JP3870608B2 - Trunnion for half toroidal type continuously variable transmission and its processing method - Google Patents

Trunnion for half toroidal type continuously variable transmission and its processing method Download PDF

Info

Publication number
JP3870608B2
JP3870608B2 JP13821999A JP13821999A JP3870608B2 JP 3870608 B2 JP3870608 B2 JP 3870608B2 JP 13821999 A JP13821999 A JP 13821999A JP 13821999 A JP13821999 A JP 13821999A JP 3870608 B2 JP3870608 B2 JP 3870608B2
Authority
JP
Japan
Prior art keywords
trunnion
circular hole
continuously variable
variable transmission
main shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13821999A
Other languages
Japanese (ja)
Other versions
JP2000329209A (en
JP2000329209A5 (en
Inventor
有宏 鎌村
章史 堀家
隆二 岩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP13821999A priority Critical patent/JP3870608B2/en
Publication of JP2000329209A publication Critical patent/JP2000329209A/en
Priority to US09/941,797 priority patent/US20020025879A1/en
Publication of JP2000329209A5 publication Critical patent/JP2000329209A5/ja
Application granted granted Critical
Publication of JP3870608B2 publication Critical patent/JP3870608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling And Boring (AREA)
  • Friction Gearing (AREA)

Description

【0001】
【産業上の利用分野】
この発明の対象となるハーフトロイダル型無段変速機は、例えば自動車の変速機用の変速ユニットとして、或は各種産業機械用の変速機として、それぞれ利用する。特に、本発明は、この様なハーフトロイダル型無段変速機に組み込むトラニオンの加工を容易に行なえる様にするものである。
【0002】
【従来の技術】
例えば自動車の変速機用の変速ユニットとして、図7〜8に略示する様なハーフトロイダル型無段変速機を使用する事が、研究されている。このハーフトロイダル型無段変速機は、例えば実開昭62−71465号公報に開示されている様に、入力軸1と同心に入力側ディスク2を支持し、この入力軸1と同心に配置された出力軸3の端部に出力側ディスク4を固定している。ハーフトロイダル型無段変速機を納めたケーシングの内側には、上記入力軸1並びに出力軸3に対して捻れの位置にある枢軸5、5を中心として揺動するトラニオン6、6が設けられている。即ち、これら各枢軸5、5の中心軸は、上記入力軸1及び出力軸3の中心軸と交差する事はないが、これら入力軸1及び出力軸3の中心軸の方向に対し直角な方向に存在する。
【0003】
上記各トラニオン6、6は、両端部外側面に上記枢軸5、5を、互いに同心に設けている。又、各トラニオン6、6の中心部には変位軸7、7の基端部を支持し、上記各枢軸5、5を中心として各トラニオン6、6を揺動させる事により、各変位軸7、7の傾斜角度の調節を自在としている。各トラニオン6、6に支持された変位軸7、7の周囲には、それぞれパワーローラ8、8を回転自在に支持している。そして、これら各パワーローラ8、8を、上記入力側、出力側両ディスク2、4の間に挟持している。これら両ディスク2、4の互いに対向する内側面2a、4aは、それぞれ断面が、上記枢軸5を中心とする円弧を回転させて得られる凹面をなしている。そして、球状凸面に形成された各パワーローラ8、8の周面8a、8aは、上記内側面2a、4aに当接させている。
【0004】
上記入力軸1と入力側ディスク2との間には、ローディングカム等の押圧装置9を設け、この押圧装置9によって、上記入力側ディスク2を出力側ディスク4に向け、弾性的に押圧自在としている。この押圧装置9は、入力軸1と共に回転するカム板10と、保持器11により保持された複数個(例えば4個)のローラ12、12とから構成している。上記カム板10の片側面(図7〜8の左側面)には、円周方向に亙る凹凸面であるカム面13を形成し、上記入力側ディスク2の外側面(図7〜8の右側面)にも、同様のカム面14を形成している。そして、上記複数個のローラ12、12を、上記入力軸1の中心に関して放射方向の軸を中心とする回転自在に支持している。
【0005】
上述の様に構成するハーフトロイダル型無段変速機の使用時、入力軸1の回転に伴ってカム板10が回転すると、カム面13によって複数個のローラ12、12が、入力側ディスク2の外側面に設けたカム面14に押圧される。この結果、上記入力側ディスク2が、上記複数のパワーローラ8、8に押圧されると同時に、上記1対のカム面13、14と複数個のローラ12、12との押し付け合いに基づいて、上記入力側ディスク2が回転する。そして、この入力側ディスク2の回転が、上記複数のパワーローラ8、8を介して出力側ディスク4に伝達され、この出力側ディスク4に固定の出力軸3が回転する。
【0006】
入力軸1と出力軸3との回転速度を変える場合で、先ず入力軸1と出力軸3との間で減速を行なう場合には、枢軸5、5を中心として各トラニオン6、6を揺動させ、各パワーローラ8、8の周面8a、8aが図7に示す様に、入力側ディスク2の内側面2aの中心寄り部分と出力側ディスク4の内側面4aの外周寄り部分とにそれぞれ当接する様に、各変位軸7、7を傾斜させる。反対に、増速を行なう場合には、上記トラニオン6、6を揺動させ、各パワーローラ8、8の周面8a、8aが図8に示す様に、入力側ディスク2の内側面2aの外周寄り部分と出力側ディスク4の内側面4aの中心寄り部分とに、それぞれ当接する様に、各変位軸7、7を傾斜させる。各変位軸7、7の傾斜角度を図7と図8との中間にすれば、入力軸1と出力軸3との間で、中間の変速比を得られる。
【0007】
上記各トラニオン6、6の具体的形状、並びにこれら各トラニオン6、6にパワーローラ8、8を支持する部分の構造に就いては、例えば特開平8−240251号公報等に記載されて従来から知られている。図9〜11は、この公報に記載された、トラニオン6にパワーローラ8を支持する部分の従来構造を示している。このトラニオン6の中間部には、円孔15を形成している。この円孔15は、このトラニオン6の両端部に形成した枢軸5、5と直交する方向に(枢軸5、5の中心軸を延長した線と円孔15の中心軸を延長した線とが直交する方向に)形成している。そして、上記円孔15の内側部分に、変位軸7を支持している。この変位軸7は、互いに平行で且つ偏心した支持軸部16と枢支軸部17とを有する。このうちの支持軸部16を上記円孔15の内側に、ラジアルニードル軸受18を介して、回転自在に支持している。又、上記枢支軸部17の周囲にパワーローラ8を、別のラジアルニードル軸受19を介して回転自在に支持している。
【0008】
又、上記パワーローラ8の外側面と上記トラニオン6の中間部内側面との間には、パワーローラ8の外側面の側から順に、スラスト玉軸受20とスラストニードル軸受21とを設けている。このうちのスラスト玉軸受20は、上記パワーローラ8に加わるスラスト荷重を支承しつつ、このパワーローラ8の回転を許容する。この様なスラスト玉軸受20は、複数個の玉22、22と、各玉22、22を転動自在に保持する円環状の保持器23と、円環状のスラスト玉軸受外輪24とから構成している。各スラスト玉軸受20の内輪軌道は上記パワーローラ8の外側面に、外輪軌道は上記スラスト玉軸受外輪24の内側面に、それぞれ形成している。
【0009】
又、上記スラストニードル軸受21は、レース25と保持器26とニードル27、27とから構成している。この様なスラストニードル軸受21は、上記レース25を上記トラニオン6の内側面に当接させた状態で、この内側面と上記スラスト玉軸受外輪24の外側面との間に挟持している。一方、上記ラジアルニードル軸受18を構成する円筒状のラジアルニードル軸受外輪28は上記円孔15の内側に、がたつきなく嵌合固定している。そして、嵌合固定した状態でこのラジアルニードル軸受外輪28の一端部をトラニオン6の内側面から突出させ、この突出した部分に、上記スラストニードル軸受21を構成する、上記レース25と保持器26とを外嵌して、上記トラニオン6に対するこれらレース25及び保持器26の位置決めを図っている。
【0010】
上述の様に構成されるスラストニードル軸受21は、上記各パワーローラ8から上記各スラスト玉軸受外輪24に加わるスラスト荷重を支承しつつ、上記枢支軸部17及び上記スラスト玉軸受外輪24が上記支持軸部16を中心として揺動する事を許容する。即ち、ハーフトロイダル型無段変速機では、変速作業や伝達すべきトルクの変動、構成各部材の弾性変形等に起因して、入力側、出力側両ディスク2、4(図7〜8)の一方又は双方が軸方向に変位し、変位軸7が上記支持軸部16を中心として僅かに回動する。この回動の結果、上記スラスト玉軸受20のスラスト玉軸受外輪24の外側面と上記トラニオン6の内側面とが相対変位する。これら外側面と内側面との間には、上記スラストニードル軸受21が存在する為、この相対変位に要する力は小さい。従って、上述の様に各変位軸7、7の傾斜角度を変化させる為の力が小さくて済む。
【0011】
上述の様に構成されるハーフトロイダル型無段変速機のトラニオン6は、炭素鋼等の剛性の高い金属製素材を鍛造により所定の形状に加工した後、必要とする部分に切削、研削等の仕上加工を施す。このうち、前記ラジアルニードル軸受18を組み付ける為の円孔15及び上記スラストニードル軸受21を添設する為の平坦面29は、マシニングセンタ等を利用した切削加工により形成する。例えば、この平坦面29を加工するには、回転工具をこの平坦面29とすべき内側面中間部に押し付けつつ、この平坦面29を加工する。従来の場合には、この平坦面29の切削加工と、上記円孔15の穿設作業及び仕上切削加工とは、別工程で行なっていた。即ち、平坦面29と円孔15とのうちの一方を加工した後、上記トラニオン6を工作機械から取り外して別の工作機械にセットし、平坦面29と円孔15とのうちの他方を加工していた。
【0012】
【発明が解決しようとする課題】
上述した様なハーフトロイダル型無段変速機のトラニオン6の加工を能率良く、しかも高精度で行なう為には、平坦面29と円孔15とを、工作機械への着脱を行なう事なく、一工程で行なえる様にする事が好ましい。
本発明のハーフトロイダル型無段変速機用トラニオンとその加工方法は、この様な事情に鑑みて発明したものである。
【0013】
【課題を解決するための手段】
本発明の対象となるハーフトロイダル型無段変速機用トラニオンは、前述した従来のハーフトロイダル型無段変速機用トラニオンと同様に、ハーフトロイダル型無段変速機を構成するパワーローラを揺動変位及び回転自在に支持する為、両端部に互いに同心の1対の枢軸を、中間部内側面に上記パワーローラに加わるスラスト荷重を支承しつつこのパワーローラの揺動変位を許容する為のスラスト軸受を添設する為の平坦面を、この平坦面の一部にその一端を開口させる状態で円孔を、それぞれ設けている。
【0014】
特に、請求項1に記載したハーフトロイダル型無段変速機用トラニオンに於いては、上記平坦面の周縁部と他の部分との境界部分に存在する段差面は、単一の中心軸を有する部分円筒面である。そして、この部分円筒面の中心軸は、上記円孔の中心軸に対して上記各枢軸の配列方向にずれた位置に存在する。
【0015】
更に、請求項2に記載したハーフトロイダル型無段変速機用トラニオンの加工方法は、旋削加工を行なう工作機械の主軸の先端部に支持したチャックにトラニオンを、円孔及び部分円筒面の中心軸と上記主軸の中心軸とを一致若しくは平行にして把持した状態で、この主軸を回転させつつこれら円孔と部分円筒面並びに平坦面との一方を加工した後、上記チャックを上記主軸の中心軸に対し直角方向に平行移動させてから、この主軸を回転させつつ上記円孔と部分円筒面並びに平坦面との他方を加工する。
【0016】
【作用】
上述の様に構成する本発明のハーフトロイダル型無段変速機用トラニオンとその加工方法によれば、同一のチャックにトラニオンを把持した状態のまま、円孔と部分円筒面並びに平坦面の加工を行なえる。この為、トラニオンの加工の能率化によりコストの低減を図れるだけでなく、上記円孔と平坦面との直角度の向上を図れる等、形状並びに寸法精度の向上も図れる。
【0017】
【発明の実施の形態】
図1〜3は、本発明の実施の形態の1例を示している。先ず、図1は、本発明のトラニオン6aを示している。このトラニオン6aは、前述の図9に示した従来から知られているトラニオン6と同様に、両端部に互いに同心の1対の枢軸5、5を、中間部内側面に形成した平坦面29を、この平坦面29の一部にその一端を開口させる状態で円孔15を、それぞれ設けている。特に、本例のトラニオン6aの場合には、上記平坦面29の周縁部と他の部分との境界部分に存在する段差面31、並びに上記各枢軸5、5を設ける為に、上記トラニオン6aの長さ方向(図2の上下方向)両端部に形成した1対の折れ曲がり部37、37の内側面38、38は、単一の中心軸O31を有する部分円筒面である。そして、この部分円筒面である段差面31、31及び各内側面38、38の中心軸O31は、上記円孔15の中心軸O15に対して、上記各枢軸5、5の配列方向(図1の上下方向)にずれた位置に存在する。言い換えれば、上記段差面31、31及び各内側面38、38の中心軸O31と円孔15の中心軸O15とは、互いに一致はしないが、それぞれ上記両枢軸5、5の中心軸O5 と直交する。
【0018】
次に、図2〜3は、上述の様なトラニオン6aの平坦面29と円孔15とを、旋削を行なう工作機械32により加工する状態を示している。この工作機械32は、基台33の上方で回転する主軸34の先端面(図2〜3の右端面)に、スライダ35を介してチャック36を設けて成る。このスライダ35は、上記主軸34の回転中心軸に対し直角方向に平行移動自在である。そして、上記チャック36に、被加工物である上記トラニオン6aを把持自在としている。一方、上記基台33の上面にはバイト等の切削工具39を、互いに直角方向に亙る移動自在に設けた1対の移動テーブル40、41により、この基台33の上面に対し平行に、且つ二次元方向に亙る移動自在に支持している。
【0019】
上述の様な工作機械32を使用して、上記トラニオン6aの段差面31、31及び各内側面38、38と円孔15とを加工する作業は、次の様にして行なう。先ず、上記主軸34の先端部に支持したチャック36に上記トラニオン6aを、上記段差面31、31及び各内側面38、38を構成する部分円筒面の中心軸O31並びに上記円孔15の中心軸O15と、上記主軸34の中心軸O34と一致若しくは平行にした状態で把持する。この状態で、上記スライダ35を、図2に示す様に一端側(図2の下端側)に変位させて、加工すべき上記円孔15の中心軸O15と、上記主軸34の中心軸O34と一致させる。そして、この主軸34を回転させつつ、上記切削工具39を上記トラニオン6aの中間部に突き当てて、上記円孔15の内面の仕上加工を行なう。
【0020】
次いで、図3に示す様に、上記スライダ35を、図3に示す様に他端側(図3の上端側)に変位させて、切削加工すべき上記段差面31、31及び各内側面38、38の中心軸O31と、上記主軸34の中心軸O34と一致させる。そして、この主軸34を回転させつつ、上記切削工具39を、上記段差面31、31及び各内側面38、38並びにこれら段差面31、31及び各内側面38、38に囲まれた平坦面29等に突き当てて、これら各面31、38、29を加工する。
【0021】
上述の様に構成する本発明のハーフトロイダル型無段変速機用トラニオンとその加工方法によれば、同一のチャック36にトラニオン6aを把持した状態のまま、上記円孔15と上記段差面31、31及び各内側面38、38を構成する部分円筒面並びに上記平坦面29の加工を行なえる。この為、これら各部を加工する為に、トラニオン6aをチャック36に着脱する作業を1回行なうのみで足り、トラニオンの加工の能率化によるコストの低減を図れる。しかも、チャック36への着脱を繰り返す事に伴う誤差の発生を抑える事ができるので、上記円孔15と平坦面29との直角度の向上を図れる等、形状並びに寸法精度の向上も図れる。
【0022】
尚、本発明の加工方法を能率良く行なわせる為には、上記主軸34に対して上記チャック36を支持するスライダ35が、上記段差面31、31及び各内側面38、38の中心軸O31と、上記円孔15の中心軸O15との変位量△L(図1)分だけ、確実且つ迅速に変位させられる構造を有するものを使用する事が好ましい。この様なスライダ35の構造としては、図4〜5に示したもの、或は図6に示したものを使用できる。
【0023】
先ず、図4〜5に示した第1例の構造は、主軸34の端面の直径方向反対側2個所位置に固定した、それぞれ断面L字形のガイド42、42同士の間にスライドプレート43を、がたつきなく且つ摺動自在に挟持している。従ってこのスライドプレート43は、上記1対のガイド42、42の配列方向に対し直角方向(図4〜5の上下方向)に変位自在である。又、上記スライドプレート43の変位方向に関して、上記主軸34の端面の直径方向反対側2個所位置には、それぞれストッパ44、44を固定している。これら両ストッパ44、44同士の間隔D44は、上記スライドプレート43の変位方向に亙る長さL43よりも、上記変位量△L分だけ大きい(D44=L43+△L)。
【0024】
又、上記主軸34の先端部にはアクチュエータ45を内蔵し、このアクチュエータ45により上記スライドプレート43を、上記1対のガイド42、42の配列方向に対し直角方向に変位駆動自在としている。更に、上記スライドプレート43の前面(図4の右面)には、前記トラニオン6aの両端部に設けた枢軸5、5をがたつきなく係止自在なワークストッパ46、46と、上記トラニオン6aを両側から挟持固定自在な把持爪47、47とを設けている。
【0025】
前記円孔15と上記段差面31、31及び各内側面38、38を構成する部分円筒面並びに上記平坦面29との加工を行なう場合に、上記トラニオン6aは、上記各ワークストッパ46、46に上記各枢軸5、5を係止し、上記各把持爪47、47により両側から挟持する。この状態で、上記アクチュエータ45により上記スライドプレート43を、図4〜5の下端側にまで変位させれば、加工すべき上記円孔15の中心軸O15と、上記主軸34の中心軸O34とが一致する。これに対して、上記アクチュエータ45により上記スライドプレート43を、図4〜5の上端側にまで変位させれば、切削加工すべき上記段差面31、31及び各内側面38、38の中心軸O31と、上記主軸34の中心軸O34とが一致する。尚、図4〜5は、上記段差面31、31及び各内側面38、38の中心軸O34とを一致させた状態を示している。
【0026】
上述の図4〜5に示したスライダの第1例の構造の場合、1対のストッパ44、44により、スライドプレート43の変位量を△Lに規制していた。これに対して、図6に示したスライダの第2例の構造の場合には、チャック36aの端面に、ストロークが△Lであるアクチュエータ45aを設けている。そして、このアクチュエータ45aにより、直接トラニオン6aを、枢軸5、5の軸方向に亙り変位駆動自在としている。上記アクチュエータ45aのストロークの一端側(図6の下端側)に上記トラニオン6aを変位させた状態で、加工すべき円孔15の中心軸O15と主軸の中心軸O34とが一致し、他端側(図6の上端側)にまで変位させた状態で、切削加工すべき上記段差面31、31及び各内側面38、38の中心軸O31と、上記主軸の中心軸O34とが一致する。尚、図6は、上記段差面31、31及び内側面38、38の中心軸O31と、上記主軸34の中心軸O34とを一致させた状態を示している。
【0027】
尚、本発明の加工方法を実施する場合に、そのままでは、トラニオン6aを含む、チャック36、36aと共に回転する部分の重心を、主軸34の中心軸O34上に常に位置させる事はできない。そして、この重心位置と中心軸O34とのずれが大きい状態で、上記主軸34を高速回転させた場合には、振動が発生して、加工精度が悪化する。この様な振動に基づく加工精度の悪化を防止する為には、加工時に高速回転が必要な、上記円孔15の加工時に、上記重心を主軸34の中心軸O34上に位置させる事が好ましい。上記段差面31、31及び各内側面38、38等の加工時には、上記主軸34の回転速度をあまり早くする必要はないので、上記重心位置と中心軸O34とが多少ずれていても、有害な振動の発生を抑えて、十分な加工精度を確保できる。
【0028】
スライダの構造に関して、上述の様な加工時の振動を考えた場合には、上述の図6に示した第2例の構造が、主軸34の中心軸O34からずれた状態で回転する部分の質量を少なく抑える面からは好ましい。但し、上記図6に示した第2例の構造の場合には、上記円孔15を加工する際と上記段差面31、31及び各内側面38、38等を切削加工する際とで、把持爪47、47によるトラニオン6aの把持及びその解除を行なう為、把持精度の面から、加工精度が悪化する可能性がある。
【0029】
これに対して、図4〜5に示した第1例の場合には、把持爪47、47によりトラニオン6aを把持した状態のまま、上記円孔15と上記段差面31、31及び各内側面38、38等との加工を行なえる。従って、振動を抑えられるのであれば、図4〜5に示した第1例の構造が、加工精度を確保する面からは好ましい。特に、主軸34の先端部に、スライドプレート43と逆方向に変位するバランスウェイトを設け、このバランスウェイトを含む重心が、常に上記主軸34の回転中心軸上に存在する様にすれば、加工時に振動が発生するのを防止できるので、図4〜5に示した第1例の構造の利点が顕著になる。
【0030】
【発明の効果】
本発明のハーフトロイダル型無段変速機用トラニオンとその加工方法は、以上に述べた通り構成され作用するので、ハーフトロイダル型無段変速機のトラニオンの加工を能率良く、しかも高精度で行なって、低コストでしかも高性能のトロイダル型無段変速機の実現に寄与できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例を示す、トラニオンを内側面側から見た図。
【図2】本発明の方法により、トラニオンに円孔を加工する状態を示す平面図。
【図3】同じく平坦面等を切削加工する状態を示す平面図。
【図4】トラニオンを変位自在に支持する為のスライダの第1例を示す側面図。
【図5】図4の右方から見た図。
【図6】トラニオンを変位自在に支持する為のスライダの第2例を示す側面図。
【図7】従来から知られたハーフトロイダル型無段変速機の基本的構成を、最大減速時の状態で示す側面図。
【図8】同じく最大増速時の状態で示す側面図。
【図9】従来構造を、トラニオンにパワーローラを組み付けた状態で示す断面図。
【図10】パワーローラ及びスラスト玉軸受を除いて図9の右方から見た図。
【図11】図10から更にスラストニードル軸受を除いて図10の右方から見た図。
【符号の説明】
1 入力軸
2 入力側ディスク
2a 内側面
3 出力軸
4 出力側ディスク
4a 内側面
5 枢軸
6 トラニオン
7 変位軸
8 パワーローラ
8a 周面
9 押圧装置
10 カム板
11 保持器
12 ローラ
13、14 カム面
15 円孔
16 支持軸部
17 枢支軸部
18、19 ラジアルニードル軸受
20 スラスト玉軸受
21 スラストニードル軸受
22 玉
23 保持器
24 スラスト玉軸受外輪
25 レース
26 保持器
27 ニードル
28 ラジアルニードル軸受外輪
29 平坦面
30 回転工具
31 段差面
32 工作機械
33 基台
34 主軸
35 スライダ
36、36a チャック
37 折れ曲がり部
38 内側面
39 切削工具
40 移動テーブル
41 移動テーブル
42 ガイド
43 スライドプレート
44 ストッパ
45、45a アクチュエータ
46 ワークストッパ
47 把持爪
[0001]
[Industrial application fields]
The half-toroidal continuously variable transmission that is the subject of the present invention is used, for example, as a transmission unit for an automobile transmission or as a transmission for various industrial machines. In particular, the present invention makes it easy to process a trunnion incorporated in such a half-toroidal continuously variable transmission.
[0002]
[Prior art]
For example, the use of a half-toroidal continuously variable transmission as schematically shown in FIGS. 7 to 8 has been studied as a transmission unit for an automobile transmission. This half toroidal type continuously variable transmission supports an input side disk 2 concentrically with an input shaft 1 and is arranged concentrically with the input shaft 1 as disclosed in, for example, Japanese Utility Model Publication No. 62-71465. The output side disk 4 is fixed to the end of the output shaft 3. Inside the casing containing the half toroidal type continuously variable transmission, trunnions 6 and 6 are provided that swing around pivots 5 and 5 that are twisted with respect to the input shaft 1 and the output shaft 3. Yes. That is, the central axes of the pivots 5 and 5 do not intersect the central axes of the input shaft 1 and the output shaft 3, but are perpendicular to the directions of the central axes of the input shaft 1 and the output shaft 3. Exists.
[0003]
The trunnions 6 and 6 are provided with the pivots 5 and 5 concentrically with each other on the outer side surfaces of both ends. Further, the base ends of the displacement shafts 7 and 7 are supported at the central portions of the trunnions 6 and 6, and the respective trunnions 6 and 6 are swung around the pivot shafts 5 and 5 so that the displacement shafts 7 and 6 are swung. , 7 can be adjusted freely. Power rollers 8 and 8 are rotatably supported around the displacement shafts 7 and 7 supported by the trunnions 6 and 6, respectively. The power rollers 8 and 8 are sandwiched between the input side and output side disks 2 and 4. The inner surfaces 2a and 4a of the two disks 2 and 4 facing each other each have a concave surface obtained by rotating a circular arc with the pivot axis 5 as the center. And the peripheral surfaces 8a and 8a of each power roller 8 and 8 formed in the spherical convex surface are made to contact | abut to the said inner surface 2a and 4a.
[0004]
A pressing device 9 such as a loading cam is provided between the input shaft 1 and the input side disk 2, and the input side disk 2 can be elastically pressed toward the output side disk 4 by the pressing device 9. Yes. The pressing device 9 includes a cam plate 10 that rotates together with the input shaft 1 and a plurality of (for example, four) rollers 12 and 12 held by a cage 11. A cam surface 13 that is an uneven surface extending in the circumferential direction is formed on one side surface (left side surface in FIGS. 7 to 8) of the cam plate 10, and the outer side surface of the input side disk 2 (right side in FIGS. 7 to 8). The same cam surface 14 is also formed on the surface). The plurality of rollers 12 and 12 are supported so as to be rotatable about the radial axis with respect to the center of the input shaft 1.
[0005]
When the cam plate 10 is rotated with the rotation of the input shaft 1 when the half toroidal type continuously variable transmission configured as described above is used, the plurality of rollers 12 and 12 are moved by the cam surface 13 to the input side disk 2. It is pressed by the cam surface 14 provided on the outer surface. As a result, the input side disk 2 is pressed by the plurality of power rollers 8 and 8 and at the same time, based on the pressing of the pair of cam surfaces 13 and 14 and the plurality of rollers 12 and 12, The input side disk 2 rotates. The rotation of the input side disk 2 is transmitted to the output side disk 4 via the plurality of power rollers 8, 8, and the output shaft 3 fixed to the output side disk 4 rotates.
[0006]
When the rotational speed of the input shaft 1 and the output shaft 3 is changed, and when the deceleration is first performed between the input shaft 1 and the output shaft 3, the trunnions 6 and 6 are swung around the pivot shafts 5 and 5. As shown in FIG. 7, the peripheral surfaces 8a and 8a of the power rollers 8 and 8 are respectively formed on a portion near the center of the inner surface 2a of the input side disk 2 and a portion near the outer periphery of the inner surface 4a of the output side disk 4. The displacement shafts 7 and 7 are inclined so as to contact each other. On the contrary, to increase the speed, the trunnions 6 and 6 are swung so that the peripheral surfaces 8a and 8a of the power rollers 8 and 8 are formed on the inner surface 2a of the input side disk 2 as shown in FIG. The displacement shafts 7 and 7 are inclined so as to come into contact with the outer peripheral portion and the central portion of the inner side surface 4a of the output side disk 4, respectively. If the inclination angle of each of the displacement shafts 7 and 7 is set intermediate between those shown in FIGS. 7 and 8, an intermediate gear ratio can be obtained between the input shaft 1 and the output shaft 3.
[0007]
The specific shape of each of the trunnions 6 and 6 and the structure of the portion that supports the power rollers 8 and 8 on each of the trunnions 6 and 6 are described in, for example, JP-A-8-240251 and the like. Are known. 9 to 11 show a conventional structure of a portion for supporting the power roller 8 on the trunnion 6 described in this publication. A circular hole 15 is formed in an intermediate portion of the trunnion 6. The circular hole 15 is formed in a direction perpendicular to the pivots 5 and 5 formed at both ends of the trunnion 6 (the line extending the central axis of the pivots 5 and 5 and the line extending the central axis of the circular hole 15 are orthogonal to each other. In the direction you want to). The displacement shaft 7 is supported on the inner portion of the circular hole 15. The displacement shaft 7 has a support shaft portion 16 and a pivot shaft portion 17 which are parallel to each other and eccentric. Of these, the support shaft portion 16 is rotatably supported inside the circular hole 15 via a radial needle bearing 18. Further, the power roller 8 is rotatably supported around the pivot shaft portion 17 via another radial needle bearing 19.
[0008]
A thrust ball bearing 20 and a thrust needle bearing 21 are provided in this order from the outer surface of the power roller 8 between the outer surface of the power roller 8 and the inner surface of the intermediate portion of the trunnion 6. Of these, the thrust ball bearing 20 supports the rotation of the power roller 8 while supporting the thrust load applied to the power roller 8. Such a thrust ball bearing 20 is composed of a plurality of balls 22, 22, an annular retainer 23 that holds each of the balls 22, 22, and an annular thrust ball bearing outer ring 24. ing. The inner ring raceway of each thrust ball bearing 20 is formed on the outer side surface of the power roller 8, and the outer ring raceway is formed on the inner side surface of the thrust ball bearing outer ring 24.
[0009]
The thrust needle bearing 21 is composed of a race 25, a cage 26, and needles 27 and 27. Such a thrust needle bearing 21 is sandwiched between the inner surface and the outer surface of the thrust ball bearing outer ring 24 in a state where the race 25 is in contact with the inner surface of the trunnion 6. On the other hand, a cylindrical radial needle bearing outer ring 28 constituting the radial needle bearing 18 is fitted and fixed inside the circular hole 15 without rattling. Then, one end portion of the radial needle bearing outer ring 28 is projected from the inner surface of the trunnion 6 in a fitted and fixed state, and the race 25, the cage 26, and the like constituting the thrust needle bearing 21 are formed on the projected portion. The race 25 and the cage 26 are positioned with respect to the trunnion 6.
[0010]
The thrust needle bearing 21 configured as described above supports the thrust load applied to each thrust ball bearing outer ring 24 from each power roller 8 while the pivot shaft 17 and the thrust ball bearing outer ring 24 are connected to each other. The support shaft 16 is allowed to swing around the center. That is, in the half toroidal type continuously variable transmission, due to a shift work, a change in torque to be transmitted, elastic deformation of each constituent member, etc., both the input side and output side disks 2, 4 (FIGS. 7 to 8) One or both are displaced in the axial direction, and the displacement shaft 7 is slightly rotated around the support shaft portion 16. As a result of this rotation, the outer surface of the thrust ball bearing outer ring 24 of the thrust ball bearing 20 and the inner surface of the trunnion 6 are relatively displaced. Since the thrust needle bearing 21 exists between the outer surface and the inner surface, the force required for this relative displacement is small. Therefore, as described above, the force for changing the inclination angle of each displacement shaft 7, 7 can be small.
[0011]
The trunnion 6 of the half toroidal type continuously variable transmission configured as described above is formed by forging a metal material having high rigidity such as carbon steel into a predetermined shape by forging, and then performing cutting, grinding, etc. on a necessary portion. Finishing is applied. Among these, the circular hole 15 for assembling the radial needle bearing 18 and the flat surface 29 for attaching the thrust needle bearing 21 are formed by cutting using a machining center or the like. For example, in order to process the flat surface 29, the flat surface 29 is processed while pressing the rotary tool against the intermediate portion of the inner surface that should be the flat surface 29. In the conventional case, the cutting process of the flat surface 29, the drilling work of the circular hole 15 and the finishing cutting process are performed in separate steps. That is, after processing one of the flat surface 29 and the circular hole 15, the trunnion 6 is removed from the machine tool and set in another machine tool, and the other of the flat surface 29 and the circular hole 15 is processed. Was.
[0012]
[Problems to be solved by the invention]
In order to process the trunnion 6 of the half toroidal type continuously variable transmission as described above efficiently and with high accuracy, the flat surface 29 and the circular hole 15 are not attached to or detached from the machine tool. It is preferable to be able to perform the process.
The trunnion for a half toroidal type continuously variable transmission and the processing method thereof according to the present invention have been invented in view of such circumstances.
[0013]
[Means for Solving the Problems]
The trunnion for a half-toroidal continuously variable transmission, which is the subject of the present invention, swings and displaces the power roller constituting the half-toroidal continuously variable transmission, similar to the above-described conventional trunnion for a half-toroidal continuously variable transmission. And a thrust bearing for allowing a rocking displacement of the power roller while supporting a pair of pivots concentric with each other at both ends and supporting a thrust load applied to the power roller on an inner side surface of the intermediate portion. A circular hole is provided in each of the flat surfaces to be attached, with one end of the flat surface being opened at one end.
[0014]
In particular, in the trunnion for a half-toroidal continuously variable transmission according to claim 1, the step surface present at the boundary between the peripheral portion of the flat surface and the other portion has a single central axis. It is a partial cylindrical surface. And the central axis of this partial cylindrical surface exists in the position which shifted | deviated to the sequence direction of each said pivot with respect to the central axis of the said circular hole.
[0015]
Further, the trunnion machining method for a half-toroidal continuously variable transmission according to claim 2 is characterized in that the trunnion is attached to the chuck supported at the tip of the spindle of the machine tool for turning, and the central axis of the circular hole and the partial cylindrical surface. And the center axis of the main shaft are aligned or parallel to each other, and one of the circular hole, the partial cylindrical surface and the flat surface is processed while rotating the main shaft, and then the chuck is moved to the central axis of the main shaft. Then, the other of the circular hole, the partial cylindrical surface, and the flat surface is processed while rotating the main shaft.
[0016]
[Action]
According to the trunnion for a half-toroidal continuously variable transmission of the present invention configured as described above and its processing method, the circular hole, the partial cylindrical surface, and the flat surface are processed while the trunnion is held by the same chuck. Yes. For this reason, not only can the cost be reduced by improving the efficiency of processing of the trunnion, but the perpendicularity between the circular hole and the flat surface can be improved, and the shape and dimensional accuracy can be improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show an example of an embodiment of the present invention. First, FIG. 1 shows a trunnion 6a of the present invention. The trunnion 6a has a flat surface 29 having a pair of pivots 5 and 5 concentric with each other at both end portions, and a flat surface 29 formed on the inner side surface of the intermediate portion, similar to the conventionally known trunnion 6 shown in FIG. A circular hole 15 is provided in a part of the flat surface 29 so that one end thereof is opened. In particular, in the case of the trunnion 6a of this example, in order to provide the step surface 31 existing at the boundary portion between the peripheral edge portion of the flat surface 29 and the other portion, and the pivots 5, 5, the trunnion 6a longitudinal inner surfaces 38, 38 of the bent portion 37, 37 of the pair which is formed at both ends (vertical direction in FIG. 2) is a partial cylindrical surface having a single center axis O 31. Then, the step surfaces 31 and 31 which are partial cylindrical surfaces and the central axis O 31 of each of the inner side surfaces 38 and 38 are arranged with respect to the central axis O 15 of the circular hole 15 in the arrangement direction of the pivots 5 and 5 ( It exists at a position shifted in the vertical direction in FIG. In other words, the central axis O 15 of the center axis O 31 and circular hole 15 of the stepped surfaces 31, 31 and inner surfaces 38, 38, are not coincident with each other, the center axis O of each of the above two pivot shafts 5 Orthogonal to 5
[0018]
Next, FIGS. 2 to 3 show a state in which the flat surface 29 and the circular hole 15 of the trunnion 6a as described above are processed by the machine tool 32 that performs turning. This machine tool 32 is configured by providing a chuck 36 via a slider 35 on the tip surface (the right end surface in FIGS. 2 to 3) of a main shaft 34 that rotates above a base 33. The slider 35 is movable in a direction perpendicular to the rotation center axis of the main shaft 34. The chuck 36 can grip the trunnion 6a as a workpiece. On the other hand, a cutting tool 39 such as a cutting tool 39 is provided on the upper surface of the base 33 in parallel with the upper surface of the base 33 by a pair of movable tables 40 and 41 provided so as to be movable in a direction perpendicular to each other. Supports movement in two dimensions.
[0019]
Using the machine tool 32 as described above, the steps of processing the stepped surfaces 31 and 31 and the inner side surfaces 38 and 38 of the trunnion 6a and the circular hole 15 are performed as follows. First, the trunnion 6a on the chuck 36 which supports the front end of the main shaft 34, the center of the center axis O 31 and the circular hole 15 of the partial cylindrical surfaces constituting the stepped surface 31, 31 and inner surfaces 38, 38 The axis O 15 and the center axis O 34 of the main shaft 34 are gripped in a state of being coincident or parallel. In this state, the slider 35 is displaced to one end side (lower end side in FIG. 2) as shown in FIG. 2, and the center axis O 15 of the circular hole 15 to be processed and the center axis O of the main shaft 34 are processed. Match with 34 . Then, while the main shaft 34 is rotated, the cutting tool 39 is abutted against the intermediate portion of the trunnion 6 a to finish the inner surface of the circular hole 15.
[0020]
Next, as shown in FIG. 3, the slider 35 is displaced to the other end side (upper end side in FIG. 3) as shown in FIG. 3, and the stepped surfaces 31, 31 and inner side surfaces 38 to be cut are processed. , the center axis O 31 of 38, to coincide with the center axis O 34 of the spindle 34. Then, while rotating the main shaft 34, the cutting tool 39 is moved to the stepped surfaces 31, 31 and the inner side surfaces 38, 38, and the flat surface 29 surrounded by the stepped surfaces 31, 31 and the inner side surfaces 38, 38. These surfaces 31, 38, and 29 are machined against each other.
[0021]
According to the trunnion for a half toroidal continuously variable transmission of the present invention and the processing method thereof configured as described above, the circular hole 15 and the stepped surface 31, while the trunnion 6 a is gripped by the same chuck 36. 31 and the partial cylindrical surfaces constituting the inner side surfaces 38, 38 and the flat surface 29 can be processed. For this reason, in order to process these parts, it is only necessary to perform the operation of attaching / detaching the trunnion 6a to / from the chuck 36 once, and the cost can be reduced by improving the efficiency of processing the trunnion. In addition, since it is possible to suppress the occurrence of errors due to repeated attachment to and removal from the chuck 36, the perpendicularity between the circular hole 15 and the flat surface 29 can be improved, and the shape and dimensional accuracy can be improved.
[0022]
In order to efficiently perform the processing method of the present invention, the slider 35 that supports the chuck 36 with respect to the main shaft 34 is provided with a center axis O 31 of the step surfaces 31 and 31 and the inner side surfaces 38 and 38. When the displacement amount between the center axis O 15 of the circular hole 15 △ L (FIG. 1) an amount corresponding, it is preferable to use those having a structure that is to reliably and rapidly displaced. As the structure of such a slider 35, the structure shown in FIGS. 4 to 5 or the structure shown in FIG. 6 can be used.
[0023]
First, in the structure of the first example shown in FIGS. 4 to 5, the slide plate 43 is fixed between the guides 42, 42 each having an L-shaped cross section, which are fixed at two positions opposite to the diameter direction of the end surface of the main shaft 34. It is slidably held without rattling. Accordingly, the slide plate 43 is freely displaceable in a direction perpendicular to the arrangement direction of the pair of guides 42, 42 (the vertical direction in FIGS. 4 to 5). Further, with respect to the displacement direction of the slide plate 43, stoppers 44, 44 are fixed at two positions on the opposite side in the diameter direction of the end surface of the main shaft 34, respectively. The distance D 44 between the stoppers 44 and 44 is larger than the length L 43 in the displacement direction of the slide plate 43 by the displacement amount ΔL (D 44 = L 43 + ΔL).
[0024]
An actuator 45 is built in the tip of the main shaft 34, and the actuator 45 allows the slide plate 43 to be displaced in a direction perpendicular to the arrangement direction of the pair of guides 42, 42. Further, on the front surface of the slide plate 43 (the right surface in FIG. 4), work stoppers 46, 46 provided on both ends of the trunnion 6a, which can freely lock the pivots 5, 5, and the trunnion 6a are provided. Holding claws 47 and 47 that can be clamped and fixed from both sides are provided.
[0025]
When processing the circular hole 15 with the stepped surfaces 31, 31 and the partial cylindrical surfaces constituting the inner side surfaces 38, 38 and the flat surface 29, the trunnion 6 a is connected to the work stoppers 46, 46. The pivots 5 and 5 are locked and clamped from both sides by the gripping claws 47 and 47. In this state, if the slide plate 43 is displaced to the lower end side of FIGS. 4 to 5 by the actuator 45, the center axis O 15 of the circular hole 15 to be processed and the center axis O 34 of the main shaft 34 are processed. Matches. On the other hand, if the slide plate 43 is displaced to the upper end side of FIGS. 4 to 5 by the actuator 45, the step surfaces 31, 31 and the central axes O of the inner side surfaces 38, 38 to be machined. 31 coincides with the central axis O 34 of the main shaft 34. Incidentally, FIG. 4-5 shows a state in which coincides with the central axis O 34 of the stepped surfaces 31, 31 and inner surfaces 38, 38.
[0026]
In the case of the structure of the first example of the slider shown in FIGS. 4 to 5 described above, the displacement amount of the slide plate 43 is restricted to ΔL by the pair of stoppers 44 and 44. On the other hand, in the case of the structure of the second example of the slider shown in FIG. 6, an actuator 45a having a stroke ΔL is provided on the end face of the chuck 36a. The actuator 45a directly allows the trunnion 6a to be driven to move in the axial direction of the pivots 5 and 5. Said one end of the stroke of the actuator 45a in a state of displacing the trunnion 6a (the lower side in FIG. 6), the center axis O 34 of the center axis O 15 and the main shaft of the circular hole 15 to be processed is matched, the other In a state of being displaced to the end side (upper end side in FIG. 6), the step surfaces 31 and 31 to be cut and the central axis O 31 of each inner side surface 38 and 38 and the central axis O 34 of the main shaft are provided. Match. Incidentally, FIG. 6 shows the center axis O 31 of the stepped surfaces 31, 31 and the inner surface 38, 38, the state of being matched with the center axis O 34 of the spindle 34.
[0027]
Incidentally, when carrying out the processing method of the present invention, it is as it includes a trunnion 6a, the center of gravity of the portion which rotates with the chuck 36, 36a, it is impossible to always positioned on the center axis O 34 of the spindle 34. When the main shaft 34 is rotated at a high speed with a large deviation between the position of the center of gravity and the center axis O 34 , vibration is generated and the processing accuracy is deteriorated. In order to prevent such deterioration of machining accuracy due to vibration, it is preferable to place the center of gravity on the central axis O 34 of the main shaft 34 when machining the circular hole 15, which requires high-speed rotation during machining. . When processing such as the stepped surface 31, 31 and inner surfaces 38, 38, it is not necessary to excessively fast rotation speed of the spindle 34, even when the above gravity center position and the center axis O 34 is slightly deviated, harmful Stable vibrations can be suppressed and sufficient machining accuracy can be secured.
[0028]
When considering the vibration during machining as described above with respect to the structure of the slider, the structure of the second example shown in FIG. 6 described above is the portion of the part that rotates while being displaced from the central axis O 34 of the main shaft 34. It is preferable from the aspect of suppressing the mass. However, in the case of the structure of the second example shown in FIG. 6, the gripping is performed when the circular hole 15 is processed and when the stepped surfaces 31, 31 and the inner side surfaces 38, 38 are cut. Since the trunnions 6a are gripped and released by the claws 47, the processing accuracy may be deteriorated in terms of gripping accuracy.
[0029]
On the other hand, in the case of the first example shown in FIGS. 4 to 5, the circular hole 15, the stepped surfaces 31 and 31, and the inner side surfaces are held while the trunnion 6 a is held by the holding claws 47 and 47. Processing with 38, 38, etc. can be performed. Therefore, if the vibration can be suppressed, the structure of the first example shown in FIGS. 4 to 5 is preferable from the viewpoint of ensuring the processing accuracy. In particular, if a balance weight that is displaced in the direction opposite to the slide plate 43 is provided at the tip of the main shaft 34 and the center of gravity including the balance weight is always present on the rotation center axis of the main shaft 34, Since vibration can be prevented, the advantages of the structure of the first example shown in FIGS.
[0030]
【The invention's effect】
The trunnion for half-toroidal continuously variable transmission and its machining method according to the present invention are constructed and operated as described above. Therefore, the trunnion of the half-toroidal continuously variable transmission can be efficiently processed with high accuracy. This contributes to the realization of a low-cost and high-performance toroidal type continuously variable transmission.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an embodiment of the present invention when a trunnion is viewed from an inner surface side.
FIG. 2 is a plan view showing a state where a circular hole is machined in a trunnion by the method of the present invention.
FIG. 3 is a plan view showing a state in which a flat surface or the like is similarly cut.
FIG. 4 is a side view showing a first example of a slider for movably supporting a trunnion.
5 is a diagram viewed from the right side of FIG. 4;
FIG. 6 is a side view showing a second example of a slider for movably supporting the trunnion.
FIG. 7 is a side view showing a basic configuration of a conventionally known half-toroidal continuously variable transmission in a state of maximum deceleration.
FIG. 8 is a side view showing the state of the maximum speed increase.
FIG. 9 is a cross-sectional view showing a conventional structure in a state where a power roller is assembled to a trunnion.
10 is a view from the right side of FIG. 9 excluding the power roller and the thrust ball bearing.
11 is a view seen from the right side of FIG. 10 except for the thrust needle bearing from FIG. 10;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input shaft 2 Input side disk 2a Inner side surface 3 Output shaft 4 Output side disk 4a Inner side surface 5 Pivot 6 Trunnion 7 Displacement shaft 8 Power roller 8a Circumferential surface 9 Pressing device 10 Cam plate 11 Retainer 12 Rollers 13, 14 Cam surface 15 Circular hole 16 Support shaft portion 17 Pivot shaft portions 18, 19 Radial needle bearing 20 Thrust ball bearing 21 Thrust needle bearing 22 Ball 23 Cage 24 Thrust ball bearing outer ring 25 Race 26 Cage 27 Needle 28 Radial needle bearing outer ring 29 Flat surface 30 Rotating tool 31 Step surface 32 Machine tool 33 Base 34 Main shaft 35 Slider 36, 36a Chuck 37 Bending portion 38 Inner side surface 39 Cutting tool 40 Moving table 41 Moving table 42 Guide 43 Slide plate 44 Stopper 45, 45a Actuator 46 Work stopper 47 Gripping claws

Claims (2)

ハーフトロイダル型無段変速機を構成するパワーローラを揺動変位及び回転自在に支持する為、両端部に互いに同心の1対の枢軸を、中間部内側面に上記パワーローラに加わるスラスト荷重を支承しつつこのパワーローラの揺動変位を許容する為のスラスト軸受を添設する為の平坦面を、この平坦面の一部にその一端を開口させる状態で円孔を、それぞれ設けたハーフトロイダル型無段変速機用トラニオンに於いて、上記平坦面の周縁部と他の部分との境界部分に存在する段差面は、単一の中心軸を有する部分円筒面であり、この部分円筒面の中心軸は、上記円孔の中心軸に対して上記各枢軸の配列方向にずれた位置に存在する事を特徴とするハーフトロイダル型無段変速機用トラニオン。In order to support the power roller that constitutes the half-toroidal continuously variable transmission in a swingable and displaceable manner, a pair of concentric pivots are supported at both ends, and a thrust load applied to the power roller is supported on the inner surface of the intermediate portion. On the other hand, a flat surface for attaching a thrust bearing for allowing the rocking displacement of the power roller, and a half toroidal type provided with a circular hole in a state where one end of the flat surface is opened. In the trunnion for a step transmission, the step surface present at the boundary portion between the peripheral portion of the flat surface and the other portion is a partial cylindrical surface having a single central axis, and the central axis of the partial cylindrical surface Is a trunnion for a half-toroidal continuously variable transmission, wherein the trunnion is present at a position shifted in the arrangement direction of the pivots with respect to the central axis of the circular hole. 請求項1に記載したハーフトロイダル型無段変速機用トラニオンの加工方法であって、旋削加工を行なう工作機械の主軸の先端部に支持したチャックにトラニオンを、円孔及び部分円筒面の中心軸と上記主軸の中心軸とを一致若しくは平行にして把持した状態で、この主軸を回転させつつこれら円孔と部分円筒面並びに平坦面との一方を加工した後、上記チャックを上記主軸の中心軸に対し直角方向に平行移動させてから、この主軸を回転させつつ上記円孔と部分円筒面並びに平坦面との他方を加工する事を特徴とするハーフトロイダル型無段変速機用トラニオンの加工方法。A trunnion machining method for a half-toroidal continuously variable transmission according to claim 1, wherein the trunnion is mounted on a chuck supported at the tip of a spindle of a machine tool for turning, and a central axis of a circular hole and a partial cylindrical surface And the center axis of the main shaft are aligned or parallel to each other, and one of the circular hole, the partial cylindrical surface and the flat surface is processed while rotating the main shaft, and then the chuck is moved to the central axis of the main shaft. A method for processing a trunnion for a half-toroidal continuously variable transmission, characterized in that the other of the circular hole, the partial cylindrical surface and the flat surface is processed while the main shaft is rotated after being translated in a direction perpendicular to .
JP13821999A 1999-05-19 1999-05-19 Trunnion for half toroidal type continuously variable transmission and its processing method Expired - Fee Related JP3870608B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13821999A JP3870608B2 (en) 1999-05-19 1999-05-19 Trunnion for half toroidal type continuously variable transmission and its processing method
US09/941,797 US20020025879A1 (en) 1999-05-19 2001-08-30 Trunnion for half-toroidal-type continuously variable transmission and method for working same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13821999A JP3870608B2 (en) 1999-05-19 1999-05-19 Trunnion for half toroidal type continuously variable transmission and its processing method

Publications (3)

Publication Number Publication Date
JP2000329209A JP2000329209A (en) 2000-11-30
JP2000329209A5 JP2000329209A5 (en) 2005-09-02
JP3870608B2 true JP3870608B2 (en) 2007-01-24

Family

ID=15216883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13821999A Expired - Fee Related JP3870608B2 (en) 1999-05-19 1999-05-19 Trunnion for half toroidal type continuously variable transmission and its processing method

Country Status (1)

Country Link
JP (1) JP3870608B2 (en)

Also Published As

Publication number Publication date
JP2000329209A (en) 2000-11-30

Similar Documents

Publication Publication Date Title
US7118462B2 (en) Disk for toroidal continuously variable transmission and method of machining the same
JP2013173201A (en) Superfinishing device
JP3870608B2 (en) Trunnion for half toroidal type continuously variable transmission and its processing method
JP5747723B2 (en) Trunnion of toroidal type continuously variable transmission and processing method thereof
US6494807B1 (en) Trunnion for half-toroidal-type continuously variable transmission and method for working the same
JPH0639663A (en) Three-dimensional work machine
JP4831427B2 (en) Toroidal continuously variable transmission
JP4110406B2 (en) Processing method of trunnion of toroidal type continuously variable transmission
JP6831604B1 (en) Cylindrical grinder
JP7517121B2 (en) Manufacturing method for supporting shaft of toroidal type continuously variable transmission
JP3760762B2 (en) Burnishing device and burnishing method
JP3899742B2 (en) Toroidal continuously variable transmission
JP2000061702A (en) End face machining method of disc for troidal type continuously variable transmission
JP4362858B2 (en) Ball spline of toroidal type continuously variable transmission
JP4569060B2 (en) Trunnion for half toroidal type continuously variable transmission
JP2000202710A (en) Machining method and device for cam face of loading cam mechanism
JP3915351B2 (en) Packaging method of power roller unit for toroidal type continuously variable transmission
JPH085002Y2 (en) A device for holding the end face of a work in a grinding machine, etc.
JP2020069567A (en) Main spindle device and machine tool
JP2007113593A (en) Toroidal type continuously variable transmission
JPH03234403A (en) Method and device for changing pre-load
JP2005299752A (en) Toroidal type continuously variable transmission
JP4379708B2 (en) Toroidal continuously variable transmission
JP2015148265A (en) Trunnion for toroidal type stepless speed change device
JP4702602B2 (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees