficiency more effectively Can contribute. In addition, the high ductility material, in consideration of the installation conditions of the member to be covered and restrictions on construction, etc., covering the member in a bag shape, spirally or rolled, rubber-based or resin It can be installed by being applied by appropriate means such as spraying a viscous material of the system. The present invention is characterized in that such a high ductility material (coating material) is provided via a gap or a weak layer between the high ductility material (coating material) and the member. Since the inconvenience that the covering material) is directly broken by the member can be avoided, the elastic restraining effect of the highly ductile material (the covering material) can be more reliably exerted. In addition, the high ductility material (coating material) elastically expands the apparent volume of the member by maintaining the envelope surface against various destruction modes of the member by interposing the above-mentioned voids or weak layers. Can be more reliably restrained (in FIG. 23B, there is a gap t between the member 15 and the envelope surface 10).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an overall perspective view showing an example of the structure of a highly ductile material used in the present invention to restrain the volume expansion accompanying the destruction of various members such as structural members of a building and to control the destruction.
[0014]
According to the figure, a high ductility material 21 has a sheet portion 22 provided with an appropriate length and width as a main body, and one side edge portion 23 that abuts each other in the circumferential direction and the other side. An edge 24 is formed.
[0015]
A core string 25 is inserted through each of the one side edge 23 and the other side edge 24 of the sheet portion 22 along the longitudinal width direction thereof. 23 and the other side edge portion 24 are separately reinforced, and the durability in the tensile direction can be increased.
[0016]
Further, insertion holes 26 for the connecting cords 30 are provided at predetermined intervals in the vicinity of the one side edge 23 and the other side edge 23 along the length direction. . Further, an appropriate reinforcing member 27 such as, for example, an eyelet 28 is attached to each of the insertion holes 26, and the periphery of each of the insertion holes 26 is reinforced separately by the reinforcing member 27. Can be securely fixed.
[0017]
Moreover, at least one side of the one side edge 23 and the other side edge 24 of the sheet portion 22, in the illustrated example, one side edge 23 has a vertical width substantially the same as the vertical width of the sheet portion 22. A tongue-shaped patch cloth portion 29 having a tongue is sewn to the back side along the length direction of the one side edge portion 23, and the one side edge 23 and the other side edge portion 24 are Can be covered from behind. Although not shown, the patch cloth portion 29 is separately provided on the one side edge portion 23 and the other side edge portion 24, and the gap between the one side edge portion 23 and the other side edge portion 24 is provided. It may be possible to alternately cover with a double structure from the back side.
[0018]
The sheet portion 22 and the patch cloth portion 29 constituting the high ductility material 21 are made of a material which is uniform in the circumferential direction and the vertical direction, and has a particularly high ductility and a small initial elastic modulus as compared with iron or concrete. A material or a rubber material can be suitably used. Specifically, a synthetic fiber material (for example, trade name “Tresheet” manufactured by Toray Industries, Inc.) or the like, which is rich in ductility and has a strength capable of holding a load, or a rubber material (for example, manufactured by Bridgestone Corporation) A sheet material having a trade name of “Geoliner” or the like can be suitably used.
[0019]
FIGS. 10A and 10B are explanatory views showing an example of the fourth invention in the present invention, in which FIG. 10A is a schematic perspective view, and FIG. The cross-sectional view in the direction of the arrow Y is shown.
[0020]
According to these figures, the pillars 13 supporting the floor 12 and the like of the building (building) 11 shown in FIG. 12 (a) are made of a decorative wall material formed by applying a marble pattern with a gap 17 interposed therebetween. By arranging 115 around, the pillar 13 itself is in a concealed state. In addition, on the inner peripheral surface 116 side of the decorative enclosing wall material 115, a material having a lower elastic modulus than the reinforcing bar, for example, a synthetic fiber material that is uniform in the circumferential direction and the vertical direction and whose initial elastic modulus is not so low (for example, A high-ductility covering material 131 formed in a bag shape using a rubber material (for example, trade name “Geoliner” manufactured by Bridgestone Corporation) or the like is installed.
[0021]
FIG. 11 shows another example of the high-ductility coating material 131 used in the above-mentioned invention. As the high-ductility coating material 131, a predetermined interval in the vertical direction is provided around the column 13 via the gap 17. The surrounding core material 133 formed of a rebar or a ring-shaped elastic material having an appropriate outer diameter, which is provided in multiple stages, and the adjacent surrounding core materials 133, 133 are connected to each other by integrally sewing in the vertical direction. Bellows formed continuously with an appropriate synthetic fiber material (for example, trade name “Tresheet” manufactured by Toray Industries, Inc.) or a sheet material 134 made of a rubber material (for example, trade name “Geoliner” manufactured by Bridgestone Co., Ltd.) A reinforcing member 132 is used.
[0022]
In this case, the required number of circling cores 133 arranged in the up-down direction is determined by the relationship with the length of the column 13, and the multitude of circulating cores 133 covers the entire circumference. In addition to connecting the sheet members 134, the belt-shaped sheet members 134 may be separately arranged and connected in the vertical direction with an interval as shown in FIG.
[0023]
Next, the operation and effect of the present invention will be described.
When the decorative wall material 115 is arranged around the existing pillar 13 supporting the building 11 shown in FIG. 12 (a) with the void 117 interposed therebetween as shown in FIGS. 5 (a) and 5 (b), By installing the highly ductile covering material 131 on the inner peripheral surface 116 of the decorative enclosing wall material 115, the deformed pillar 13 can be wrapped by the highly ductile covering material 131 to hold the load as shown in FIG. Become.
[0024]
In this case, the high ductility coating material 131 is formed by arranging the surrounding core materials 133 in multiple stages at predetermined intervals in the vertical direction via the voids 117, and connecting the adjacent surrounding core materials 133, 133 to each other in the vertical direction. It is preferable to form and use a bellows-like reinforcing member 132 which is integrally connected and continuous with a sheet member 134 made of a material or a rubber material. In the third aspect, the high ductility coating 131 may be used instead of the high ductility coating 121.
[0025]
By installing the high ductility coating material 131 in the void 117 interposed between the column 13 and the decorative surrounding wall material 115 in this manner, the deformation of the reinforced concrete column 13 up to the toughness limit is achieved. It does not put a load on the side of the high-ductility coating material 131 and resists the subsequent deformation by the ductility of the high-ductility coating material 131, so that the post 13 is more securely wrapped around the deformed column 13 and the load can be held. it can. For this reason, after the progress shown in FIGS. 17A to 17C, as in the third invention, after the pillar 13 is broken and the building (building) 11 collapses as shown in FIG. Also, a space 19 can be secured between the floors 12.
[0026]
FIG. 16 is a graph showing respective deformation behaviors according to the conventional structure and the present invention. According to the figure, in the case of the conventional structure, when the circumferential tension increases and exceeds the toughness limit, the strip rebar breaks or comes off and collapses (see the graph (1) in the figure). On the other hand, in the present invention, when the highly ductile material 21 or the highly ductile covering material 121 is wound around the column 13 which is one of the members (structural members) 15, the displacement of the highly ductile material 21 or the highly ductile covering material 121 is started simultaneously with the start of displacement. Although a load is applied to 121, it can be seen that even if the steel strip breaks or comes off, it can be prevented from collapsing and can hold the load (see the graph (2) in the figure). Further, in the present invention, when the high ductility coating material 131 is installed in the gap 117 between the column 13 and the decorative enclosing wall material 115, the high ductility coating material 131 does not exceed the toughness limit of the column 13. The load is not applied, and the high ductility coating material 31 is loaded only after the steel bar breaks or comes off beyond the toughness limit, but it can escape from collapse and hold the load (graph 3 in FIG. 3). See the figure).
[0027]
Next, the tensile strength to be provided in the high ductility material or high ductility coating material used in the present invention will be specifically described with calculation examples below. When structural members and other members (for example, columns) are broken into concrete masses and deformed rebars, their mechanical behavior becomes complicated, but they are generally regarded as granular materials with internal friction. Can be. Therefore, a highly ductile material is required to have a mechanical function that can hold a member (for example, a column) after it is broken and can be a net or a bag that resists an axial force. Further, it is required that the bag is not broken by the pressure generated in the bag due to the axial force.
[0028]
FIG. 18 is a schematic view of a three-axis test apparatus widely used in the field of soil mechanics to test the relation between the axial force and the confining pressure of a granular material such as soil or debris to clarify such a relation. FIG. In this case, the granular material is filled in the container 5 including the canopy 6 and the bottomed peripheral side surface 7, and the axial force P is applied under a state where the water pressure W is applied from the side surface 8 via the thin film. Assuming that the internal friction of the granular material is φ, it is known that the following relationship exists between the vertical axial force P and the constraint pressure S. Here, A indicates the area of the canopy 6 (the cross-sectional area of the container 1).
P / A = (1 + sinφ) / (1-sinφ) S5)
When the diameter of the container 5 in the plane direction is D, the constraint pressure S and the tension T per unit width T S Has the following relationship:
T S = 1 / 2DS 6)
The effect of the high ductility material (high ductility coating material) in the present invention is based on the assumption that the collapsed reinforced concrete columns correspond to the granular material, and from the above relational expressions 5) and 6), the high ductility material (high ductility coating material). ) Determines the relationship with the required strength T that does not break when subjected to the axial force P required to avoid the collapse of the structure. Here, B indicates the cross-sectional area of the column head.
T = (1−sinφ) D · P / 2 (1 + sinφ) B 7)
Further, the axial force P required to avoid the collapse of the structure can be calculated by the following formula.
P = fW / N p 8)
Where W is the total weight of the structure above that floor, N p Indicates the total number of columns on the floor, and f indicates a safety factor in consideration of the variation of the load per one, and can be calculated from a plan view of a concrete structure.
As described above, the required tensile strength of the high ductility material can be determined by calculation. However, from the viewpoint of preventing circumferential deformation of the high-ductility material within an allowable value to prevent excessive deformation of the structure, the required strength T calculated by Expression 7) and the allowable strain X of the high-ductility material are used. 0 Thus, the required number of turns or the thickness of the high ductility material can be determined in the manner of the above formula 2) or formula 4).
[0029]
Next, a calculation example in which the above formula is applied to a specific example will be described. That is, among the reinforced concrete structures generally seen in Japan, the buildings constructed before 1980 are usually about 11.8 kN / m on each floor. 2 Have the weight of. Of these, of medium size, floor area 200m per floor 2 , 4 stories, head section 3500cm 2 The following calculation is made by taking a column having 12 pillars as an example.
Total weight to be supported W = 200 × 11.8 × 4 = 9440kN
Axial force per pillar P = 2 x 9440/12 = 1573 kN
However, it is calculated as f = 2 in Equation 8).
Required strength of high ductility material (high ductility coating material) T = 327N / mm
However, in equation 7), φ = 40 degrees, D = 67 cm, B = 3500 cm 2 ,
Calculated as P = 1573 kN. Here, D was calculated as the diameter of the cross-sectional area B.
As the sheet material made of the fiber fabric having the required strength in the above calculation example, for example, there is a product number “NSB2000” (4.7 mm thick) in a trade name “Tresheet” manufactured by Toray Industries, Inc. In addition, the product number “800T” (thickness: 1.26 mm) in the same product name has a strength of 283 N / mm, and therefore, when two of them are used, it can withstand a tensile force of 566 N / mm. Can be sufficiently used for the reinforcement example. As a sheet material made of a rubber material, for example, there is a synthetic polymer-based / vulcanized rubber-based product name “Geoliner” manufactured by Bridgestone Corporation. Under the trade name “Geoliner”, a strength test result of 13.2 N / mm 2 was obtained. If this is used with a thickness of about 2.5 cm, required strength can be obtained.
The nominal strength of the above-mentioned "Tresheet" appears at a strain of 15%, during which the strain and the tension are in a substantially proportional relationship. Therefore, when two 800Ts are used in a stack, the strain at which the required strength is exhibited is 327/566 × 15% = 8.7%. If the strain in the circumferential direction is to be kept within 5%, by using four 800T layers, the strain developed at the required strength is 327 / (283 × 4) × 15% = 4.3%. It can be. When a rubber-based material is used, the tension and the strain have a non-linear relationship, but the strain of the highly ductile material should be suppressed to within the allowable strain in the same manner as in the above-mentioned examples, as in the above equations 3) and 4). The required thickness can be calculated and obtained.
[0030]
In particular, in the present invention, it is possible to cope with a deformation of 2% or more (fracture strain of iron) or more. In particular, when a synthetic fiber sheet material is used as the high ductility material (high ductility coating material), 15% is used. In the case where a rubber-based sheet material is used, the deformation of up to 100% (upper limit on the quality characteristics of the material is up to 690%) can be dealt with. In addition, even when the above-described sheet material is used, the fracture area gradually expands to the periphery due to the effect of the sheet material in the peripheral portion that has not been torn even after the sheet material is fractured, resulting in an axial strain of 50% or more. It has been experimentally found that the fracture can be controlled even under the deformation.
[0031]
In addition, as shown in FIGS. 19A and 19B, at the time of an earthquake, an inertial force acts on the structure 11 to generate displacement. In response to this, the force F repeatedly acts on each of the columns 13 as the members (structural members) 15 to generate the displacement X while absorbing energy. FIG. 20 (a) shows the state of absorbed energy per cycle obtained in the case of no reinforcement or reinforcement in the conventional method, and FIG. 20 (b) shows the state of energy absorbed per cycle obtained by the present invention. It is a graph which shows the state of absorbed energy, respectively. In FIGS. 20A and 20B, a solid line indicated by (1) indicates a monotonous load, and an area indicated by (2) indicates a repeated load.
[0032]
As is apparent from these figures, the member (for example, the column 13) 15 reinforced by the present invention such as a structural member has a large absorption energy to withstand large deformation. When all of the kinetic energy stored in the structure 11 due to the action of the earthquake is absorbed by irreversible motion such as friction generated inside the structure 11 and the surrounding ground G, the vibration of the structure 11 stops. Since the member (for example, the column 13) 15 reinforced by the present invention has a large absorption energy per cycle, the number of cycles, that is, the vibration in a short time, that is, the vibration in a short time is smaller than that of an unreinforced structure or a structure reinforced by a conventional method. It is possible to obtain a damping effect of terminating. In addition, by controlling the destruction of members, the upper limit of the load transmitted to the surrounding area is suppressed, and large deformation and strain can be generated under this load. A so-called seismic isolation effect that limits the input amount can also be obtained.
[0033]
Furthermore, the present invention can also be applied to emergency rehabilitation work before rebuilding a building or performing necessary rehabilitation work. That is, the present invention is not only effective as a method for preventing collapse when performing building demolition work, but also takes a long period of time for the reinforcement work by the conventional method, and the space between the reinforced part and the unreinforced part is reduced. It can also contribute effectively as an emergency measure against an increase in danger during an earthquake in a state where a strong imbalance has occurred. Moreover, according to the present invention, the dimensions and material strength specifications of various members including the structural members constituting the building can be reduced, so that the construction cost can be reduced as compared with the conventional method.
[0034]
Furthermore, the present invention can also obtain the effect of preventing collapse without removing the mold after using it as a fabric mold at the time of placing concrete.
[0035]
【The invention's effect】
As described above, according to the present invention, when a high-ductility material or a high-ductility coating material is fixed to various members including a structural member in a building, a high-ductility material or a high-ductility coating material is simultaneously provided with the start of displacement. Despite the burden, it can support the load while securing the space between the ceiling and the floor or between the floors even if the structure collapses due to the breakage or detachment of the strip rebar, so it is a fail-safe that is effective for rescuing human lives in the event of an earthquake The effect can be obtained.
[0036]
Further, according to the present invention, even if a member including a structural member in a structure undergoes a large deformation, the structure can have a function of supporting the weight of the structure. Can be absorbed, and a vibration damping effect of suppressing vibration of the building due to the seismic motion can be obtained. In addition, by controlling the destruction of members, the upper limit of the load transmitted to the surroundings is suppressed, and large deformation and strain can be generated under this load. As a result, sudden external forces such as earthquakes are input to the building A so-called seismic isolation effect that limits the amount of vibration can also be obtained.
[0037]
Furthermore, the present invention is not only effective as a method for preventing collapse when performing building demolition work, but also takes a long time to reinforce construction by the conventional method, and thus, between the reinforced portion and the unreinforced portion. It can also contribute effectively as an emergency measure against an increase in danger due to an earthquake in a situation where a strong imbalance is occurring. In other words, the present invention can be suitably applied to emergency rehabilitation work until rebuilding of a building or necessary rehabilitation work is performed.
[0038]
In addition, according to the present invention, installation can be performed in a short time with simple construction, so that installation work costs can be reduced. In addition, the dimensions and material strength specifications of various members including structural members can be reduced to reduce material costs. Can be greatly reduced, and the construction cost of the structure itself can be reduced as compared with the conventional method.
[0039]
Further, according to the present invention, it is possible to carry out the work simply and quickly without requiring a skilled worker, and it is also possible to easily carry out the work even on a partially damaged member. For this reason, by stockpiling a high ductility material or a high ductility coating material and a fixing member such as an adhesive in advance, an emergency reinforcement required for a large number of structures at the time of a sudden disaster such as an earthquake is quickly performed. be able to. In addition, by performing the construction in parallel with the emergency risk determination, even if the judge is involved in the collapse of the structure due to aftershocks or the like, the risk of injury or death can be significantly reduced. .
[0040]
In addition, when a high ductility coating is installed in the gap between the column and the decorative wall material, the high ductility coating is not loaded until the column's toughness limit is exceeded, and the ductility limit is exceeded. Although the load on the high ductility coating material is applied only after the reinforcing bar breaks or comes off, even after the building collapses, it can support the load while securing the space between the ceiling and the floor or the upper and lower floors, It can effectively contribute to saving lives.
[0041]
Furthermore, in the case of using the roll-shaped core-wound high-ductility material according to the present invention, the maximum number of spiral turns of the member can be easily grasped without using a measuring instrument or the like, so that efficient construction can be performed. it can. Such simple construction means that not only can new and existing components be reinforced quickly and accurately, but also that they can be used effectively as a stockpile that can respond immediately in the event of an emergency. ing. That is, although the number of turns of the high ductility material with respect to the member is determined by the maximum load to be supported by the member, the number of turns varies depending on the applied structure. Even in such a case, by using the roll-shaped core-wound high-ductility material according to the present invention, since the same high-ductility material can be used immediately from single winding to multiple windings, the relationship with the structure to be applied in advance can be determined. It can be stored without question and applied immediately to the structures in the event of a disaster. In particular, when each lane marking is drawn so that it can be distinguished visually or tactilely, individual lane markings can be easily distinguished at the construction site. By making the end portion of the high ductility material along the convex portion, it is possible to more reliably and easily wind the material, thereby effectively contributing to the improvement of work efficiency.
[0042]
In the present invention, when the high ductility material is wound into a spiral or a roll, the facing portions between the high ductility materials in the longitudinal direction of the member at a rate of one place per circumference via an adhesive. In this case, even after a certain layer of the high ductility material is broken, it is possible to effectively avoid a situation in which the remaining layer immediately loses the tension.
[Brief description of the drawings]
FIG. 1 is an overall perspective view showing a structural example of a high ductility material used when the present invention is applied to a new or existing pillar whose members (structural members) are mainly made of concrete.
FIG. 2 is a cross-sectional view of a main part showing an application example of the present invention, taking as an example a wall which is an existing structural member mainly made of concrete as a member of a building, and (a) of FIG. (B) shows a state in which high-ductility materials are separately arranged on the side surface, and (b) shows a state in which a through-hole necessary for inserting a connecting cord for connecting the high-ductility materials to each other is shown in (c). Indicates a state in which the high ductility materials are connected to each other by the connecting cords inserted through the through holes.
FIG. 3 is a view showing another example of the present invention in which a member of a building is an existing column mainly made of concrete, in which (a) shows a highly ductile material formed in a strip shape on the outer peripheral surface of the column. And (b) show the state of packing at the time of stockpiling, respectively.
FIG. 4 is an overall perspective view showing another example of a state in which a highly ductile material is spirally wound.
FIG. 5 is an explanatory view schematically showing a winding state of a high ductility material in another example shown in FIG. 4;
FIG. 6 is an explanatory view showing an example of a roll-shaped core-wound high ductility material according to the present invention.
FIGS. 7A and 7B are explanatory diagrams illustrating a state in which a high ductility material is wound in a triple roll shape, wherein FIG. 7A is a perspective view of a main part and FIG. 7B is a cross-sectional view of FIG. .
8 is an overall perspective view showing a state in which the example shown in FIG. 7 is divided into three parts and formed.
FIG. 9 is a schematic perspective view showing another example of the present invention, in which (a) shows the positional relationship between an existing column and a high-ductility coating material, and (b) shows a high-ductility coating material wound around the column. The later states are shown respectively.
FIGS. 10A and 10B are explanatory views showing still another example of the present invention, in which FIG. 10A is a schematic perspective view, and FIG. 10B is a cross-sectional view taken along the line AA in FIG. Show.
FIG. 11 is a perspective view of an essential part showing an example of a case where the highly ductile covering material shown in FIG. 10 is formed by a bellows-like reinforcing material.
FIG. 12 is a diagram illustrating a state of a building (building) to which the present invention is applied, in which (a) shows a state before collapse and (b) shows a state after collapse.
13A and 13B are explanatory diagrams of a state in which a member (structural member) to which the present invention is applied is a pillar, in which (a) shows a state before destruction and (b) shows a state after destruction, respectively.
14A is a diagram illustrating a load when a member (structural member) to which the present invention is applied is a beam and a state after being deformed, and FIG. 14B is a diagram illustrating a load when a member is a floor. An explanatory view of the state after receiving the deformation, and (c) shows an explanatory view of the load in the case of the wall and the explanatory view after receiving the deformation, respectively.
FIG. 15 is a graph showing a deformation behavior until a member (structural member) to which the present invention is applied is a column and is deformed and destroyed.
FIG. 16 is a graph showing the behavior of a member (structural member) until it is deformed and destroyed when the member is a pillar, comparing the conventional structure with the structure of the present invention.
FIGS. 17A and 17B are state explanatory diagrams showing deformation when a member (structural member) to which the present invention is applied is a pillar, in which FIG. 17A shows a normal state, and FIG. , (C) show the destroyed state, respectively.
FIG. 18 is a schematic explanatory view showing a three-axis test apparatus widely used in the field of soil mechanics.
FIGS. 19A and 19B are explanatory diagrams showing a relationship between a force and a displacement acting on a column as a structure and a member (structural member) during an earthquake, as (a) and (b).
FIG. 20 is a graph showing the state of absorbed energy per cycle of a column as a member (structural member), in which (a) shows a case of a conventional column, and (b) shows a column of the present invention. Are shown below.
FIG. 21 is an explanatory view showing a load acting on a pillar as a member (structural member) and a direction in which a displacement is received.
FIG. 22 is a graph showing deformation behavior before and after reinforcement by the conventional structure when the load and displacement shown in FIG. 20 occur on a column as a member (structural member).
FIGS. 23A and 23B show a phenomenon in which an apparent volume increases with the destruction of a member, before the destruction, and as shown in FIG.
24 (a) and 24 (b) are explanatory diagrams showing a state in which a column as a member (structural member) corresponding to the deformation behavior shown in FIG. 21 is deformed. (C) shows the state after the start, respectively.
FIG. 25 is an explanatory diagram showing a state after a beam as a member (structural member) to which the present invention is not applied is deformed.
[Explanation of symbols]
1 pillar (conventional example)
2 Member end face
3 Side of member
4 Destruction surface
5 containers
6 canopy
7 bottomed peripheral side
8 sides
9 broken pieces
10 Envelope
11 Structure
12 floors
13 pillars (application example of the present invention)
14 Outer surface
15 members (including structural members)
15a One side
15b Other side
16 beams (girder)
17 Wall
18 through hole
19 Space
20 Cracks
21 High ductility materials
21a Contact part
21b side edge
22 Seat part
23 One end
24 Other end
25 core cord
26 insertion hole
27 Reinforcement members
28 Eyelet
29 Patch cloth
30 String material for connection
32 upper end
33 malleable part
34 Central
35 adhesive
35, 35a adhesive
42 Start
43 Termination
44, 45, 46, 47, 48 Face to face
49 core material
50 lot lines
51 Upper edge
52 Lower edge
121 High ductility coating material
121a, 121b Butt end
122 sheet material
131 High ductility coating material
132 Bellows reinforcement
133 core material
134 sheet material

Claims (11)

構築物の部材の外周面に補強材を配置し、該補強材により、前記部材の破壊に伴う見掛けの体積膨張拘束して、その破壊を制御し、部材が破壊した後も構築物の荷重を分担し、その形状を実質的に保持しうるようにする特徴とする構築物の補強方法。A reinforcing material is arranged on the outer peripheral surface of a member of the building, and the reinforcing member restrains the apparent volume expansion accompanying the breaking of the member, controls the breaking, and shares the load of the building even after the member is broken. And a method of reinforcing a structure characterized by being able to substantially retain its shape. 構築物の部材との間に空隙または弱層を介在させて補強材を配置し、該補強材により、前記部材の破壊に伴う見掛けの体積膨張拘束して、その破壊を制御し、部材が破壊した後も構築物の荷重を分担し、その形状を実質的に保持しうるようにする特徴とする構築物の補強方法。
配置し、変形後の前記柱の荷重を保持させることを特徴とする構築物の補強方法。
A reinforcing material was arranged with a void or a weak layer interposed between the members of the structure, and the reinforcing material restrained the apparent volume expansion accompanying the destruction of the member, controlled the destruction, and the member was broken. A method of reinforcing a building, characterized in that the load of the building is shared even afterwards, and the shape can be substantially maintained.
A method for reinforcing a building, comprising arranging and holding a load of the column after deformation.
構築物の部材との間に空隙または弱層を介在させて周回配置されている囲壁材の内周面側に帯鉄筋よりも弾性係数の低い素材からなる高延性補強材を設置し、変形後の前記柱の荷重を保持させることを特徴とする構築物の補強方法。A high-ductility reinforcing material made of a material having a lower elastic modulus than the band rebar is installed on the inner peripheral surface side of the surrounding wall material that is circulated with a void or a weak layer interposed between the members of the structure, and after the deformation. A method for reinforcing a building, wherein a load of the column is held. 前記高延性補強材は、前記空隙または弱層を介して上下方向に所定間隔をおいて周回芯材を多段に配設し、隣り合う周回芯材相互を鉛直方向にて繊維系もしくはゴム系のシート材で一体的に連結して連続させた蛇腹状補強材により形成することを特徴とする請求項3に記載の構築物の補強方法。The high ductility reinforcing material is disposed in multiple stages at a predetermined interval in the vertical direction through the gap or the weak layer, the surrounding core material is arranged in multiple stages, and the adjacent surrounding core materials are fiber-based or rubber-based in the vertical direction. The method for reinforcing a building according to claim 3, wherein the reinforcing member is formed of a bellows-like reinforcing member that is integrally connected and continuous with a sheet material. 構築物を支える柱との間に空隙または弱層を介在させて周回配置される化粧用囲枠材の内周面側に帯鉄筋よりも弾性係数の低い素材からなる高延性補強材を設置したことを特徴とする構築物の補強方法。A high-ductility reinforcing material made of a material with a lower elastic modulus than that of the steel bar has been installed on the inner peripheral surface side of the decorative frame material that is circulated with a void or a weak layer interposed between the pillars supporting the structure and the gap. A method for reinforcing a building characterized by the following. 前記高延性補強材は、前記空隙を介して上下方向に所定間隔をおいて多段に配設される周回芯材と、隣り合う周回芯材相互を鉛直方向にて一体的に連結する繊維系もしくはゴム系のシート材とで連続形成された蛇腹状補強材であることを特徴とする請求項5に記載の構築物の補強方法。The high ductility reinforcing material is a fiber core or a fiber core that integrally connects adjacent cores in the vertical direction with a plurality of cores arranged in multiple stages at predetermined intervals in the vertical direction through the gap. The method of reinforcing a building according to claim 5, wherein the reinforcing member is a bellows-like reinforcing material continuously formed with a rubber-based sheet material. 前記高延性補強材は、前記空隙または弱層を介して上下方向に所定間隔をおいて周回芯材を多段に配設し、隣り合う周回芯材相互を鉛直方向にて繊維系もしくはゴム系のシート材で一体的に連結して連続させた蛇腹状補強材により形成することを特徴とする請求項5または6に記載の構築物の補強方法。The high ductility reinforcing material is disposed in multiple stages at a predetermined interval in the vertical direction through the gap or the weak layer, the surrounding core material is arranged in multiple stages, and the adjacent surrounding core materials are fiber-based or rubber-based in the vertical direction. The method for reinforcing a building according to claim 5, wherein the reinforcing member is formed of a bellows-like reinforcing member integrally connected with a sheet material and continuous. 構築物の部材との間に空隙または弱層を介在させて周回配置されている囲壁材の内周面側に帯鉄筋よりも弾性係数の低い素材からなる高延性補強材を設置し、変形後の前記柱の荷重を保持させることを特徴とする構築物の補強構造。A high-ductility reinforcing material made of a material having a lower elastic modulus than the band rebar is installed on the inner peripheral surface side of the surrounding wall material that is circulated with a void or a weak layer interposed between the members of the structure, and after the deformation. A reinforcing structure for a building, wherein a load of the column is held. 前記高延性補強材は、前記空隙または弱層を介して上下方向に所定間隔をおいて周回芯材を多段に配設し、隣り合う周回芯材相互を鉛直方向にて繊維系もしくはゴム系のシート材で一体的に連結して連続させた蛇腹状補強材により形成することを特徴とする請求項7に記載の構築物の補強構造。The high ductility reinforcing material is disposed in multiple stages at a predetermined interval in the vertical direction through the gap or the weak layer, the surrounding core material is arranged in multiple stages, and the adjacent surrounding core materials are fiber-based or rubber-based in the vertical direction. The reinforcement structure for a building according to claim 7, wherein the reinforcement structure is formed of a bellows-like reinforcement member which is integrally connected and continuous with a sheet material. 構築物を支える柱との間に空隙または弱層を介在させて周回配置される化粧用囲枠材の内周面側に帯鉄筋よりも弾性係数の低い素材からなる高延性補強材を設置したことを特徴とする構築物の補強構造。A high-ductility reinforcing material made of a material with a lower elastic modulus than that of the steel bar has been installed on the inner peripheral surface side of the decorative frame material that is circulated with a void or a weak layer interposed between the pillars supporting the structure and the gap. A reinforcement structure for a building characterized by the following. 前記高延性補強材は、前記空隙または弱層を介して上下方向に所定間隔をおいて周回芯材を多段に配設し、隣り合う周回芯材相互を鉛直方向にて繊維系もしくはゴム系のシート材で一体的に連結して連続させた蛇腹状補強材により形成することを特徴とする請求項9に記載の構築物の補強方法。The high ductility reinforcing material is disposed in multiple stages at a predetermined interval in the vertical direction through the gap or the weak layer, the surrounding core material is arranged in multiple stages, and the adjacent surrounding core materials are fiber-based or rubber-based in the vertical direction. 10. The method for reinforcing a building according to claim 9, wherein the reinforcing member is formed of a bellows-like reinforcing member integrally connected with a sheet material to be continuous.
JP2003177856A 1999-12-27 2003-06-23 Method of reinforcing construction and its structure Pending JP2004003346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003177856A JP2004003346A (en) 1999-12-27 2003-06-23 Method of reinforcing construction and its structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP37061499 1999-12-27
JP2000121405 2000-04-21
JP2000147916 2000-05-19
JP2003177856A JP2004003346A (en) 1999-12-27 2003-06-23 Method of reinforcing construction and its structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000324464A Division JP3484156B2 (en) 1999-12-27 2000-10-24 Building reinforcement method and structure

Publications (1)

Publication Number Publication Date
JP2004003346A true JP2004003346A (en) 2004-01-08

Family

ID=30449468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003177856A Pending JP2004003346A (en) 1999-12-27 2003-06-23 Method of reinforcing construction and its structure

Country Status (1)

Country Link
JP (1) JP2004003346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213801A (en) * 2004-01-28 2005-08-11 Asahi Kasei Construction Materials Co Ltd Earthquake resistant reinforcing construction method for foundation
CN105089288A (en) * 2014-05-06 2015-11-25 中冶建筑研究总院有限公司 Steel structural beam anti-fatigue reinforcing method
JP2018053706A (en) * 2016-09-23 2018-04-05 一般財団法人電力中央研究所 Method for repairing concrete structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132323A (en) * 1978-04-05 1979-10-15 Rasa Tokushiyu Kouji Kk Waterrproof repair method of structure wall surface
JPH10205146A (en) * 1997-01-24 1998-08-04 Taisei Corp Method of applying fiber reinforced sheet onto reinforced concrete column
JPH10311146A (en) * 1997-03-11 1998-11-24 Asahi Chem Ind Co Ltd Reinforcing method for concrete structure
JP2002038726A (en) * 1999-12-27 2002-02-06 Structural Quality Assurance Inc Reinforcing method of construction and its structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132323A (en) * 1978-04-05 1979-10-15 Rasa Tokushiyu Kouji Kk Waterrproof repair method of structure wall surface
JPH10205146A (en) * 1997-01-24 1998-08-04 Taisei Corp Method of applying fiber reinforced sheet onto reinforced concrete column
JPH10311146A (en) * 1997-03-11 1998-11-24 Asahi Chem Ind Co Ltd Reinforcing method for concrete structure
JP2002038726A (en) * 1999-12-27 2002-02-06 Structural Quality Assurance Inc Reinforcing method of construction and its structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213801A (en) * 2004-01-28 2005-08-11 Asahi Kasei Construction Materials Co Ltd Earthquake resistant reinforcing construction method for foundation
CN105089288A (en) * 2014-05-06 2015-11-25 中冶建筑研究总院有限公司 Steel structural beam anti-fatigue reinforcing method
CN105089288B (en) * 2014-05-06 2017-07-28 中冶建筑研究总院有限公司 The antifatigue reinforcement means of steel structure girder
JP2018053706A (en) * 2016-09-23 2018-04-05 一般財団法人電力中央研究所 Method for repairing concrete structure

Similar Documents

Publication Publication Date Title
JP3484156B2 (en) Building reinforcement method and structure
Kiakojouri et al. Strengthening and retrofitting techniques to mitigate progressive collapse: A critical review and future research agenda
US10378208B2 (en) Steel-fiber composite material concrete combined column, and post-earthquake repair method thereof
CA2820820C (en) Coupling member for damping vibrations in building structures
US9175469B2 (en) Self-reinforced masonry blocks, walls made from self-reinforced masonry blocks, and method for making self-reinforced masonry blocks
JP2005330802A (en) Frame with buckling-restrained brace
CN105484152B (en) A kind of bridge pier of additional mild steel damper and cushion cap attachment structure
JP2015004229A (en) Pc earthquake-poof joining structure and pc earthquake-proof joining method of column-beam of using steel frame pin
JP3872010B2 (en) Structure reinforcing method and structure
Ferraioli et al. Progressive collapse analysis and retrofit of a steel-RC building considering catenary effect
JP2004003346A (en) Method of reinforcing construction and its structure
JP5990003B2 (en) Structure and reinforcing method thereof
JP2014074264A (en) Aseismic/insulation-coated reinforced-concrete structure and structure employing the same
KR100471509B1 (en) Method, material and construction for reinforcing a structure
JP2001140343A (en) Theree-storied dwelling house
JP7393816B2 (en) Structural base material, structural member, structure, and construction method of structural member
JP6031632B1 (en) Displacement limiting device used for seismic isolation structure and method of introducing pre-compression
Nesheli et al. External prestressing concrete columns with fibrous composite belts
JP2016075121A (en) Earthquake-resistant and tsunami-resistant reinforcement method for existing bridge pier subjected to action of earthquake and tsunami
Leslie et al. Seismic design and behavior of external reinforced concrete beam-column joints using 500E grade steel reinforcing
McKay et al. Steel Frame Structure Performance in Blast Environments
Schultz et al. Study of the cyclic interaction in steel frames with composite RC infill walls
IT201700018406A1 (en) ANTI SEISMIC SHELL
Alameddine et al. Kevin I. Keady
Balendra et al. Earthquake-resistant Design of Buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090331

A131 Notification of reasons for refusal

Effective date: 20100629

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026