JP3867690B2 - Manufacturing method of heat radiator for electronic device - Google Patents

Manufacturing method of heat radiator for electronic device Download PDF

Info

Publication number
JP3867690B2
JP3867690B2 JP2003208567A JP2003208567A JP3867690B2 JP 3867690 B2 JP3867690 B2 JP 3867690B2 JP 2003208567 A JP2003208567 A JP 2003208567A JP 2003208567 A JP2003208567 A JP 2003208567A JP 3867690 B2 JP3867690 B2 JP 3867690B2
Authority
JP
Japan
Prior art keywords
vol
hole
copper
radiator
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003208567A
Other languages
Japanese (ja)
Other versions
JP2004006946A (en
Inventor
克典 鈴木
健三郎 飯島
俊治 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2003208567A priority Critical patent/JP3867690B2/en
Publication of JP2004006946A publication Critical patent/JP2004006946A/en
Application granted granted Critical
Publication of JP3867690B2 publication Critical patent/JP3867690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種の半導体素子からなる電子デバイスを搭載する基板あるいは電子デバイスを収容する容器に装着されて、電子デバイスが発生した熱を外部に放出する電子デバイス用放熱体の製造方法に係り、特に、熱膨張係数が電子デバイスあるいは電子デバイスを搭載する基板もしくは電子デバイスを収容する容器に近似する電子デバイス用放熱体の製造方法に関する。
【0002】
【従来の技術】
近年、半導体素子(熱電素子、IC、LSI、VLSI、ダイオード等)などの電子デバイスの高出力化や高集積化が進展し、電子デバイスからの発熱量も急激に増大化する傾向がある。そのため高集積化したハイブリットICなどの半導体装置においては、半導体素子の発熱を効率的に系外に放散させるために、銅や高融点金属材から成る放熱板をセラミックス回路基板に一体的に接合して用いている。しかしながら、銅や高融点金属材から成る放熱板は半導体素子や回路基板との熱膨張係数の差が大きいために、繰り返して作用する熱衝撃によって両部品の接合界面における熱応力が高まり剥離を引き起こし易い難点がある。
【0003】
そこで、半導体素子や回路基板に近似した熱膨張率を有する放熱板として、タングステン(W)などの高融点金属材料の焼結体から成る放熱板が実用化されるようになった。しかしながら、タングステン(W)などの高融点金属材料のみから成る放熱板では、熱伝導性が不十分となるため、タングステン(W)などの高融点金属材料のみから成る焼結体の空孔部に銅(Cu)などの高熱伝導性材料を溶浸(含浸)させた含浸焼結合金から成る放熱板が使用されるようになった。
【0004】
ところで、上述したような含浸焼結合金から成る放熱板は、例えば、以下のような手順で製造されている。即ち、タングステン(W)などの高融点材料粉末に、有機バインダーを予備配合して原料混合体とし、この原料混合体を、金型プレスでプレスして薄板状の成形体とする。この成形体を脱脂・焼結して多孔質の焼結体とした後、この焼結体の空孔部に銅(Cu)などの高熱伝導性材料を溶浸(含浸)させる。その後に、含浸焼結体の表面を、フライス盤やラップ盤などにより表面加工して、最終的に放熱板とする製法が一般的に採用されている。
【特許文献1】
特開平04−215462号公報
【特許文献2】
特開平09−232485号公報
【特許文献3】
特開平10−200208号公報
【特許文献4】
国際公開第00/13823号パンフレット
【特許文献5】
特開平07−211818号公報
【特許文献6】
特開平06−334074号公報
【特許文献7】
特開平09−107057号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述のようにして成形される含浸焼結体から成る放熱板にあっては、熱伝導性を向上させようとする場合には熱伝導性に優れた銅(Cu)の含有率を多くする必要がある。ところが、銅(Cu)の含有率を多くすると、放熱板全体としての熱膨張係数が大きくなるため、繰り返して作用する熱衝撃によって電子デバイスが装着された基板と放熱板との接合界面、あるいは電子デバイスが収容された容器と放熱板との接合界面における熱応力が高まり、放熱板が剥離を引き起こし易いという問題を生じた。
【0006】
また、含浸焼結体から成る放熱板にあっては、焼結体に形成された空孔内に銅(Cu)が溶浸(含浸)されているため、含浸された銅(Cu)が存在する部分に沿って熱伝導がなされて熱が拡散することとなり、熱伝導方向はランダムな方向となる。このため、例えば、放熱板が接合された容器内に電子デバイスが密閉されていると、この放熱板の放熱方向がランダムな方向になって、電子デバイスで発生した熱をこの容器の系外に素早く放熱することが困難で、放熱効率が悪いという問題も生じた。
【0007】
また、含浸焼結体から成る放熱板にあっては、焼結体に形成された空孔内に銅(Cu)を溶浸(含浸)させるため、最終的にラップ盤などを使用した表面研磨加工が必要となるので放熱板の製造工程が複雑になって、製造コストが上昇するという問題も生じた。また、焼結体とするための原料粉末の流動性、成形性、保形性を向上させるために、有機バインダーを使用している。このため、脱脂工程が必要になるが、脱脂工程が不十分であると、焼結体表面に炭化物が固着して空孔を閉塞し易いため、高熱伝導性材料の溶浸(含浸)操作が困難になるという問題もあった。
【0008】
さらに、焼結体の空孔内に高熱伝導性材料の溶浸(含浸)されない部分が存在するようになって、表面部においてもピンホールが発生し易く、このピンホールの上にめっき層を形成した場合には、めっき膨れを発生し易く、めっき性が良好で高品質の放熱板が得にくいという問題も生じた。また、高熱伝導性材料を溶浸(含浸)した後に、余剰の含浸材が焼結体表面に多量に付着するため、研削加工などによって表面に固着した余剰の含浸材を取り除いた後に、表面研磨加工を実施する必要があり、放熱板の仕上げ加工工数が増加して製造コストが上昇する問題も生じた。
【0009】
そこで、本発明は上記の如き問題点を解消するためになされたものであり、放熱方向(熱伝導方向)が一定で、かつ熱膨張係数が電子デバイス、あるいは電子デバイスを搭載する基板、もしくは電子デバイスを収容する容器に近似する放熱体の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の放熱体の製造方法は、タングステンあるいはモリブデンの含有量が銅よりも多くなるような所定の比率でタングステン粉末あるいはモリブデン粉末と銅粉末とバインダーとを混合、混練して成形用組成物とする第1成形用組成物作製工程と、この第1成形用組成物を成形型に充填して所定形状の貫通孔を備えた母材成形体を成形する第1成形工程と、銅の含有量がタングステンあるいはモリブデンよりも多くなるような所定の比率でタングステン粉末あるいはモリブデン粉末と銅粉末とバインダーとを混合、混練して成形用組成物とする第2成形用組成物作製工程と、母材成形体の貫通孔内に第2成形用組成物を充填して一体成形体とする第2成形工程と、この一体成形体を加熱して一体成形体に含有されたバインダーを燃焼除去する脱バインダ処理工程と、バインダーが除去された一体成形体を焼結して複合焼結体とする焼結工程とを備えるようにしている。
【0011】
このように、まず第1成形工程において所定形状の貫通孔を備えた母材成形体を成形した後、第2成形工程において母材成形体の貫通孔内に第2成形用組成物を充填して一体成形体とし、この一体成形体を加熱してバインダーを燃焼除去し、バインダーが除去された一体成形体を焼結して複合焼結体とすると、銅の含有量が少なく、かつタングステンまたはモリブデンの含有量が多い銅−タングステン合金または銅−モリブデン合金から構成される低熱膨張係数の材料からなる基板と、この基板の貫通孔内に銅の含有量が多く、かつタングステンまたはモリブデンの含有量が少ない銅−タングステン合金または銅−モリブデン合金からなる高熱伝導性材料が充填された複合焼結体からなる放熱体を簡単にかつ容易に製造することが可能となる。
【0012】
そして、このように低熱膨張係数を有する材料からなる基板に貫通孔を備えるとともに、この貫通孔内に高熱伝導性材料が充填されていると、高熱伝導性材料が存在する部分に沿って熱伝導がなされるため、熱伝導方向は貫通孔の軸方向になるとともに、低熱膨張係数の基板で熱膨張が抑制されるようになる。これにより、電子デバイスで発生した熱は電子デバイスを搭載する回路基板あるいは電子デバイスを収容する容器から素早く系外に放熱されるようになるとともに、この放熱体の熱膨張も抑制することが可能となる。
【0013】
一般に、電子デバイス、あるいは電子デバイスを搭載する回路基板、もしくは電子デバイスを収容する容器はセラミックスなどの低熱膨張係数を有する材料から形成されているため、これに接合される放熱体の熱膨張係数を近似させる必要がある。このため、本発明においては、銅の含有量が少なく、かつタングステンまたはモリブデンの含有量が多い銅−タングステン合金または銅−モリブデン合金、あるいは熱膨張係数が4ppm/K〜10ppm/K(但し、室温から400℃まで昇温したときの線膨張係数)以下のタングステン、鉄−ニッケル合金、鉄−ニッケル−コバルト合金から選択される1種により基板を構成している。
【0014】
この場合、貫通孔の平面形状は放熱体が用いられる用途に応じて適宜選択すればよいが、放熱体の製造性などを考慮すると、円形、楕円形等の丸形形状あるいは四角形、多角形等の角形形状とするのが好ましい。また、貫通孔の配置構造においても、放熱体が用いられる用途に応じて適宜選択すればよいが、均一な放熱性を考慮すると、厚み方向または長さ方向の一方向に均一あるいは不均一に分散させた一方向多芯状、もしくは厚み方向または長さ方向の一方向に放射状に分散させた一方向放射状に形成するのが好ましい。
【0015】
なお、貫通孔が占有する全体積が大きくなりすぎると熱伝導性が向上する反面、熱膨張率が増大するため、貫通孔が占有する全体積は基板の全体積に対して45体積%(45vol%)以下とするのが望ましい。一方、貫通孔が占有する全体積が小さくなりすぎると熱膨張率が向上する反面、熱伝導性が低下するため、貫通孔が占有する全体積は基板の全体積に対して10体積%(10vol%)以上とするのが望ましい。
また、貫通孔の平均孔径が小さくなりすぎると熱膨張率が向上する反面、熱伝導性が低下するため、貫通孔の平均孔径は0.05mm以上とするのが望ましい。一方、貫通孔の平均孔径が広くなりすぎると熱伝導性が向上する反面、熱膨張率が増大するため、貫通孔の平均孔径は1.00mm以下とするのが望ましい。
【0016】
なお、本発明の電子デバイス用放熱体は種々の電子デバイスに適用可能であるが、特に、一対の絶縁基板の相対向する表面に形成された一対の電極を介して半導体からなる複数の熱電素子が導電接続された熱電モジュールを冷却素子として備えた半導体レーザモジュールに適用するのが好ましい。この場合、半導体レーザ素子を搭載する基板に熱電モジュールの吸熱側が接合されているとともに、半導体レーザ素子を収容するパッケージの底壁に熱電モジュールの発熱側に接して上記の如き電子デバイス用放熱体が接合されている構造とすればよい。
【0017】
【発明の実施の形態】
ついで、本発明の実施の形態を、放熱体の作製例、熱特性の測定、放熱特性の測定、貫通孔の平面形状および配置構造の変形例ならびに放熱体の適用例の順で以下に説明する。
【0018】
1.放熱体の作製例
本発明の放熱体の作製例を図1に基づいて説明する。なお、図1は本発明の放熱体の製造工程を模式的に示す斜視図であり、図1(a)は第1工程を模式的に示す斜視図であり、図1(b)は第2工程を模式的に示す斜視図であり、図1(c)はこれらの工程を経て作製された複合焼結体を模式的に示す斜視図であり、図1(d)は得られた複合焼結体を切断した状態を模式的に示す斜視図である。
【0019】
まず、平均粒径が2μmのタングステン(W)粉末と、平均粒径が2μmの銅(Cu)粉末を用意し、これらを混合して、タングステン粉末が80体積%(80vol%)と銅粉末が20体積%(20vol%)とからなる混合金属粉末とした。ついで、得られた混合金属粉末と同体積のバインダー(例えば、アクリル樹脂とワックスを混合したもの)を混合し、これらに有機溶媒を添加して混練し、タングステンリッチなCu−Wからなる成形用組成物(第1成形用組成物)を得た後、この成形用組成物をペレット化した。
【0020】
この後、タングステンリッチなCu−Wからなる成形用組成物のペレットを射出成形機(図示せず)のホッパー内に充填した後、これを射出温度130℃、金型温度40℃で射出成形した後、金型を水冷して射出物を固化させて、図1(a)に示すような多数の貫通孔12が均等に配列された母材成形体(グリーン体)11を得た。なお、得られた母材成形体11は板状体であって、その厚みは2mmで、長さは30mmで、幅は20mmに形成されており、貫通孔12の孔径は0.50mmで、貫通孔12が占める体積は母材成形体11の全体積に対して30体積%であった。
【0021】
一方、平均粒径が2μmのタングステン(W)粉末と、平均粒径が2μmの銅(Cu)粉末を用意し、これらを混合して、タングステン粉末が25体積%(25vol%)と銅粉末が75体積%(75vol%)とからなる混合金属粉末とした。得られた混合金属粉末と同体積のバインダー(例えば、アクリル樹脂とワックスを混合したもの)を添加して混練し、銅リッチなCu−Wからなる成形用組成物(第2成形用組成物)を得た後、この成形用組成物をペレット化した。
【0022】
ついで、銅リッチなCu−Wからなる成形用組成物のペレットを射出成形機(図示せず)のホッパー内に充填するとともに、上述のようにして得られた母材成形体11を射出成形機の金型内に装填した後、射出温度130℃、金型温度40℃で射出成形した後、金型を水冷して射出物を固化させて、図1(b)に示すように、母材成形体11の多数の貫通孔12内に銅リッチなCu−Wからなる成形用組成物13が充填された基板10aを得た。
【0023】
ついで、得られた基板10aを焼結炉(図示せず)内に配置した後、この焼結炉内に1l/minの流速で窒素ガスを充填して焼結炉内を窒素ガス雰囲気にし、0.5℃/minの昇温速度で室温から410℃まで加熱して、基板10aに含有されたバインダーを燃焼させて脱バインダー処理を行った。この後、この焼結炉内に1l/minの流速で水素ガスを充填して焼結炉内を還元雰囲気にし、5℃/minの昇温速度で1450℃まで加熱した後、この温度を2時間保持して基板10aを焼結して、図1(c)に示すような複合焼結体10を作製した。
【0024】
このようにして得られた複合焼結体10は、図1(d)に示すように、タングステンリッチなCu−Wからなる低熱膨張係数の母材成形体11の貫通孔12の軸方向に沿って銅リッチなCu−Wからなる高熱伝導性の充填層13が形成されている。
【0025】
2.熱特性の測定
上述のように作製した複合焼結体10(母材成形体11の貫通孔の孔径が0.50mmで、貫通孔の体積比率が30vol%で、Wの体積比率が80vol%で、充填層13のCuの体積比率が75vol%のもの)の熱伝導率および熱膨張係数を、レーザーフラッシュ装置(日本真空理工(株)製:レーザーフラッシュサーマルホーンスタックアナライザTC7000)および熱膨張測定器(SEIKO製TMA6200)を用いて測定すると、熱伝導率は255W/mKで、熱膨張係数(室温から400℃まで昇温したときの線膨張係数)は8.0ppm/Kとなり、これらの数値を図2のグラフにプロットすると△2となった。
ついで、充填層13のCuの比率を100vol%および50vol%となるように調製したCu−W成形用組成物(第2成形用組成物)を用いて複合焼結体10を作製し、上述同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ△1、△3に示すような結果となった。
【0026】
また、貫通孔の孔径が0.50mmで、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を45vol%にして、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製し、上述同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ□1、□2、□3に示すような結果となった。
同様に、貫通孔の孔径が0.50mmで、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を10vol%にして、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ◇1、◇2、◇3に示すような結果となった。
【0027】
なお、比較のためにタングステン粉末を圧粉し、仮焼結してポーラスな状態にした後、この仮焼結体に銅板を積層し、加熱処理して銅を仮焼結体の空孔に溶浸させて焼結体(溶浸材)を作製し、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの)に示すような結果となった。
【0028】
また、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を30vol%にし、貫通孔の孔径を0.05mm、0.50mm、1.00mmに変化させるとともに、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定した。この後、これらの数値を図3のグラフにプロットすると、貫通孔の孔径が0.05mmのものは◇1(Cuが100vol%のもの)、◇2(Cuが75vol%のもの)、◇3(Cuが50vol%のもの)となった。
【0029】
また、貫通孔の孔径が0.50mmのものは□1(Cuが100vol%のもの)、□2(Cuが75vol%のもの)、□3(Cuが50vol%のもの)となった。さらに、貫通孔の孔径が1.00mmのものは△1(Cuが100vol%のもの)、△2(Cuが75vol%のもの)、△3(Cuが50vol%のもの)となった。なお、図3においても図2と同様に溶浸材(○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの))の結果も示している。
【0030】
また、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を45vol%にし、貫通孔の孔径を0.05mm、0.50mm、1.00mmに変化させるとともに、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図4のグラフにプロットすると、貫通孔の孔径が0.05mmのものは◇1(Cuが100vol%のもの)、◇2(Cuが75vol%のもの)、◇3(Cuが50vol%のもの)となった。
【0031】
また、貫通孔の孔径が0.50mmのものは□1(Cuが100vol%のもの)、□2(Cuが75vol%のもの)、□3(Cuが50vol%のもの)となった。さらに、貫通孔の孔径が1.00mmのものは△1(Cuが100vol%のもの)、△2(Cuが75vol%のもの)、△3(Cuが50vol%のもの)となった。なお、図4においても図2と同様に溶浸材(○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの))の結果も示している。
【0032】
さらに、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を10vol%にし、貫通孔の孔径を0.05mm、0.50mm、1.00mmに変化させるとともに、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図5のグラフにプロットすると、貫通孔の孔径が0.05mmのものは◇1(Cuが100vol%のもの)、◇2(Cuが75vol%のもの)、◇3(Cuが50vol%のもの)となった。
【0033】
また、貫通孔の孔径が0.50mmのものは□1(Cuが100vol%のもの)、□2(Cuが75vol%のもの)、□3(Cuが50vol%のもの)となった。さらに、貫通孔の孔径が1.0mmのものは△1(Cuが100vol%のもの)、△2(Cuが75vol%のもの)、△3(Cuが50vol%のもの)となった。なお、図5においても図2と同様に溶浸材(○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの))の結果も示している。
【0034】
図2〜図5の結果から明らかなように、仮焼結体の空孔内に銅を溶浸した焼結体よりも、タングステンリッチなCu−Wからなる母材成形体の貫通孔に銅リッチなCu−Wからなる充填材を充填して焼結した複合焼結体10の方が、セラミックスやガラスの熱膨張係数(4〜10ppm/K(RT〜400℃))の範囲においては熱伝導率が向上していることが分かる。このことから、母材成形体の貫通孔の全体積(即ち、銅リッチなCu−Wからなる充填材の充填容積)を10vol%〜45vol%の範囲に規制する、好ましくは20vol%〜45vol%の範囲に規制するのが望ましいということができる。また、貫通孔の孔径を0.05mm(50μm)〜1.00mmの範囲に規制する、好ましくは0.10mm〜1.00mmの範囲に規制するのが望ましいということができる。
【0035】
3.放熱特性の測定
ついで、上述のように作製した複合焼結体10と、これと同じ熱膨張係数を有する溶浸材Xを用いて、放熱体の放熱速度(発熱体の温度上昇速度)の実験を行った。ここで、図6はこのような実験の様子を模式的に示す斜視図であり、放熱体(複合焼結体10あるいは溶浸材X)の上に発熱体(電熱ヒータ)Hを載置するとともに、これを断熱材14で被覆し、発熱体Hに電流を流して発熱体Hの温度を測定することにより行った。得られた測定結果に基づいて、発熱体Hの消費電力(W)を横軸とし、発熱体温度(℃)を縦軸として測定結果をプロットすると、図7に示すような結果が得られた。なお、図7において、△印は複合焼結体10の結果を示しており、○印は溶浸材Xの結果を示している。
図7の結果から明らかなように、放熱体として溶浸材Xを用いるよりも、複合焼結体10を用いた方が発熱体Hの温度上昇が小さいことが分かる。これは、複合焼結体10の放熱効率(放熱速度)が優れていることを意味する。
【0036】
なお、複合焼結体10としては、母材成形体11の貫通孔の孔径が0.50mmで、貫通孔の体積比率が30vol%で、Wの体積比率が80vol%で、充填層13のCuの体積比率が75vol%で、熱伝導率が255W/mKで、熱膨張係数が8.0ppm/Kで、熱抵抗が−0.061728K/Wのものを使用した。また、溶浸材Xとしては、熱伝導率が180W/mKで、熱膨張係数が8.0ppm/Kで、熱抵抗が0.043573K/Wのものを用いた。これらの複合焼結体10と溶浸材Xのサイズは厚みが10mmで、長さが30mmで、幅が30mmのものを使用した。
【0037】
4.貫通孔の平面形状および配置構造の変形例
上述した実施の形態においては、貫通孔の平面形状が円形で、かつ円形の貫通孔を均一に分散させた例について説明したが、貫通孔の平面形状およびその配置構造については種々の変形が可能である。ついで、貫通孔の平面形状およびその配置構造の変形例を図8に基づいて説明する。なお、図8は貫通孔の平面形状およびその配置構造の変形例を示す図であって、図8(a)は貫通孔の平面形状を変形させた第1変形例の放熱体を模式的に示す図であり、図8(b)は貫通孔の配置構造を変形させた第2変形例の放熱体を模式的に示す図であり、図8(c)は貫通孔の平面形状および配置構造を変形させた第3変形例の放熱体を模式的に示す図である。
【0038】
(1)第1変形例
本第1変形例の放熱体20は、図8(a)に示すように、タングステンリッチなCu−Wからなる母材基板21に平面形状が四角形状の貫通孔22が均等に分散させて形成されており、この貫通孔22内に銅リッチなCu−Wからなる充填材23が充填されている。なお、貫通孔22の平面形状は四角形状に限ることなく、放熱体が用いられる用途に応じて楕円等の丸形形状あるいは三角形または多角形の角形形状等の適宜の形状を選択すればよい。
【0039】
(2)第2変形例
本第2変形例の放熱体30は、図8(b)に示すように、タングステンリッチなCu−Wからなる母材基板31に平面形状が円形状の貫通孔32が不均一に分散させて形成されており、この貫通孔32内に銅リッチなCu−Wからなる充填材33が充填されている。なお、貫通孔22の平面形状は円形状に限ることなく、放熱体が用いられる用途に応じて楕円等の丸形形状あるいは四角形または多角形の角形形状等の適宜の形状を選択すればよい。
【0040】
(3)第3変形例
本第3変形例の放熱体40は、図8(c)に示すように、タングステンリッチなCu−Wからなる母材基板41に中心部から放射状に貫通孔42(46)を形成しており、この放射状に形成された貫通孔42内に銅リッチなCu−Wからなる充填材43が充填されている。
【0041】
5.放熱体の適用例
ついで、上述のように構成される放熱体の一適用例を、図9に基づいて説明する。なお、図9は本発明の放熱体を用いた半導体レーザモジュールを模式的に示す断面図である。ここで、半導体レーザモジュールは半導体レーザ素子とレンズ等をパッケージ内に一体的に収容して構成され、この半導体レーザモジュールに光ファイバを結合して光増幅器が構成されるものである。
【0042】
このような半導体レーザモジュールにおいて、レーザ光源として用いられる半導体レーザ素子は非常に高出力が要求され、数百mAの駆動電流を必要とするため、半導体レーザ素子の発熱による光出力の低下や寿命の低下を招くおそれがある。また、半導体レーザ素子はその雰囲気温度が変化すると波長が変化するなどの光特性が変わるため、光ファイバと結合する半導体レーザモジュールの構成体内にペルチェ素子からなる熱電モジュールを備えるようにして、半導体レーザ素子を冷却するようにしている。
【0043】
このような半導体レーザモジュール50は、例えば、図9に示すように、金属製パッケージ本体(枠体)52を備えており、この枠体52の1つの側壁52aに光取り出し窓52bを設けている。また、枠体52の下部に上述した放熱体10(20,30,40)が蝋付けにより枠体52の下部に固着されており、枠体52の上部には気密用のカバー52cが取り付けられている。ここで、枠体52内には、一対の基板51a,51b間に複数個のP型熱電素子とN型熱電素子とからなるペルチェ素子を図示しない電極を介して挟み込み、複数のP型熱電素子とN型熱電素子とがP,N,P,Nの順に電気的に直列に導電接続され、更に端部のP型熱電素子及びN型熱電素子を接合した電極にそれぞれリード線を接続して構成される熱電モジュール51が配置されている。
【0044】
一方の基板51aの上部には半導体レーザ素子54、レンズLおよび受光素子57等を搭載したベース板58が固定され、他方の基板51bの下部と放熱体10(20,30,40)の上面とを接合することにより、他方の基板51bは放熱体10(20,30,40)上に固定される。ベース板58は基板51aに接合されて固定されている。半導体レーザ素子54はヒートシンク55に搭載されており、このヒートシンク55は半導体レーザ素子54の放熱を行うと共に、半導体レーザ素子54とほぼ同じ熱膨張係数を有する材料(例えば、ダイヤモンド、SiC、シリコン、Cu−W溶浸材、Cu−W−Ni合金など)を使用して熱応力による故障を防止している。なお、ヒートシンク55を本発明の放熱体10(20,30,40)で構成するようにしてもよい。
【0045】
また、ヒートシンク55はヘッダ56に搭載され、このヘッダ56は半導体レーザ素子54の電極用の端子を有している。ヘッダ56の後部にはモニタ用の受光素子57が設けられており、この受光素子57は半導体レーザ素子54の温度変化等による光出力の変化を監視し、その光出力が常に一定になるように駆動回路にフィードバックをかけている。レンズLはレンズホルダ53により固定されている。
【0046】
なお、レンズホルダ53は、半導体レーザ素子54から出射され広がったレーザ光がレンズLにより平行光になるように光軸調整後、ベース58にYAGレーザで固定されるようになされている。これは、光学調整後の半導体レーザ素子54とレンズLの軸ずれ感度が1μm以下と厳しいため固定安定度の高いYAGレーザ溶接を用いるものである。これにより、半導体レーザ素子54から出射されたレーザ光はレンズLで平行光に変換され、この平行光が光取り出し窓52bを通過するようになる。
【0047】
レンズLの前方には、スリーブ59bが配置され、このスリーブ59bにフェルール59dを介してレンズ59aが固定されている。ここで、半導体レーザ素子54から出射され光取り出し窓52bを通過したレーザ光がレンズ59aで光ファイバ59cに効率よく入射するように光軸調整した後、スリーブ59bのA,B部でYAGレーザ溶接固定している。これにより、半導体レーザ素子54から出射された光はレンズLと59aとによって光ファイバ59cに効率良く結合される。このような半導体レーザモジュール50が高出力可能なのはペルチェ素子からなる熱電モジュール51で半導体レーザ素子54を常時冷却し、半導体レーザ素子54の発熱を低減しているとともに、熱電モジュール51の高温側(ペルチェ素子の発熱側)が放熱体10(20,30,40)により効率よく外部に放出するためである。
【0048】
【発明の効果】
上述したように、本発明の放熱体10(20,30,40)は、低熱膨張係数を有する材料からなる基板11(21,31,41)に貫通孔12(22,32,42)を備えるとともに、この貫通孔12(22,32,42)内に高熱伝導性材料13(23,33,43)が充填されているので、高熱伝導性材料13(23,33,43)が存在する部分に沿って熱伝導がなされるようになる。
【0049】
このため、熱伝導方向は貫通孔12(22,32,42)の軸方向になるとともに、低熱膨張係数の基板11(21,31,41)で熱膨張が抑制されるようになる。これにより、電子デバイスで発生した熱は電子デバイスを搭載する回路基板あるいは電子デバイスを収容する容器から素早く系外に放熱されるようになるとともに、この放熱体の熱膨張も抑制することが可能となる。
なお、上述した実施の形態においては、本発明の放熱体を半導体レーザモジュールに適用する例について説明したが、本発明の放熱体はこれに限らず、IC、LSI、VLSI、ダイオード等の種々の電子デバイスに適用できる。
【図面の簡単な説明】
【図1】 本発明の放熱体の製造工程を模式的に示す斜視図であり、図1(a)は第1工程を模式的に示す斜視図であり、図1(b)は第2工程を模式的に示す斜視図であり、図1(c)はこれらの工程を経て作製された複合焼結体を模式的に示す斜視図であり、図1(d)は得られた複合焼結体を切断した状態を模式的に示す斜視図である。
【図2】 銅の含有量が20vol%で孔径が0.50mmの貫通孔を備えた母材成形体の貫通孔の体積比率を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図3】 銅の含有量が20vol%で貫通孔の体積比率を30vol%とした母材成形体の貫通孔の径を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図4】 銅の含有量が20vol%で貫通孔の体積比率を45vol%とした母材成形体の貫通孔の径を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図5】 銅の含有量が20vol%で貫通孔の体積比率を10vol%とした母材成形体の貫通孔の径を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図6】 放熱体の放熱特性の実験を模式的に示す斜視図である。
【図7】 発熱体の消費電力と発熱体の温度との関係を示す図である。
【図8】 貫通孔の平面形状およびその配置構造の変形例を示す図であって、図8(a)は貫通孔の平面形状を変形させた第1変形例の放熱体を模式的に示す図であり、図8(b)は貫通孔の配置構造を変形させた第2変形例の放熱体を模式的に示す図であり、図8(c)は貫通孔の平面形状および配置構造を変形させた第3変形例の放熱体を模式的に示す図である。
【図9】 本発明の放熱体を用いた半導体レーザモジュールを模式的に示す断面図である。
【符号の説明】
10…放熱体、11…基板、12…貫通孔、13…充填材(高熱伝導性材料)、14…断熱材、H…発熱体、20…放熱体、21…基板、22…貫通孔、23…充填材(高熱伝導性材料)、30…放熱体、31…基板、32…貫通孔、33…充填材(高熱伝導性材料)、40…放熱体、41…基板、42…貫通孔、43…充填材(高熱伝導性材料)、50…半導体レーザモジュール、51…熱電モジュール、52…枠体、52a…側壁、52b…光取り出し窓、53…レンズホルダ、54…半導体レーザ素子、55…ヒートシンク、56…ヘッダ、57…受光素子、58…ベース板、L…レンズ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a radiator for an electronic device that is mounted on a substrate on which an electronic device comprising various semiconductor elements is mounted or a container that houses the electronic device, and releases heat generated by the electronic device to the outside. In particular, the present invention relates to a method for manufacturing an electronic device heatsink whose thermal expansion coefficient approximates to an electronic device, a substrate on which the electronic device is mounted, or a container that houses the electronic device.
[0002]
[Prior art]
In recent years, higher output and higher integration of electronic devices such as semiconductor elements (thermoelectric elements, ICs, LSIs, VLSIs, diodes, etc.) have progressed, and the amount of heat generated from electronic devices tends to increase rapidly. For this reason, in highly integrated semiconductor devices such as hybrid ICs, a heat sink made of copper or a refractory metal material is integrally bonded to a ceramic circuit board in order to efficiently dissipate the heat generated by the semiconductor elements. Used. However, a heat sink made of copper or a refractory metal material has a large difference in thermal expansion coefficient from that of a semiconductor element or circuit board, so that thermal stress at the joint interface between the two parts increases due to repeated thermal shock, causing delamination. There are easy difficulties.
[0003]
Therefore, a heat sink made of a sintered body of a refractory metal material such as tungsten (W) has come into practical use as a heat sink having a thermal expansion coefficient similar to that of a semiconductor element or a circuit board. However, a heat sink made of only a refractory metal material such as tungsten (W) has insufficient thermal conductivity. A heat sink made of an impregnated sintered alloy infiltrated (impregnated) with a high thermal conductivity material such as copper (Cu) has been used.
[0004]
By the way, the heat sink which consists of an above-mentioned impregnation sintered alloy is manufactured in the following procedures, for example. That is, a high melting point material powder such as tungsten (W) is pre-blended with an organic binder to form a raw material mixture, and this raw material mixture is pressed with a die press to form a thin plate-like molded body. The molded body is degreased and sintered to form a porous sintered body, and then a high thermal conductivity material such as copper (Cu) is infiltrated (impregnated) into the pores of the sintered body. Thereafter, a method is generally employed in which the surface of the impregnated sintered body is subjected to surface processing using a milling machine, a lapping machine, or the like to finally form a heat sink.
[Patent Document 1]
Japanese Patent Laid-Open No. 04-215462
[Patent Document 2]
Japanese Patent Application Laid-Open No. 09-232485
[Patent Document 3]
Japanese Patent Laid-Open No. 10-200208
[Patent Document 4]
International Publication No. 00/13823 Pamphlet
[Patent Document 5]
JP 07-21118A
[Patent Document 6]
Japanese Patent Application Laid-Open No. 06-334074
[Patent Document 7]
Japanese Patent Laid-Open No. 09-107057
[0005]
[Problems to be solved by the invention]
However, in the heat sink made of the impregnated sintered body formed as described above, when the thermal conductivity is to be improved, the content of copper (Cu) excellent in thermal conductivity is increased. There is a need to. However, if the content of copper (Cu) is increased, the thermal expansion coefficient of the entire heat sink increases, so that the junction interface between the substrate on which the electronic device is mounted and the heat sink due to repeated thermal shock or the electron The thermal stress at the bonding interface between the container in which the device is accommodated and the heat radiating plate is increased, which causes a problem that the heat radiating plate easily causes peeling.
[0006]
Moreover, in the heat sink made of the impregnated sintered body, since copper (Cu) is infiltrated (impregnated) in the pores formed in the sintered body, the impregnated copper (Cu) exists. The heat conduction is performed along the portion to be diffused, and the heat is diffused, and the heat conduction direction is a random direction. For this reason, for example, if an electronic device is sealed in a container to which a heat sink is bonded, the heat dissipation direction of the heat sink becomes a random direction, and the heat generated in the electronic device is out of the system of the container. There was also a problem that it was difficult to dissipate heat quickly and heat dissipation efficiency was poor.
[0007]
In addition, in the case of a heat sink made of an impregnated sintered body, surface polishing using a lapping machine or the like is finally performed to infiltrate (impregnate) copper (Cu) in the pores formed in the sintered body. Since processing is required, the manufacturing process of the heat sink becomes complicated, and the manufacturing cost increases. Moreover, in order to improve the fluidity | liquidity of the raw material powder for making it a sintered compact, a moldability, and shape retention property, the organic binder is used. For this reason, a degreasing step is necessary. However, if the degreasing step is insufficient, carbides adhere to the surface of the sintered body and the pores are likely to be blocked, so that the infiltration (impregnation) operation of the high thermal conductivity material is performed. There was also the problem of becoming difficult.
[0008]
Furthermore, there is a portion where the high thermal conductivity material is not infiltrated (impregnated) in the pores of the sintered body, and pinholes are easily generated on the surface portion, and a plating layer is formed on the pinholes. When it was formed, there was a problem that plating swelling was likely to occur, plating properties were good, and it was difficult to obtain a high-quality heat sink. Also, after infiltrating (impregnating) a high thermal conductivity material, a large amount of excess impregnated material adheres to the surface of the sintered body. Therefore, after removing the excess impregnated material adhering to the surface by grinding or the like, surface polishing is performed. There is also a problem in that it is necessary to carry out processing, and the number of man-hours for finishing the heat sink increases and the manufacturing cost increases.
[0009]
Therefore, the present invention has been made to solve the above problems, and the heat dissipation direction (heat conduction direction) is constant and the thermal expansion coefficient is an electronic device, a substrate on which the electronic device is mounted, or an electronic device. It is an object of the present invention to provide a method of manufacturing a radiator that approximates a container that houses a device.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the method of manufacturing a radiator according to the present invention includes mixing and kneading tungsten powder or molybdenum powder, copper powder and binder at a predetermined ratio such that the content of tungsten or molybdenum is greater than that of copper. A first molding composition preparation step for forming a molding composition, and a first molding for molding the base material molded body having a predetermined shape by filling the molding die with the first molding composition. A second molding composition comprising a step of mixing and kneading a tungsten powder or molybdenum powder, a copper powder and a binder at a predetermined ratio such that the copper content is higher than that of tungsten or molybdenum. A manufacturing process, a second molding process in which the second molding composition is filled in the through-holes of the preform of the base material to form an integral molded body, and the integral molded body is heated to be contained in the integral molded body. A binder removal treatment step of burning off the binder, binder and sintering the molded body is removed so that and a sintering step of the composite sintered body.
[0011]
In this way, first, after molding a base material molded body having through holes of a predetermined shape in the first molding step, the second molding composition is filled in the through holes of the base material molded body in the second molding step. When the integrally molded body is heated to burn and remove the binder, and the integrally molded body from which the binder has been removed is sintered to form a composite sintered body, the copper content is low and tungsten or A substrate made of a copper-tungsten alloy or a copper-molybdenum alloy having a high molybdenum content and a low thermal expansion coefficient, and a high copper content in the through-hole of the substrate, and a tungsten or molybdenum content It is possible to easily and easily manufacture a heat radiating body made of a composite sintered body filled with a high thermal conductivity material made of a copper-tungsten alloy or a copper-molybdenum alloy with a small amount of copper.
[0012]
When the substrate made of a material having a low coefficient of thermal expansion is provided with a through hole, and the through hole is filled with a high thermal conductivity material, heat conduction is performed along a portion where the high thermal conductivity material exists. Therefore, the heat conduction direction is the axial direction of the through hole, and thermal expansion is suppressed by the substrate having a low thermal expansion coefficient. As a result, the heat generated in the electronic device can be quickly dissipated out of the system from the circuit board on which the electronic device is mounted or the container that houses the electronic device, and the thermal expansion of the radiator can be suppressed. Become.
[0013]
In general, an electronic device, a circuit board on which the electronic device is mounted, or a container that houses the electronic device is formed of a material having a low thermal expansion coefficient, such as ceramics. It needs to be approximated. Therefore, in the present invention, a copper-tungsten alloy or a copper-molybdenum alloy having a low copper content and a high content of tungsten or molybdenum, or a thermal expansion coefficient of 4 ppm / K to 10 ppm / K (however, at room temperature The substrate is composed of one selected from tungsten, iron-nickel alloy, and iron-nickel-cobalt alloy.
[0014]
In this case, the planar shape of the through-hole may be appropriately selected according to the use for which the radiator is used. However, considering the manufacturability of the radiator, the round shape such as a circle and an ellipse, or the rectangle, the polygon, etc. It is preferable to use a square shape. Also, in the arrangement structure of the through holes, it may be appropriately selected according to the use for which the radiator is used. However, in consideration of uniform heat dissipation, it is uniformly or non-uniformly distributed in one direction of the thickness direction or the length direction. It is preferable to form a unidirectional multi-core shape, or a unidirectional radial shape radially dispersed in one direction of thickness or length.
[0015]
Note that if the total volume occupied by the through hole becomes too large, the thermal conductivity is improved, but the coefficient of thermal expansion increases. Therefore, the total volume occupied by the through hole is 45% by volume (45 vol. %) Or less. On the other hand, if the total volume occupied by the through-hole becomes too small, the coefficient of thermal expansion is improved, but the thermal conductivity is lowered. Therefore, the total volume occupied by the through-hole is 10% by volume (10 vol. %) Or more is desirable.
Further, if the average hole diameter of the through holes becomes too small, the coefficient of thermal expansion is improved, but the thermal conductivity is lowered. Therefore, the average hole diameter of the through holes is preferably 0.05 mm or more. On the other hand, if the average hole diameter of the through hole becomes too large, the thermal conductivity is improved, but the coefficient of thermal expansion is increased. Therefore, the average hole diameter of the through hole is preferably 1.00 mm or less.
[0016]
The heat radiator for an electronic device of the present invention can be applied to various electronic devices. In particular, a plurality of thermoelectric elements made of a semiconductor through a pair of electrodes formed on opposite surfaces of a pair of insulating substrates. Is preferably applied to a semiconductor laser module provided with a thermoelectric module electrically connected as a cooling element. In this case, the heat absorption side of the thermoelectric module is bonded to the substrate on which the semiconductor laser element is mounted, and the radiator for an electronic device as described above is in contact with the heat generation side of the thermoelectric module on the bottom wall of the package housing the semiconductor laser element. What is necessary is just to set it as the structure joined.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described below in the order of a manufacturing example of a heat radiator, measurement of thermal characteristics, measurement of heat radiation characteristics, a planar shape of a through hole and a modified arrangement structure, and an application example of a heat radiator. .
[0018]
1. Example of manufacturing radiator
An example of manufacturing the heat radiator of the present invention will be described with reference to FIG. FIG. 1 is a perspective view schematically showing the manufacturing process of the radiator of the present invention, FIG. 1 (a) is a perspective view schematically showing the first step, and FIG. 1 (b) is the second view. FIG. 1C is a perspective view schematically showing the process, FIG. 1C is a perspective view schematically showing the composite sintered body produced through these processes, and FIG. It is a perspective view which shows typically the state which cut | disconnected the tied body.
[0019]
First, a tungsten (W) powder having an average particle diameter of 2 μm and a copper (Cu) powder having an average particle diameter of 2 μm are prepared, and these are mixed to obtain a tungsten powder of 80% by volume (80 vol%) and a copper powder. It was set as the mixed metal powder which consists of 20 volume% (20 vol%). Next, the obtained mixed metal powder is mixed with a binder having the same volume (for example, a mixture of acrylic resin and wax), added with an organic solvent, and kneaded to form a tungsten-rich Cu-W molding material. After obtaining the composition (first molding composition), the molding composition was pelletized.
[0020]
Thereafter, pellets of a molding composition made of tungsten-rich Cu—W were filled into a hopper of an injection molding machine (not shown), and then injection molded at an injection temperature of 130 ° C. and a mold temperature of 40 ° C. Thereafter, the mold was water-cooled to solidify the injection, and a base material molded body (green body) 11 in which a large number of through-holes 12 as shown in FIG. The obtained preform 11 is a plate-like body having a thickness of 2 mm, a length of 30 mm, a width of 20 mm, and a through hole 12 having a hole diameter of 0.50 mm. The volume occupied by the through holes 12 was 30% by volume with respect to the total volume of the base material molded body 11.
[0021]
Meanwhile, a tungsten (W) powder having an average particle diameter of 2 μm and a copper (Cu) powder having an average particle diameter of 2 μm are prepared, and these are mixed to obtain a tungsten powder of 25 vol% (25 vol%) and a copper powder. It was set as the mixed metal powder which consists of 75 volume% (75 vol%). A molding composition composed of copper-rich Cu-W (second molding composition) by adding and kneading a binder (for example, a mixture of acrylic resin and wax) having the same volume as the obtained mixed metal powder. The molding composition was pelletized.
[0022]
Next, pellets of the molding composition made of copper-rich Cu—W are filled into a hopper of an injection molding machine (not shown), and the base material molded body 11 obtained as described above is injected into the injection molding machine. 1, and after injection molding at an injection temperature of 130 ° C. and a mold temperature of 40 ° C., the mold is water-cooled to solidify the injection, and as shown in FIG. The board | substrate 10a with which the molding composition 13 which consists of copper rich Cu-W in many through-holes 12 of the molded object 11 was filled was obtained.
[0023]
Next, after placing the obtained substrate 10a in a sintering furnace (not shown), the sintering furnace is filled with nitrogen gas at a flow rate of 1 l / min to make the inside of the sintering furnace a nitrogen gas atmosphere, The binder was removed by heating from room temperature to 410 ° C. at a temperature rising rate of 0.5 ° C./min to burn the binder contained in the substrate 10a. Thereafter, the sintering furnace is filled with hydrogen gas at a flow rate of 1 l / min to make the inside of the sintering furnace a reducing atmosphere and heated to 1450 ° C. at a temperature rising rate of 5 ° C./min. The substrate 10a was sintered while being held for a time to produce a composite sintered body 10 as shown in FIG.
[0024]
The composite sintered body 10 thus obtained is along the axial direction of the through hole 12 of the base material molded body 11 having a low thermal expansion coefficient made of tungsten-rich Cu—W, as shown in FIG. Thus, a highly thermally conductive filling layer 13 made of copper-rich Cu—W is formed.
[0025]
2. Measurement of thermal properties
The composite sintered body 10 manufactured as described above (the hole diameter of the through hole of the base material molded body 11 is 0.50 mm, the volume ratio of the through hole is 30 vol%, the volume ratio of W is 80 vol%, and the packed bed 13 The thermal conductivity and thermal expansion coefficient of the Cu volume ratio of 75 vol% were measured using a laser flash device (manufactured by Nippon Vacuum Riko Co., Ltd .: Laser Flash Thermal Horn Stack Analyzer TC7000) and a thermal expansion measuring instrument (TMA6200 manufactured by SEIKO). ), The thermal conductivity is 255 W / mK, and the thermal expansion coefficient (linear expansion coefficient when the temperature is raised from room temperature to 400 ° C.) is 8.0 ppm / K. These values are shown in the graph of FIG. △ 2 It became.
Next, a composite sintered body 10 was prepared using a Cu-W molding composition (second molding composition) prepared so that the Cu ratio of the packed layer 13 was 100 vol% and 50 vol%, and the same as described above. The thermal conductivity and the coefficient of thermal expansion are respectively measured on the graph, and these values are plotted on the graph of FIG. 1 , △ Three The result was as shown in.
[0026]
Further, using the preform 11 having a through hole diameter of 0.50 mm and a W volume ratio of 80 vol%, the through hole volume ratio is set to 45 vol%, and the Cu volume ratio of the packed layer 13 is 100 vol%. %, 75 vol%, and 50 vol%, the composite sintered body 10 is manufactured, the thermal conductivity and the thermal expansion coefficient are measured in the same manner as described above, and these values are plotted in the graph of FIG. 1 , □ 2 , □ Three The result was as shown in.
Similarly, using the preform 11 having a through-hole diameter of 0.50 mm and a W volume ratio of 80 vol%, the through-hole volume ratio is 10 vol%, and the Cu volume ratio of the packed layer 13 is The composite sintered body 10 was produced by changing the volume to 100 vol%, 75 vol%, and 50 vol%. Next, the thermal conductivity and the thermal expansion coefficient are measured in the same manner as described above, and these values are plotted on the graph of FIG. 1 , ◇ 2 , ◇ Three The result was as shown in.
[0027]
For comparison, after compacting tungsten powder and pre-sintering it into a porous state, a copper plate is laminated on this pre-sintered body, and heat treatment is performed to make copper into the pores of the pre-sintered body. A sintered body (infiltrant) was produced by infiltration, and the thermal conductivity and thermal expansion coefficient were measured in the same manner as described above, and these values were plotted on the graph of FIG. 1 (The porosity of the temporary sintered body is 35 vol%), ○ 2 (The porosity of the temporary sintered body is 27.5 vol%), ○ Three The result was as shown in (the porosity of the temporary sintered body was 21 vol%).
[0028]
Further, using the preform 11 with a volume ratio of W of 80 vol%, the volume ratio of the through holes is set to 30 vol%, and the hole diameter of the through holes is changed to 0.05 mm, 0.50 mm, and 1.00 mm, The composite sintered body 10 was manufactured by changing the volume ratio of Cu in the packed layer 13 to 100 vol%, 75 vol%, and 50 vol%. Subsequently, the thermal conductivity and the thermal expansion coefficient were measured in the same manner as described above. After that, when these numerical values are plotted in the graph of FIG. 1 (Cu is 100 vol%), ◇ 2 (Cu is 75 vol%), ◇ Three (Cu is 50 vol%).
[0029]
Also, when the through hole has a hole diameter of 0.50 mm, 1 (Cu is 100 vol%), □ 2 (Cu is 75 vol%), □ Three (Cu is 50 vol%). Furthermore, if the through hole has a hole diameter of 1.00 mm, 1 (Cu is 100 vol%), △ 2 (Cu is 75 vol%), △ Three (Cu is 50 vol%). In FIG. 3, the infiltrant (○ 1 (The porosity of the temporary sintered body is 35 vol%), ○ 2 (The porosity of the temporary sintered body is 27.5 vol%), ○ Three (The porosity of the temporary sintered body is 21 vol%)) is also shown.
[0030]
In addition, using the preform 11 having a volume ratio of W of 80 vol%, the volume ratio of the through holes is set to 45 vol%, and the hole diameter of the through holes is changed to 0.05 mm, 0.50 mm, and 1.00 mm, The composite sintered body 10 was manufactured by changing the volume ratio of Cu in the packed layer 13 to 100 vol%, 75 vol%, and 50 vol%. Subsequently, the thermal conductivity and the thermal expansion coefficient were measured in the same manner as described above, and when these values were plotted on the graph of FIG. 1 (Cu is 100 vol%), ◇ 2 (Cu is 75 vol%), ◇ Three (Cu is 50 vol%).
[0031]
Also, when the through hole has a hole diameter of 0.50 mm, 1 (Cu is 100 vol%), □ 2 (Cu is 75 vol%), □ Three (Cu is 50 vol%). Furthermore, if the through hole has a hole diameter of 1.00 mm, 1 (Cu is 100 vol%), △ 2 (Cu is 75 vol%), △ Three (Cu is 50 vol%). In FIG. 4, the infiltrant (○ 1 (The porosity of the temporary sintered body is 35 vol%), ○ 2 (The porosity of the temporary sintered body is 27.5 vol%), ○ Three (The porosity of the temporary sintered body is 21 vol%)) is also shown.
[0032]
Furthermore, using the base material molded body 11 having a volume ratio of W of 80 vol%, the volume ratio of the through holes is changed to 10 vol%, and the hole diameter of the through holes is changed to 0.05 mm, 0.50 mm, and 1.00 mm, The composite sintered body 10 was manufactured by changing the volume ratio of Cu in the packed layer 13 to 100 vol%, 75 vol%, and 50 vol%. Subsequently, the thermal conductivity and the thermal expansion coefficient were measured in the same manner as described above, and when these values were plotted on the graph of FIG. 1 (Cu is 100 vol%), ◇ 2 (Cu is 75 vol%), ◇ Three (Cu is 50 vol%).
[0033]
Also, when the through hole has a hole diameter of 0.50 mm, 1 (Cu is 100 vol%), □ 2 (Cu is 75 vol%), □ Three (Cu is 50 vol%). Furthermore, if the diameter of the through hole is 1.0 mm, △ 1 (Cu is 100 vol%), △ 2 (Cu is 75 vol%), △ Three (Cu is 50 vol%). In FIG. 5, the infiltrant (○ 1 (The porosity of the temporary sintered body is 35 vol%), ○ 2 (The porosity of the temporary sintered body is 27.5 vol%), ○ Three (The porosity of the temporary sintered body is 21 vol%)) is also shown.
[0034]
As is clear from the results of FIGS. 2 to 5, copper is formed in the through hole of the base material molded body made of tungsten-rich Cu—W rather than the sintered body in which copper is infiltrated into the pores of the temporary sintered body. In the range of the thermal expansion coefficient (4 to 10 ppm / K (RT to 400 ° C.)) of ceramics or glass, the composite sintered body 10 filled with a filler made of rich Cu—W and sintered is heated. It can be seen that the conductivity is improved. For this reason, the total volume of the through-holes of the base material molded body (that is, the filling volume of the filler made of copper-rich Cu—W) is restricted to a range of 10 vol% to 45 vol%, preferably 20 vol% to 45 vol%. It can be said that it is desirable to regulate to the range. Moreover, it can be said that it is desirable to restrict the hole diameter of the through hole to a range of 0.05 mm (50 μm) to 1.00 mm, and preferably to a range of 0.10 mm to 1.00 mm.
[0035]
3. Measurement of heat dissipation characteristics
Next, using the composite sintered body 10 produced as described above and the infiltrant X having the same thermal expansion coefficient as this, an experiment was conducted on the heat dissipation rate of the heat dissipator (temperature increase rate of the heat generator). Here, FIG. 6 is a perspective view schematically showing the state of such an experiment, in which a heating element (electric heater) H is placed on a radiator (composite sintered body 10 or infiltrant X). At the same time, this was covered with a heat insulating material 14, and a current was passed through the heating element H to measure the temperature of the heating element H. Based on the obtained measurement results, when the measurement results are plotted with the power consumption (W) of the heating element H as the horizontal axis and the heating element temperature (° C.) as the vertical axis, the results shown in FIG. 7 are obtained. . In FIG. 7, “Δ” indicates the result of the composite sintered body 10, and “◯” indicates the result of the infiltrant X.
As is apparent from the results of FIG. 7, it can be seen that the temperature rise of the heating element H is smaller when the composite sintered body 10 is used than when the infiltrant X is used as the radiator. This means that the heat dissipation efficiency (heat dissipation speed) of the composite sintered body 10 is excellent.
[0036]
As the composite sintered body 10, the hole diameter of the through hole of the base material molded body 11 is 0.50 mm, the volume ratio of the through holes is 30 vol%, the volume ratio of W is 80 vol%, and the Cu of the packed layer 13 Used were those having a volume ratio of 75 vol%, a thermal conductivity of 255 W / mK, a thermal expansion coefficient of 8.0 ppm / K, and a thermal resistance of -0.061728 K / W. As the infiltrant X, a material having a thermal conductivity of 180 W / mK, a thermal expansion coefficient of 8.0 ppm / K, and a thermal resistance of 0.043573 K / W was used. The composite sintered body 10 and the infiltrant X had a thickness of 10 mm, a length of 30 mm, and a width of 30 mm.
[0037]
4). Modification of planar shape and arrangement structure of through holes
In the above-described embodiment, the example in which the planar shape of the through holes is circular and the circular through holes are uniformly dispersed has been described. However, various modifications can be made to the planar shape of the through holes and the arrangement structure thereof. It is. Next, a modification of the planar shape of the through holes and the arrangement structure thereof will be described with reference to FIG. FIG. 8 is a diagram showing a modification of the planar shape of the through holes and the arrangement structure thereof, and FIG. 8A schematically shows the heat radiator of the first modification in which the planar shape of the through holes is modified. FIG. 8B is a diagram schematically showing a heat radiating body of a second modified example in which the arrangement structure of the through holes is modified, and FIG. 8C is a plan shape and arrangement structure of the through holes. It is a figure which shows typically the heat radiator of the 3rd modification which deform | transformed.
[0038]
(1) First modification
As shown in FIG. 8 (a), the heat dissipating body 20 of the first modified example is formed by uniformly dispersing through holes 22 having a square planar shape on a base material substrate 21 made of tungsten-rich Cu—W. The filling material 23 made of copper-rich Cu—W is filled in the through hole 22. The planar shape of the through-hole 22 is not limited to a square shape, and an appropriate shape such as a round shape such as an ellipse or a triangular or polygonal square shape may be selected according to the application for which the heat radiator is used.
[0039]
(2) Second modification
As shown in FIG. 8B, the heat dissipating body 30 of the second modified example is obtained by unevenly distributing through holes 32 having a circular planar shape on a base material substrate 31 made of tungsten-rich Cu—W. The through-hole 32 is filled with a filler 33 made of Cu-W rich in copper. The planar shape of the through-hole 22 is not limited to a circular shape, and an appropriate shape such as a round shape such as an ellipse or a quadrangular or polygonal square shape may be selected according to the application for which the radiator is used.
[0040]
(3) Third modification
As shown in FIG. 8 (c), the radiator 40 of the third modified example has through holes 42 (46) formed radially from the center in a base material substrate 41 made of tungsten-rich Cu—W. In this radially formed through hole 42, a filler 43 made of copper-rich Cu—W is filled.
[0041]
5). Application example of radiator
Next, an application example of the heat radiator configured as described above will be described with reference to FIG. FIG. 9 is a cross-sectional view schematically showing a semiconductor laser module using the heat radiator of the present invention. Here, the semiconductor laser module is configured by integrally housing a semiconductor laser element and a lens in a package, and an optical amplifier is configured by coupling an optical fiber to the semiconductor laser module.
[0042]
In such a semiconductor laser module, a semiconductor laser element used as a laser light source is required to have a very high output and requires a drive current of several hundred mA. There is a risk of lowering. In addition, since the optical characteristics of the semiconductor laser element, such as the wavelength, changes when the ambient temperature changes, the semiconductor laser element is provided with a thermoelectric module comprising a Peltier element in the structure of the semiconductor laser module coupled to the optical fiber. The element is cooled.
[0043]
For example, as shown in FIG. 9, the semiconductor laser module 50 includes a metal package body (frame body) 52, and a light extraction window 52 b is provided on one side wall 52 a of the frame body 52. . In addition, the radiator 10 (20, 30, 40) described above is fixed to the lower portion of the frame body 52 by brazing, and an airtight cover 52c is attached to the upper portion of the frame body 52. ing. Here, a Peltier element composed of a plurality of P-type thermoelectric elements and N-type thermoelectric elements is sandwiched between a pair of substrates 51a and 51b via a not-shown electrode in the frame 52, and a plurality of P-type thermoelectric elements And N-type thermoelectric elements are electrically connected in series in the order of P, N, P, and N, and lead wires are connected to the electrodes joining the P-type thermoelectric elements and N-type thermoelectric elements at the ends. A configured thermoelectric module 51 is arranged.
[0044]
A base plate 58 on which the semiconductor laser element 54, the lens L, the light receiving element 57 and the like are mounted is fixed on the upper side of one substrate 51a, and the lower surface of the other substrate 51b and the upper surface of the radiator 10 (20, 30, 40). The other substrate 51b is fixed on the radiator 10 (20, 30, 40). The base plate 58 is bonded and fixed to the substrate 51a. The semiconductor laser element 54 is mounted on a heat sink 55. The heat sink 55 radiates heat from the semiconductor laser element 54 and has a material having the same thermal expansion coefficient as that of the semiconductor laser element 54 (for example, diamond, SiC, silicon, Cu -W infiltrant, Cu-W-Ni alloy, etc.) are used to prevent failure due to thermal stress. In addition, you may make it comprise the heat sink 55 with the heat radiator 10 (20, 30, 40) of this invention.
[0045]
The heat sink 55 is mounted on a header 56, and the header 56 has a terminal for an electrode of the semiconductor laser element 54. A light receiving element 57 for monitoring is provided at the rear part of the header 56. The light receiving element 57 monitors a change in light output due to a temperature change of the semiconductor laser element 54, and the light output is always constant. Feedback is applied to the drive circuit. The lens L is fixed by a lens holder 53.
[0046]
The lens holder 53 is fixed to the base 58 with a YAG laser after adjusting the optical axis so that the spread laser light emitted from the semiconductor laser element 54 becomes parallel light by the lens L. This is because YAG laser welding with high fixation stability is used because the axis deviation sensitivity between the semiconductor laser element 54 and the lens L after optical adjustment is as severe as 1 μm or less. Thus, the laser light emitted from the semiconductor laser element 54 is converted into parallel light by the lens L, and this parallel light passes through the light extraction window 52b.
[0047]
A sleeve 59b is disposed in front of the lens L, and the lens 59a is fixed to the sleeve 59b via a ferrule 59d. Here, after adjusting the optical axis so that the laser light emitted from the semiconductor laser element 54 and passed through the light extraction window 52b is efficiently incident on the optical fiber 59c by the lens 59a, YAG laser welding is performed at the A and B portions of the sleeve 59b. It is fixed. Thereby, the light emitted from the semiconductor laser element 54 is efficiently coupled to the optical fiber 59c by the lenses L and 59a. Such a semiconductor laser module 50 is capable of high output because the semiconductor laser element 54 is constantly cooled by a thermoelectric module 51 made of a Peltier element to reduce the heat generation of the semiconductor laser element 54, and at the high temperature side of the thermoelectric module 51 (Peltier This is because the heat generation side of the element is efficiently discharged to the outside by the heat radiating body 10 (20, 30, 40).
[0048]
【The invention's effect】
As described above, the radiator 10 (20, 30, 40) of the present invention includes the through holes 12 (22, 32, 42) in the substrate 11 (21, 31, 41) made of a material having a low thermal expansion coefficient. In addition, since the high thermal conductivity material 13 (23, 33, 43) is filled in the through hole 12 (22, 32, 42), the portion where the high thermal conductivity material 13 (23, 33, 43) is present. Heat conduction is performed along the line.
[0049]
For this reason, the heat conduction direction is the axial direction of the through holes 12 (22, 32, 42), and thermal expansion is suppressed by the substrate 11 (21, 31, 41) having a low thermal expansion coefficient. As a result, the heat generated in the electronic device can be quickly dissipated out of the system from the circuit board on which the electronic device is mounted or the container that houses the electronic device, and the thermal expansion of the radiator can be suppressed. Become.
In the above-described embodiment, the example in which the heat radiator of the present invention is applied to the semiconductor laser module has been described. However, the heat radiator of the present invention is not limited to this, and various other devices such as IC, LSI, VLSI, and diode can be used. Applicable to electronic devices.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a manufacturing process of a radiator of the present invention, FIG. 1 (a) is a perspective view schematically showing a first step, and FIG. 1 (b) is a second step. 1 (c) is a perspective view schematically showing a composite sintered body produced through these steps, and FIG. 1 (d) is the obtained composite sintered body. It is a perspective view which shows the state which cut | disconnected the body typically.
FIG. 2 shows the relationship between the coefficient of thermal expansion and the thermal conductivity when the volume ratio of the through hole of the base material molded body having a through hole with a copper content of 20 vol% and a hole diameter of 0.50 mm is changed. FIG.
FIG. 3 is a diagram showing the relationship between the thermal expansion coefficient and the thermal conductivity when the diameter of the through hole of the base material molded body is changed with the copper content being 20 vol% and the through hole volume ratio being 30 vol%. is there.
FIG. 4 is a diagram showing the relationship between the thermal expansion coefficient and the thermal conductivity when the diameter of the through hole of the base material molded body is changed with the copper content being 20 vol% and the volume ratio of the through hole being 45 vol%. is there.
FIG. 5 is a diagram showing the relationship between the coefficient of thermal expansion and the thermal conductivity when the diameter of the through hole of the base material molded body is changed with the copper content being 20 vol% and the volume ratio of the through hole being 10 vol%. is there.
FIG. 6 is a perspective view schematically showing an experiment of heat dissipation characteristics of a radiator.
FIG. 7 is a diagram showing the relationship between the power consumption of a heating element and the temperature of the heating element.
FIG. 8 is a view showing a modified example of the planar shape of the through hole and the arrangement structure thereof, and FIG. 8 (a) schematically shows the radiator of the first modified example in which the planar shape of the through hole is modified. FIG. 8B is a diagram schematically showing a heat radiating body of a second modified example in which the arrangement structure of the through holes is modified, and FIG. 8C shows the planar shape and arrangement structure of the through holes. It is a figure which shows typically the heat radiator of the 3rd modification changed.
FIG. 9 is a cross-sectional view schematically showing a semiconductor laser module using a radiator of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Radiator, 11 ... Board | substrate, 12 ... Through-hole, 13 ... Filler (high heat conductive material), 14 ... Heat insulating material, H ... Heat generating body, 20 ... Radiator, 21 ... Substrate, 22 ... Through-hole, 23 ... Filler (high thermal conductivity material), 30 ... Radiator, 31 ... Substrate, 32 ... Through hole, 33 ... Filler (high thermal conductivity material), 40 ... Radiator, 41 ... Substrate, 42 ... Through hole, 43 DESCRIPTION OF SYMBOLS ... Filler (high thermal conductivity material), 50 ... Semiconductor laser module, 51 ... Thermoelectric module, 52 ... Frame, 52a ... Side wall, 52b ... Light extraction window, 53 ... Lens holder, 54 ... Semiconductor laser element, 55 ... Heat sink 56 ... Header, 57 ... Light receiving element, 58 ... Base plate, L ... Lens

Claims (2)

低熱膨張係数を有する材料からなる基板に高熱伝導性材料を充填して形成する電子デバイス用放熱体の製造方法であって、
タングステンあるいはモリブデンの含有量が銅よりも多くなるような所定の比率でタングステン粉末あるいはモリブデン粉末と銅粉末とバインダーとを混合、混練して成形用組成物を形成する第1成形用組成物作製工程と、
前記第1成形用組成物を成形型に充填して所定形状で貫通孔を備えた母材成形体を成形する第1成形工程と、
銅の含有量がタングステンあるいはモリブデンよりも多くなるような所定の比率でタングステン粉末あるいはモリブデン粉末と銅粉末とバインダーとを混合、混練して成形用組成物とする第2成形用組成物作製工程と、
前記母材成形体の貫通孔内に前記第2成形用組成物を充填して一体成形体とする第2成形工程と、
前記一体成形体を加熱して一体成形体に含有されたバインダーを燃焼除去する脱バインダ処理工程と、
前記バインダーが除去された一体成形体を焼結して複合焼結体とする焼結工程とを備えたことを特徴とする電子デバイス用放熱体の製造方法。
A method of manufacturing a radiator for an electronic device formed by filling a substrate made of a material having a low thermal expansion coefficient with a high thermal conductivity material,
A first molding composition preparation step of forming a molding composition by mixing and kneading tungsten powder or molybdenum powder, copper powder and a binder at a predetermined ratio such that the content of tungsten or molybdenum is greater than that of copper. When,
A first molding step of filling a molding die with the first molding composition and molding a base material molded body having a predetermined shape and a through hole;
A second molding composition preparation step in which a tungsten powder or molybdenum powder, a copper powder and a binder are mixed and kneaded at a predetermined ratio such that the copper content is higher than that of tungsten or molybdenum to form a molding composition; ,
A second molding step of filling the second molding composition into a through-hole of the base material molded body to form an integral molded body;
A binder removal step of heating and removing the binder contained in the integral molded body by heating the integral molded body;
And a sintering step of sintering the integrally formed body from which the binder has been removed to form a composite sintered body.
前記貫通孔の平均孔径は0.05mm〜1.00mmであることを特徴とする請求項1に記載の電子デバイス用放熱体の製造方法。2. The method for manufacturing a heat radiator for an electronic device according to claim 1, wherein the through hole has an average hole diameter of 0.05 mm to 1.00 mm.
JP2003208567A 2003-08-25 2003-08-25 Manufacturing method of heat radiator for electronic device Expired - Fee Related JP3867690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208567A JP3867690B2 (en) 2003-08-25 2003-08-25 Manufacturing method of heat radiator for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208567A JP3867690B2 (en) 2003-08-25 2003-08-25 Manufacturing method of heat radiator for electronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000314981A Division JP3841633B2 (en) 2000-10-16 2000-10-16 Semiconductor laser module

Publications (2)

Publication Number Publication Date
JP2004006946A JP2004006946A (en) 2004-01-08
JP3867690B2 true JP3867690B2 (en) 2007-01-10

Family

ID=30438569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208567A Expired - Fee Related JP3867690B2 (en) 2003-08-25 2003-08-25 Manufacturing method of heat radiator for electronic device

Country Status (1)

Country Link
JP (1) JP3867690B2 (en)

Also Published As

Publication number Publication date
JP2004006946A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP3841633B2 (en) Semiconductor laser module
CN100373998C (en) Power assembly and method for manufacturing the same
KR100883725B1 (en) Composite material and wafer supporting member and manufacturing method thereof
JP2004200346A (en) Package for accommodating semiconductor device, its manufacturing method, and semiconductor apparatus
JP2006352080A (en) Semiconductor device and its manufacturing method
JP2010153873A (en) Thermal interface material, electronic assembly, and method of using the thermal interface material
JP2015177182A (en) power module
JP2007173729A (en) Light emission package
JP2011096994A (en) Cooler, wiring board and light emitting body
JPH09260539A (en) Sub-mounter and semiconductor device as well as manufacture thereof
JPH08191120A (en) Power semiconductor element substrate and manufacture thereof
JP2017143094A (en) Heat sink, thermoelectric conversion module, method of manufacturing heat sink
JP3867690B2 (en) Manufacturing method of heat radiator for electronic device
JP2001332773A (en) Multi-layer substrate for thermoelectric module and method of manufacturing the same, and thermoelectric module using multi-layer substrate
JP4227610B2 (en) Manufacturing method of heat dissipation base
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP2004022964A (en) Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE
JP2005005528A (en) Module for mounting semiconductor element
JP4265247B2 (en) High heat dissipation alloy, heat dissipation plate, package for semiconductor element, and manufacturing method thereof
JP2003188295A (en) Heat sink for semiconductor element receiving package and for optical communication module package
JP2004083964A (en) Copper-based heat radiation board and production method therefor
CN1497716A (en) Package for semiconductor chip and semiconductor device
JP2004022885A (en) Al-SiC COMPOSITE BODY AND HEAT RADIATING COMPONENT
JP2004156056A (en) Heat sink, semiconductor carrier using the heat sink, and package for semiconductor element
TW200302364A (en) Waveguide type optical module, temperature control component, and temperature control element thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees