JP3871792B2 - 燃料電池装置 - Google Patents

燃料電池装置 Download PDF

Info

Publication number
JP3871792B2
JP3871792B2 JP35807297A JP35807297A JP3871792B2 JP 3871792 B2 JP3871792 B2 JP 3871792B2 JP 35807297 A JP35807297 A JP 35807297A JP 35807297 A JP35807297 A JP 35807297A JP 3871792 B2 JP3871792 B2 JP 3871792B2
Authority
JP
Japan
Prior art keywords
fuel cell
tank
hydrogen
pressure
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35807297A
Other languages
English (en)
Other versions
JPH11185792A (ja
Inventor
秀人 久保
良雄 木村
信雄 藤田
博史 青木
宏之 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP35807297A priority Critical patent/JP3871792B2/ja
Publication of JPH11185792A publication Critical patent/JPH11185792A/ja
Application granted granted Critical
Publication of JP3871792B2 publication Critical patent/JP3871792B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリフォ−マ、水素吸蔵合金内蔵タンクおよび燃料電池のセットを含む燃料電池装置に関する。
【0002】
【従来の技術】
実開平6−82756号公報は、炭化水素またはメタノ−ルから水素含有ガス(以下、反応ガスともいう)を発生する改質器(リフォ−マ)、燃料電池(セル)を用いる燃料電池装置において、リフォ−マと燃料電池との間に水素吸蔵合金内蔵タンク(MHタンク)を付加し、燃料電池の発生電力を用いる電気回路の状態に基づいてMHタンクの授受熱量を制御し、これによりリフォ−マの水素産生レ−トと燃料電池の水素消費レ−トとのアンバランスを一時的(MHタンクの容量分だけ)補償することを提案している。
【0003】
【発明が解決しようとする課題】
しかしながら、上記した従来のMHタンク付き燃料電池装置では、以下の問題点があった。
第一に、MHタンクの水素の吸蔵、放出は、リフォ−マの水素産生レ−トと燃料電池の水素消費レ−トとの差に無関係に、燃料電池の電気回路の状況に応じて行われるので、たとえばリフォ−マの水素産生レ−トの状況にかかわらずMHタンクの水素の吸蔵、放出制御を行うので燃料電池への水素ガス供給が不適切となる可能性が生じた。たとえば、リフォ−マの水素産生レ−トが最大状態となっている場合にMHタンクから水素ガスを放出したとしても燃料電池の最大水素消費能力をオ−バ−してしまい無駄が生じる。
【0004】
また、なんらかの原因でリフォ−マの水素産生レ−トが変動してしまった場合でも、それが燃料電池の電気回路の状況に反映するには時間がかかるので燃料電池の発電に過不足が生じた。
また、上記電気回路における状態変化はその電気負荷、たとえばモータなどのオンオフなどにより頻繁かつ急激に変化するが、MHタンクの水素ガスの吸蔵,放出の切り替えは実際はバルブなどで温熱供給と冷熱供給とを切り替えたとしても、MHタンクの水素吸蔵合金の温度変化がそれほど容易に変化するものではなく、その結果、電気回路の電力状況変化へのMHタンクの水素吸蔵、放出動作の追従遅れにより、電気負荷が増大したにもかかわらずMHタンクは水素吸蔵状態となっていたり、電気負荷が減少したにもかかわらずMHタンクは水素放出状態となっていたりする場合が生じる。
【0005】
更に、電気負荷の変化に応じてMHタンクの水素吸蔵、放出動作を頻繁に切り替えるということは、現実には少し暖まりかけた水素吸蔵合金をすぐに冷やしたり、やっと冷えかけた水素吸蔵合金をまた暖めることになったりすることになって、熱経済上、無駄が多かった。すなわち、原理的にMHタンクは水素吸蔵、放出動作を高速に切り替えたり、変化させたりしにくいので、このような緩慢なMHタンクの水素の吸蔵、放出の切り替え動作を電気負荷の運転状況により高速かつ頻繁に変化する電気回路の状況変化で制御するのは熱経済の観点などから問題があった。
【0006】
次に、上述した従来のMHタンク付き燃料電池装置では、MHタンクの水素吸蔵、放出動作は、単にMHタンクの授受熱量を制御する(切り替える)のみで行うので、動作が遅かった。
更に具体的に説明すれば、通常のバランス(水素消費レ−ト=水素産生レ−ト)状態においてMHタンクの水素分圧は平衡圧力点にある。水素不足が生じ、MHタンクの水素分圧が低下すると、この低下した水素分圧の平衡圧力点に一致するまで水素吸蔵合金から水素が放出されるが、この時、水素吸蔵合金が自己冷却するので、その水素放出能力は急速に低下してしまう。このため外部熱源から水素吸蔵合金の加熱とその昇温が行われるが、これは、熱媒流体の加熱とその昇温を経た後でなされる。
【0007】
しかし、熱媒流体およびその配管、MHタンクの熱容量および熱損失が無視できない大きさであるので、水素吸蔵合金を最終的に十分に高温として、その水素吸蔵量が大幅に減少するレベルまで上記水素分圧の平衡圧力点を低下させるには長い時間が必要となる。これは水素過剰の場合にも同じである。
特に、水素不足状態から水素過剰状態に一気に変化する場合には、外部熱交換器、熱媒流体およびその配管、並びにMHタンクを高温状態から低温状態へシフトする必要があり、上記した平衡圧力点からのシフトよりも更に長い時間が必要となる。
【0008】
すなわち、熱媒流体の温度変化のみによりMHタンクの水素分圧の平衡圧力点をシフトさせる上記従来のMHタンク付き燃料電池装置は、水素補償のレスポンスが遅いという問題があった。
本発明は、上記問題点に鑑みなされたものであり、MHタンクの加熱冷却における熱経済の無駄が少なく、更にMHタンクの水素吸蔵、放出動作のレスポンスも向上可能なMHタンク付きの燃料電池装置を提供することをその解決すべき課題としている。
【0009】
【課題を解決するための手段】
請求項1記載の燃料電池装置では、リフォ−マと燃料電池との間に配設された水素吸蔵合金内蔵タンク(MHタンク)は、圧縮手段及び調圧手段の採用により、少なくとも燃料電池の燃料極の作動圧より格段に高圧(リフォ−マの水素産生レ−トと燃料電池の水素消費レ−トとが一致する均衡状態で少なくとも1kg/平方cmG以上)で使用され、更に、MHタンクの水素吸蔵、放出動作を制御するための熱量授受はリフォーマの水素産生レ−トと燃料電池の水素消費レ−トとの差に関連する状態量に基づいてなされる。
【0010】
なおここでいう圧縮手段とは、請求項3で記載するようにリフォ−マへ原燃料を供給するポンプ、又は、請求項4で記載するようにリフォ−マから産生される水素含有ガスを圧縮する圧縮機を意味する。
このようにすれば以下の作用効果を奏することができる。
まず、本構成では、圧縮手段及び調圧手段の採用により燃料電池の作動圧力より格段に高圧で用いられるので、MHタンクの水素吸蔵、放出動作のレスポンス遅れを改善することができる。
【0011】
更に詳しく説明すれば、いま燃料電池の水素消費レ−トが急に増大してその作動圧力が急低下したとする。すると、調圧手段が開いてMHタンクから燃料電池への水素含有ガス放出レ−トが増大し、MHタンクの圧力が低下する。すると、この圧力低下に応じて、MHタンクの水素吸蔵合金は水素ガスを放出する。この時点ではまだMHタンクの水素吸蔵合金と外部熱源との間の熱量授受レ−トの変更は行われないので、この時に水素ガス放出に必要な潜熱は、主に水素吸蔵合金、熱媒流体などの熱容量すなわちその温度低下(顕熱)で賄われる。すなわち、水素吸蔵合金はその熱容量が許す温度低下が上記圧力低下とバランスするまで水素ガスを放出することができ、レスポンスよく燃料電池の水素消費レ−ト増加に対応することができる。もちろん、この圧力低下の限界はMHタンク圧力が燃料電池の作動圧力にほぼ一致する場合である。上述したレスポンス向上効果は同様に燃料電池の水素消費レ−トが急に減少してその作動圧力が急増した場合にも生じることは当然である。
【0012】
次に、本構成では、水素消費レ−トと水素産生レ−トとの差に関するデ−タに応じてMHタンクの授受熱量を変化させるので、言い換えれば、実際のリフォ−マ及び燃料電池の両方の運転状況の差を補償するようにMHタンクを運転するので、MHタンクの水素吸蔵、放出動作と、リフォ−マ及び燃料電池の両方の運転状況の実際の差との間のミスマッチングが生じないという効果を奏する。
【0013】
すなわち、比較的緩慢に変化するMHタンクの水素吸蔵、放出動作は、電力変化よりも緩慢に変化するリフォ−マ及び燃料電池の両方の運転状況の実際の差に応じて変化するのでミスマッチングが生じにくく、かつリフォ−マの水素産生レ−トがなんらかの不具合の発生などの理由で変化してもそれにレスポンスよく対応するので従来の単に電力変化だけでMHタンクの水素吸蔵、放出動作を変更する場合に比較して一層ミスマッチングを減らせ、熱経済の無駄や燃料電池における水素ガスの余剰が生じにくく、効率がよい。
【0014】
請求項2記載の構成によれば、請求項1記載の燃料電池装置において更に、水素吸蔵合金内蔵タンクの圧力に基づいて上記制御を実行するので、制御を簡素な構成で確実に実施することができる。
請求項3記載の構成によれば、請求項1又は2記載の燃料電池装置において、圧縮手段をリフォーマへ原燃料を供給する液ポンプとする。このようにすれば、圧縮手段を簡単に構成でき、圧縮に必要な動力を減らすことができる。
【0015】
請求項4記載の構成によれば請求項1又は2記載の燃料電池装置において更に、圧縮手段をリフォ−マとMHタンクとの間の圧縮機とする。このようにすればMHタンクを燃料電池より十分に高圧下で使用するにもかかわらず、リフォ−マを低圧運転できるので、リフォ−マの耐圧低下によりその軽量化を図ることができる。
【0016】
請求項5記載の構成によれば請求項3又は4記載の燃料電池装置において更に、水素吸蔵合金内蔵タンクの圧力が所定圧より高い場合に圧縮手段を減速し、低い場合に加速する。
このようにすれば、燃料電池の水素消費レ−トの変化に応じて燃料電池への水素供給レ−トを一時的にでも高速追従させることができる。
【0017】
請求項6記載の構成によれば、請求項2乃至5のいずれか記載の燃料電池装置において更に、水素吸蔵合金内蔵タンクの圧力が所定圧より高い場合にリフォ−マの水素産生レ−トを低減させ、低い場合に増大させる。
このようにすれば、緩慢ではあるが、水素産生レ−トと水素消費レ−トとの差を低減して効率を向上することができる。
【0018】
請求項7記載の構成によれば請求項1乃至6のいずれか記載の燃料電池装置において更に、リフォーマで生成された水素含有ガスを直接燃料電池へ供給するバイパス経路を設け、特定の条件、たとえば水素産生レ−トと水素消費レ−トとが一致する場合にバイパス回路を通じてリフォ−マからの水素含有ガスを供給する。このようにすればMHタンクを上記一致状態で切り離すことができ、それによる熱ロスなどを防止することができ、かつ、MHタンクを好ましい圧力状態に制御(たとえば、燃料電池の水素消費レ−トが小さい場合にはMHタンクの水素吸蔵量を大きい状態としたり、燃料電池の水素消費レ−トが大きい場合にはMHタンクの水素吸蔵量を小さくしたりする制御)することができる。
【0019】
【発明の実施の形態】
リフォ−マの原料としては、水素含有ガスを発生可能なものであればよく、たとえばメタノ−ルが好適である。リフォ−マの水素産生レ−トを変更するには、その燃焼器の発生熱量を制御させて実施されるが、この時、リフォ−マへの原料(たとえばメタノ−ルや水)の供給圧も制御することもできる。
【0020】
調圧手段としては、ノズルなどの単純な機構の他、出力圧力を一定に制御するレギュレ−タなどを用いることができる。
燃料電池には、固体高分子電解質型燃料電池が好適である。燃料電池のカソ−ドには空気を過剰に供給することが経済上、一般的であり、その圧縮動力の低減のために、燃料電池の運転圧力は比較的低いレベルに設定されるのが好ましい。
【0021】
【実施例1】
車両に走行動力を供給するための本発明の燃料電池の一実施例を、その配置図である図1を参照して説明する。
(構成の説明)
1はリフォ−マ(改質器)であって、メタノ−ルタンク2に貯蔵されているメタノ−ルがポンプ3で加圧されて供給され、同様に水タンク4に貯蔵されている水がポンプ5で加圧されて供給される。ポンプ3、5の流量は、コントロ−ラ6により算出、決定される水素産生レ−トに応じてその回転数の変化により制御され、両ポンプ3、5の最大吐出圧は5kg/平方cmG以上、好ましくは5.5kg/平方cmG程度に設定されている。リフォ−マ1は燃焼器11を内蔵し、この燃焼器11で発生する熱により、原料であるメタノ−ルおよび水を気化させ、水素を主体とする水素含有ガスに改質する。産生された水素含有ガスは、リフォ−マ1の転化器12にてCO濃度を低減された後、MHタンク(水素吸蔵合金内蔵タンク)7に送られる。
【0022】
MHタンク7は、熱交換器および水素吸蔵合金(図示せず)が収容された耐圧容器からなり、内部に水素含有ガスの流通経路を有する。MHタンク7に流入した水素含有ガスは、水素吸蔵合金と水素を授受しながらレギュレ−タ8を通じて所定の基準圧力(ここでは1kg/平方cmG)に調圧されて燃料電池9の燃料極に流入する。
【0023】
燃料電池9は、燃料極に流入する水素含有ガスと、図示しないブロワにより空気極に流入する空気との反応により水を産生して発電するとともに水素ガスが残留する排ガスを排出する。また、燃料電池9は熱を発生するので、その冷却のために水が循環される。この実施例では、MHタンク7の水素放出時には、後述する循環ポンプ16の運転により燃料電池9とMHタンク7との間での温水を循環させ、燃料電池9の発生熱をMHタンク7に与えている。また、MHタンク7の水素放出時以外では、図示しない循環ポンプの運転により燃料電池9の発生熱は外部のラジエ−タに排出される。また、燃料電池9の排ガスは図示しないバルブを通じてリフォ−マ1の燃焼器11に送られてメタノ−ルとともに燃焼される。燃料電池9で発生した電力は図示しない電気回路を通じて負荷に給電される。なお、燃焼器11の発生熱量はポンプ3、5によりリフォ−マ1に供給される原燃料を処理するのに必要十分であるように調節される。
【0024】
15はファン付きの外部熱交換器(ラジエ−タ)であって、この外部熱交換器15で冷却された冷水は切り替えバルブ17、循環ポンプ16、熱交換器71、外部熱交換器15と循環して水素吸蔵合金を冷却する。また、水素吸蔵合金の加熱時には、上述したように循環ポンプ16から送出された水は、熱交換器71、燃料電池9、切り替えバルブ18と循環して水素吸蔵合金を加熱する。
【0025】
20はMHタンク7の圧力を検出する圧力センサであり、この実施例では、このMHタンク7の圧力に基づいて各種制御を実行する。なお、リフォ−マ1の水素産生レ−トと燃料電池9の水素消費レ−トとの差に応じた状態量としては、MHタンク7の圧力の他にMHタンク7を循環する水の温度などでもよい。
(基本動作の説明)
以下、この燃料電池装置の基本動作を説明する。
【0026】
ポンプ3、5を駆動し、レギュレ−タ8の調圧により燃料電池9の内圧が1kg/平方cmGとなるように調整し、燃料電池9から排出される排ガスはリフォ−マ1の燃焼器11でメタノ−ルとともに燃やされ、リフォ−マ1は改質反応により水素含有ガスを産生する。リフォ−マ1が立ち上がるまでのリフォ−マ起動初期において、リフォ−マ1の水素産生レ−トの不足を補償するためにMHタンク7になんらかの方法で発生させた温水を送って水素ガスを放出させることができ、燃料電池9の運転の停止後のリフォ−マ1の運転終了に際してリフォ−マ1から産生される水素含有ガス中の水素ガスをMHタンク7に吸蔵するためにMHタンク7をラジエ−タ15で冷却することができる。
(制御動作の説明)
次に、リフォ−マ1、MHタンク7及び燃料電池9の能力制御について説明する。これらの能力制御を無段階制御することは当然可能であるが、この実施例では説明及び制御動作を簡単とするために多段階制御を行うものとして説明する。
【0027】
(リフォ−マ1の制御)
リフォ−マ1の水素産生レ−トは、制御を簡単とするために、相対数値で表示して、最大(100%運転=1)、中間(50%運転=0.5)、停止(0)の3段階に制御するものとし、この制御はポンプ3、5の回転数の調節すなわちリフォ−マ1への原燃料の供給量を上記3段階に調節することにより行い、それに応じてリフォ−マ1の燃焼器11の発生熱量もメタノ−ル供給量の調節により上記3段階に変更する。ただ、この実施例では、MHタンク7の圧力を高圧に維持するために、ポンプ3、5の吐出圧は少なくとも燃料電池9への水素含有ガスの送出圧力が1kg/平方cmG以上、この実施例ではMHタンクの圧力が最大限5.5kg/平方cmGに達し得るように設定する。
【0028】
(MHタンク7の制御)
MHタンク7の水素吸蔵、放出レ−トはMHタンクの授受熱量により調節できるので、この実施例では、循環ポンプ16の回転数を全負荷運転、部分負荷運転、停止の三段階に変更して100%吸蔵、50%吸蔵、停止、50%放出、100%放出の5段階に調節するものとする。
【0029】
結局、MHタンク7の100%吸蔵又は100%放出における水素授受量がリフォ−マ1の最大に等しいと簡単のために仮定すると、リフォ−マ1及びMHタンク7の動作の組み合わせにより、MHタンク7から燃料電池9へ供給される水素供給レ−トは相対値で表示すれば、2、1.5、1、0.5、0の5段階に調節できることがわかる。
【0030】
(燃料電池9の制御)
燃料電池9の発電能力(発電可能な電力)は、燃料電池9の燃料極の平均水素分圧と、それに対応して調節される燃料電池9の空気極の平均酸素分圧とにより決定され、これら平均分圧はこれらの極に供給される水素及び酸素の供給レ−トと、これらの極内における水素及び酸素の減少レ−トとに関連し、前者はMHタンク7から燃料電池9への水素含有ガスの流入流量に関連し、後者は燃料電池9の実際の発電量(水生成量)に関連する。したがって、燃料電池9の発電能力の制御としては、発電状況に応じて燃料電池9への水素含有ガス及び空気の流入流量を能動的に調節する場合(能動モ−ド)と、電気負荷の消費電力すなわち燃料電池9の実際の発電量に応じて燃料電池9内の水素分圧及び酸素分圧が変化することにより燃料電池9へ流入する水素含有ガス及び空気の流入流量が受動的に調節される場合(受動モ−ド)との2つが存在する。更に具体的に説明する。
【0031】
まず能動モ−ドついて更に詳しく説明する。
燃料電池9の実際の発電量すなわち電気負荷の電力消費が増大傾向となって燃料電池9への現在の水素及び酸素の供給レ−トにより規定される発電能力を上回る可能性が生じる場合には燃料電池9への水素及び酸素の供給レ−トを両方とも無段階又は段階的に増大させて燃料電池9の発電能力を増大させ、逆の場合には、燃料電池9への水素及び酸素の供給レ−トを両方とも無段階又は段階的に減少させて燃料電池9の発電能力を減少させる。この燃料電池9への水素及び酸素の供給レ−トの能動的な調節は、燃料電池9からリフォ−マ1の燃焼器11へ排出する排ガスの流量を制御する弁を開くことにより行う。たとえば、燃料電池9の発電能力の増大時には、このバルブを開くと排ガス流量の増大により燃料電池9の燃料極の圧力が低下してレギュレ−タ8の出力圧が低下傾向となり、これを補償するためにレギュレ−タ8が開いて水素含有ガス流量を増大させて燃料電池9の燃料極の圧力が基準圧に保持される。同様に、燃料電池9の空気極に空気を送る不図示のブロワの空気流量も上記水素含有ガス流量の増大に応じて増大される。なお、ブロワの空気流量はあらかじめ大きく設定しておいて制御を簡素化してもよい。燃料電池9の発電能力の減少時には上記と逆の動作を行うが、その説明は省略する。
【0032】
次に受動モ−ドについて更に詳しく説明する。
燃料電池9の実際の発電量が増大すると、燃料電池9内の平均水素分圧及び平均酸素分圧が低下してその分だけ燃料電池9の圧力が低下するので、その分だけレギュレ−タ8の補償作用によりMHタンク7から燃料電池9への水素含有ガスの供給レ−トが増加する。なお、あらかじめ空気供給レ−トを多少過剰に設定しておけば、空気側の空気供給レ−トが水素含有ガスの供給レ−トと同じ割合で増加させなくてもよいので制御が簡単または不要となる。燃料電池9の発電量の減少時には上記と逆の動作を行うが、その説明は省略する。
【0033】
なお、上記能動制御と受動制御とを一緒に行ってもよいが、場合によっては受動制御のみを行っても良い。燃料電池9の電気負荷は上記リフォ−マ1の水素産生レ−トの段階調節に合わせて1(100%運転)、0.5(50%運転)、停止の三段階に変化する負荷とすることが特に好ましいが、その他の任意に変化する電気負荷を用いることもできる。
【0034】
また、この実施例のシステムに用いた場合に燃料電池9の最大水素消費レ−トは、リフォ−マ1の最大水素産生レ−トとMHタンク7の最大水素放出レ−トの合計に等しく、この実施例ではリフォ−マ1の最大水素産生レ−トの2倍に設定されいる。これにより燃料電池9は本システムの運転条件下において最大でリフォ−マ1の水素産生レ−トに相当する発電能力の2倍の発電能力をもつように設計されている。
【0035】
次に、マイコン内蔵のコントロ−ラ6によるリフォ−マ1及びMHタンク7の制御例について図2のフロ−チャ−トを参照して以下に説明する。
まず、予めリフォ−マ1及び燃料電池9を所定モ−ドで設定しておく。ただし、この初期時点では、燃料電池9の水素消費レ−トはリフォ−マ1の水素産生レ−トに一致するように設定しておくことが好ましい。
【0036】
次に、圧力センサ20からMHタンク7の圧力Pmhを検出する(S100)。上述したように、MHタンク7の圧力Pmhは上述した燃料電池9の能動的又は受動的な水素消費レ−トの変化により生じる。次に、S101に進み、検出した圧力Pmhに基づいてMHタンク7の制御を行う。
更に詳しく説明すると、圧力Pmhが3.0kg/平方cmG未満の場合は、S102に進んでポンプ16を能力100%で駆動し、バルブ17を閉じ、バルブ18を開き、温熱を100%供給してMHタンク7から100%能力で水素を発生する。
【0037】
圧力Pmhが3.0〜3.5kg/平方cmGの場合は、S103に進んでポンプ16を能力50%で駆動し、バルブ17を閉じ、バルブ18を開き、温熱を50%供給してMHタンク7から50%能力で水素を発生する。
圧力Pmhが4.5〜5.0kg/平方cmGの場合は、S104に進んでポンプ16を能力50%で駆動し、バルブ17を開き、バルブ18を閉じ、冷却水を50%供給してMHタンク7で50%能力で水素を吸収する。
【0038】
圧力Pmhが5.0kg/平方cmG以上の場合は、S105に進んでポンプ16を能力100%で駆動し、バルブ17を開き、バルブ18を閉じ、冷却水を100%供給してMHタンク7により100%能力で水素を吸収する。
S101にて、圧力Pmhが3.5〜4.5kg/平方cmGの範囲にある場合はリフォ−マ1の水素産生レ−トと燃料電池9の水素消費レ−トとがマッチングしているものとしてS100へリタ−ンする。
【0039】
次に、S102、S103では、リフォ−マ1の水素産生レ−トが燃料電池9の水素消費レ−トより小さいわけであるので、現在のリフォ−マ1の水素産生レ−トが50%レ−トかどうかを調べ(S106)、そうであればその水素産生レ−トを100%に変更して(S107)、S100へリタ−ンする。S106にて現在のリフォ−マ1の水素産生レ−トが50%でなければ、更に現在のリフォ−マ1の水素産生レ−トが0%(停止)かどうかを調べ(S108)、0%であれば50%に増大して(S109)、0%であればただちに、S100へリタ−ンする。
【0040】
次に、S104、S05では、リフォ−マ1の水素産生レ−トが燃料電池9の水素消費レ−トより大きいわけであるので、現在のリフォ−マ1の水素産生レ−トが100%レ−トかどうかを調べ(S110)、そうであればその水素産生レ−トを50%に変更して(S111)、S100へリタ−ンする。S110にて現在のリフォ−マ1の水素産生レ−トが100%でなければ、更に現在のリフォ−マ1の水素産生レ−トが50%かどうかを調べ(S112)、50%であれば0%に減らして(S113)、0%であればただちに、S100へリタ−ンする。
【0041】
なお、上記したリフォ−マ1の水素産生レ−トの変更指令から実際のその変更には時間がかかるので、S100からS105に至る制御を実際には多数回繰り返し、S106からS109に至るリフォ−マ1の水素産生レ−トの増大制御、又は、S110からS113に至るリフォ−マ1の水素産生レ−トの減少制御は所定のより長い時間経過した場合に初めて一回だけ実行することが好ましい。
【0042】
【実施例2】
実施例1の変形態様である実施例2の燃料電池装置を図3を参照して説明する。
この燃料電池装置は、図1の燃料電池装置において、リフォ−マ1の出口と燃料電池9の入口との間をバイパスするバイパス経路30を設け、このバイパス経路にレギュレ−タ31を設け、更にリフォ−マ1とMHタンク7との間に逆止弁32を設け、更にリフォ−マ1の出口に圧力センサ33を設けたものである。
【0043】
この実施例では、リフォ−マ1の水素産生レ−トと燃料電池9の水素消費レ−トとが一致する運転状況を検出し、一致する場合にレギュレ−タ31を開いてリフォ−マ1の水素含有ガスをMHタンク7を経由することなく燃料電池9に供給する。
このようにすれば、無用な圧力損失を減らすことができ、また、MHタンク7の水素吸蔵状態を最適レベルに維持することが容易となる。なお、レギュレ−タ31によりバイパスを開始すると、逆止弁32の存在のために圧力センサ20が水素産生レ−トと水素消費レ−トとの差に追従しなくなる可能性があるので、図2の制御は圧力センサ33に基づいて行うことができる。または、この実施例では、圧力センサ20は非常検出用とし、図2の制御は常に圧力センサ33で行ってもよい。
【0044】
【実施例3】
実施例1の変形態様である実施例3の燃料電池装置を図4を参照して説明する。
この燃料電池装置は、図1の燃料電池装置において、リフォ−マ1とMHタンク7との間に圧縮機34を設けたものである。圧縮機34は燃料電池9へ水素を供給する場合にはMHタンク7の圧力を増大させるために運転される。
【0045】
このようにすれば、リフォ−マ1を実施例1よりも格段に低圧で作動させることができるので、その耐圧低下により小型軽量化を図ることができる。
なお、図5は実施例2及び3を組み合わせたものであって、両実施例の作用効果を奏することができる。
【図面の簡単な説明】
【図1】 この発明の実施例1の燃料電池装置のブロック図である。
【図2】 図1の燃料電池装置のリフォ−マ1及びMHタンク7の制御を示すフロ−チャ−トである。
【図3】 この発明の実施例2の燃料電池装置のブロック図である。
【図4】 この発明の実施例3の燃料電池装置のブロック図である。
【図5】 この発明の実施例4の燃料電池装置のブロック図である。
【符号の説明】
1はリフォ−マ、3はポンプ(圧縮手段)、5はポンプ(圧縮手段)、6はコントロ−ラ(制御手段)、7は水素吸蔵合金内蔵タンク(MHタンク)、8はレギュレ−タ(調圧手段)、9は燃料電池、20は圧力センサ(検出手段)。

Claims (9)

  1. 供給される原料から水素含有ガスを産生するリフォーマと、供給される水素含有ガスにより発電する燃料電池と、水素吸蔵合金を内蔵して前記リフォーマと前記燃料電池のアノードとの間に介設される水素吸蔵合金内蔵タンクと、前記水素吸蔵合金内蔵タンクと熱量を授受する外部熱源とを備える燃料電池発電装置において、
    前記水素吸蔵合金内蔵タンクの内部圧力を前記燃料電池の燃料極の作動圧より所定圧以上高く保持する圧縮手段と、
    前記水素吸蔵合金内蔵タンクから前記燃料電池へ供給される水素含有ガスの圧力を前記作動圧に調圧する調圧手段と、
    前記リフォーマの水素産生量と前記燃料電池の水素消費量との差に関連する状態量を検出する検出手段と、
    前記状態量に基づいて前記水素吸蔵合金内蔵タンクと前記外部熱源との熱量授受を制御して前記水素吸蔵合金内蔵タンクの圧力変化を抑圧する制御手段と
    を備えることを特徴とする燃料電池装置。
  2. 請求項1記載の燃料電池装置において、
    前記制御手段は、前記状態量をなす前記水素吸蔵合金内蔵タンクの圧力が所定圧より高い場合に前記水素吸蔵合金内蔵タンクへの冷熱供給を指令し、前記水素吸蔵合金内蔵タンクの圧力が所定圧より低い場合に前記水素吸蔵合金内蔵タンクへの温熱供給を指令することを特徴とする燃料電池装置。
  3. 請求項1又は2記載の燃料電池装置において、
    前記圧縮手段は、前記リフォーマへ原燃料を供給する液ポンプからなることを特徴とする燃料電池装置。
  4. 請求項1又は2記載の燃料電池装置において、
    前記圧縮手段は、前記リフォ−マと前記水素吸蔵合金内蔵タンクとの間に介設される圧縮機からなることを特徴とする燃料電池装置。
  5. 請求項3又は4記載の燃料電池装置において、
    前記制御手段は、前記状態量をなす前記水素吸蔵合金内蔵タンクの圧力が所定圧より高い場合に前記圧縮手段を減速し、前記水素吸蔵合金内蔵タンクの圧力が所定圧より低い場合に前記圧縮手段を加速することを特徴とする燃料電池装置。
  6. 請求項2乃至5のいずれか記載の燃料電池装置において、
    前記制御手段は、前記状態量をなす前記水素吸蔵合金内蔵タンクの圧力が所定圧より高い場合に前記リフォ−マの水素産生レ−トを低減させ、前記水素吸蔵合金内蔵タンクの圧力が所定圧より低い場合に前記水素産生レ−トを増加させることを特徴とする燃料電池装置。
  7. 請求項1乃至6のいずれか記載の燃料電池装置において、
    前記リフォーマで生成された水素含有ガスを直接燃料電池へ供給するバイパス経路と、
    前記バイパス回路と前記水素吸蔵合金内蔵タンクへの供給経路とを切換える切換手段とを備えることを特徴とする燃料電池装置。
  8. 請求項1記載の燃料電池装置において、
    前記制御手段は、前記リフォーマが水素含有ガスを産生している期間に前記状態量に基づいて前記水素吸蔵合金内蔵タンクと前記外部熱源との熱量授受を制御して前記水素吸蔵合金内蔵タンクの圧力変化を抑圧することを特徴とする燃料電池装置。
  9. 請求項1記載の燃料電池装置において、
    前記調圧手段は、前記制御手段が前記状態量に基づいて前記水素吸蔵合金内蔵タンクと前記外部熱源との熱量授受を制御して前記水素吸蔵合金内蔵タンクの圧力変化を抑圧している期間に前記水素吸蔵合金内蔵タンクから前記燃料電池へ供給される水素含有ガスの圧力を前記作動圧に調圧することを特徴とする燃料電池装置。
JP35807297A 1997-12-25 1997-12-25 燃料電池装置 Expired - Fee Related JP3871792B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35807297A JP3871792B2 (ja) 1997-12-25 1997-12-25 燃料電池装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35807297A JP3871792B2 (ja) 1997-12-25 1997-12-25 燃料電池装置

Publications (2)

Publication Number Publication Date
JPH11185792A JPH11185792A (ja) 1999-07-09
JP3871792B2 true JP3871792B2 (ja) 2007-01-24

Family

ID=18457397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35807297A Expired - Fee Related JP3871792B2 (ja) 1997-12-25 1997-12-25 燃料電池装置

Country Status (1)

Country Link
JP (1) JP3871792B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665283B2 (ja) * 2000-03-06 2011-04-06 トヨタ自動車株式会社 熱交換システム
JP5142176B2 (ja) * 2004-09-16 2013-02-13 セイコーインスツル株式会社 固体高分子型燃料電池システム
JP5239045B2 (ja) * 2004-09-16 2013-07-17 セイコーインスツル株式会社 燃料電池システム
JP4997731B2 (ja) * 2005-09-05 2012-08-08 日産自動車株式会社 燃料電池システム、及びその運転方法
JP2008039108A (ja) * 2006-08-08 2008-02-21 Toyota Motor Corp 水素貯蔵装置
JP2009043702A (ja) * 2007-03-16 2009-02-26 Hitachi Maxell Ltd 燃料電池発電システム
JP5343401B2 (ja) * 2008-05-27 2013-11-13 カシオ計算機株式会社 発電装置及び電子機器
KR101795244B1 (ko) 2016-04-19 2017-11-07 현대자동차주식회사 연료전지시스템의 수소소모량 측정 방법

Also Published As

Publication number Publication date
JPH11185792A (ja) 1999-07-09

Similar Documents

Publication Publication Date Title
US7040109B2 (en) Fuel cell system and method of storing hydrogen
JP5644746B2 (ja) 燃料電池車両用空調装置
KR101136897B1 (ko) 공기조절제어시스템
US7887965B2 (en) Warm-up apparatus for fuel cell
JP5754346B2 (ja) 燃料電池システム
US7419735B2 (en) Fuel cell system, method of controlling the same, and vehicle mounted with the same
US20060147772A1 (en) Fuel cell system
KR100514318B1 (ko) 연료전지 시스템 및 방법
JP5453915B2 (ja) 燃料電池システムの冷却水温制御装置
JP4341356B2 (ja) 燃料電池システム
JPH0794202A (ja) 燃料電池の暖機システム
JP4454824B2 (ja) 水素供給装置
CN101010824A (zh) 燃料电池***
JP2007250374A (ja) 燃料電池システム
CN111446467B (zh) 燃料电池热电联供***及其控制方法
JP7163897B2 (ja) 燃料電池システム
JP3871792B2 (ja) 燃料電池装置
JP2000100461A (ja) 水素吸蔵タンク装置
JP3918639B2 (ja) 燃料電池システム
JP4707338B2 (ja) 燃料電池システム
JP5799766B2 (ja) 燃料電池システム
JP2001302201A (ja) 水素貯蔵供給装置および燃料電池システム並びにこれらを搭載する移動体
CN111446469B (zh) 液冷燃料电池热电联产***及其控制方法
JP3966839B2 (ja) 排熱利用熱源装置
JP2004146240A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees