JP3866359B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3866359B2
JP3866359B2 JP06305597A JP6305597A JP3866359B2 JP 3866359 B2 JP3866359 B2 JP 3866359B2 JP 06305597 A JP06305597 A JP 06305597A JP 6305597 A JP6305597 A JP 6305597A JP 3866359 B2 JP3866359 B2 JP 3866359B2
Authority
JP
Japan
Prior art keywords
refrigerant
oil
compressor
liquid
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06305597A
Other languages
Japanese (ja)
Other versions
JPH10253179A (en
Inventor
智彦 河西
士郎 高谷
直樹 田中
慎 関屋
等 飯島
利秀 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13218282&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3866359(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06305597A priority Critical patent/JP3866359B2/en
Publication of JPH10253179A publication Critical patent/JPH10253179A/en
Application granted granted Critical
Publication of JP3866359B2 publication Critical patent/JP3866359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、作動媒体としてハイドロフルオロカ−ボン系の冷媒を、冷凍機油としてこの冷媒と相溶性のある油を用いる空気調和装置に関する。
【0002】
【従来の技術】
図28は、従来の空気調和装置の冷媒回路図で、図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、6は暖房時絞り装置(以下第2の絞り装置という)、7b、7c、7dは室内機側熱交換器、8b、8c、8dは冷房時絞り装置(以下第1の絞り装置という)、9は、熱源機Aの熱源機側熱交換器3側の一端と室内機B、C、Dの第1の絞り装置8b、8c、8d側の一端とを接続する液側接続冷媒配管、10は、熱源機Aの上記切換弁2側の一端と室内機B、C、Dの室内機側熱交換器7b、7c、7d側の一端とを接続するガス側接続冷媒配管、11,12は、合成ゼオライトなどを主成分とする乾燥剤を円筒容器や配管内に内蔵させた、冷媒回路中に混入した水分を吸湿するドライヤ、13,14b、14c、14dは、細かい網目状のフィルタを円筒容器や配管内に内蔵してスラッジを捕捉するスラッジフィルタである。
【0003】
次に、冷媒の流れを図によって説明する。図中実線矢印が冷房時の流れを、破線矢印が暖房時の流れを示す。まず、冷房時においては、圧縮機1で高温高圧まで圧縮されたガス冷媒は切換弁2を経て熱源機側熱交換器3に流入し、空気などと熱交換して凝縮し、高温高圧の液冷媒となる。さらに、冷房時全開の第2の絞り装置6、液側接続冷媒配管9をへて、室内機B、C、Dに達し、室内機側熱交換器7b、7c、7dの出口の過熱度が一定範囲になるように制御される第1の絞り装置8b、8c、8dによって、低圧の気液ニ相状態まで絞られる。低圧の気液ニ相冷媒は室内機側熱交換器7b、7c、7dに流入して、室内の空気と熱交換してガス化し、ガス側接続冷媒配管10、切換弁2、アキュムレ−タ4を経て圧縮機1へ戻る。アキュムレ−タ4内部の冷凍機油は液冷媒とともに油戻し穴5より圧縮機1へ戻る。
【0004】
暖房時においては、圧縮機1で高温高圧まで圧縮されたガス冷媒は切換弁2、ガス側接続冷媒配管10を経て、室内機B、C、Dに達し、室内機側熱交換器7b、7c、7dに流入し、室内の空気と熱交換して凝縮し、高温高圧の液冷媒となる。室内側熱交換器7b、7c、7dを出た液冷媒はほとんど全開状態の第1の絞り装置7b、7c、7dで少し減圧され、液側接続冷媒配管9をへて第2の絞り装置6に達し、ここで低圧の気液ニ相状態まで絞られる。低圧の気液ニ相冷媒は熱源機側熱交換器3に流入し、空気などと熱交換してガス化し、切換弁2、アキュムレ−タ4を経て圧縮機1へ戻る。アキュムレ−タ4内部の冷凍機油は液冷媒とともに油戻し穴5より圧縮機1へ戻る。
【0005】
以上のような冷媒回路において、作動媒体としてハイドロクロロフルオロカーボン系の冷媒の代りに最近ハイドロフルオロカ−ボン系の冷媒が用いられてきた。ところが、ハイドロフルオロカ−ボン系の冷媒は塩素成分がないため、冷凍機油として用いられる従来の鉱油とは相溶性がなく、アキュムレ−タ4内部で液冷媒と分離して、上部に浮かんでしまい、油戻し穴5から冷凍機油が圧縮機1へ戻らなくなる。したがって、アキュムレ−タに大量の液冷媒を溜め、かつ圧縮機1をモ−タで駆動する空気調和装置においては、ハイドロフルオロカ−ボン系の冷媒と相溶性があり、絶縁性に優れたポリエステル油またはポリエ−テル油が一般的に用いられる。
【0006】
ところが、これらポリエステル油やポリエ−テル油は水分を吸湿して、圧縮機1の摺動部のような高温状態の許におかれると加水分解したり、酸素や冷媒回路構成品を加工する際に混入する加工油や洗浄剤の残成分により劣化するおそれがある。特に、ポリエ−テル油に使用される添加剤のうち摩耗防止剤は一般に活性度の高いエステル系のものでポリエ−テル油が加水分解しなくてもこの添加剤が加水分解し高温状態の圧縮機1の摺動部において熱劣化する。
【0007】
その際に発生するこれら劣化生成物は冷凍機油中に固体として存在するものと、溶けこんで存在するものとがある。この固体成分と溶解成分のいずれも高温高圧のガス冷媒が圧縮機1から吐出されると、冷凍機油とともに吐出ガスに混ざって冷媒回路中に吐出される。上記冷凍機油の劣化生成物は冷媒とともに凝縮器(冷房時は熱源機側熱交換器3、暖房時は室内機側熱交換器7b、7c、7d)へ流入し、冷媒はここで液化する。冷媒が液化して冷媒の濃度が高まると、冷媒とともに流れていた冷凍機油中に溶けこんでいた冷凍機油の劣化生成物は溶けこめなくなり、固体として析出するものと直接配管の管壁に析出するものが出現する。
【0008】
これら新たに析出された劣化生成物は元から固体として存在していた劣化生成物とともに第1の絞り装置8b、8c、8d、第2の絞り装置6へ流入する。冷媒回路構成品を加工する際に混入する加工油や洗浄剤の残成分の中のハイドロフルオロカ−ボン系の冷媒と相溶性の無いものが配管の管壁に皮膜を形成し、この非相溶成分がバインダ−となって、上記冷凍機油の劣化生成物が配管の管壁に付着する。特に、急に、流路断面積が変化する毛細管などの絞り装置では、流れに淀みができ、この冷凍機油の劣化生成物の付着が著しい。このようにして、冷凍機油中に固体として存在する冷凍機油劣化物はスラッジとして第1の絞り装置8b、8c、8d及び第2の絞り装置6に付着する。また、アキュムレ−タ4内部に液冷媒が溜まっている場合、油戻し穴5にも絞り装置と同様に冷凍機油の固体もしくは溶解成分である劣化生成物が析出・付着する。
【0009】
以上のようなスラッジ付着の対策として、合成ゼオライトなどを主成分とする乾燥剤を円筒容器や配管内に内蔵させたドライヤ11,12が切換弁2とアキュムレ−タ4との間の冷媒配管、及び第1の絞り装置8b、8c、8dと第2の絞り装置6との間の液側接続冷媒配管9に設けられ、そして、細かい網目状のフィルタを円筒容器や配管内に内蔵したスラッジフィルタが、熱源機側熱交換器3と第2の絞り装置6との間の冷媒配管、及び室内側熱交換器7b、7c、7dと第1の絞り装置8b、8c、8dとの間の冷媒配管に設けられる。
【0010】
切換弁2とアキュムレ−タ4との間に設けられたドライヤ11には、冷房時は室内機側熱交換器7b、7c、7dから、暖房時は熱源機側熱交換器3から切換弁2を経てガス冷媒が流入し、ガス冷媒中に含まれる水分が吸収される。第1の絞り装置8b、8c、8dと第2の絞り装置6との間の液側接続冷媒配管9に設けられたドライヤ12には、冷房時は熱源機側熱交換器3から、ほとんど全開の第2の絞り装置6をへて、暖房時は室内機側熱交換器7b、7c、7dから、ほとんど全開の第1の絞り装置8b、8c、8dをへて、ともに少し減圧された液単相流の冷媒が流入する。従ってドライヤ12内の圧力損失は小さくて流れが静かになり充分に水分が吸収される。
【0011】
熱源機側熱交換器3と第2の絞り装置6との間の冷媒配管に設けられたスラッジフィルタ13において、冷房時に熱源機側熱交換器3へ冷媒とともに流入した冷凍機油の劣化生成物と、この熱源機側熱交換器3での冷媒の液化及び流速の低下により析出・付着した冷凍機油中に溶けこんでいた劣化生成物とがスラッジとして捕捉される。また、室内側熱交換器7b、7c、7dと第1の絞り装置8b、8c、8dとの間の冷媒配管に設けられたスラッジフィルタ14b、14c、14dにおいて、暖房時に室内側熱交換器7b、7c、7dへ冷媒とともに流入した冷凍機油の劣化生成物と、これら室内側熱交換器7b、7c、7dでの冷媒の液化及び流速の低下により析出・付着した冷凍機油中に溶けこんでいた劣化生成物とがスラッジとして捕捉される。
【0012】
【発明が解決しようとする課題】
上記のようなドライヤを用いた従来の空気調和装置においては、ドライヤ11を冷媒ガスが通過することで吸入圧力損失が発生し、蒸発能力が低下し、逆に蒸発能力の低下を抑えようとするとドライヤ11を大形化する必要がある。また、冷媒配管の施工時に充分な無酸化ロウ付けを実施されていないと酸化スケ−ルが発生し、それが運転時にドライヤ11,12に流入し、流路が閉塞したり、ドライヤ11が粉砕したりする危険性があった。さらに、圧縮機起動、冷暖房切換、デフロスト開始・終了などの過渡的な運転時に生ずる急激な液バックや、冷媒液の激しい流れによりドライヤ11,12が粉砕する危険性もあった。
【0013】
また、上記のようなスラッジフィルタを設置した従来の空気調和装置においては、熱源機側熱交換器3と第2の絞り装置6との間及び室内側熱交換器7b、7c、7dと第1の絞り装置8b、8c、8dとの間の全ての位置にスラッジフィルタを設置する必要があり、空気調和装置全体が大形化するという問題点があった。また、冷房時に熱源機側熱交換器3と第2の絞り装置6との間のスラッジフィルタ13で捕捉されたスラッジは、流れが暖房に切換わると剥離して、熱源機側熱交換器3及び切換弁2を経由してアキュムレ−タ4に流入し、油戻し穴5が閉塞される。同様に暖房時に室内側熱交換器7b、7c、7dと第1の絞り装置8b、8c、8dとの間のスラッジフィルタ14b、14c、14dで捕捉したスラッジは、流れが冷房に切換わると剥離して、室内側熱交換器7b、7c、7d及び切換弁2を経由してアキュムレ−タ4に流入し、油戻し穴5が閉塞される。さらに、冷媒配管の施工時に充分な無酸化ロウ付けを実施されていないと酸化スケ−ルが発生し、それが運転時にスラッジフィルタ13,14b、14c、14dに流入し、流路が閉塞したり、スラッジフィルタを傷めたりする危険性もあった。
【0014】
この発明は上記のような問題点を解消するためになされたもので、ハイドロフルオロカ−ボン系の冷媒を作動流体とし、この冷媒と相溶性のある油を冷凍機油として用いても、冷凍機油の劣化生成物が生じにくく、例え劣化生成物が生じたとしても、これによる不具合のない信頼性の高い空気調和装置を得ることを目的としている。
【0015】
【課題を解決するための手段】
【0021】
請求項1に係るこの発明の空気調和装置は、圧縮機、凝縮器、絞り装置、蒸発器より構成された主冷媒回路を備え、ハイドロフルオロカ−ボン系の冷媒を作動媒体として用い、この冷媒と相溶性のある油を冷凍機油として用いる空気調和装置において、上記圧縮機吐出部に油分離器を設け、分離した冷凍機油を圧縮機吸入部に戻す返油バイパス回路と、上記返油バイパス回路途中に冷凍機油劣化物を補足するスラッジフィルタを設けたものである。
【0023】
請求項2に係るこの発明の空気調和装置は、請求項1に記載の発明において、返油バイパス回路途中のスラッジフィルタ上流に冷凍機油を冷却するバイパス熱交換器を設けたものである。
【0024】
請求項3に係るこの発明の空気調和装置は、請求項1に記載の発明において、返油バイパス回路途中のスラッジフィルタ上流に液冷媒を注入する液冷媒注入回路を設けたものである。
【0025】
請求項4に係るこの発明の空気調和装置は、請求項1〜3の何れかに記載の発明において、返油バイパス途中のスラッジフィルタを、水分を吸収しかつスラッジフィルタ機能を有するドライヤとしたものである。
【0027】
請求項5に係るこの発明の空気調和装置は、請求項2に記載の発明において、バイパス熱交換器の全部または一部として熱源機側熱交換器の最下部を通す構成としたものである。
【0032】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図1によって説明する。図1はこの実施の形態1にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り装置、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管で、以上は図28に示す従来例と同様のものである。
【0033】
15は第2の絞り装置6と液側接続冷媒配管9との間から分岐し、他端が切換弁2と圧縮機1との間の冷媒配管に接続するバイパス回路、16はバイパス回路15の配管途中に設けられたドライヤ、17はバイパス回路15の配管途中のドライヤ16の下流に設けられたバイパス絞り装置(以下第3の絞り装置という)、18aはバイパス回路15の第3の絞り装置17より下流の部分と、第2の絞り装置6と熱源機側熱交換器3との間の部分とが熱交換する第1のバイパス熱交換器、18bはバイパス回路15の第3の絞り装置17より下流の部分と、第2の絞り装置6と液側接続冷媒配管9との間の部分とが熱交換する第2のバイパス熱交換器、19はバイパス回路15の配管途中の絞り装置17より上流の部分に設けられた第1の温度検出手段、20はバイパス回路15の配管途中の絞り装置17より下流でかつ第1、第2のバイパス熱交換器18a、18bの上流の部分に設けられた第2の温度検出手段、21は切換弁2と圧縮機1との間の部分に設けられた吸入圧力検出手段である。
【0034】
次に、冷媒の流れを図によって説明する。まず、冷房時においては、圧縮機1で高温高圧まで圧縮されたガス冷媒は切換弁2を経て熱源機側熱交換器3に流入し、空気などと熱交換して凝縮し、高温高圧の液冷媒となる。さらに、冷房時全開の第2の絞り装置6、液側接続冷媒配管9をへて、室内機B、C、Dに達し、室内機側熱交換器7b、7c、7dの出口の過熱度が一定範囲になるように制御される第1の絞り装置8b、8c、8dによって、低圧の気液ニ相状態まで絞られる。低圧の気液ニ相冷媒は室内機側熱交換器7b、7c、7dに流入して、室内の空気と熱交換してガス化し、ガス側接続冷媒配管10、切換弁2、アキュムレ−タ4を経て圧縮機1へ戻る。アキュムレ−タ4内部の冷凍機油は液冷媒とともに油戻し穴5より圧縮機1へ戻る。
【0035】
また、熱源機側熱交換器3から全開状態の第2の絞り装置6を通過した液冷媒一部がバイパス回路15に流入する。バイパス回路15ではドライヤ16を経て、第3の絞り装置17で低圧まで減圧され低温低圧の気液ニ相冷媒となる。この低温低圧の気液ニ相冷媒は、バイパス熱交換器18a、18bで、熱源機側熱交換器3を出た高温高圧の液冷媒と、また第2の絞り装置6を出た高温高圧の液冷媒と熱交換し、ガス化して、切換弁2と圧縮機1との間で、室内機B、C、Dを経た冷媒と合流し、圧縮機1へ戻る。一方、熱源機側熱交換器3を出た液冷媒は第1のバイパス熱交換器18aで冷却され、バイパス回路15に流入する液冷媒は熱源機側熱交換器3を出た液冷媒より温度が低下する。また、その冷媒は更に第2の絞り装置6を経て、第2のバイパス熱交換器18bで冷却され、液側接続冷媒配管9に流入する液冷媒は充分に過冷却が取られる。よって、液側接続冷媒配管9の長さが長く、ここを流れる間に冷媒の圧力降下が大きくても、また室内機B、C,、Dが熱源機Aより上に設置され液側接続冷媒配管内の液冷媒の重力の影響が大きくても、第1の絞り装置8a、8b、8cに流入する冷媒は液状態を確保することができ、安定した運転が可能である。
【0036】
暖房時においては、圧縮機1で高温高圧まで圧縮されたガス冷媒は切換弁2、ガス側接続冷媒配管10を経て、室内機B、C、Dに達し、室内機側熱交換器7b、7c、7dに流入し、室内の空気と熱交換して凝縮し、高温高圧の液冷媒となる。室内側熱交換器7b、7c、7dを出た液冷媒は暖房時殆ど全開の第1の絞り装置7b、7c、7dで少し減圧して、液側接続冷媒配管9をへて第2の絞り装置6に達し、ここで低圧の気液ニ相状態まで絞られる。低圧の気液ニ相冷媒は熱源機側熱交換器3に流入し、空気などと熱交換してガス化し、切換弁2、アキュムレ−タ4を経て圧縮機1へ戻る。アキュムレ−タ4内部の冷凍機油は液冷媒とともに油戻し穴5より圧縮機1へ戻る。
【0037】
また、室内機側熱交換器7b、7c、7dから全開状態の第1の絞り装置8a、8b、8c、液側接続冷媒配管9を通過した液冷媒の一部がバイパス回路15に流入する。バイパス回路15ではドライヤ16を経て、第3の絞り装置17で低圧まで減圧され低温低圧の気液ニ相冷媒となる。この低温低圧の気液ニ相冷媒は、バイパス熱交換器18bで液側接続冷媒配管9を出た高温高圧の液冷媒と、バイパス熱交換器18aで第2の絞り装置6で絞られた低圧の気液ニ相冷媒と熱交換し、ガス化して、切換弁2と圧縮機1との間で、熱源機側熱交換器3を経た冷媒と合流し、圧縮機1へ戻る。一方、液側接続冷媒配管9を出た液冷媒は第2のバイパス熱交換器18bで冷却され、バイパス回路15に流入する液冷媒は液側接続冷媒配管9を出た液冷媒より温度が低下し、第2の絞り装置6に流入する冷媒は液状態を確保することができ、安定した運転が可能である。
【0038】
次に、ドライヤ16の作用について説明する。圧縮機1を吐出した冷媒・冷凍機油中に含まれる水分は、飽和上限以下であればバイパス回路15の起点に達するまで変化しない。この点から冷房時には室内側熱交換器7b、7c、7dを、暖房時には熱源機側熱交換器3を経由して、切換弁2をへてバイパス回路15との合流点にいたる主冷媒回路では、それ以後も冷媒・冷凍機油中に含まれる水分は変化しない。一方、バイパス回路15では、冷媒・冷凍機油がドライヤ16に流入するとそこで吸湿され、ドライヤ16の下流では冷媒・冷凍機油中の水分量は低下する。切換弁2と圧縮機1との間のバイパス回路15を流れる冷媒・冷凍機油と主冷媒回路を流れる冷媒・冷凍機油とが合流する点で、それまで主冷媒回路を流れる冷媒・冷凍機油中に含まれていた水分とバイパス回路15を流れる冷媒・冷凍機油中に含まれていた水分とが混合し、主冷媒回路を流れる冷媒・冷凍機油中に含まれていた水分量よりも合流後の水分量はその濃度では低下する。即ち、バイパス回路15にあるドライヤ16により水分は吸収され冷媒回路中の含有水分量は低下する。
【0039】
この実施の形態では、主冷媒回路中にドライヤを設ける場合と比べて水分吸着速度は遅くなるが、ポリエステル油の加水分解劣化の速度も遅いので、バイパス回路15の配管途中にあるドライヤ16の水分吸着能力により加水分解は充分抑制され、圧縮機1でのスラッジ成分生成を抑制することができる。また、ドライヤ16をバイパス回路15の配管途中に設けることでドライヤ16を流れる冷媒流れの衝撃を低下させることができ、ドライヤ16が粉砕しにくくなる。さらに、第1、第2のバイパス熱交換器18a、18bによりドライヤ16に流入する冷媒を冷却するため、圧縮機1の起動時やデフロストなどの過渡的な運転時にあっても、ドライヤ16に流入する冷媒を液状態としやすく、ドライヤ16がさらに粉砕しにくくなる。また、冷媒は温度が低いと冷媒への水分飽和溶解度が低く、ドライヤとの共存下では、相対的に冷媒中よりもドライヤに水分は移動しやすく、ドライヤの水分吸着能力は高くなる。よって、ドライヤ16に流入する冷媒の温度が低くなると、それだけドライヤ16の水分吸着量が増え、冷凍機油の加水分解を抑えることができる。
【0040】
実施の形態2.
以下、この発明の実施の形態2を図2によって説明する。図2はこの実施の形態2にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り装置、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管で、以上は図28に示す従来例と同様のものである。
【0041】
15は第2の絞り装置6と液側接続冷媒配管9との間から分岐し、他端が切換弁2と圧縮機1との間の冷媒配管に接続するバイパス回路、16はバイパス回路15の配管途中に設けられたドライヤ、17はバイパス回路15の配管途中のドライヤ16の下流に設けられた第3の絞り装置、18はバイパス回路15のドライヤ16より上流の部分と切換弁2とアキュムレ−タ4との間の部分とが熱交換するバイパス熱交換器、19はバイパス回路15の配管途中の絞り装置17より上流の部分に設けられた第1の温度検出手段、20はバイパス回路15の配管途中の絞り装置17より下流に設けられた第2の温度検出手段、21は切換弁2と圧縮機1との間の部分に設けられた吸入圧力検出手段である。
【0042】
次に、冷媒の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第2の絞り装置6、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れは実施の形態1と全く同様なので説明を省略し、バイパス回路15における冷媒の流れを説明する。
【0043】
冷房時に熱源機側熱交換器3から全開状態の第2の絞り装置6を通過し、暖房時に室内機側熱交換器7b、7c、7dから全開状態の第1の絞り装置8a、8b、8c、液側接続冷媒配管9を通過した液冷媒一部がバイパス回路15に流入する。バイパス回路15に流入した液冷媒は、バイパス熱交換器18で切換弁2を経た低温低圧の冷媒と熱交換して温度が低下し、ドライヤ16を経て、第3の絞り装置17で低圧まで減圧され低温低圧の気液ニ相冷媒となる。この低温低圧の気液ニ相冷媒は切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流し、アキュムレータ4で気液分離して圧縮機1へ戻る。
【0044】
次に、ドライヤ16の作用について説明する。圧縮機1を吐出した冷媒・冷凍機油中に含まれる水分は、飽和上限以下であればバイパス回路15の起点に達するまで変化しない。この点から冷房時には室内側熱交換器7b、7c、7dを、暖房時には熱源機側熱交換器3を経由して、切換弁2をへてバイパス回路15との合流点にいたる主冷媒回路では、それ以後も冷媒・冷凍機油中に含まれる水分は変化しない。一方、バイパス回路15では、冷媒・冷凍機油がドライヤ16に流入するとそこで吸湿され、ドライヤ16の下流では冷媒・冷凍機油中の水分量は低下する。切換弁2と圧縮機1との間のバイパス回路15を流れる冷媒・冷凍機油と主冷媒回路を流れる冷媒・冷凍機油とが合流する点で、それまで主冷媒回路を流れる冷媒・冷凍機油中に含まれていた水分とバイパス回路15を流れる冷媒・冷凍機油中に含まれていた水分とが混合し、主冷媒回路を流れる冷媒・冷凍機油中に含まれていた水分量よりも合流後の水分量はその濃度では低下する。即ち、バイパス回路15にあるドライヤ16により水分は吸収され冷媒回路中の含有水分量は低下する。
【0045】
この実施の形態でも、主冷媒回路中にドライヤを設ける場合と比べて水分吸着速度は遅くなるが、ポリエステル油の加水分解劣化の速度も遅いので、バイパス回路15の配管途中にあるドライヤ16の水分吸着能力により加水分解は充分抑制され、圧縮機1でのスラッジ成分生成を抑制することができる。また、ドライヤ16をバイパス回路15の配管途中に設けることでドライヤ16を流れる冷媒流れの衝撃を低下させることができ、ドライヤ16が粉砕しにくくなる。さらに、バイパス熱交換器18によりドライヤ16に流入する冷媒を冷却するため、圧縮機1の起動時やデフロストなどの過渡的な運転時にあっても、ドライヤ16に流入する冷媒を液状態としやすく、ドライヤ16がさらに粉砕しにくくなる。また、冷媒は温度が低いと冷媒への水分飽和溶解度が低く、ドライヤとの共存下では、相対的に冷媒中よりもドライヤに水分は移動しやすく、ドライヤの水分吸着能力は高くなる。よって、ドライヤ16に流入する冷媒の温度が低くなると、それだけドライヤ16の水分吸着量が増え、冷凍機油の加水分解を抑えることができる。
【0046】
実施の形態3.
以下、この発明の実施の形態3を図3によって説明する。図3はこの実施の形態3にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り装置、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管で、以上は図28に示す従来例と同様のものである。
【0047】
15は第2の絞り装置6と液側接続冷媒配管9との間から分岐し、他端が切換弁2と圧縮機1との間の冷媒配管に接続するバイパス回路、16はバイパス回路15の配管途中に設けられたドライヤ、17はバイパス回路15の配管途中のドライヤ16の下流に設けられた第3の絞り装置、18は、バイパス回路15のドライヤ16より上流の部分と熱源機側熱交換器3の最も下の部分に流入する空気の一部とが熱交換するバイパス熱交換器、19はバイパス回路15の配管途中の絞り装置17より上流の部分に設けられた第1の温度検出手段、20はバイパス回路15の配管途中の絞り装置17より下流に設けられた第2の温度検出手段、21は切換弁2と圧縮機1との間の部分に設けられた吸入圧力検出手段である。
【0048】
次に、冷媒の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第2の絞り装置6、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れは実施の形態1と全く同様なので説明を省略し、バイパス回路15における冷媒の流れを説明する。
【0049】
冷房時に熱源機側熱交換器3から全開状態の第2の絞り装置6を通過し、暖房時に室内機側熱交換器7b、7c、7dから全開状態の第1の絞り装置8a、8b、8c、液側接続冷媒配管9を通過した液冷媒一部がバイパス回路15に流入する。バイパス回路15に流入した液冷媒は、バイパス熱交換器18で熱源機側熱交換器3の最下部に流入する空気の一部と熱交換して温度が低下し、ドライヤ16を経て、第3の絞り装置17で低圧まで減圧され低温低圧の気液ニ相冷媒となる。この低温低圧の気液ニ相冷媒は切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流し、アキュムレータ4で気液分離して圧縮機1へ戻る。
なお、暖房時において蒸発器となる、バイパス熱交換器18が設けられる熱源機側熱交換器3の最下部においては、上部からのドレンの流れで風が通りにくく霜が発生し成長しやすいが、バイパス熱交換器18により暖められ、着霜しにくくなる。
【0050】
この実施の形態3においても、バイパス回路15中に水分を吸収するドライヤ16が設けられ、それに流入する冷媒がバイパス熱交換器18により冷されるので、実施の形態1,2と同様に冷媒回路中の含有水分量は低下し、冷凍機油の加水分解を抑えることができるとともに、冷媒流によるドライヤ16の粉砕が防止できる。
【0051】
実施の形態4.
以下、この発明の実施の形態4を図4によって説明する。図4はこの実施の形態4にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り装置、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管で、以上は図28に示す従来例と同様のものである。
【0052】
15は圧縮機1の吐出部と切換弁2との間から分岐し、他端が切換弁2と圧縮機1との間の冷媒配管に接続するバイパス回路、16はバイパス回路15の配管途中に設けられたドライヤ、17はバイパス回路15の配管途中のドライヤ16の下流に設けられた第3の絞り装置、18は、バイパス回路15のドライヤ16より上流の部分とバイパス回路15の第3の絞り装置17より下流の部分とが熱交換するバイパス熱交換器、19はバイパス回路15の配管途中の絞り装置17より上流の部分に設けられた第1の温度検出手段、20はバイパス回路15の配管途中の絞り装置17より下流に設けられた第2の温度検出手段、21は切換弁2と圧縮機1との間の部分に設けられた第2の圧力検出手段である。
【0053】
次に、冷媒の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第2の絞り装置6、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れは実施の形態1と全く同様なので説明を省略し、バイパス回路15における冷媒の流れを説明する。
【0054】
冷房時、暖房時何れの場合においても、圧縮機1を吐出された高温・高圧のガス冷媒の一部がバイパス回路15に流入する。バイパス回路15に流入した高温・高圧のガス冷媒は、バイパス熱交換器18で下流の低圧側の冷媒と熱交換して温度が低下して液化し、ドライヤ16を経て、第3の絞り装置17で低圧まで減圧され低温低圧の気液ニ相冷媒となり、バイパス熱交換器18で高圧側の冷媒と熱交換してガス化する。この低温低圧のガス冷媒は切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流し、アキュムレータ4で気液分離して圧縮機1へ戻る。
【0055】
この実施の形態4においても、バイパス回路15中に水分を吸収するドライヤ16が設けられ、それに流入する冷媒がバイパス熱交換器18により冷されるので、実施の形態1,2及び3と同様に冷媒回路中の含有水分量は低下し、冷凍機油の加水分解を抑えることができるとともに、冷媒流によるドライヤ16の粉砕が防止できる。
また、この実施の形態4では、圧縮機1からバイパス回路15をへて圧縮機1に戻るサイクルが非常に短いため、応答性がよく、ドライヤに液が供給されない過渡的な状態となる時間が非常に短く、ドライヤ16が粉砕しにくい。さらに、このサイクルには液側接続冷媒配管9やガス側接続冷媒配管10が含まれないので、これら配管9,10の施工時に充分な無酸化ロウ付けを実施しないような場合などに発生する酸化スケ−ルがバイパス回路15中のドライヤ16に流入することがなく、それにより流路を閉塞したり、ドライヤを粉砕したりする危険性もなくなる。
【0056】
実施の形態5.
以下、この発明の実施の形態5を図5によって説明する。図5はこの実施の形態5にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り装置、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管で、以上は図28に示す従来例と同様のものである。
【0057】
15は圧縮機1と切換弁2との間から分岐し、他端が切換弁2と圧縮機1との間の冷媒配管に接続するバイパス回路、16はバイパス回路15の配管途中に設けられたドライヤ、17はバイパス回路15の配管途中のドライヤ16の下流に設けられた第3の絞り装置、18は、バイパス回路15のドライヤ16より上流の部分と熱源機側熱交換器3の最も下の部分に流入する空気の一部とが熱交換するバイパス熱交換器、19はバイパス回路15の配管途中の絞り装置17より上流の部分に設けられた第1の温度検出手段、20はバイパス回路15の配管途中の絞り装置17より下流に設けられた第2の温度検出手段、21は切換弁2と圧縮機1との間の部分に設けられた第2の圧力検出手段である。
【0058】
次に、冷媒の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第2の絞り装置6、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れは実施の形態1と全く同様なので説明を省略し、バイパス回路15における冷媒の流れを説明する。
【0059】
冷房時、暖房時何れの場合においても、圧縮機1を吐出された高温・高圧のガス冷媒の一部がバイパス回路15に流入する。バイパス回路15に流入した高温・高圧のガス冷媒は、バイパス熱交換器18で熱源機側熱交換器3の最下部に流入する空気の一部と熱交換して温度が低下して液化し、ドライヤ16を経て、第3の絞り装置17で低圧まで減圧されて切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流し、アキュムレータ4で気液分離して圧縮機1へ戻る。
なお、この実施の形態5でも実施の形態3と同様、暖房時において蒸発器となる、バイパス熱交換器18が設けられる熱源機側熱交換器3の最下部においては、上部からのドレンの流れで風が通りにくく霜が発生し成長しやすいが、バイパス熱交換器18により暖められ、着霜しにくくなる。
【0060】
この実施の形態5においても、バイパス回路15中に水分を吸収するドライヤ16が設けられ、それに流入する冷媒がバイパス熱交換器18により冷されるので、実施の形態1〜4と同様に冷媒回路中の含有水分量は低下し、冷凍機油の加水分解を抑えることができるとともに、冷媒流によるドライヤ16の粉砕が防止できる。
また、実施の形態4と同様、圧縮機1からバイパス回路15をへて圧縮機1に戻るサイクルが非常に短いため、応答性がよく、ドライヤに液が供給されない過渡的な状態となる時間が非常に短く、ドライヤ16が粉砕しにくい。さらに、このサイクルには液側接続冷媒配管9やガス側接続冷媒配管10が含まれないので、これら配管9,10の施工時に充分な無酸化ロウ付けを実施しないような場合などに発生する酸化スケ−ルがバイパス回路15中のドライヤ16に流入することがなく、それにより流路を閉塞したり、ドライヤを粉砕したりする危険性もなくなる。
【0061】
実施の形態6.
以下、この発明の実施の形態6を図6によって説明する。図6はこの実施の形態6にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り装置、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管で、以上は図28に示す従来例と同様のものである。
【0062】
15は圧縮機1と切換弁2との間から分岐し、他端が切換弁2と圧縮機1との間の冷媒配管に接続するバイパス回路、16はバイパス回路15の配管途中に設けられたドライヤ、17はバイパス回路15の配管途中のドライヤ16の下流に設けられた第3の絞り装置、18aは、バイパス回路15のドライヤ16より上流の部分と熱源機側熱交換器3の最も下の部分に流入する空気の一部とが熱交換する第1のバイパス熱交換器、18bは、バイパス回路15の第1のバイパス熱交換器18aとドライヤ16との間の部分と、第3の絞り装置17より下流の部分とが熱交換する第2のバイパス熱交換器、19はバイパス回路15の配管途中の絞り装置17より上流の部分に設けられた第1の温度検出手段、20はバイパス回路15の配管途中の絞り装置17より下流に設けられた第2の温度検出手段、21は切換弁2と圧縮機1との間の部分に設けられた第2の圧力検出手段である。
【0063】
次に、冷媒の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第2の絞り装置6、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れは実施の形態1と全く同様なので説明を省略し、バイパス回路15における冷媒の流れを説明する。
【0064】
冷房時、暖房時何れの場合においても、圧縮機1を吐出された高温・高圧のガス冷媒の一部がバイパス回路15に流入する。バイパス回路15に流入した高温・高圧のガス冷媒は、第1のバイパス熱交換器18aで熱源機側熱交換器3の最下部に流入する空気の一部と熱交換して温度が低下して液化し、第2のバイパス熱交換器18bで下流の低圧側の冷媒と熱交換して冷媒の温度がさらに低下する。その後、ドライヤ16を経て、第3の絞り装置17で低圧まで減圧され低温低圧の気液ニ相冷媒となり、バイパス熱交換器18で高圧側の冷媒と熱交換してガス化し、切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流し、アキュムレータ4で気液分離して圧縮機1へ戻る。
なお、この実施の形態6でも実施の形態3と同様、暖房時において蒸発器となる、第1のバイパス熱交換器18aが設けられる熱源機側熱交換器3の最下部においては、上部からのドレンの流れで風が通りにくく霜が発生し成長しやすいが、バイパス熱交換器18により暖められ、着霜しにくくなる。
【0065】
この実施の形態6においても、バイパス回路15中に水分を吸収するドライヤ16が設けられ、それに流入する冷媒がバイパス熱交換器18a,18bにより冷されるので、実施の形態1〜5と同様に冷媒回路中の含有水分量は低下し、冷凍機油の加水分解を抑えることができるとともに、冷媒流によるドライヤ16の粉砕が防止できる。
また、実施の形態4,5と同様、圧縮機1からバイパス回路15をへて圧縮機1に戻るサイクルが非常に短いため、応答性がよく、ドライヤに液が供給されない過渡的な状態となる時間が非常に短く、ドライヤ16が粉砕しにくい。さらに、このサイクルには液側接続冷媒配管9やガス側接続冷媒配管10が含まれないので、これら配管9,10の施工時に充分な無酸化ロウ付けを実施しないような場合などに発生する酸化スケ−ルがバイパス回路15中のドライヤ16に流入することがなく、それにより流路を閉塞したり、ドライヤを粉砕したりする危険性もなくなる。
【0066】
実施の形態7.
以下、この発明の実施の形態7を図1、図7及び図8によって説明する。図1はこの実施の形態7にかかる空気調和装置の冷媒回路図、図7はこの実施の形態7にかかる空気調和装置の組成演算に関するブロック線図、図8はその組成演算手段の動作を示すフロ−チャ−トである。なお、図2〜図6はバイパス回路15の位置・構成・冷媒の流れが異なるが、図1と同様この実施の形態7が適用される。また、この実施の形態における作動媒体としてハイドロフルオロカ−ボン系の混合冷媒を用いるものである。
【0067】
図において、19はバイパス回路15の配管途中の絞り装置17より上流の部分に設けられ、第3の絞り装置17の入口の高温高圧の液冷媒の温度を検出する第1の温度検出手段、20はバイパス回路15の配管途中の絞り装置17より下流でかつ第1、第2のバイパス熱交換器18a、18bの上流の部分に設けられ、第3の絞り装置17の出口の低温低圧の気液二相冷媒の温度を検出する第2の温度検出手段、21は切換弁2と圧縮機1との間の部分に設けられた第2の圧力検出手段、22は、第1の温度検出手段19、第2の温度検出手段20、及び第2の圧力検出手段21の検出値に基づいて、混合冷媒の組成を演算する組成演算手段である。
【0068】
次にその組成演算動作を図8によって説明する。まず、ステップ100で、混合冷媒の各成分について、その組成Xiが仮定される。ステップ101では、第1の温度検出手段19、第2の温度検出手段20、吸入圧力検出手段21から各々の検出値T1、T2、P2が検出される。ステップ102では、ステップ100で仮定した循環組成Xiと上記第1の温度検出手段19の検出値T1から、高圧の液エンタルピH1が演算される。ステップ103では、循環組成Xiと上記第2の温度検出手段20の検出値T2及び吸入圧力検出手段21の検出値P2から、低圧の二相エンタルピH2が演算される。ステップ104では、上記H1とH2の比較が行われ、等しくなるまで循環組成の仮定が繰り返される。この結果、上記H1とH2が等しくなった時点でのXiの値が循環組成として算出される。ここで、添字iは、i種の成分が混合された冷媒であることを示している。
【0069】
実施の形態8.
以下、この発明の実施の形態8を図9によって説明する。図9はこの実施の形態8にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管で、以上は図28に示す従来例と同様のものである。23は圧縮機1の吐出部と切換弁2との間に設けられ、圧縮機1から冷媒と共に吐出された冷凍機油をガス冷媒から分離する油分離器、24は油分離器23の底部と切換弁2、圧縮機1の吸入部間を接続する、分離された冷凍機油を圧縮機1の吸入部に戻す返油バイパス回路、25は返油バイパス回路24の配管途中に設けられた第4の絞り装置である。
【0070】
次に、冷媒の流れを図によって説明する。まず、冷房時においては、圧縮機1で高温高圧まで圧縮されたガス冷媒は切換弁2を経て熱源機側熱交換器3に流入し、空気などと熱交換して凝縮し、高温高圧の液冷媒となる。さらに、液側接続冷媒配管9をへて、室内機B、C、Dに達し、室内機側熱交換器7b、7c、7dの出口の過熱度が一定範囲になるように制御される第1の絞り装置8b、8c、8dによって、低圧の気液ニ相状態まで絞られる。低圧の気液ニ相冷媒は室内機側熱交換器7b、7c、7dに流入して、室内の空気と熱交換してガス化し、ガス側接続冷媒配管10、切換弁2、アキュムレ−タ4を経て圧縮機1へ戻る。アキュムレ−タ4内部の冷凍機油は液冷媒とともに油戻し穴5より圧縮機1へ戻る。
【0071】
暖房時においては、圧縮機1で高温高圧まで圧縮されたガス冷媒は切換弁2、ガス側接続冷媒配管10を経て、室内機B、C、Dに達し、室内機側熱交換器7b、7c、7dに流入し、室内の空気と熱交換して凝縮し、高温高圧の液冷媒となる。室内側熱交換器7b、7c、7dを出た液冷媒は第1の絞り装置8b、8c、8dで低圧の気液ニ相状態まで絞られ、この低圧の気液ニ相冷媒は液側接続冷媒配管9をへて熱源機側熱交換器3に流入し、空気などと熱交換してガス化し、切換弁2、アキュムレ−タ4を経て圧縮機1へ戻る。アキュムレ−タ4内部の冷凍機油は液冷媒とともに油戻し穴5より圧縮機1へ戻る。
【0072】
冷房時、暖房時何れの場合においても、圧縮機1に吸入された低温低圧のガス冷媒は圧縮されて高温高圧のガス冷媒となり圧縮機1より吐出される。この時、圧縮機1内部にある冷凍機油も一部吐出され、ガス冷媒とともに油分離器23に流入し、ここでガス冷媒と分離される。油分離器23により分離されたガス冷媒は切換弁2へ流れ、冷凍機油は返油バイパス回路24に流入する。返油バイパス回路24に流入した冷凍機油は第4の絞り装置25で低圧まで減圧されて、切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流する。このように圧縮機1の吐出部で冷凍機油を分離するので、主冷媒回路中の冷凍機油の循環流量比率は非常に低く、室内機B、C、D内にある第1の絞り装置8b、8c、8dを流れる冷凍機油の流量は著しく低下する。
【0073】
また、圧縮機1の摺動部で生成される冷凍機油劣化物は、冷凍機油中に固体として存在するか、溶け込んで存在する。これらは、冷媒が圧縮機1から吐出されると冷凍機油と共に吐出ガスに混ざって吐出されるが油分離器23により分離されて主冷媒回路中には流入されないので、室内機B、C、D内にある第1の絞り装置8b、8c、8dを流れる冷凍機油の流量は著しく低下し、冷凍機油と共に循環する冷凍機油劣化物の積算流量も低下する。これにより、冷凍機油劣化物がスラッジとなって第1の絞り装置8b、8c、8dに付着する量が減少し、それによる第1の絞り装置8b、8c、8dの流量不足が回避でき、空調能力の不足はなくなり、信頼性が著しく向上する。
【0074】
実施の形態9.
以下、この発明の実施の形態9を図10によって説明する。図10はこの実施の形態9にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管、23は油分離器、24は返油バイパス回路、25は第4の絞り装置で、以上は図9に示した実施の形態8と同様のものである。26は返油バイパス回路24の配管途中の第4の絞り装置25の上流部に設けられたスラッジフィルタである。
【0075】
次に、冷媒及び冷凍機油の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れ、及び油分離器23の動作は実施の形態8と全く同様なので説明を省略し、返油バイパス回路24における冷凍機油の流れを説明する。油分離器23で分離された冷凍機油は返油バイパス回路24に流入し、スラッジフィルタ26を経て、第4の絞り装置25で低圧まで減圧されて、切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流する。
【0076】
また、圧縮機1の摺動部で生成される冷凍機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷媒回路中に吐出され、油分離器23で冷凍機油とともに分離され、返油バイパス回路24においてスラッジフィルタ26で捕捉される。したがって、アキュムレータ4に流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化物含有率は低下し、油戻し穴5に付着するスラッジの量は低下する。それにより、圧縮機1内部の冷凍機油が枯渇することがなくなり、異常な高圧上昇・低圧低下・それによる吐出ガス温度上昇も回避でき、信頼性が著しく向上する。また、圧縮機1から吐出された冷媒などが返油バイパス回路24を経て圧縮機1へ戻るサイクルは途中で液側接続冷媒配管9、ガス側接続冷媒配管10を経由しない。したがって、液側接続冷媒配管9やガス側接続冷媒配管10の施工時に十分な無酸化ロウ付けを実施しないような場合などに発生する酸化スケ−ルが運転中にスラッジフィルタ26に流入することがなく、流路を閉塞したり、スラッジフィルタを変形・破壊したりする危険性がない。
【0077】
実施の形態10.
以下、この発明の実施の形態10を図11によって説明する。図11はこの実施の形態10にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管、23は油分離器、24は返油バイパス回路、25は第4の絞り装置、26はスラッジフィルタで、以上は図10に示した実施の形態9と同様のものである。27は、返油バイパス回路24のスラッジフィルタ26より上流の部分と熱源機側熱交換器3の最も下の部分に流入する空気の一部とが熱交換するバイパス熱交換器である。
【0078】
次に、冷媒及び冷凍機油の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れ、及び油分離器23の動作は実施の形態8と全く同様なので説明を省略し、返油バイパス回路24における冷凍機油の流れを説明する。油分離器23で分離された冷凍機油は返油バイパス回路24に流入し、バイパス熱交換器27で熱源機側熱交換器3の最下部に流入する空気の一部と熱交換して温度が低下して、スラッジフィルタ26を経て、第4の絞り装置25で低圧まで減圧されて、切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流する。
なお、この実施の形態10でも実施の形態3,5及び6と同様、暖房時において蒸発器となる、バイパス熱交換器18が設けられる熱源機側熱交換器3の最下部においては、上部からのドレンの流れで風が通りにくく霜が発生し成長しやすいが、バイパス熱交換器18により暖められ、着霜しにくくなる。
【0079】
また、圧縮機1の摺動部で生成される冷凍機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷媒回路中に吐出され、油分離器23で冷凍機油とともに分離され、返油バイパス回路24においてスラッジフィルタ26で捕捉される。しかも、バイパス熱交換器27を通過することで、冷凍機油の温度が低下し、冷凍機油中の冷媒の濃度が高まる。これにより、冷凍機油中に溶け込んでいた冷凍機油劣化物が析出され、スラッジフィルタ26では元々冷凍機油に溶け込んでいたものをも捕捉することができる。したがって、アキュムレータ4に流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化物含有率はさらに低下し、油戻し穴5に付着するスラッジの量は低下する。それにより、圧縮機1内部の冷凍機油が枯渇することがなくなり、異常な高圧上昇・低圧低下・それによる吐出ガス温度上昇も回避でき、信頼性が著しく向上する。また、圧縮機1から吐出された冷媒などが返油バイパス回路24を経て圧縮機1へ戻るサイクルは途中で液側接続冷媒配管9、ガス側接続冷媒配管10を経由しない。したがって、液側接続冷媒配管9やガス
側接続冷媒配管10の施工時に十分な無酸化ロウ付けを実施しないような場合などに発生する酸化スケ−ルが運転中にスラッジフィルタ26に流入することがなく、流路を閉塞したり、スラッジフィルタを変形・破壊したりする危険性がない。
【0080】
実施の形態11.
以下、この発明の実施の形態11を図12によって説明する。図12はこの実施の形態11にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管、23は油分離器、24は返油バイパス回路、25は第4の絞り装置、26はスラッジフィルタで、以上は図10に示した実施の形態9と同様のものである。27は、返油バイパス回路24のスラッジフィルタ26より上流の部分と切換弁2とアキュムレ−タ4との間の部分とが熱交換するバイパス熱交換器である。
【0081】
次に、冷媒及び冷凍機油の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れ、及び油分離器23の動作は実施の形態8と全く同様なので説明を省略し、返油バイパス回路24における冷凍機油の流れを説明する。油分離器23で分離された冷凍機油は返油バイパス回路24に流入し、バイパス熱交換器27で切換弁2を経て圧縮機1へ戻る低温低圧の冷媒と熱交換して温度が低下して、スラッジフィルタ26を経て、第4の絞り装置25で低圧まで減圧されて、切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流する。
【0082】
また、圧縮機1の摺動部で生成される冷凍機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷媒回路中に吐出され、油分離器23で冷凍機油とともに分離され、返油バイパス回路24においてスラッジフィルタ26で捕捉される。しかも、バイパス熱交換器27を通過することで、冷凍機油の温度が低下し、冷凍機油中の冷媒の濃度が高まる。これにより、冷凍機油中に溶け込んでいた冷凍機油劣化物が析出され、スラッジフィルタ26では元々冷凍機油に溶け込んでいたものをも捕捉することができる。したがって、アキュムレータ4に流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化物含有率はさらに低下し、油戻し穴5に付着するスラッジの量は低下する。それにより、圧縮機1内部の冷凍機油が枯渇することがなくなり、異常な高圧上昇・低圧低下・それによる吐出ガス温度上昇も回避でき、信頼性が著しく向上する。また、圧縮機1から吐出された冷媒などが返油バイパス回路24を経て圧縮機1へ戻るサイクルは途中で液側接続冷媒配管9、ガス側接続冷媒配管10を経由しない。したがって、液側接続冷媒配管9やガス側接続冷媒配管10の施工時に十分な無酸化ロウ付けを実施しないような場合などに発生する酸化スケ−ルが運転中にスラッジフィルタ26に流入することがなく、流路を閉塞したり、スラッジフィルタを変形・破壊したりする危険性がない。
【0083】
実施の形態12.
以下、この発明の実施の形態12を図13によって説明する。図13はこの実施の形態12にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管、23は油分離器、24は返油バイパス回路、25は第4の絞り装置、26はスラッジフィルタで、以上は図10に示した実施の形態9と同様のものである。28は油分離器23と切換弁2の間から分岐し、返油バイパス回路24のスラッジフィルタ26の上流部分に合流する液冷媒注入回路、29は、液冷媒注入回路28の配管と熱源機側熱交換器3の最も下の部分に流入する空気の一部とが熱交換する液注入回路熱交換器である。
【0084】
次に、冷媒及び冷凍機油の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れ、及び油分離器23の動作は実施の形態8と全く同様なので説明を省略し、返油バイパス回路24及び液冷媒注入回路28の冷媒及び冷凍機油の流れを説明する。油分離器23により冷凍機油が分離された高温高圧のガス冷媒の一部は液冷媒注入回路28へ流入し、液注入回路熱交換器29で熱源機側熱交換器3の最下部に流入する空気の一部と熱交換して温度が低下して液化し、油分離器23で分離され返油バイパス回路24に流入した冷凍機油と合流する。この合流した液冷媒及び冷凍機油はスラッジフィルタ26を経て、第4の絞り装置25で低圧まで減圧されて、切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流する。
なお、この実施の形態12でも実施の形態3,5、6及び10と同様、暖房時において蒸発器となる、液注入回路熱交換器29が設けられる熱源機側熱交換器3の最下部においては、上部からのドレンの流れで風が通りにくく霜が発生し成長しやすいが、液注入回路熱交換器29により暖められ、着霜しにくくなる。
【0085】
また、圧縮機1の摺動部で生成される冷凍機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷媒回路中に吐出され、油分離器23で冷凍機油とともに分離され返油バイパス回路24に流入し、液冷媒注入回路28の液注入回路熱交換器29から流出する液冷媒と合流することにより、冷凍機油中の冷媒濃度を高くしてスラッジフィルタ26に流入し捕捉される。これにより、冷凍機油中に溶け込んでいた冷凍機油劣化物は析出するため、スラッジフィルタ26では固体として存在するスラッジとともに元々冷凍機油に溶け込んでいたものも捕捉することができる。したがって、アキュムレータ4に流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化物含有率はさらに低下し、油戻し穴5に付着するスラッジの量は低下する。それにより、圧縮機1内部の冷凍機油が枯渇することがなくなり、異常な高圧上昇・低圧低下・それによる吐出ガス温度上昇も回避でき、信頼性が著しく向上する。また、圧縮機1から吐出された冷媒などが返油バイパス回路24を経て圧縮機1へ戻るサイクルは途中で液側接続冷媒配管9、ガス側接続冷媒配管10を経由しない。したがって、液側接続冷媒配管9やガス側接続冷媒配管10の施工時に十分な無酸化ロウ付けを実施しないような場合などに発生する酸化スケ−ルが運転中にスラッジフィルタ26に流入することがなく、流路を閉塞したり、スラッジフィルタを変形・破壊したりする危険性がない。
【0086】
実施の形態13.
以下、この発明の実施の形態13を図14によって説明する。図14はこの実施の形態13にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管、23は油分離器、24は返油バイパス回路、25は第4の絞り装置、26はスラッジフィルタ、28は液冷媒注入回路で、以上は図13に示した実施の形態12と同様のものである、29は、液冷媒注入回路28の配管と切換弁2とアキュムレ−タ4との間の部分とが熱交換する液注入回路熱交換器である。
【0087】
次に、冷媒及び冷凍機油の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れ、及び油分離器23の動作は実施の形態8と全く同様なので説明を省略し、返油バイパス回路24及び液冷媒注入回路28の冷媒及び冷凍機油の流れを説明する。油分離器23により冷凍機油が分離された高温高圧のガス冷媒の一部は液冷媒注入回路28へ流入し、液注入回路熱交換器29で切換弁2を経て圧縮機1へ戻る低温低圧の冷媒と熱交換して温度が低下して液化し、油分離器23で分離され返油バイパス回路24に流入した冷凍機油と合流する。この合流した液冷媒及び冷凍機油はスラッジフィルタ26を経て、第4の絞り装置25で低圧まで減圧されて、切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流する。
【0088】
また、圧縮機1の摺動部で生成される冷凍機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷媒回路中に吐出され、油分離器23で冷凍機油とともに分離され返油バイパス回路24に流入し、液冷媒注入回路28の液注入回路熱交換器29から流出する液冷媒と合流することにより、冷凍機油中の冷媒濃度を高くしてスラッジフィルタ26に流入し捕捉される。これにより、冷凍機油中に溶け込んでいた冷凍機油劣化物が析出するため、スラッジフィルタ26では固体として存在するスラッジとともに元々冷凍機油に溶け込んでいたものも捕捉することができる。したがって、アキュムレータ4に流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化物含有率はさらに低下し、油戻し穴5に付着するスラッジの量は低下する。それにより、圧縮機1内部の冷凍機油が枯渇することがなくなり、異常な高圧上昇・低圧低下・それによる吐出ガス温度上昇も回避でき、信頼性が著しく向上する。また、圧縮機1から吐出された冷媒などが返油バイパス回路24を経て圧縮機1へ戻るサイクルは途中で液側接続冷媒配管9、ガス側接続冷媒配管10を経由しない。したがって、液側接続冷媒配管9やガス側接続冷媒配管10の施工時に十分な無酸化ロウ付けを実施しないような場合などに発生する酸化スケ−ルが運転中にスラッジフィルタ26に流入することがなく、流路を閉塞したり、スラッジフィルタを変形・破壊したりする危険性がない。
【0089】
実施の形態14.
以下、この発明の実施の形態14を図15によって説明する。図15はこの実施の形態14にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り装置、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管で以上は図1に示した実施の形態1と同様のもので、23は油分離器、24は返油バイパス回路、25は第4の絞り装置、26はスラッジフィルタで、これらは図13に示した実施の形態12と同様のものである、28は第2の絞り装置6と液側接続冷媒配管9との間から分岐し、返油バイパス回路24のスラッジフィルタ26の上流部分に合流する液冷媒注入回路である。
【0090】
次に、冷媒及び冷凍機油の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第2の絞り装置6、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れは実施の形態1と全く同様であり、油分離器23の動作は実施の形態8と同様なので説明を省略し、返油バイパス回路24及び液冷媒注入回路28の冷媒及び冷凍機油の流れを説明する。油分離器23で分離された冷凍機油は返油バイパス回路24に流入する。また、冷房時には熱源機側熱交換器3にて空気と熱交換して凝縮・液化し全開状態の第2の絞り装置6を通過した液冷媒が、暖房時には室内機側熱交換器7b、7c、7dにて空気と熱交換して凝縮・液化し全開状態の第1の絞り装置8a、8b、8c、液側接続冷媒配管9を経た液冷媒が、一部液冷媒注入回路28に流入し、返油バイパス回路24に流入した冷凍機油と合流する。この合流した液冷媒及び冷凍機油はスラッジフィルタ26を経て、第4の絞り装置25で低圧まで減圧されて、切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流する。
【0091】
また、圧縮機1の摺動部で生成される冷凍機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷媒回路中に吐出され、油分離器23で冷凍機油とともに分離され返油バイパス回路24に流入し、液冷媒注入回路28に流入した液冷媒と合流することにより、冷凍機油中の冷媒濃度を高くしてスラッジフィルタ26に流入し捕捉される。これにより、冷凍機油中に溶け込んでいた冷凍機油劣化物が析出するため、スラッジフィルタ26では固体として存在するスラッジとともに元々冷凍機油に溶け込んでいたものも捕捉することができる。したがって、アキュムレータ4に流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化物含有率はさらに低下し、油戻し穴5に付着するスラッジの量は低下する。それにより、圧縮機1内部の冷凍機油が枯渇することがなくなり、異常な高圧上昇・低圧低下・それによる吐出ガス温度上昇も回避でき、信頼性が著しく向上する。また、圧縮機1から吐出された冷媒などが返油バイパス回路24を経て圧縮機1へ戻るサイクルは途中で液側接続冷媒配管9、ガス側接続冷媒配管10を経由しない。したがって、液側接続冷媒配管9やガス側接続冷媒配管10の施工時に十分な無酸化ロウ付けを実施しないような場合などに発生する酸化スケ−ルが運転中にスラッジフィルタ26に流入することがなく、流路を閉塞したり、スラッジフィルタを変形・破壊したりする危険性がない。
【0092】
実施の形態15.
以下、この発明の実施の形態15を図16によって説明する。図15はこの実施の形態15にかかる空気調和装置の冷媒回路図である。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管、23は油分離器、24は返油バイパス回路、25は第4の絞り装置、26はスラッジフィルタで、以上は図13に示した実施の形態12と同様のものである。28は油分離器23と切換弁2の間から分岐し、他端が切換弁2と圧縮機1との間の冷媒配管に接続する液冷媒注入回路、30は液冷媒注入回路28途中にある第5の絞り装置、29は、液冷媒注入回路28の第5の絞り装置30の上流部と下流部との間で熱交換する液注入回路熱交換器である。また、返油バイパス回路24のスラッジフィルタ26の上流部分と、液冷媒注入回路28の第5の絞り装置30の上流部分とは配管で接続されている。
【0093】
次に、冷媒及び冷凍機油の流れを図によって説明する。圧縮機1、切換弁2、熱源機側熱交換器3、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れ、及び油分離器23の動作は実施の形態8と全く同様なので説明を省略し、返油バイパス回路24及び液冷媒注入回路28の冷媒及び冷凍機油の流れを説明する。油分離器23により冷凍機油が分離された高温高圧のガス冷媒の一部は液冷媒注入回路28へ流入し、液注入回路熱交換器29で液冷媒注入回路28低圧側の冷媒と熱交換して温度が低下して液化し、その一部が第5の絞り装置30へ流入して低圧まで減圧され、液注入回路熱交換器29で高圧側の冷媒により加熱されガス化して、切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流する。また、液注入回路熱交換器29高圧側で液化した冷媒の残部は、油分離器23で分離され返油バイパス回路24に流入した冷凍機油と合流する。この合流した液冷媒及び冷凍機油はスラッジフィルタ26を経て、第4の絞り装置25で低圧まで減圧されて、切換弁2とアキュムレータ4との間で切換弁2を経た主冷媒回路の冷媒と合流する。
【0094】
また、圧縮機1の摺動部で生成される冷凍機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷媒回路中に吐出され、油分離器23で冷凍機油とともに分離され返油バイパス回路24に流入し、液冷媒注入回路28の液注入回路熱交換器29の高圧側から流出する一部の液冷媒と合流することにより、冷凍機油中の冷媒濃度を高くしてスラッジフィルタ26に流入し捕捉される。これにより、冷凍機油中に溶け込んでいた冷凍機油劣化物が析出するため、スラッジフィルタ26では固体として存在するスラッジとともに元々冷凍機油に溶け込んでいたものも捕捉することができる。したがって、アキュムレータ4に流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化物含有率はさらに低下し、油戻し穴5に付着するスラッジの量は低下する。それにより、圧縮機1内部の冷凍機油が枯渇することがなくなり、異常な高圧上昇・低圧低下・それによる吐出ガス温度上昇も回避でき、信頼性が著しく向上する。また、圧縮機1から吐出された冷媒などが返油バイパス回路24を経て圧縮機1へ戻るサイクルは途中で液側接続冷媒配管9、ガス側接続冷媒配管10を経由しない。したがって、液側接続冷媒配管9やガス側接続冷媒配管10の施工時に十分な無酸化ロウ付けを実施しないような場合などに発生する酸化スケ−ルが運転中にスラッジフィルタ26に流入することがなく、流路を閉塞したり、スラッジフィルタを変形・破壊したりする危険性がない。
【0095】
実施の形態16.
図17は実施の形態1〜6において使用されるドライヤ16の一実施の形態16を示す縦断面図で、同図(a)は冷媒の流れ方向が左から右になるよう、同図(b)は冷媒の流れ方向が下から上にになるよう、同図(c)は冷媒の流れ方向が上から下にになるようドライヤを配設した場合をそれぞれ示している。図において、50は円筒状の容器、51は容器50の一端に設けられた流入配管、52は容器50の他端に設けられた流出配管、53は合成ゼオライトを主成分とし、活性アルミナなどを配合し、接着剤などのバインダで固めたドライヤコア、54は冷凍機油である。
【0096】
流入配管51から流入した冷媒はドライヤコア53によって冷媒中に含まれている水分が吸収されるが、冷媒の流路としては非常に細かなドライヤコアの目を通るため、それよりも大きいものはここで捕捉される。また、ドライヤによっては、ドライヤコア53の上流側又は下流側にフィルタを備えた構成のものがあるが、そのフィルタ部でも異物は捕捉される。したがって、実施の形態9〜15におけるスラッジフィルタ26としてこの構成のドライヤを用いることができる。このようにスラッジフィルタ26としてドライヤを使用することで、返油バイパス回路24を流れる冷凍機油より直接水分を吸収することができ、スラッジフィルタ機能と水分捕捉機能をも合わせ持つことができる。これにより、冷凍機油の加水分解を抑制しつつ、冷凍機油中の冷凍機油劣化物含有率も低減でき、結果として主冷媒回路中の含有水分量も冷凍機油劣化物含有率も低減し、第1の絞り装置8b、8c、8d、油戻し穴5等に付着するスラッジの量は低下する。
【0097】
また、実施の形態1〜6においてドライヤ16として、実施の形態9〜15においてスラッジフィルタ26として、図17に示す構成のものを使用する場合、同図(a)や(b)のように設置すると、過渡状態においてドライヤ容器50内に液冷媒又は冷凍機油が充分たまらないと、容器50からは液冷媒又は冷凍機油が流出することができない。これに対し、同図(c)に示すように冷媒の流れ方向が上から下にになるよう配設されると、容器50に流入した液冷媒又は冷凍機油は速やかに流出するため、すばやく安定した運転になることができ、また、冷凍機油が圧縮機より枯渇することがない。
【0097】
実施の形態17.
図18は以上の各実施の形態において使用される実施の形態17にかかるアキュムレータ4の一例を示す縦断面図で、図において、60はアキュムレ−タ容器、61は容器60の底より容器内の上部まで挿入された流入配管、62は容器60の底より容器内の上部まで挿入され、その下部に冷凍機油を戻すための油戻し穴5を備えた流出配管、63は容器60内の下部に溜まっている液冷媒と冷凍機油との混合液、64は容器60内部の下部空間と流出配管62の上部管端部とを接続する返油配管、65は返油配管64の、容器60内部の下部空間側の一端に設けられたオリフィスである。
【0098】
次に、アキュムレ−タ4の返油動作について説明する。アキュムレ−タ内の混合液63の液面と流出配管62の管端部との高さの差をh、流出配管内部の冷媒の流速をu、流出配管より流出する冷媒の密度をρg、混合液63の密度をρlとすると、オリフィス65の入口圧力から出口圧力を引いた、オリフィス65の前後に発生する差圧ΔPは
ΔP=k1・ρg・u2/2−k2・ρl・h
で表わされる(ここにk1、k2は正の定数)。ただし、返油配管64は充分太くなされているので、ここでの圧力損失は無視される。ΔPが正であれば返油可能、負であらば返油不能であることを意味する。また、ΔPが正で大きい程返油流量は多くなる。
【0099】
この式から明らかなように、冷媒流速uが大きいと右辺第2項に比して第1項が大きく、たとえ液面が低くても返油可能である。一方、冷媒流速uが小さいと多少液面が高くても第2項の負量が大きく、混合液が流出配管64に流出する流量は少ない。冷媒流量が多い場合には圧縮機から吐出される冷凍機油の比率が大きいが、冷媒流量が少ない場合には圧縮機から吐出される冷凍機油の比率は小さい。したがって、冷凍機油劣化成分が油戻し穴5に付着した場合に返油不足となるのは、冷媒流量が多い場合である。油戻し穴5を大きくすると、冷媒流量が多い場合には充分に油が戻るが、冷媒流量が少なくかつアキュムレ−タ4の液面が高い場合には液バックが多くなり圧縮機の潤滑性が低下する。
【0100】
ところが、図18に示すように、油戻し穴5とともに返油配管64を設けると、スラッジの付着により返油流量が問題となる、冷媒流量の多い場合には返油配管64より返油可能で、スラッジ付着による返油不足分を補うことができる。また、冷媒流量が少なくかつアキュムレ−タ4の液面が高い場合にも返油配管64よりの液バックは小さいため、液バック過多による圧縮機の潤滑性低下にはつながらない。このように、アキュムレ−タ4内に返油配管64を設けることにより、スラッジが油戻し穴5に付着しても返油不足に陥ることもなく、液バック過多になることもない信頼性の高い空気調和装置を得ることができる。
【0101】
なお、図19に示すように返油配管64のオリフィス65を返油配管64の流出配管62側の一端に設けた場合、図20のように返油配管64を毛細管66で構成し、返油配管64の機能とオリフィス65の機能を併せ持たせた場合、図21に示すように、流出配管62を容器60の上方から挿入し、返油配管64を容器60の外側に設け、油戻し穴5の代わりに油戻し配管及びオリフィス67を設けた場合、図22に示すように流出配管62がU字形状となっている場合にも、実施の形態17と同様の効果を有するものである。
【0102】
実施の形態18.
以下、この発明の実施の形態18を図23、図24及び図25によって説明する。図23はこの実施の形態18にかかる空気調和装置の冷媒回路及び制御回路を示す構成図、図24はこの実施の形態22にかかる絞り装置制御装置を示すブロック線図、図25はこれの絞り装置制御動作を説明するフローチャートである。図において、Aは熱源機、B、C、Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、4はアキュムレ−タ、5は油戻し穴、7b、7c、7dは室内機側熱交換器、8b、8c、8dは第1の絞り装置、9は液側接続冷媒配管、10はガス側接続冷媒配管で、以上は図28に示す従来例と同様のものである。
【0103】
31は圧縮機1の吐出部と切換弁2との間に設けられた吐出圧力検出手段、32は熱源機側熱交換器3と液側接続冷媒配管9との間に設けられた第3の温度検出手段、33b、33c、33dは室内機B、C、D内の第1の絞り装置8b、8c、8dと室内側熱交換器7b、7c、7dとの間に設けられた第4の温度検出手段、34b、34c、34dは室内機B、C、D内の室内側熱交換器7b、7c、7dのガス側接続冷媒配管10側一端に設けられた第5の温度検出手段、35は絞り装置制御装置、36は第3の温度検出手段32の検出値、第1の圧力検出手段31の検出値、そして混合冷媒の組成演算手段22の演算結果から第3の温度検出手段32の設置部分の過冷却度を演算するSC演算手段、37は第4の温度検出手段33b、33c、33dの検出値、第5の温度検出手段34b、34c、34dの検出値から室内側熱交換器出口部の過熱度を演算するSH演算手段、38はSC演算手段36、SH演算手段37の演算結果から第1の絞り装置8b、8c、8dの開度を制御する第1の絞り装置制御手段、39b、39c、39dは各室内機B、C、Dに設けられた送風機、40b、40c、40dは各室内機B、C、Dに設けられたドレンポンプ、41b、41c、41dは除霜制御装置である。
【0104】
圧縮機1、切換弁2、熱源機側熱交換器3、第1の絞り装置8b、8c、8d、及び室内機側熱交換器7b、7c、7dからなる主冷媒回路の冷房時、暖房時の冷媒の流れは従来例と全く同様なので説明を省略し、絞り装置制御装置による第1の絞り装置8b、8c、8dの制御動作を図25のフロ−チャ−トによって説明する。ステップ105で、第4の温度検出手段33b、33c、33dの検出値及び第5の温度検出手段34b、34c、34dの検出値からSH演算手段37によって演算された演算結果SHと、予め設定されたSHの上限値SHHとが比較され、SH≦SHHであればステップ106に進み、SH>SHHであればステップ108に進む。ステップ106では、SH演算手段36の演算結果SHと、予め設定されたSHの下限値SHLとが比較され、SH≧SHLであればステップ107に進んで第1の絞り装置8b、8c、8dの開度が減少され、SH<SHLであればそのまま何もしない。ステップ108では第1の絞り装置8b、c、dの開度Sjと、予め設定された上限開度MAXとが比較され、
Sj≦MAXであればステップ109へ進んで第1の絞り装置8b、8c、8dの開度が増加され、Sj>MAXであればステップ110へ進む。
【0105】
ステップ110で、第3の温度検出手段32の検出値、第1の圧力検出手段31の検出値、及び混合冷媒の組成演算手段22の演算結果からSC演算手段36によって演算された演算結果と、予め設定されたSCの下限値SCLとが比較され、SC>SCLであればステップ111に進んで上限開度MAXが大きく設定し直され、SC≦SCLであれば何もしない。このように、第1の絞り装置8b、8c、8dが、スラッジ付着により流量不足に陥った場合において、第3の温度検出手段32のある部分で十分に過冷却が確保されていて制御が発散しない場合には、最大開度を大きく設定するため、流量不足は解消される。
【0106】
実施の形態19.
以下、この発明の実施の形態19を図23、図26及び図27によって説明する。図26はこの実施の形態19にかかる除霜制御装置を示すブロック線図、図27はこれの除霜制御動作を説明するフローチャートである。図26において、34b、34c、34dは室内機B、C、D内の室内側熱交換器7b、7c、7dのガス側接続冷媒配管10側一端に設けられた第5の温度検出手段、39b、39c、39dは各室内機B、C、Dに設けられた送風機、40b、40c、40dは各室内機B、C、Dに設けられたドレンポンプ、41b、41c、41dは除霜制御装置、42はシステムモ−ドが冷房か否かを判定するシステムモ−ド判定手段、43b、43c、43dは各室内機B、C、Dのモ−ドが冷房か否かを判定する室内機モ−ド判定手段、44b、44c、44dは各室内機B、C、Dの計時手段、45は冷房していない室内機の熱交換器の霜を解かすための運転を制御する室内機除霜運転制御手段である。
【0107】
一部の室内機例えばBが冷房運転しかつ室温及び外気温度も低く、残りの室内機C、Dが停止している場合に、停止中の室内機C、Dの第1の絞り装置8dが付着したスラッジによって完全な閉止状態とならずに、微小流量の冷媒が流れる場合がある。この場合、この微小流量の冷媒をガス化する熱がなくかつ室温・外気温度が低いため、停止中の室内機C、Dの室内側熱交換器7dは着霜する。このような状態に陥ると、室内機C、Dの第5の温度検出手段34c、34dの温度は低温となる。このような室内機C、Dの第5の温度検出手段34c、34dの検出値T5が予め設定された第1の所定温度TLより低い状態が第1の所定時間τ1B続くと、これが第5の温度検出手段34c、34d、システムモ−ド判定手段42、室内機モ−ド判定手段43c、43d及び計時手段44c、44dによって検出され、室内機除霜運転制御手段45によって、送風機39c、39dが運転され室内側熱交換器C、Dの霜を解かし、同時にドレンポンプ40c、40dも運転されこの時生ずるドレン水を排水するよう制御される。
【0108】
また、送風機39c、39dの運転開始後第2の所定時間τ2B経過後に、室内機C、Dの第5の温度検出手段34c、34dの検出値T5がTLより高めに予め設定された第2の所定温度THより高くなっていると送風機39c、39dを停止させ、送風機39c、39d停止後もしばらくの間はドレン水発生が続くため、送風機39c、39d停止後第3の所定時間τ3B経過後にドレンポンプ40c、40dを停止させるよう制御される。以上により、停止中の室内機の第1の絞り装置が付着したスラッジによって完全な閉止状態とすることができない場合にも停止中の室内機の室内側熱交換器の霜が成長し続けることはなく、不具合は発生しない。
【0109】
次に、室内機除霜運転制御手段45の制御動作を図27のフロ−チャ−トによって説明する。システムモ−ド判定手段42の判定の結果、システムモ−ドが冷房で、室内機モ−ド判定手段43b、43c、43dの判定の結果、室内機モ−ドが冷房でなく、計時手段44b、44c、44dによる第1の計時τ1が第1の所定時間τ1B経過し、かつ、第5の温度検出手段34b、34c、34dの検出値T5が第1の所定温度TL以下であると、ステップ112からステップ113、114、115を経てステップ116に進み、計時手段44b、44c、44dによる第2の計時τ2が0にクリアされステップ117に進み、送風機39b、39c、39d及びドレンポンプ40b、40c、40dの運転が開始される。
【0110】
その後ステップ118に進み第2の計時τ2が第2の所定時間τ2B経過したかが、ステップ119に進み第5の温度検出手段34b、34c、34dの検出値T5が第2の所定温度THより高くなったかが判定され、これら条件が満足される迄この判定が続けられ、満足された時点でステップ120に進み、送風機39b、39c、39dの運転が停止され、ステップ121で計時手段44b、44c、44dによる第3の計時τ3が0にクリアされステップ122に進み、第3の計時τ3が第3の所定時間τ3B経過した後ステップ123に進み、ドレンポンプ40b、40c、40dの運転が停止される。
【0111】
【発明の効果】
【0117】
本願の発明によれば、圧縮機吐出部に油分離器を設け、分離した冷凍機油を圧縮機吸入部に戻す返油バイパス回路を設けたので、主冷媒回路の絞り装置を流れる冷凍機油の流量は著しく低下し、冷凍機油と共に循環する冷凍機油劣化物の積算流量も低下する。これにより、冷凍機油劣化物がスラッジとなって主冷媒回路の絞り装置に付着する量も減少する。以上により、主冷媒回路の絞り装置の流量不足が回避でき、空調能力の不足はなくなる。また、異常な高圧上昇・低圧低下・それによる吐出ガス温度上昇を回避でき、信頼性が著しく向上するという効果がある。
【0118】
本願の発明によれば、前記の発明において、返油バイパス回路途中にスラッジフィルタを設けたので、前記の発明の効果の外に、さらに、圧縮機内部で生成された冷凍機油劣化物は返油バイパスにおいてスラッジフィルタで捕捉され、冷凍機油中の冷凍機油劣化物含有率は低下し、主冷媒回路の絞り装置、油戻し穴に付着するスラッジの量は低下し、また、圧縮機から吐出された冷媒などが返油バイパスを経て圧縮機へ戻るサイクルは途中で液側接続冷媒配管、ガス側接続冷媒配管を経由しないので、液側接続冷媒配管やガス側接続冷媒配管の施工時に充分な無酸化ロウ付けを実施しないような場合などに発生する酸化スケ−ルが運転中にスラッジフィルタに流入することがなく、流路を閉塞したり、スラッジフィルタを変形・破壊したりする危険性がない等の効果がある。
【0119】
本願の他の発明によれば、前記の発明において、返油バイパス回路途中のスラッジフィルタ上流に冷凍機油を冷却するバイパス熱交換器を設けたので、前記の発明の効果の外に、スラッジフィルタに流入する冷凍機油の温度が低下して冷凍機油中の冷媒の濃度が高まることにより、冷凍機油中に溶け込んでいた冷凍機油劣化物が析出されて元々冷凍機油に溶け込んでいたものもスラッジフィルタにより捕捉され、主冷媒回路の冷凍機油中の冷凍機油劣化物含有率はさらに低下するという効果がある。
【0120】
本願の他の発明によれば、前記の発明において、返油バイパス回路途中のスラッジフィルタ上流に液冷媒を注入する液冷媒注入回路を設けたので、前記の発明の効果の外に、返油バイパス回路中の冷凍機油が液注入回路から流出する液冷媒と合流することにより、スラッジフィルタに流入する冷凍機油中の冷媒濃度が高まり、冷凍機油中に溶け込んでいた冷凍機油劣化物が析出されて元々冷凍機油に溶け込んでいたものもスラッジフィルタにより捕捉され、主冷媒回路の冷凍機油中の冷凍機油劣化物含有率はさらに低下するという効果がある。
【0121】
本願の他の発明によれば、前記の発明において、返油バイパス途中のスラッジフィルタを、水分を吸収しかつスラッジフィルタ機能を有するドライヤとしたので、前記の発明の効果の外に、返油バイパスを流れる冷凍機油より直接水分を吸収することにより、冷凍機油の加水分解が抑制され、主冷媒回路の冷凍機油中の冷凍機油劣化物含有率はさらに低下するという効果がある。
【0123】
本願の他の発明によれば、前記の発明において、バイパス熱交換器の全部または一部として熱源機側熱交換器の最下部を通す構成としたので、前記の発明の効果の外に、上部でのドレンの流れで風が通りにくく、着霜しやすい熱交換器の最も下の部分が暖められ着霜しにくくなるという効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1にかかる空気調和装置の冷媒回路図。
【図2】 実施の形態2にかかる空気調和装置の冷媒回路図。
【図3】 実施の形態3にかかる空気調和装置の冷媒回路図。
【図4】 実施の形態4にかかる空気調和装置の冷媒回路図。
【図5】 実施の形態5にかかる空気調和装置の冷媒回路図。
【図6】 実施の形態6にかかる空気調和装置の冷媒回路図。
【図7】 実施の形態7にかかる空気調和装置の組成演算に関するブロック線図。
【図8】 実施の形態7にかかる空気調和装置の組成演算手段の動作を示すフロ−チャ−ト。
【図9】 実施の形態8にかかる空気調和装置の冷媒回路図。
【図10】 実施の形態9にかかる空気調和装置の冷媒回路図。
【図11】 実施の形態10にかかる空気調和装置の冷媒回路図。
【図12】 実施の形態11にかかる空気調和装置の冷媒回路図。
【図13】 実施の形態12にかかる空気調和装置の冷媒回路図。
【図14】 実施の形態13にかかる空気調和装置の冷媒回路図。
【図15】 実施の形態14にかかる空気調和装置の冷媒回路図。
【図16】 実施の形態15にかかる空気調和装置の冷媒回路図。
【図17】 実施の形態1〜6において使用されるドライヤの一実施の形態16を示す縦断面図。
【図18】 各実施の形態において使用される実施の形態17にかかるアキ態17を示す縦断面図。
【図19】 アキュムレータの一実施の形態18を示す縦断面図。
【図20】 アキュムレータの一実施の形態19を示す縦断面図。
【図21】 アキュムレータの一実施の形態20を示す縦断面図。
【図22】 アキュムレータの一実施の形態21を示す縦断面図。
【図23】 実施の形態22及び23にかかる空気調和装置の冷媒回路及び制御回路を示す構成図。
【図24】 実施の形態22にかかる絞り装置制御装置を示すブロック線図。
【図25】 実施の形態22にかかる絞り装置制御動作を説明するフローチャート。
【図26】 実施の形態23にかかる除霜制御装置を示すブロック線図。
【図27】 実施の形態23にかかる除霜制御動作を説明するフローチャート。
【図28】 従来の空気調和装置の冷媒回路図。
【符号の説明】
A 熱源機、B、C、D 室内機、1 圧縮機、2 切換弁、3 熱源機側熱交換器、4 アキュムレ−タ、5 アキュムレ−タ4の油戻し穴、6 第2の絞り装置(暖房時絞り装置)、7b、7c、7d 室内機側熱交換器、8b、8c、8d 第1の絞り装置(冷房時絞り装置)、9 液側接続冷媒配管、10 ガス側接続冷媒配管、15 バイパス回路、16 ドライヤ、17 第3の絞り装置(バイパス絞り装置)、18、27 バイパス熱交換器、18a 第1のバイパス熱交換器、18b 第2のバイパス熱交換器、19 第1の温度検出手段、20 第2の温度検出手段、21 吸入圧力検出手段、22 組成演算手段、23 油分離器、24 返油バイパス回路、25 第4の絞り装置、26 スラッジフィルタ、28 液冷媒注入回路、29 液注入回路熱交換器、30 第5の絞り装置、31 吐出圧力検出手段、32 第3の温度検出手段、33b、33c、33d 第4の温度検出手段、34b、34c、34d 第5の温度検出手段、35 絞り装置制御装置、36 SC演算手段、37 SH演算手段、38絞り装置制御手段、39b、39c、39d 除霜用送風機、40b、40c、40d ドレンポンプ、41b、41c、41d 除霜制御装置、62 アキュムレ−タ流出配管、64 返油配管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner that uses a hydrofluorocarbon refrigerant as a working medium and oil that is compatible with the refrigerant as refrigeration oil.
[0002]
[Prior art]
FIG. 28 is a refrigerant circuit diagram of a conventional air conditioner, in which A is a heat source unit, B, C, and D are indoor units, 1 is a compressor, 2 is a switching valve, and 3 is a heat source unit side heat exchanger. 4 is an accumulator, 5 is an oil return hole of the accumulator 4, 6 is a heating expansion device (hereinafter referred to as a second expansion device), 7b, 7c and 7d are indoor unit side heat exchangers, 8b and 8c. 8d is a cooling-time expansion device (hereinafter referred to as a first expansion device), 9 is one end of the heat source unit A on the heat source unit side heat exchanger 3 side, and the first expansion unit 8b of the indoor units B, C, and D, The liquid side connection refrigerant pipes 10 for connecting one end on the 8c, 8d side are one end on the switching valve 2 side of the heat source unit A and the indoor unit side heat exchangers 7b, 7c, 7d of the indoor units B, C, D. Gas-side connecting refrigerant pipes that connect one end of the side, 11 and 12 are used to store a desiccant mainly composed of synthetic zeolite in a cylindrical container or pipe. Was, dryer to moisture absorption of moisture mixed in the refrigerant circuit, 13,14b, 14c, 14d is a sludge filter to trap sludge built fine mesh filter cylindrical container and the pipe.
[0003]
Next, the flow of the refrigerant will be described with reference to the drawings. In the figure, solid arrows indicate the flow during cooling, and broken arrows indicate the flow during heating. First, at the time of cooling, the gas refrigerant compressed to high temperature and high pressure by the compressor 1 flows into the heat source machine side heat exchanger 3 through the switching valve 2, and is condensed by exchanging heat with air and the like. Becomes a refrigerant. Furthermore, the second expansion device 6 that is fully open during cooling and the liquid side connection refrigerant pipe 9 are passed through to reach the indoor units B, C, and D, and the degree of superheat at the outlets of the indoor unit side heat exchangers 7b, 7c, and 7d is increased. The first throttling devices 8b, 8c, and 8d controlled so as to be within a certain range are throttling to a low-pressure gas-liquid two-phase state. The low-pressure gas-liquid two-phase refrigerant flows into the indoor unit side heat exchangers 7b, 7c, and 7d, exchanges heat with indoor air and gasifies, and forms the gas side connection refrigerant pipe 10, the switching valve 2, and the accumulator 4. It returns to the compressor 1 through this. The refrigerating machine oil inside the accumulator 4 returns to the compressor 1 through the oil return hole 5 together with the liquid refrigerant.
[0004]
At the time of heating, the gas refrigerant compressed to high temperature and high pressure by the compressor 1 reaches the indoor units B, C, D through the switching valve 2 and the gas side connection refrigerant pipe 10, and the indoor unit side heat exchangers 7b, 7c. , 7d, and heat exchange with indoor air to condense and become a high-temperature and high-pressure liquid refrigerant. The liquid refrigerant that has exited the indoor heat exchangers 7b, 7c, and 7d is slightly decompressed by the first expansion devices 7b, 7c, and 7d that are almost fully open, and passes through the liquid-side connection refrigerant pipe 9 to form the second expansion device 6. Where the pressure is reduced to a low-pressure gas-liquid two-phase state. The low-pressure gas-liquid two-phase refrigerant flows into the heat source machine side heat exchanger 3, exchanges heat with air and the like, and gasifies, and returns to the compressor 1 through the switching valve 2 and the accumulator 4. The refrigerating machine oil inside the accumulator 4 returns to the compressor 1 through the oil return hole 5 together with the liquid refrigerant.
[0005]
In the refrigerant circuit as described above, a hydrofluorocarbon refrigerant has recently been used as a working medium instead of a hydrochlorofluorocarbon refrigerant. However, since the hydrofluorocarbon refrigerant does not have a chlorine component, it is not compatible with conventional mineral oil used as refrigerating machine oil, and is separated from the liquid refrigerant inside the accumulator 4 and floats on the top. The refrigeration oil does not return to the compressor 1 from the oil return hole 5. Therefore, in an air conditioner in which a large amount of liquid refrigerant is stored in an accumulator and the compressor 1 is driven by a motor, the polyester is compatible with a hydrofluorocarbon refrigerant and has excellent insulating properties. Oils or polyether oils are generally used.
[0006]
However, these polyester oils and polyether oils absorb moisture and are hydrolyzed when subjected to high temperature conditions such as the sliding portion of the compressor 1 or when processing oxygen or refrigerant circuit components. There is a risk of deterioration due to the remaining components of the processing oil and cleaning agent mixed in. In particular, among the additives used in polyether oil, antiwear agents are generally highly active ester type, and even if the polyether oil does not hydrolyze, the additive is hydrolyzed and compressed in a high temperature state. Thermal degradation occurs at the sliding portion of the machine 1.
[0007]
These deteriorated products generated at that time are either present as solids in the refrigerating machine oil or dissolved and present. When both the solid component and the dissolved component are discharged from the compressor 1, the high-temperature and high-pressure gas refrigerant is mixed into the discharge gas together with the refrigerating machine oil and discharged into the refrigerant circuit. The deterioration product of the refrigeration oil flows into the condenser (the heat source side heat exchanger 3 during cooling and the indoor unit side heat exchangers 7b, 7c and 7d during heating) together with the refrigerant, and the refrigerant is liquefied here. When the refrigerant is liquefied and the refrigerant concentration is increased, the deterioration product of the refrigerating machine oil that has been dissolved in the refrigerating machine oil that has flown with the refrigerant cannot be dissolved, and is deposited as a solid and directly on the pipe wall of the pipe. Things appear.
[0008]
These newly deposited deterioration products flow into the first expansion devices 8b, 8c and 8d and the second expansion device 6 together with the deterioration products originally present as solids. Among the remaining components of processing oil and cleaning agent that are mixed when processing refrigerant circuit components, those that are not compatible with the hydrofluorocarbon refrigerant form a film on the pipe wall, and this non-phase The dissolved component becomes a binder, and the deterioration product of the refrigerating machine oil adheres to the pipe wall of the pipe. In particular, in a throttling device such as a capillary tube in which the flow path cross-sectional area suddenly changes, the flow can stagnate, and the deterioration product of the refrigerating machine oil is markedly attached. In this way, the refrigeration oil deterioration product existing as a solid in the refrigeration oil adheres to the first expansion devices 8b, 8c, 8d and the second expansion device 6 as sludge. Further, when liquid refrigerant is accumulated in the accumulator 4, the degradation product that is a solid or dissolved component of the refrigerating machine oil deposits and adheres to the oil return hole 5 similarly to the expansion device.
[0009]
As measures against sludge adhesion as described above, the dryers 11 and 12 in which a desiccant mainly composed of synthetic zeolite or the like is incorporated in a cylindrical container or pipe are connected to a refrigerant pipe between the switching valve 2 and the accumulator 4; And a sludge filter provided in a liquid-side connection refrigerant pipe 9 between the first throttling devices 8b, 8c, 8d and the second throttling device 6, and having a fine mesh-like filter built in a cylindrical container or pipe Is a refrigerant pipe between the heat source device side heat exchanger 3 and the second expansion device 6, and a refrigerant between the indoor side heat exchangers 7b, 7c, 7d and the first expansion devices 8b, 8c, 8d. Provided in the piping.
[0010]
A dryer 11 provided between the switching valve 2 and the accumulator 4 is connected to the switching valve 2 from the indoor unit side heat exchangers 7b, 7c and 7d during cooling and from the heat source unit side heat exchanger 3 during heating. The gas refrigerant flows in through and the moisture contained in the gas refrigerant is absorbed. The dryer 12 provided in the liquid side connection refrigerant pipe 9 between the first expansion devices 8b, 8c, 8d and the second expansion device 6 is almost fully opened from the heat source unit side heat exchanger 3 during cooling. The second expansion device 6 is heated, and during heating, the indoor unit side heat exchangers 7b, 7c, and 7d are almost fully opened through the first expansion devices 8b, 8c, and 8d, and the liquid is slightly depressurized. A single-phase refrigerant flows in. Accordingly, the pressure loss in the dryer 12 is small, the flow is quiet, and moisture is sufficiently absorbed.
[0011]
In the sludge filter 13 provided in the refrigerant pipe between the heat source machine side heat exchanger 3 and the second expansion device 6, the deterioration product of the refrigeration oil that flows into the heat source machine side heat exchanger 3 together with the refrigerant during cooling The deterioration product dissolved in the refrigerating machine oil deposited and adhered by the liquefaction of the refrigerant in the heat source apparatus side heat exchanger 3 and the decrease in the flow velocity is captured as sludge. Further, in the sludge filters 14b, 14c, 14d provided in the refrigerant pipe between the indoor side heat exchangers 7b, 7c, 7d and the first expansion devices 8b, 8c, 8d, the indoor side heat exchanger 7b during heating is used. , 7c, 7d and the deterioration product of the refrigerating machine oil that flowed together with the refrigerant, and dissolved in the refrigerating machine oil deposited and adhered due to the liquefaction of the refrigerant in the indoor heat exchangers 7b, 7c, 7d and the decrease in the flow velocity. Deteriorated products are trapped as sludge.
[0012]
[Problems to be solved by the invention]
In the conventional air conditioner using the dryer as described above, when the refrigerant gas passes through the dryer 11, a suction pressure loss occurs, the evaporation capability is reduced, and conversely, the reduction of the evaporation capability is to be suppressed. It is necessary to increase the size of the dryer 11. Further, if sufficient non-oxidative brazing is not performed at the time of construction of the refrigerant pipe, an oxidation scale is generated, which flows into the dryers 11 and 12 during operation, and the flow path is blocked or the dryer 11 is crushed. There was a risk of doing. Furthermore, there is a risk that the dryers 11 and 12 may be crushed due to a sudden liquid back generated during a transient operation such as compressor start-up, air conditioning switching, defrost start / end, or a strong flow of refrigerant liquid.
[0013]
Moreover, in the conventional air conditioning apparatus which installed the above sludge filters, between the heat source machine side heat exchanger 3 and the 2nd expansion device 6, and indoor side heat exchangers 7b, 7c, 7d, and 1st There is a problem that it is necessary to install a sludge filter at all positions between the expansion devices 8b, 8c and 8d, and the overall size of the air conditioner increases. In addition, the sludge captured by the sludge filter 13 between the heat source device side heat exchanger 3 and the second expansion device 6 during cooling is separated when the flow is switched to heating, and the heat source device side heat exchanger 3 Then, the oil flows into the accumulator 4 via the switching valve 2 and the oil return hole 5 is closed. Similarly, sludge captured by the sludge filters 14b, 14c, 14d between the indoor heat exchangers 7b, 7c, 7d and the first expansion devices 8b, 8c, 8d during heating is separated when the flow is switched to cooling. Then, the oil flows into the accumulator 4 through the indoor heat exchangers 7b, 7c, 7d and the switching valve 2, and the oil return hole 5 is closed. Furthermore, if sufficient non-oxidative brazing is not performed at the time of construction of the refrigerant pipe, an oxidation scale is generated, which flows into the sludge filters 13, 14b, 14c, and 14d during operation, and the flow path is blocked. There was also a risk of damaging the sludge filter.
[0014]
The present invention has been made to solve the above-described problems. Even if a hydrofluorocarbon refrigerant is used as a working fluid and an oil compatible with the refrigerant is used as a refrigerator oil, the refrigerator oil can be used. It is an object of the present invention to obtain a highly reliable air conditioner that is free from defects due to this, even if a deteriorated product is generated.
[0015]
[Means for Solving the Problems]
[0021]
Claim 1 The air conditioning apparatus according to the present invention includes a main refrigerant circuit composed of a compressor, a condenser, a throttle device, and an evaporator, and uses a hydrofluorocarbon refrigerant as a working medium, and is compatible with the refrigerant. In an air conditioner using a certain amount of oil as refrigerating machine oil, an oil separator is provided at the compressor discharge section, and the return oil bypass circuit for returning the separated refrigerating machine oil to the compressor suction section And a sludge filter for supplementing refrigeration oil deterioration products in the middle of the oil return bypass circuit Is provided.
[0023]
Claim 2 The air conditioner of the present invention according to Claim 1 In the invention described in 1), a bypass heat exchanger for cooling the refrigeration oil is provided upstream of the sludge filter in the middle of the oil return bypass circuit.
[0024]
Claim 3 The air conditioner of the present invention according to Claim 1 In the invention described in 1), a liquid refrigerant injection circuit for injecting liquid refrigerant upstream of the sludge filter in the middle of the oil return bypass circuit is provided.
[0025]
Claim 4 The air conditioner of the present invention according to Claims 1-3 In the invention described in any of the above, the sludge filter in the middle of the oil return bypass is a dryer that absorbs moisture and has a sludge filter function.
[0027]
Claim 5 The air conditioner of the present invention according to Claim 2 In the invention described in (1), the lowermost part of the heat source unit side heat exchanger is passed as all or part of the bypass heat exchanger.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
A first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a refrigerant circuit diagram of the air-conditioning apparatus according to the first embodiment. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 The return hole, 6 is the second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b, 8c and 8d are the first expansion device, 9 is the liquid side connection refrigerant pipe, and 10 is the gas side connection refrigerant. The piping is the same as the conventional example shown in FIG.
[0033]
15 is a bypass circuit that branches from between the second expansion device 6 and the liquid side connection refrigerant pipe 9, and the other end is connected to the refrigerant pipe between the switching valve 2 and the compressor 1, and 16 is a bypass circuit 15. A dryer provided in the middle of the piping, 17 is a bypass throttle device (hereinafter referred to as a third throttle device) provided downstream of the dryer 16 in the middle of the bypass circuit 15, and 18a is a third throttle device 17 of the bypass circuit 15. A first bypass heat exchanger in which heat is exchanged between a portion further downstream and a portion between the second expansion device 6 and the heat source device side heat exchanger 3, and 18 b is a third expansion device 17 of the bypass circuit 15. A second bypass heat exchanger 19 for exchanging heat between the downstream portion and the portion between the second expansion device 6 and the liquid-side connecting refrigerant pipe 9 is provided by the expansion device 17 in the middle of the bypass circuit 15. 1st temperature provided in the upstream part Outlet means 20 is a second temperature detecting means 21 provided downstream of the expansion device 17 in the pipeline of the bypass circuit 15 and upstream of the first and second bypass heat exchangers 18a and 18b. This is suction pressure detection means provided in a portion between the valve 2 and the compressor 1.
[0034]
Next, the flow of the refrigerant will be described with reference to the drawings. First, at the time of cooling, the gas refrigerant compressed to high temperature and high pressure by the compressor 1 flows into the heat source machine side heat exchanger 3 through the switching valve 2, and is condensed by exchanging heat with air and the like. Becomes a refrigerant. Furthermore, the second expansion device 6 that is fully open during cooling and the liquid side connection refrigerant pipe 9 are passed through to reach the indoor units B, C, and D, and the degree of superheat at the outlets of the indoor unit side heat exchangers 7b, 7c, and 7d The first throttling devices 8b, 8c, and 8d controlled so as to be within a certain range are throttling to a low-pressure gas-liquid two-phase state. The low-pressure gas-liquid two-phase refrigerant flows into the indoor unit side heat exchangers 7b, 7c, and 7d, exchanges heat with indoor air and gasifies, and forms the gas side connection refrigerant pipe 10, the switching valve 2, and the accumulator 4. It returns to the compressor 1 through this. The refrigerating machine oil inside the accumulator 4 returns to the compressor 1 through the oil return hole 5 together with the liquid refrigerant.
[0035]
Further, a part of the liquid refrigerant that has passed through the second expansion device 6 in the fully opened state flows into the bypass circuit 15 from the heat source device side heat exchanger 3. In the bypass circuit 15, after passing through the dryer 16, the pressure is reduced to a low pressure by the third expansion device 17 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. This low-temperature and low-pressure gas-liquid two-phase refrigerant is a high-temperature and high-pressure liquid refrigerant that has exited the heat source unit side heat exchanger 3 and a high-temperature and high-pressure refrigerant that has exited the second expansion device 6 in the bypass heat exchangers 18a and 18b. It exchanges heat with the liquid refrigerant, is gasified, and joins the refrigerant that has passed through the indoor units B, C, and D between the switching valve 2 and the compressor 1, and returns to the compressor 1. On the other hand, the liquid refrigerant that has exited the heat source apparatus side heat exchanger 3 is cooled by the first bypass heat exchanger 18a, and the liquid refrigerant that flows into the bypass circuit 15 has a temperature higher than that of the liquid refrigerant that has exited the heat source apparatus side heat exchanger 3. Decreases. The refrigerant further passes through the second expansion device 6 and is cooled by the second bypass heat exchanger 18b, and the liquid refrigerant flowing into the liquid side connection refrigerant pipe 9 is sufficiently subcooled. Therefore, even if the liquid side connection refrigerant pipe 9 is long and the pressure drop of the refrigerant is large while flowing therethrough, the indoor units B, C, and D are installed above the heat source unit A and the liquid side connection refrigerant. Even if the influence of the gravity of the liquid refrigerant in the pipe is great, the refrigerant flowing into the first expansion devices 8a, 8b, 8c can secure a liquid state and can be stably operated.
[0036]
At the time of heating, the gas refrigerant compressed to high temperature and high pressure by the compressor 1 reaches the indoor units B, C, D through the switching valve 2 and the gas side connection refrigerant pipe 10, and the indoor unit side heat exchangers 7b, 7c. , 7d, and heat exchange with indoor air to condense and become a high-temperature and high-pressure liquid refrigerant. The liquid refrigerant that has exited the indoor heat exchangers 7b, 7c, and 7d is slightly decompressed by the first expansion devices 7b, 7c, and 7d that are almost fully open during heating, and the second expansion is made through the liquid-side connection refrigerant pipe 9. The device 6 is reached, where it is throttled to a low-pressure gas-liquid two-phase state. The low-pressure gas-liquid two-phase refrigerant flows into the heat source machine side heat exchanger 3, exchanges heat with air and the like, and gasifies, and returns to the compressor 1 through the switching valve 2 and the accumulator 4. The refrigerating machine oil inside the accumulator 4 returns to the compressor 1 through the oil return hole 5 together with the liquid refrigerant.
[0037]
Further, part of the liquid refrigerant that has passed through the first expansion devices 8a, 8b, 8c and the liquid-side connection refrigerant pipe 9 in the fully opened state flows into the bypass circuit 15 from the indoor unit-side heat exchangers 7b, 7c, 7d. In the bypass circuit 15, after passing through the dryer 16, the pressure is reduced to a low pressure by the third expansion device 17 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase refrigerant includes a high-temperature and high-pressure liquid refrigerant that has exited the liquid-side connection refrigerant pipe 9 in the bypass heat exchanger 18b, and a low-pressure that has been squeezed by the second expansion device 6 in the bypass heat exchanger 18a. The gas-liquid two-phase refrigerant is heat exchanged, gasified, and merged with the refrigerant that has passed through the heat source unit side heat exchanger 3 between the switching valve 2 and the compressor 1, and returns to the compressor 1. On the other hand, the liquid refrigerant exiting the liquid side connection refrigerant pipe 9 is cooled by the second bypass heat exchanger 18b, and the temperature of the liquid refrigerant flowing into the bypass circuit 15 is lower than that of the liquid refrigerant exiting the liquid side connection refrigerant pipe 9. And the refrigerant | coolant which flows in into the 2nd expansion device 6 can ensure a liquid state, and the stable driving | operation is possible.
[0038]
Next, the operation of the dryer 16 will be described. The moisture contained in the refrigerant / refrigeration oil discharged from the compressor 1 does not change until reaching the starting point of the bypass circuit 15 as long as it is below the saturation upper limit. From this point, in the main refrigerant circuit leading to the junction with the bypass circuit 15 through the switching valve 2 via the indoor heat exchangers 7b, 7c, and 7d during cooling and through the heat source unit heat exchanger 3 during heating. Thereafter, the moisture contained in the refrigerant / refrigerant oil does not change. On the other hand, in the bypass circuit 15, when the refrigerant / refrigerant oil flows into the dryer 16, the moisture is absorbed there, and the moisture content in the refrigerant / refrigerant oil decreases downstream of the dryer 16. The refrigerant / refrigerant oil flowing through the bypass circuit 15 between the switching valve 2 and the compressor 1 and the refrigerant / refrigerant oil flowing through the main refrigerant circuit are merged. The moisture contained in the refrigerant / refrigerant oil flowing through the bypass circuit 15 is mixed with the moisture contained in the refrigerant / refrigerant oil flowing through the main refrigerant circuit, and the combined moisture is greater than the amount of water contained in the refrigerant / refrigerant oil flowing through the main refrigerant circuit. The amount decreases at that concentration. That is, moisture is absorbed by the dryer 16 in the bypass circuit 15 and the moisture content in the refrigerant circuit is reduced.
[0039]
In this embodiment, the moisture adsorption rate is slower than in the case where a dryer is provided in the main refrigerant circuit, but the rate of hydrolysis degradation of the polyester oil is also slow, so the moisture of the dryer 16 in the middle of the bypass circuit 15 piping. Hydrolysis is sufficiently suppressed by the adsorption ability, and sludge component generation in the compressor 1 can be suppressed. Moreover, by providing the dryer 16 in the middle of the piping of the bypass circuit 15, the impact of the refrigerant flow flowing through the dryer 16 can be reduced, and the dryer 16 is less likely to be crushed. Further, since the refrigerant flowing into the dryer 16 is cooled by the first and second bypass heat exchangers 18a and 18b, the refrigerant flows into the dryer 16 even when the compressor 1 is started up or during a transient operation such as defrosting. It is easy to make the refrigerant to be in a liquid state, and the dryer 16 becomes more difficult to pulverize. Further, when the temperature of the refrigerant is low, the water saturation solubility in the refrigerant is low, and in the coexistence with the dryer, moisture is more easily transferred to the dryer than in the refrigerant, and the moisture adsorption capacity of the dryer is increased. Therefore, when the temperature of the refrigerant flowing into the dryer 16 is lowered, the moisture adsorption amount of the dryer 16 is increased accordingly, and hydrolysis of the refrigerating machine oil can be suppressed.
[0040]
Embodiment 2. FIG.
A second embodiment of the present invention will be described below with reference to FIG. FIG. 2 is a refrigerant circuit diagram of the air-conditioning apparatus according to the second embodiment. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 The return hole, 6 is the second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b, 8c and 8d are the first expansion device, 9 is the liquid side connection refrigerant pipe, and 10 is the gas side connection refrigerant. The piping is the same as the conventional example shown in FIG.
[0041]
15 is a bypass circuit that branches from between the second expansion device 6 and the liquid side connection refrigerant pipe 9, and the other end is connected to the refrigerant pipe between the switching valve 2 and the compressor 1, and 16 is a bypass circuit 15. A dryer provided in the middle of the piping, 17 is a third throttle device provided downstream of the dryer 16 in the middle of the bypass circuit 15, and 18 is a portion upstream of the dryer 16 of the bypass circuit 15, the switching valve 2 and the accumulator. The bypass heat exchanger for exchanging heat with the portion between the heat exchanger 4 and the first temperature detecting means 19 provided in the upstream portion of the expansion device 17 in the middle of the piping of the bypass circuit 15, and 20 of the bypass circuit 15 Second temperature detection means 21 provided downstream of the expansion device 17 in the middle of the pipe, 21 is suction pressure detection means provided in a portion between the switching valve 2 and the compressor 1.
[0042]
Next, the flow of the refrigerant will be described with reference to the drawings. A main refrigerant comprising the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the second expansion device 6, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d. Since the refrigerant flow during cooling and heating of the circuit is exactly the same as in the first embodiment, the description thereof will be omitted, and the refrigerant flow in the bypass circuit 15 will be described.
[0043]
The first expansion devices 8a, 8b, and 8c that are fully opened from the indoor unit side heat exchangers 7b, 7c, and 7d when passing through the fully expanded second expansion device 6 from the heat source device side heat exchanger 3 during cooling. Then, a part of the liquid refrigerant that has passed through the liquid side connection refrigerant pipe 9 flows into the bypass circuit 15. The liquid refrigerant that has flowed into the bypass circuit 15 undergoes heat exchange with the low-temperature and low-pressure refrigerant that has passed through the switching valve 2 in the bypass heat exchanger 18, and the temperature is lowered. It becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase refrigerant merges with the refrigerant in the main refrigerant circuit that has passed through the switching valve 2 between the switching valve 2 and the accumulator 4, and is separated into gas and liquid by the accumulator 4 and returns to the compressor 1.
[0044]
Next, the operation of the dryer 16 will be described. The moisture contained in the refrigerant / refrigeration oil discharged from the compressor 1 does not change until reaching the starting point of the bypass circuit 15 as long as it is below the saturation upper limit. From this point, in the main refrigerant circuit leading to the junction with the bypass circuit 15 through the switching valve 2 via the indoor heat exchangers 7b, 7c, and 7d during cooling and through the heat source unit heat exchanger 3 during heating. Thereafter, the moisture contained in the refrigerant / refrigerant oil does not change. On the other hand, in the bypass circuit 15, when the refrigerant / refrigerant oil flows into the dryer 16, the moisture is absorbed there, and the moisture content in the refrigerant / refrigerant oil decreases downstream of the dryer 16. The refrigerant / refrigerant oil flowing through the bypass circuit 15 between the switching valve 2 and the compressor 1 and the refrigerant / refrigerant oil flowing through the main refrigerant circuit are merged. The moisture contained in the refrigerant / refrigerant oil flowing through the bypass circuit 15 is mixed with the moisture contained in the refrigerant / refrigerant oil flowing through the main refrigerant circuit, and the combined moisture is greater than the amount of water contained in the refrigerant / refrigerant oil flowing through the main refrigerant circuit. The amount decreases at that concentration. That is, moisture is absorbed by the dryer 16 in the bypass circuit 15 and the moisture content in the refrigerant circuit is reduced.
[0045]
Even in this embodiment, the moisture adsorption rate is slower than the case where a dryer is provided in the main refrigerant circuit, but the rate of hydrolysis degradation of the polyester oil is also slow, so the moisture of the dryer 16 in the middle of the bypass circuit 15 piping. Hydrolysis is sufficiently suppressed by the adsorption ability, and sludge component generation in the compressor 1 can be suppressed. Moreover, by providing the dryer 16 in the middle of the piping of the bypass circuit 15, the impact of the refrigerant flow flowing through the dryer 16 can be reduced, and the dryer 16 is less likely to be crushed. Furthermore, since the refrigerant flowing into the dryer 16 is cooled by the bypass heat exchanger 18, the refrigerant flowing into the dryer 16 can be easily put into a liquid state even when the compressor 1 is started or during a transient operation such as defrosting. The dryer 16 becomes more difficult to grind. Further, when the temperature of the refrigerant is low, the water saturation solubility in the refrigerant is low, and in the coexistence with the dryer, moisture is more easily transferred to the dryer than in the refrigerant, and the moisture adsorption capacity of the dryer is increased. Therefore, when the temperature of the refrigerant flowing into the dryer 16 is lowered, the moisture adsorption amount of the dryer 16 is increased accordingly, and hydrolysis of the refrigerating machine oil can be suppressed.
[0046]
Embodiment 3 FIG.
A third embodiment of the present invention will be described below with reference to FIG. FIG. 3 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 3. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 The return hole, 6 is the second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b, 8c and 8d are the first expansion device, 9 is the liquid side connection refrigerant pipe, and 10 is the gas side connection refrigerant. The piping is the same as the conventional example shown in FIG.
[0047]
15 is a bypass circuit that branches from between the second expansion device 6 and the liquid side connection refrigerant pipe 9, and the other end is connected to the refrigerant pipe between the switching valve 2 and the compressor 1, and 16 is a bypass circuit 15. A dryer provided in the middle of the piping, 17 is a third expansion device provided downstream of the dryer 16 in the middle of the bypass circuit 15, and 18 is a heat source side heat exchange with a portion of the bypass circuit 15 upstream of the dryer 16. A bypass heat exchanger for exchanging heat with a part of the air flowing into the lowermost portion of the cooler 3, 19 is a first temperature detection means provided in a portion upstream of the expansion device 17 in the middle of the piping of the bypass circuit 15. , 20 is a second temperature detecting means provided downstream of the expansion device 17 in the middle of the bypass circuit 15, and 21 is a suction pressure detecting means provided in a portion between the switching valve 2 and the compressor 1. .
[0048]
Next, the flow of the refrigerant will be described with reference to the drawings. A main refrigerant comprising the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the second expansion device 6, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d. Since the refrigerant flow during cooling and heating of the circuit is exactly the same as in the first embodiment, the description thereof will be omitted, and the refrigerant flow in the bypass circuit 15 will be described.
[0049]
The first expansion devices 8a, 8b, and 8c that are fully opened from the indoor unit side heat exchangers 7b, 7c, and 7d when passing through the fully expanded second expansion device 6 from the heat source device side heat exchanger 3 during cooling. Then, a part of the liquid refrigerant that has passed through the liquid side connection refrigerant pipe 9 flows into the bypass circuit 15. The liquid refrigerant flowing into the bypass circuit 15 exchanges heat with a part of the air flowing into the lowermost part of the heat source unit side heat exchanger 3 by the bypass heat exchanger 18, and the temperature is lowered. The pressure reducing device 17 reduces the pressure to a low pressure and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase refrigerant merges with the refrigerant in the main refrigerant circuit that has passed through the switching valve 2 between the switching valve 2 and the accumulator 4, and is separated into gas and liquid by the accumulator 4 and returns to the compressor 1.
In addition, in the lowest part of the heat source apparatus side heat exchanger 3 provided with the bypass heat exchanger 18 that becomes an evaporator at the time of heating, it is difficult for wind to pass through the drain flow from the upper part, and frost is generated and is likely to grow. It is warmed by the bypass heat exchanger 18 and hardly forms frost.
[0050]
Also in the third embodiment, a dryer 16 that absorbs moisture is provided in the bypass circuit 15, and the refrigerant flowing into the dryer 16 is cooled by the bypass heat exchanger 18, so that the refrigerant circuit is the same as in the first and second embodiments. The moisture content therein decreases, hydrolysis of the refrigerating machine oil can be suppressed, and pulverization of the dryer 16 by the refrigerant flow can be prevented.
[0051]
Embodiment 4 FIG.
A fourth embodiment of the present invention will be described below with reference to FIG. FIG. 4 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 4. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 The return hole, 6 is the second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b, 8c and 8d are the first expansion device, 9 is the liquid side connection refrigerant pipe, and 10 is the gas side connection refrigerant. The piping is the same as the conventional example shown in FIG.
[0052]
Reference numeral 15 denotes a bypass circuit that branches from between the discharge portion of the compressor 1 and the switching valve 2, and the other end is connected to a refrigerant pipe between the switching valve 2 and the compressor 1. The provided dryer, 17 is a third throttle device provided downstream of the dryer 16 in the middle of the bypass circuit 15, and 18 is a portion of the bypass circuit 15 upstream of the dryer 16 and the third throttle of the bypass circuit 15. A bypass heat exchanger that exchanges heat with a portion downstream from the device 17, 19 is a first temperature detection means provided in a portion upstream of the expansion device 17 in the middle of the piping of the bypass circuit 15, and 20 is a piping of the bypass circuit 15. A second temperature detecting means 21 provided downstream from the throttle device 17 on the way, 21 is a second pressure detecting means provided in a portion between the switching valve 2 and the compressor 1.
[0053]
Next, the flow of the refrigerant will be described with reference to the drawings. A main refrigerant comprising the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the second expansion device 6, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d. Since the refrigerant flow during cooling and heating of the circuit is exactly the same as in the first embodiment, the description thereof will be omitted, and the refrigerant flow in the bypass circuit 15 will be described.
[0054]
In both cases of cooling and heating, part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the bypass circuit 15. The high-temperature and high-pressure gas refrigerant flowing into the bypass circuit 15 exchanges heat with the low-pressure refrigerant on the downstream side in the bypass heat exchanger 18 to lower the temperature and liquefy, and after passing through the dryer 16, the third expansion device 17. Then, the pressure is reduced to a low pressure to become a low-temperature low-pressure gas-liquid two-phase refrigerant, and the bypass heat exchanger 18 exchanges heat with the high-pressure side refrigerant for gasification. This low-temperature and low-pressure gas refrigerant merges with the refrigerant in the main refrigerant circuit that has passed through the switching valve 2 between the switching valve 2 and the accumulator 4, and is separated into gas and liquid by the accumulator 4 and returns to the compressor 1.
[0055]
Also in the fourth embodiment, a dryer 16 that absorbs moisture is provided in the bypass circuit 15, and the refrigerant flowing into the dryer 16 is cooled by the bypass heat exchanger 18. Therefore, as in the first, second, and third embodiments. The moisture content in the refrigerant circuit decreases, hydrolysis of the refrigerating machine oil can be suppressed, and the dryer 16 can be prevented from being crushed by the refrigerant flow.
In the fourth embodiment, since the cycle from the compressor 1 through the bypass circuit 15 to the compressor 1 is very short, the response time is good, and the time during which the liquid is not supplied to the dryer is in a transient state. It is very short and the dryer 16 is difficult to grind. Further, since this cycle does not include the liquid-side connecting refrigerant pipe 9 and the gas-side connecting refrigerant pipe 10, oxidation that occurs when sufficient non-oxidative brazing is not performed when the pipes 9 and 10 are constructed. The scale does not flow into the dryer 16 in the bypass circuit 15, thereby eliminating the danger of blocking the flow path and crushing the dryer.
[0056]
Embodiment 5 FIG.
The fifth embodiment of the present invention will be described below with reference to FIG. FIG. 5 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 5. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 The return hole, 6 is the second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b, 8c and 8d are the first expansion device, 9 is the liquid side connection refrigerant pipe, and 10 is the gas side connection refrigerant. The piping is the same as the conventional example shown in FIG.
[0057]
15 is a bypass circuit that branches from between the compressor 1 and the switching valve 2, and the other end is connected to the refrigerant pipe between the switching valve 2 and the compressor 1, and 16 is provided in the middle of the bypass circuit 15. A dryer 17 is a third expansion device provided downstream of the dryer 16 in the middle of the bypass circuit 15, and 18 is a portion of the bypass circuit 15 upstream of the dryer 16 and the lowest part of the heat source unit side heat exchanger 3. A bypass heat exchanger that exchanges heat with a part of the air flowing into the part, 19 is a first temperature detecting means provided in a part upstream of the expansion device 17 in the middle of the bypass circuit 15, and 20 is a bypass circuit 15 Reference numeral 21 denotes a second temperature detection means provided downstream from the expansion device 17 in the middle of the pipe, and reference numeral 21 denotes a second pressure detection means provided in a portion between the switching valve 2 and the compressor 1.
[0058]
Next, the flow of the refrigerant will be described with reference to the drawings. A main refrigerant comprising the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the second expansion device 6, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d. Since the refrigerant flow during cooling and heating of the circuit is exactly the same as in the first embodiment, the description thereof will be omitted, and the refrigerant flow in the bypass circuit 15 will be described.
[0059]
In both cases of cooling and heating, part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the bypass circuit 15. The high-temperature and high-pressure gas refrigerant that has flowed into the bypass circuit 15 exchanges heat with a part of the air that flows into the lowermost part of the heat source unit side heat exchanger 3 in the bypass heat exchanger 18 to lower the temperature and liquefy. After passing through the dryer 16, the pressure is reduced to a low pressure by the third throttling device 17, and the refrigerant in the main refrigerant circuit that has passed through the switching valve 2 is joined between the switching valve 2 and the accumulator 4, and is separated by gas-liquid separation and compressed by the accumulator 4. Return to Machine 1.
In the fifth embodiment, similarly to the third embodiment, the flow of drain from the upper part in the lowermost part of the heat source unit side heat exchanger 3 provided with the bypass heat exchanger 18 that becomes an evaporator during heating is provided. However, it is difficult for the wind to pass through and frost is generated and is likely to grow, but it is warmed by the bypass heat exchanger 18 and is difficult to frost.
[0060]
Also in the fifth embodiment, a dryer 16 that absorbs moisture is provided in the bypass circuit 15, and the refrigerant flowing into the dryer 16 is cooled by the bypass heat exchanger 18, so that the refrigerant circuit is the same as in the first to fourth embodiments. The moisture content therein decreases, hydrolysis of the refrigerating machine oil can be suppressed, and pulverization of the dryer 16 by the refrigerant flow can be prevented.
Further, as in the fourth embodiment, since the cycle from the compressor 1 through the bypass circuit 15 to the compressor 1 is very short, the response time is good, and the transition time in which no liquid is supplied to the dryer is reached. It is very short and the dryer 16 is difficult to grind. Further, since this cycle does not include the liquid-side connecting refrigerant pipe 9 and the gas-side connecting refrigerant pipe 10, oxidation that occurs when sufficient non-oxidative brazing is not performed when the pipes 9 and 10 are constructed. The scale does not flow into the dryer 16 in the bypass circuit 15, thereby eliminating the danger of blocking the flow path and crushing the dryer.
[0061]
Embodiment 6 FIG.
A sixth embodiment of the present invention will be described below with reference to FIG. FIG. 6 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 6. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 The return hole, 6 is the second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b, 8c and 8d are the first expansion device, 9 is the liquid side connection refrigerant pipe, and 10 is the gas side connection refrigerant. The piping is the same as the conventional example shown in FIG.
[0062]
15 is a bypass circuit that branches from between the compressor 1 and the switching valve 2, and the other end is connected to the refrigerant pipe between the switching valve 2 and the compressor 1, and 16 is provided in the middle of the bypass circuit 15. A dryer 17 is a third expansion device provided downstream of the dryer 16 in the middle of the bypass circuit 15, and 18 a is a portion upstream of the dryer 16 of the bypass circuit 15 and the lowest part of the heat source unit side heat exchanger 3. A first bypass heat exchanger 18b that exchanges heat with a part of the air flowing into the part, a part between the first bypass heat exchanger 18a of the bypass circuit 15 and the dryer 16, and a third throttle A second bypass heat exchanger that exchanges heat with a portion downstream from the device 17, 19 is a first temperature detection means provided at a portion upstream of the expansion device 17 in the middle of the piping of the bypass circuit 15, and 20 is a bypass circuit. 15 pipes in the middle Second temperature detecting means provided from the downstream expansion device 17, 21 is a second pressure detecting means provided in the portion between the switching valve 2 and the compressor 1.
[0063]
Next, the flow of the refrigerant will be described with reference to the drawings. A main refrigerant comprising the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the second expansion device 6, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d. Since the refrigerant flow during cooling and heating of the circuit is exactly the same as in the first embodiment, the description thereof will be omitted, and the refrigerant flow in the bypass circuit 15 will be described.
[0064]
In both cases of cooling and heating, part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the bypass circuit 15. The high-temperature and high-pressure gas refrigerant that has flowed into the bypass circuit 15 exchanges heat with a part of the air that flows into the lowermost part of the heat source unit side heat exchanger 3 in the first bypass heat exchanger 18a, and the temperature decreases. The refrigerant is liquefied and exchanges heat with the downstream low-pressure side refrigerant in the second bypass heat exchanger 18b to further reduce the temperature of the refrigerant. Thereafter, after passing through the dryer 16, the pressure is reduced to a low pressure by the third expansion device 17 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and heat is exchanged with the high-pressure side refrigerant in the bypass heat exchanger 18. It merges with the refrigerant of the main refrigerant circuit that has passed through the switching valve 2 with the accumulator 4, and is separated into gas and liquid by the accumulator 4 and returns to the compressor 1.
In the sixth embodiment, as in the third embodiment, in the lowermost part of the heat source unit side heat exchanger 3 provided with the first bypass heat exchanger 18a, which is an evaporator during heating, from the top. Although the wind does not easily pass through the drain flow and frost is generated and is likely to grow, it is heated by the bypass heat exchanger 18 and is difficult to frost.
[0065]
Also in the sixth embodiment, a dryer 16 that absorbs moisture is provided in the bypass circuit 15, and the refrigerant flowing into the dryer 16 is cooled by the bypass heat exchangers 18a and 18b. Therefore, as in the first to fifth embodiments. The moisture content in the refrigerant circuit decreases, hydrolysis of the refrigerating machine oil can be suppressed, and the dryer 16 can be prevented from being crushed by the refrigerant flow.
Further, as in the fourth and fifth embodiments, the cycle from the compressor 1 through the bypass circuit 15 to the compressor 1 is very short, so that the response is good and the liquid is not supplied to the dryer. The time is very short and the dryer 16 is difficult to grind. Further, since this cycle does not include the liquid-side connecting refrigerant pipe 9 and the gas-side connecting refrigerant pipe 10, oxidation that occurs when sufficient non-oxidative brazing is not performed when the pipes 9 and 10 are constructed. The scale does not flow into the dryer 16 in the bypass circuit 15, thereby eliminating the danger of blocking the flow path and crushing the dryer.
[0066]
Embodiment 7 FIG.
A seventh embodiment of the present invention will be described below with reference to FIGS. 1 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 7, FIG. 7 is a block diagram relating to composition calculation of the air-conditioning apparatus according to Embodiment 7, and FIG. 8 shows the operation of the composition calculation means. It is a flow chart. Although FIG. 2 to FIG. 6 are different in the position, configuration, and refrigerant flow of the bypass circuit 15, the seventh embodiment is applied as in FIG. Further, a hydrofluorocarbon mixed refrigerant is used as the working medium in this embodiment.
[0067]
In the figure, reference numeral 19 denotes a first temperature detecting means which is provided in a portion upstream of the expansion device 17 in the middle of the bypass circuit 15 and detects the temperature of the high-temperature and high-pressure liquid refrigerant at the inlet of the third expansion device 17. Is provided downstream of the expansion device 17 in the middle of the bypass circuit 15 and upstream of the first and second bypass heat exchangers 18a and 18b, and is a low-temperature and low-pressure gas-liquid at the outlet of the third expansion device 17. Second temperature detecting means for detecting the temperature of the two-phase refrigerant, 21 is second pressure detecting means provided in a portion between the switching valve 2 and the compressor 1, and 22 is first temperature detecting means 19. The composition calculation means calculates the composition of the mixed refrigerant based on the detection values of the second temperature detection means 20 and the second pressure detection means 21.
[0068]
Next, the composition calculation operation will be described with reference to FIG. First, in step 100, the composition Xi is assumed for each component of the mixed refrigerant. In step 101, the detected values T1, T2, and P2 are detected from the first temperature detecting means 19, the second temperature detecting means 20, and the suction pressure detecting means 21, respectively. In step 102, a high-pressure liquid enthalpy H1 is calculated from the circulation composition Xi assumed in step 100 and the detected value T1 of the first temperature detecting means 19. In step 103, a low-pressure two-phase enthalpy H2 is calculated from the circulation composition Xi, the detection value T2 of the second temperature detection means 20 and the detection value P2 of the suction pressure detection means 21. In step 104, the above H1 and H2 are compared, and the circulation composition assumption is repeated until they are equal. As a result, the value of Xi when H1 and H2 become equal is calculated as the circulation composition. Here, the subscript i indicates that the refrigerant is a mixture of i components.
[0069]
Embodiment 8 FIG.
The eighth embodiment of the present invention will be described below with reference to FIG. FIG. 9 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 8. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 Return holes 7b, 7c and 7d are indoor unit side heat exchangers, 8b, 8c and 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, and the above is shown in FIG. This is similar to the conventional example shown. An oil separator 23 is provided between the discharge portion of the compressor 1 and the switching valve 2 and separates the refrigeration oil discharged from the compressor 1 together with the refrigerant from the gas refrigerant, and 24 is switched to the bottom portion of the oil separator 23. An oil return bypass circuit connecting the valve 2 and the suction part of the compressor 1 and returning the separated refrigeration oil to the suction part of the compressor 1, and 25 is a fourth part provided in the middle of the piping of the oil return bypass circuit 24. It is an aperture device.
[0070]
Next, the flow of the refrigerant will be described with reference to the drawings. First, at the time of cooling, the gas refrigerant compressed to high temperature and high pressure by the compressor 1 flows into the heat source machine side heat exchanger 3 through the switching valve 2, and is condensed by exchanging heat with air and the like. Becomes a refrigerant. Furthermore, the liquid side connecting refrigerant pipe 9 is passed through to the indoor units B, C, D, and the first control is performed so that the degree of superheat at the outlets of the indoor unit side heat exchangers 7b, 7c, 7d is within a certain range. The throttling devices 8b, 8c, and 8d are throttled to a low-pressure gas-liquid two-phase state. The low-pressure gas-liquid two-phase refrigerant flows into the indoor unit side heat exchangers 7b, 7c, and 7d, exchanges heat with indoor air and gasifies, and forms the gas side connection refrigerant pipe 10, the switching valve 2, and the accumulator 4. It returns to the compressor 1 through this. The refrigerating machine oil inside the accumulator 4 returns to the compressor 1 through the oil return hole 5 together with the liquid refrigerant.
[0071]
At the time of heating, the gas refrigerant compressed to high temperature and high pressure by the compressor 1 reaches the indoor units B, C, D through the switching valve 2 and the gas side connection refrigerant pipe 10, and the indoor unit side heat exchangers 7b, 7c. , 7d, and heat exchange with indoor air to condense and become a high-temperature and high-pressure liquid refrigerant. The liquid refrigerant that has exited the indoor heat exchangers 7b, 7c, and 7d is throttled to the low-pressure gas-liquid two-phase state by the first expansion devices 8b, 8c, and 8d, and the low-pressure gas-liquid two-phase refrigerant is connected to the liquid side. It flows into the heat source machine side heat exchanger 3 through the refrigerant pipe 9, exchanges heat with air and gasifies, and returns to the compressor 1 through the switching valve 2 and the accumulator 4. The refrigerating machine oil inside the accumulator 4 returns to the compressor 1 through the oil return hole 5 together with the liquid refrigerant.
[0072]
In both cases of cooling and heating, the low-temperature and low-pressure gas refrigerant sucked into the compressor 1 is compressed to become high-temperature and high-pressure gas refrigerant and discharged from the compressor 1. At this time, a part of the refrigerating machine oil inside the compressor 1 is also discharged and flows into the oil separator 23 together with the gas refrigerant, where it is separated from the gas refrigerant. The gas refrigerant separated by the oil separator 23 flows to the switching valve 2, and the refrigerating machine oil flows into the oil return bypass circuit 24. The refrigerating machine oil that has flowed into the oil return bypass circuit 24 is decompressed to a low pressure by the fourth expansion device 25, and joins the refrigerant in the main refrigerant circuit that has passed through the switching valve 2 between the switching valve 2 and the accumulator 4. Since the refrigerating machine oil is separated at the discharge part of the compressor 1 in this way, the circulation flow rate ratio of the refrigerating machine oil in the main refrigerant circuit is very low, and the first expansion device 8b in the indoor units B, C, D, The flow rate of the refrigerating machine oil flowing through 8c and 8d is significantly reduced.
[0073]
Moreover, the refrigerating machine oil degradation product produced | generated by the sliding part of the compressor 1 exists as a solid in a refrigerating machine oil, or melt | dissolves and exists. When the refrigerant is discharged from the compressor 1, it is mixed with the refrigerating machine oil and discharged into the discharge gas, but is separated by the oil separator 23 and does not flow into the main refrigerant circuit, so the indoor units B, C, D The flow rate of the refrigerating machine oil flowing through the first throttling devices 8b, 8c, and 8d inside is remarkably reduced, and the integrated flow rate of the deteriorated refrigerating machine oil circulating with the refrigerating machine oil is also reduced. As a result, the amount of the refrigeration oil deteriorated material that becomes sludge and adheres to the first expansion devices 8b, 8c, 8d can be reduced, and a shortage of the flow of the first expansion devices 8b, 8c, 8d can be avoided. There is no shortage of capability, and reliability is significantly improved.
[0074]
Embodiment 9 FIG.
A ninth embodiment of the present invention will be described below with reference to FIG. FIG. 10 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 9. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 Return holes, 7b, 7c, 7d are indoor unit side heat exchangers, 8b, 8c, 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, Reference numeral 24 denotes an oil return bypass circuit, and reference numeral 25 denotes a fourth throttling device. The above is the same as in the eighth embodiment shown in FIG. 26 is a sludge filter provided in the upstream part of the 4th expansion device 25 in the middle of piping of the oil return bypass circuit 24.
[0075]
Next, the flow of refrigerant and refrigerating machine oil will be described with reference to the drawings. During cooling and heating of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d Since the refrigerant flow and the operation of the oil separator 23 are exactly the same as those in the eighth embodiment, the description thereof will be omitted, and the flow of the refrigerating machine oil in the oil return bypass circuit 24 will be described. The refrigerating machine oil separated by the oil separator 23 flows into the oil return bypass circuit 24, passes through the sludge filter 26, is reduced to a low pressure by the fourth expansion device 25, and is switched between the switching valve 2 and the accumulator 4. It merges with the refrigerant in the main refrigerant circuit that has passed through the valve 2.
[0076]
Moreover, the refrigerating machine oil degradation product produced | generated by the sliding part of the compressor 1 is mixed with discharge gas with refrigerating machine oil, is discharged in a refrigerant circuit, is isolate | separated with refrigerating machine oil with the oil separator 23, and the oil return bypass circuit 24 In the sludge filter 26. Therefore, the content of the refrigeration oil deterioration product in the refrigeration oil that flows into the accumulator 4 and returns to the compressor 1 decreases, and the amount of sludge that adheres to the oil return hole 5 decreases. As a result, the refrigerating machine oil in the compressor 1 is not exhausted, and an abnormal high pressure rise / low pressure drop and a discharge gas temperature rise caused thereby can be avoided, and the reliability is remarkably improved. The cycle in which the refrigerant discharged from the compressor 1 returns to the compressor 1 through the oil return bypass circuit 24 does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 in the middle. Therefore, the oxidation scale generated when the non-oxidizing brazing is not sufficiently performed during the construction of the liquid side connecting refrigerant pipe 9 and the gas side connecting refrigerant pipe 10 may flow into the sludge filter 26 during operation. There is no danger of blocking the flow path or deforming or destroying the sludge filter.
[0077]
Embodiment 10 FIG.
The tenth embodiment of the present invention will be described below with reference to FIG. FIG. 11 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 10. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 Return holes, 7b, 7c, 7d are indoor unit side heat exchangers, 8b, 8c, 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, 24 is an oil return bypass circuit, 25 is a fourth throttling device, 26 is a sludge filter, and the above is the same as in the ninth embodiment shown in FIG. A bypass heat exchanger 27 exchanges heat between a portion upstream of the sludge filter 26 of the oil return bypass circuit 24 and a part of the air flowing into the lowermost portion of the heat source unit side heat exchanger 3.
[0078]
Next, the flow of refrigerant and refrigerating machine oil will be described with reference to the drawings. During cooling and heating of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d Since the refrigerant flow and the operation of the oil separator 23 are exactly the same as those in the eighth embodiment, the description thereof will be omitted, and the flow of the refrigerating machine oil in the oil return bypass circuit 24 will be described. The refrigerating machine oil separated by the oil separator 23 flows into the oil return bypass circuit 24, and heat is exchanged with a part of the air flowing into the lowermost part of the heat source apparatus side heat exchanger 3 by the bypass heat exchanger 27, so that the temperature becomes Then, the pressure is reduced to a low pressure by the fourth throttling device 25 through the sludge filter 26 and joins the refrigerant in the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4.
In the tenth embodiment, as in the third, fifth and sixth embodiments, in the lowermost part of the heat source unit side heat exchanger 3 provided with the bypass heat exchanger 18 which becomes an evaporator during heating, from the top. However, it is difficult for the wind to pass through the drain flow and frost is generated and grows easily, but it is warmed by the bypass heat exchanger 18 and is difficult to frost.
[0079]
Moreover, the refrigerating machine oil degradation product produced | generated by the sliding part of the compressor 1 is mixed with discharge gas with refrigerating machine oil, is discharged in a refrigerant circuit, is isolate | separated with refrigerating machine oil with the oil separator 23, and the oil return bypass circuit 24 In the sludge filter 26. Moreover, by passing through the bypass heat exchanger 27, the temperature of the refrigerating machine oil decreases, and the concentration of the refrigerant in the refrigerating machine oil increases. Thereby, the refrigerating machine oil degradation product which melted in refrigerating machine oil precipitates, and what was originally melted in refrigerating machine oil can also be caught in sludge filter 26. Therefore, the content of the refrigeration oil deterioration product in the refrigeration oil that flows into the accumulator 4 and returns to the compressor 1 is further reduced, and the amount of sludge adhering to the oil return hole 5 is reduced. As a result, the refrigerating machine oil in the compressor 1 is not exhausted, and an abnormal high pressure rise / low pressure drop and a discharge gas temperature rise caused thereby can be avoided, and the reliability is remarkably improved. The cycle in which the refrigerant discharged from the compressor 1 returns to the compressor 1 through the oil return bypass circuit 24 does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 in the middle. Therefore, the liquid side connection refrigerant pipe 9 and the gas
Oxidation scale generated when sufficient non-oxidizing brazing is not performed at the time of construction of the side connection refrigerant pipe 10 does not flow into the sludge filter 26 during operation, and the flow path is blocked or sludge There is no risk of deformation or destruction of the filter.
[0080]
Embodiment 11 FIG.
The eleventh embodiment of the present invention will be described below with reference to FIG. FIG. 12 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 11. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 Return holes, 7b, 7c, 7d are indoor unit side heat exchangers, 8b, 8c, 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, 24 is an oil return bypass circuit, 25 is a fourth throttling device, 26 is a sludge filter, and the above is the same as in the ninth embodiment shown in FIG. A bypass heat exchanger 27 exchanges heat between a portion upstream of the sludge filter 26 of the oil return bypass circuit 24 and a portion between the switching valve 2 and the accumulator 4.
[0081]
Next, the flow of refrigerant and refrigerating machine oil will be described with reference to the drawings. During cooling and heating of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d Since the refrigerant flow and the operation of the oil separator 23 are exactly the same as those in the eighth embodiment, the description thereof will be omitted, and the flow of the refrigerating machine oil in the oil return bypass circuit 24 will be described. The refrigerating machine oil separated in the oil separator 23 flows into the oil return bypass circuit 24, and in the bypass heat exchanger 27, heat is exchanged with the low-temperature and low-pressure refrigerant that returns to the compressor 1 through the switching valve 2, and the temperature decreases. Through the sludge filter 26, the pressure is reduced to a low pressure by the fourth throttling device 25, and the refrigerant in the main refrigerant circuit passing through the switching valve 2 is joined between the switching valve 2 and the accumulator 4.
[0082]
Moreover, the refrigerating machine oil degradation product produced | generated by the sliding part of the compressor 1 is mixed with discharge gas with refrigerating machine oil, is discharged in a refrigerant circuit, is isolate | separated with refrigerating machine oil with the oil separator 23, and the oil return bypass circuit 24 In the sludge filter 26. Moreover, by passing through the bypass heat exchanger 27, the temperature of the refrigerating machine oil decreases, and the concentration of the refrigerant in the refrigerating machine oil increases. Thereby, the refrigerating machine oil degradation product which melted in refrigerating machine oil precipitates, and what was originally melted in refrigerating machine oil can also be caught in sludge filter 26. Therefore, the content of the refrigeration oil deterioration product in the refrigeration oil that flows into the accumulator 4 and returns to the compressor 1 is further reduced, and the amount of sludge adhering to the oil return hole 5 is reduced. As a result, the refrigerating machine oil in the compressor 1 is not exhausted, and an abnormal high pressure rise / low pressure drop and a discharge gas temperature rise caused thereby can be avoided, and the reliability is remarkably improved. The cycle in which the refrigerant discharged from the compressor 1 returns to the compressor 1 through the oil return bypass circuit 24 does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 in the middle. Therefore, the oxidation scale generated when the non-oxidizing brazing is not sufficiently performed during the construction of the liquid side connecting refrigerant pipe 9 and the gas side connecting refrigerant pipe 10 may flow into the sludge filter 26 during operation. There is no danger of blocking the flow path or deforming or destroying the sludge filter.
[0083]
Embodiment 12 FIG.
A twelfth embodiment of the present invention will be described below with reference to FIG. FIG. 13 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 12. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 Return holes, 7b, 7c, 7d are indoor unit side heat exchangers, 8b, 8c, 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, 24 is an oil return bypass circuit, 25 is a fourth throttling device, 26 is a sludge filter, and the above is the same as in the ninth embodiment shown in FIG. 28 is a liquid refrigerant injection circuit that branches from between the oil separator 23 and the switching valve 2 and joins the upstream portion of the sludge filter 26 of the oil return bypass circuit 24, and 29 is a pipe and a heat source side of the liquid refrigerant injection circuit 28. This is a liquid injection circuit heat exchanger that exchanges heat with a part of the air flowing into the lowermost part of the heat exchanger 3.
[0084]
Next, the flow of refrigerant and refrigerating machine oil will be described with reference to the drawings. During cooling and heating of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d The flow of the refrigerant and the operation of the oil separator 23 are the same as those in the eighth embodiment, so the description thereof will be omitted, and the flow of the refrigerant and the refrigerating machine oil in the oil return bypass circuit 24 and the liquid refrigerant injection circuit 28 will be described. A part of the high-temperature and high-pressure gas refrigerant from which the refrigeration oil is separated by the oil separator 23 flows into the liquid refrigerant injection circuit 28, and flows into the lowermost part of the heat source unit side heat exchanger 3 by the liquid injection circuit heat exchanger 29. It exchanges heat with a part of the air to lower the temperature and liquefy, and merges with the refrigeration oil separated by the oil separator 23 and flowing into the oil return bypass circuit 24. The combined liquid refrigerant and refrigeration oil are reduced to a low pressure by the fourth throttling device 25 through the sludge filter 26 and merge with the refrigerant in the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4. To do.
In the twelfth embodiment, similarly to the third, fifth, sixth and tenth embodiments, at the lowermost part of the heat source unit side heat exchanger 3 provided with the liquid injection circuit heat exchanger 29 which becomes an evaporator during heating. However, it is difficult for the wind to pass through the drain flow from the top and frost is generated and grows easily, but it is warmed by the liquid injection circuit heat exchanger 29 and is difficult to frost.
[0085]
Moreover, the refrigerating machine oil degradation product produced | generated by the sliding part of the compressor 1 is mixed with discharge gas with a refrigerating machine oil, and is discharged in a refrigerant circuit, is isolate | separated with refrigerating machine oil with the oil separator 23, and is returned to the oil return bypass circuit 24. By flowing in and joining with the liquid refrigerant flowing out of the liquid injection circuit heat exchanger 29 of the liquid refrigerant injection circuit 28, the refrigerant concentration in the refrigerating machine oil is increased and flows into the sludge filter 26 and captured. Thereby, since the refrigerating machine oil degradation product dissolved in refrigerating machine oil precipitates, the sludge filter 26 can also capture what was originally dissolved in the refrigerating machine oil together with sludge present as a solid. Therefore, the content of the refrigeration oil deterioration product in the refrigeration oil that flows into the accumulator 4 and returns to the compressor 1 is further reduced, and the amount of sludge adhering to the oil return hole 5 is reduced. As a result, the refrigerating machine oil in the compressor 1 is not exhausted, and an abnormal high pressure rise / low pressure drop and a discharge gas temperature rise caused thereby can be avoided, and the reliability is remarkably improved. The cycle in which the refrigerant discharged from the compressor 1 returns to the compressor 1 through the oil return bypass circuit 24 does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 in the middle. Therefore, the oxidation scale generated when the non-oxidizing brazing is not sufficiently performed during the construction of the liquid side connecting refrigerant pipe 9 and the gas side connecting refrigerant pipe 10 may flow into the sludge filter 26 during operation. There is no danger of blocking the flow path or deforming or destroying the sludge filter.
[0086]
Embodiment 13 FIG.
A thirteenth embodiment of the present invention will be described below with reference to FIG. FIG. 14 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 13. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 Return holes, 7b, 7c, 7d are indoor unit side heat exchangers, 8b, 8c, 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, 24 is an oil return bypass circuit, 25 is a fourth throttling device, 26 is a sludge filter, 28 is a liquid refrigerant injection circuit, and the above is the same as in the twelfth embodiment shown in FIG. This is a liquid injection circuit heat exchanger in which heat is exchanged between the piping of the refrigerant injection circuit 28 and the portion between the switching valve 2 and the accumulator 4.
[0087]
Next, the flow of refrigerant and refrigerating machine oil will be described with reference to the drawings. During cooling and heating of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d The flow of the refrigerant and the operation of the oil separator 23 are the same as those in the eighth embodiment, so the description thereof will be omitted, and the flow of the refrigerant and the refrigerating machine oil in the oil return bypass circuit 24 and the liquid refrigerant injection circuit 28 will be described. A part of the high-temperature and high-pressure gas refrigerant from which the refrigeration oil is separated by the oil separator 23 flows into the liquid refrigerant injection circuit 28, and returns to the compressor 1 through the switching valve 2 in the liquid injection circuit heat exchanger 29. It exchanges heat with the refrigerant to lower the temperature and liquefy, and merges with the refrigerating machine oil separated by the oil separator 23 and flowing into the oil return bypass circuit 24. The combined liquid refrigerant and refrigeration oil are reduced to a low pressure by the fourth throttling device 25 through the sludge filter 26 and merge with the refrigerant in the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4. To do.
[0088]
Moreover, the refrigerating machine oil degradation product produced | generated by the sliding part of the compressor 1 is mixed with discharge gas with a refrigerating machine oil, and is discharged in a refrigerant circuit, is isolate | separated with refrigerating machine oil with the oil separator 23, and is returned to the oil return bypass circuit 24. By flowing in and joining with the liquid refrigerant flowing out of the liquid injection circuit heat exchanger 29 of the liquid refrigerant injection circuit 28, the refrigerant concentration in the refrigerating machine oil is increased and flows into the sludge filter 26 and captured. Thereby, since the refrigerating machine oil degradation product which melt | dissolved in refrigerating machine oil precipitates, what was originally melt | dissolved in refrigerating machine oil with the sludge which exists as a solid in the sludge filter 26 can also be capture | acquired. Therefore, the content of the refrigeration oil deterioration product in the refrigeration oil that flows into the accumulator 4 and returns to the compressor 1 is further reduced, and the amount of sludge adhering to the oil return hole 5 is reduced. As a result, the refrigerating machine oil in the compressor 1 is not exhausted, and an abnormal high pressure rise / low pressure drop and a discharge gas temperature rise caused thereby can be avoided, and the reliability is remarkably improved. The cycle in which the refrigerant discharged from the compressor 1 returns to the compressor 1 through the oil return bypass circuit 24 does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 in the middle. Therefore, the oxidation scale generated when the non-oxidizing brazing is not sufficiently performed during the construction of the liquid side connecting refrigerant pipe 9 and the gas side connecting refrigerant pipe 10 may flow into the sludge filter 26 during operation. There is no danger of blocking the flow path or deforming or destroying the sludge filter.
[0089]
Embodiment 14 FIG.
A fourteenth embodiment of the present invention will be described below with reference to FIG. FIG. 15 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 14. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 The return hole, 6 is the second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b, 8c and 8d are the first expansion device, 9 is the liquid side connection refrigerant pipe, and 10 is the gas side connection refrigerant. The piping is the same as that of the first embodiment shown in FIG. 1, 23 is an oil separator, 24 is an oil return bypass circuit, 25 is a fourth throttling device, and 26 is a sludge filter. 28, which is the same as that of the twelfth embodiment shown in FIG. 1, branches from between the second expansion device 6 and the liquid side connection refrigerant pipe 9, and joins the upstream portion of the sludge filter 26 of the oil return bypass circuit 24. This is a liquid refrigerant injection circuit.
[0090]
Next, the flow of refrigerant and refrigerating machine oil will be described with reference to the drawings. A main refrigerant comprising the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the second expansion device 6, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d. The refrigerant flow during cooling and heating of the circuit is exactly the same as in the first embodiment, and the operation of the oil separator 23 is the same as in the eighth embodiment, so the description thereof is omitted, and the oil return bypass circuit 24 and liquid refrigerant injection are omitted. The flow of the refrigerant and the refrigerating machine oil in the circuit 28 will be described. The refrigerating machine oil separated by the oil separator 23 flows into the oil return bypass circuit 24. Further, during cooling, the liquid refrigerant that has condensed and liquefied through heat exchange with the air in the heat source unit side heat exchanger 3 and passed through the fully-opened second expansion device 6 passes through the indoor unit side heat exchangers 7b and 7c during heating. , 7d, and the liquid refrigerant that has condensed and liquefied by the heat exchange with the first throttling devices 8a, 8b, 8c and the liquid side connection refrigerant pipe 9 in the fully opened state partially flows into the liquid refrigerant injection circuit 28. The refrigerating machine oil that has flowed into the oil return bypass circuit 24 merges. The combined liquid refrigerant and refrigeration oil are reduced to a low pressure by the fourth throttling device 25 through the sludge filter 26 and merge with the refrigerant in the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4. To do.
[0091]
Moreover, the refrigerating machine oil degradation product produced | generated by the sliding part of the compressor 1 is mixed with discharge gas with a refrigerating machine oil, and is discharged in a refrigerant circuit, is isolate | separated with refrigerating machine oil with the oil separator 23, and is returned to the oil return bypass circuit 24. The refrigerant flows in and merges with the liquid refrigerant flowing into the liquid refrigerant injection circuit 28, whereby the refrigerant concentration in the refrigeration oil is increased and flows into the sludge filter 26 and captured. Thereby, since the refrigerating machine oil degradation product which melt | dissolved in refrigerating machine oil precipitates, what was originally melt | dissolved in refrigerating machine oil with the sludge which exists as a solid in the sludge filter 26 can also be capture | acquired. Therefore, the content of the refrigeration oil deterioration product in the refrigeration oil that flows into the accumulator 4 and returns to the compressor 1 is further reduced, and the amount of sludge adhering to the oil return hole 5 is reduced. As a result, the refrigerating machine oil in the compressor 1 is not exhausted, and an abnormal high pressure rise / low pressure drop and a discharge gas temperature rise caused thereby can be avoided, and the reliability is remarkably improved. The cycle in which the refrigerant discharged from the compressor 1 returns to the compressor 1 through the oil return bypass circuit 24 does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 in the middle. Therefore, the oxidation scale generated when the non-oxidizing brazing is not sufficiently performed during the construction of the liquid side connecting refrigerant pipe 9 and the gas side connecting refrigerant pipe 10 may flow into the sludge filter 26 during operation. There is no danger of blocking the flow path or deforming or destroying the sludge filter.
[0092]
Embodiment 15 FIG.
A fifteenth embodiment of the present invention will be described below with reference to FIG. FIG. 15 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 15. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil of the accumulator 4 Return holes, 7b, 7c, 7d are indoor unit side heat exchangers, 8b, 8c, 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, 24 is an oil return bypass circuit, 25 is a fourth throttling device, 26 is a sludge filter, and the above is the same as that of the twelfth embodiment shown in FIG. A liquid refrigerant injection circuit 28 branches from between the oil separator 23 and the switching valve 2, and the other end is connected to a refrigerant pipe between the switching valve 2 and the compressor 1, and 30 is in the middle of the liquid refrigerant injection circuit 28. The fifth expansion device 29 is a liquid injection circuit heat exchanger that exchanges heat between the upstream portion and the downstream portion of the fifth expansion device 30 of the liquid refrigerant injection circuit 28. Further, the upstream portion of the sludge filter 26 of the oil return bypass circuit 24 and the upstream portion of the fifth expansion device 30 of the liquid refrigerant injection circuit 28 are connected by piping.
[0093]
Next, the flow of refrigerant and refrigerating machine oil will be described with reference to the drawings. During cooling and heating of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d The flow of the refrigerant and the operation of the oil separator 23 are the same as those in the eighth embodiment, so the description thereof will be omitted, and the flow of the refrigerant and the refrigerating machine oil in the oil return bypass circuit 24 and the liquid refrigerant injection circuit 28 will be described. A part of the high-temperature and high-pressure gas refrigerant from which the refrigeration oil is separated by the oil separator 23 flows into the liquid refrigerant injection circuit 28, and exchanges heat with the refrigerant on the low-pressure side of the liquid refrigerant injection circuit 28 in the liquid injection circuit heat exchanger 29. The temperature is lowered and liquefied, and a part thereof flows into the fifth expansion device 30 and is depressurized to a low pressure. The liquid injection circuit heat exchanger 29 is heated and gasified by the high-pressure side refrigerant, and the switching valve 2 And the accumulator 4 merge with the refrigerant in the main refrigerant circuit that has passed through the switching valve 2. Further, the remaining refrigerant liquefied on the high pressure side of the liquid injection circuit heat exchanger 29 joins with the refrigeration oil separated by the oil separator 23 and flowing into the oil return bypass circuit 24. The combined liquid refrigerant and refrigeration oil are reduced to a low pressure by the fourth throttling device 25 through the sludge filter 26 and merge with the refrigerant in the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4. To do.
[0094]
Moreover, the refrigerating machine oil degradation product produced | generated by the sliding part of the compressor 1 is mixed with discharge gas with a refrigerating machine oil, and is discharged in a refrigerant circuit, is isolate | separated with refrigerating machine oil with the oil separator 23, and is returned to the oil return bypass circuit 24. The refrigerant concentration in the refrigerating machine oil is increased to flow into the sludge filter 26 and captured by merging with a part of the liquid refrigerant flowing in from the high pressure side of the liquid injection circuit heat exchanger 29 of the liquid refrigerant injection circuit 28. Is done. Thereby, since the refrigerating machine oil degradation product which melt | dissolved in refrigerating machine oil precipitates, what was originally melt | dissolved in refrigerating machine oil with the sludge which exists as a solid in the sludge filter 26 can also be capture | acquired. Therefore, the content of the refrigeration oil deterioration product in the refrigeration oil that flows into the accumulator 4 and returns to the compressor 1 is further reduced, and the amount of sludge adhering to the oil return hole 5 is reduced. As a result, the refrigerating machine oil in the compressor 1 is not exhausted, and an abnormal high pressure rise / low pressure drop and a discharge gas temperature rise caused thereby can be avoided, and the reliability is remarkably improved. The cycle in which the refrigerant discharged from the compressor 1 returns to the compressor 1 through the oil return bypass circuit 24 does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 in the middle. Therefore, the oxidation scale generated when the non-oxidizing brazing is not sufficiently performed during the construction of the liquid side connecting refrigerant pipe 9 and the gas side connecting refrigerant pipe 10 may flow into the sludge filter 26 during operation. There is no danger of blocking the flow path or deforming or destroying the sludge filter.
[0095]
Embodiment 16 FIG.
FIG. 17 is a longitudinal sectional view showing an embodiment 16 of the dryer 16 used in the first to sixth embodiments. FIG. 17 (a) shows the refrigerant flow direction from left to right. ) Shows the case where the dryer is arranged so that the flow direction of the refrigerant is from bottom to top, and FIG. 7C shows the case where the dryer is arranged so that the flow direction of the refrigerant is from top to bottom. In the figure, 50 is a cylindrical container, 51 is an inflow pipe provided at one end of the container 50, 52 is an outflow pipe provided at the other end of the container 50, 53 is composed mainly of synthetic zeolite, and is made of activated alumina or the like. A dryer core 54, which is blended and hardened with a binder such as an adhesive, is a refrigerating machine oil.
[0096]
The refrigerant flowing in from the inflow pipe 51 absorbs the moisture contained in the refrigerant by the dryer core 53. However, since the refrigerant passage passes through the very fine dryer core, the larger one is here. Be captured. Some dryers have a filter provided on the upstream side or downstream side of the dryer core 53, and foreign matter is also captured by the filter portion. Therefore, a dryer having this configuration can be used as the sludge filter 26 in the ninth to fifteenth embodiments. Thus, by using a dryer as the sludge filter 26, moisture can be directly absorbed from the refrigeration oil flowing through the oil return bypass circuit 24, and the sludge filter function and the moisture capturing function can be combined. Thereby, while suppressing hydrolysis of refrigerating machine oil, the refrigerating machine oil degradation product content rate in refrigerating machine oil can also be reduced. As a result, the water content in the main refrigerant circuit and the refrigerating machine oil degradation product content rate are also reduced. The amount of sludge adhering to the expansion devices 8b, 8c, 8d, the oil return hole 5, etc. decreases.
[0097]
Moreover, when using the thing of the structure shown in FIG. 17 as the dryer 16 in Embodiments 1-6 and the sludge filter 26 in Embodiments 9-15, it installs like the figure (a) and (b). If the liquid refrigerant or the refrigerating machine oil does not accumulate in the dryer container 50 in the transient state, the liquid refrigerant or the refrigerating machine oil cannot flow out from the container 50. On the other hand, as shown in FIG. 5C, when the refrigerant is arranged so that the flow direction is from the top to the bottom, the liquid refrigerant or the refrigeration oil that has flowed into the container 50 flows out quickly, so that it is quickly stabilized. In addition, the refrigerating machine oil is not depleted from the compressor.
[0097]
Embodiment 17. FIG.
FIG. 18 is a longitudinal sectional view showing an example of the accumulator 4 according to the seventeenth embodiment used in each of the above-described embodiments. In the figure, reference numeral 60 denotes an accumulator container, and 61 denotes the inside of the container from the bottom of the container 60. An inflow pipe inserted up to the upper part, 62 is inserted from the bottom of the container 60 to the upper part in the container, and an outflow pipe provided with an oil return hole 5 for returning the refrigeration machine oil to the lower part, 63 is provided in the lower part of the container 60 The liquid mixture of the stored liquid refrigerant and the refrigerating machine oil, 64 is an oil return pipe that connects the lower space inside the container 60 and the upper pipe end of the outflow pipe 62, and 65 is the oil return pipe 64 inside the container 60. It is an orifice provided at one end on the lower space side.
[0098]
Next, the oil return operation of the accumulator 4 will be described. The difference in height between the liquid level of the mixed liquid 63 in the accumulator and the pipe end of the outflow pipe 62 is h, the flow velocity of the refrigerant in the outflow pipe is u, the density of the refrigerant flowing out of the outflow pipe is ρg, The density of the liquid 63 is ρ l Then, the differential pressure ΔP generated before and after the orifice 65 obtained by subtracting the outlet pressure from the inlet pressure of the orifice 65 is
ΔP = k 1 ・ Ρ g ・ U 2 / 2-k 2 ・ Ρ l ・ H
(Where k 1 , K 2 Is a positive constant). However, since the oil return pipe 64 is sufficiently thick, the pressure loss here is ignored. If ΔP is positive, it means that oil can be returned, and if ΔP is negative, it means that oil cannot be returned. Further, as ΔP is positive and large, the oil return flow increases.
[0099]
As is clear from this equation, when the refrigerant flow rate u is large, the first term is larger than the second term on the right side, and oil can be returned even if the liquid level is low. On the other hand, if the refrigerant flow rate u is small, the negative amount of the second term is large even if the liquid level is somewhat high, and the flow rate of the mixed liquid flowing out to the outflow pipe 64 is small. When the refrigerant flow rate is large, the ratio of the refrigerating machine oil discharged from the compressor is large, but when the refrigerant flow rate is small, the ratio of the refrigerating machine oil discharged from the compressor is small. Therefore, when the refrigerating machine oil deterioration component adheres to the oil return hole 5, the oil return is insufficient when the refrigerant flow rate is large. When the oil return hole 5 is enlarged, the oil returns sufficiently when the refrigerant flow rate is high, but when the refrigerant flow rate is low and the liquid level of the accumulator 4 is high, the liquid back increases and the lubricity of the compressor increases. descend.
[0100]
However, as shown in FIG. 18, when the oil return pipe 64 is provided together with the oil return hole 5, the oil return flow rate becomes a problem due to the adhesion of sludge. , Oil shortage due to sludge adhesion can be compensated. Further, even when the refrigerant flow rate is small and the liquid level of the accumulator 4 is high, the liquid back from the oil return pipe 64 is small, so that the lubricity of the compressor is not reduced due to excessive liquid back. Thus, by providing the oil return pipe 64 in the accumulator 4, even if sludge adheres to the oil return hole 5, there is no shortage of oil return, and there is no excessive liquid back. A high air conditioner can be obtained.
[0101]
When the orifice 65 of the oil return pipe 64 is provided at one end on the outflow pipe 62 side of the oil return pipe 64 as shown in FIG. 19, the oil return pipe 64 is constituted by a capillary tube 66 as shown in FIG. When both the function of the pipe 64 and the function of the orifice 65 are provided, as shown in FIG. 21, the outflow pipe 62 is inserted from above the container 60, the oil return pipe 64 is provided outside the container 60, and the oil return hole When the oil return pipe and the orifice 67 are provided in place of 5, the same effect as that of the seventeenth embodiment is obtained even when the outflow pipe 62 is U-shaped as shown in FIG.
[0102]
Embodiment 18 FIG.
The eighteenth embodiment of the present invention will be described below with reference to FIGS. 23, 24 and 25. FIG. FIG. 23 is a block diagram showing the refrigerant circuit and control circuit of the air-conditioning apparatus according to the eighteenth embodiment, FIG. 24 is a block diagram showing the throttle device control apparatus according to the twenty-second embodiment, and FIG. It is a flowchart explaining an apparatus control operation. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil return hole, 7b, 7c and 7d are indoor unit side heat exchangers, 8b, 8c and 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, and the above is the same as the conventional example shown in FIG. belongs to.
[0103]
31 is a discharge pressure detecting means provided between the discharge portion of the compressor 1 and the switching valve 2, and 32 is a third pressure provided between the heat source machine side heat exchanger 3 and the liquid side connection refrigerant pipe 9. The temperature detecting means 33b, 33c, 33d are the fourth expansion units provided between the first expansion devices 8b, 8c, 8d in the indoor units B, C, D and the indoor heat exchangers 7b, 7c, 7d. The temperature detection means 34b, 34c, 34d are fifth temperature detection means 35 provided at one end of the indoor side heat exchangers 7b, 7c, 7d in the indoor units B, C, D on the gas side connection refrigerant pipe 10 side, 35 Is a throttling device control device, 36 is a detection value of the third temperature detection means 32 from the detection value of the third temperature detection means 32, the detection value of the first pressure detection means 31, and the calculation result of the composition calculation means 22 of the mixed refrigerant. SC calculation means 37 for calculating the degree of supercooling of the installation part, 37 is the fourth temperature detection means 33b SH calculating means for calculating the degree of superheat at the outlet portion of the indoor heat exchanger from the detected values of 33c and 33d and the detected values of the fifth temperature detecting means 34b, 34c and 34d; 38, SC calculating means 36; SH calculating means 37 First throttle device control means 39b, 39c, 39d for controlling the opening degree of the first throttle devices 8b, 8c, 8d from the calculation result of the above, blowers provided in the indoor units B, C, D, 40b, 40c and 40d are drain pumps provided in each of the indoor units B, C and D, and 41b, 41c and 41d are defrost control devices.
[0104]
During cooling and heating of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source device side heat exchanger 3, the first expansion devices 8b, 8c and 8d, and the indoor unit side heat exchangers 7b, 7c and 7d Since the refrigerant flow is exactly the same as in the conventional example, the description thereof will be omitted, and the control operation of the first expansion devices 8b, 8c, and 8d by the expansion device control device will be described with reference to the flowchart of FIG. In step 105, a calculation result SH calculated by the SH calculation means 37 from the detection values of the fourth temperature detection means 33b, 33c, 33d and the detection values of the fifth temperature detection means 34b, 34c, 34d is set in advance. The SH upper limit value SHH is compared, and if SH ≦ SHH, the process proceeds to step 106, and if SH> SHH, the process proceeds to step 108. In step 106, the calculation result SH of the SH calculation means 36 is compared with a preset lower limit value SH of SH, and if SH ≧ SHL, the routine proceeds to step 107, where the first throttling devices 8b, 8c, 8d. If the opening is decreased and SH <SHL, nothing is done. In step 108, the opening degree Sj of the first expansion devices 8b, c, d is compared with the preset upper limit opening degree MAX,
If Sj ≦ MAX, the routine proceeds to step 109 where the opening degree of the first expansion devices 8b, 8c, 8d is increased, and if Sj> MAX, the routine proceeds to step 110.
[0105]
In step 110, the calculation result calculated by the SC calculation means 36 from the detection value of the third temperature detection means 32, the detection value of the first pressure detection means 31, and the calculation result of the composition calculation means 22 of the mixed refrigerant; The SC lower limit value SCL set in advance is compared. If SC> SCL, the routine proceeds to step 111 where the upper limit opening MAX is set to a larger value, and if SC ≦ SCL, nothing is done. As described above, when the first expansion devices 8b, 8c, and 8d are insufficient in flow rate due to sludge adhesion, the supercooling is sufficiently ensured in a certain portion of the third temperature detecting means 32, and the control is diverged. If not, the shortage of flow is eliminated because the maximum opening is set large.
[0106]
Embodiment 19. FIG.
A nineteenth embodiment of the present invention will be described below with reference to FIGS. 23, 26 and 27. FIG. FIG. 26 is a block diagram showing a defrosting control apparatus according to the nineteenth embodiment, and FIG. 27 is a flowchart for explaining the defrosting control operation. In FIG. 26, 34b, 34c, 34d are fifth temperature detecting means 39b provided at one end of the indoor side heat exchangers 7b, 7c, 7d in the indoor units B, C, D on the gas side connection refrigerant pipe 10 side. 39c, 39d are blowers provided in the indoor units B, C, D, 40b, 40c, 40d are drain pumps provided in the indoor units B, C, D, and 41b, 41c, 41d are defrost control devices. , 42 is a system mode determination means for determining whether or not the system mode is cooling, and 43b, 43c and 43d are indoor units for determining whether or not the mode of each of the indoor units B, C and D is cooling. Mode determining means, 44b, 44c, 44d are time measuring means for each of the indoor units B, C, D, 45 is an indoor unit that controls the operation for defrosting the heat exchanger of the indoor unit that is not cooled. It is a frost operation control means.
[0107]
When some of the indoor units, for example, B are in cooling operation, the room temperature and the outside air temperature are low, and the remaining indoor units C and D are stopped, the first throttle device 8d of the stopped indoor units C and D is There is a case where a minute flow rate of refrigerant flows without being completely closed by the attached sludge. In this case, since there is no heat for gasifying the minute flow rate refrigerant and the room temperature and the outside air temperature are low, the indoor side heat exchangers 7d of the stopped indoor units C and D are frosted. When falling into such a state, the temperature of the fifth temperature detecting means 34c, 34d of the indoor units C, D becomes low. Detection values T of the fifth temperature detection means 34c, 34d of such indoor units C, D Five Is a preset first predetermined temperature T L The lower state is the first predetermined time τ 1B Subsequently, this is detected by the fifth temperature detection means 34c, 34d, the system mode determination means 42, the indoor unit mode determination means 43c, 43d, and the time measuring means 44c, 44d, and the indoor unit defrosting operation control means 45 is detected. Thus, the blowers 39c and 39d are operated to defrost the indoor heat exchangers C and D, and at the same time, the drain pumps 40c and 40d are also operated, and the drain water generated at this time is controlled to be drained.
[0108]
In addition, a second predetermined time τ after the start of the operation of the blowers 39c and 39d 2B After the elapse of time, the detected values T of the fifth temperature detecting means 34c, 34d of the indoor units C, D Five Is T L Second predetermined temperature T set in advance higher H If it is higher, the fans 39c and 39d are stopped, and the drain water continues to be generated for a while after the fans 39c and 39d are stopped. Therefore, the third predetermined time τ after the fans 39c and 39d are stopped. 3B The drain pumps 40c and 40d are controlled to stop after the passage. As described above, the frost on the indoor side heat exchanger of the stopped indoor unit continues to grow even when the closed state cannot be completely closed by the sludge attached to the first throttle device of the stopped indoor unit. There is no problem.
[0109]
Next, the control operation of the indoor unit defrosting operation control means 45 will be described with reference to the flowchart of FIG. As a result of the determination by the system mode determination means 42, the system mode is cooling, and as a result of the determination by the indoor unit mode determination means 43b, 43c, 43d, the indoor unit mode is not cooling, and the timing means 44b , 44c, 44d, the first time τ 1 Is the first predetermined time τ 1B Elapsed and the detection value T of the fifth temperature detection means 34b, 34c, 34d Five Is the first predetermined temperature T L If it is below, the process proceeds from step 112 to steps 116 through steps 113, 114, and 115, and the second timing τ by the timing means 44b, 44c, and 44d. 2 Is cleared to 0 and the routine proceeds to step 117, where the fans 39b, 39c, 39d and the drain pumps 40b, 40c, 40d are started to operate.
[0110]
Then, the process proceeds to step 118 and the second time τ 2 Is the second predetermined time τ 2B The process proceeds to step 119, where the detected value T of the fifth temperature detecting means 34b, 34c, 34d is detected. Five Is the second predetermined temperature T H This determination is continued until these conditions are satisfied. When the conditions are satisfied, the routine proceeds to step 120, where the operation of the fans 39b, 39c, 39d is stopped, and in step 121, the timing means 44b, 44c. , 44d third time τ Three Is cleared to 0 and the routine proceeds to step 122 where the third time τ Three Is the third predetermined time τ 3B After the elapse, the process proceeds to step 123, and the operation of the drain pumps 40b, 40c, 40d is stopped.
[0111]
【The invention's effect】
[0117]
Invention of the present application According to the above, since the oil separator is provided in the compressor discharge section, and the oil return bypass circuit is provided to return the separated refrigeration oil to the compressor suction section, the flow rate of the refrigeration oil flowing through the throttle device of the main refrigerant circuit is significantly reduced. In addition, the integrated flow rate of the deteriorated refrigeration oil circulating with the refrigeration oil also decreases. As a result, the amount of the refrigeration oil deteriorated matter that becomes sludge and adheres to the expansion device of the main refrigerant circuit is also reduced. As described above, the shortage of the flow rate of the expansion device of the main refrigerant circuit can be avoided, and the lack of air conditioning capability is eliminated. Further, it is possible to avoid an abnormal increase in high pressure, a decrease in low pressure, and an increase in discharge gas temperature, thereby significantly improving the reliability.
[0118]
Of this application According to the invention, Above In the present invention, a sludge filter is provided in the middle of the oil return bypass circuit. Above In addition to the effects of the present invention, the refrigeration oil degradation product generated inside the compressor is captured by the sludge filter in the oil return bypass, and the content of the refrigeration oil degradation product in the refrigeration oil is reduced. The amount of sludge adhering to the throttle device and the oil return hole is reduced, and the refrigerant discharged from the compressor returns to the compressor through the oil return bypass, and the liquid side connection refrigerant pipe and the gas side connection refrigerant are in the middle of the cycle. Since it does not go through the piping, the oxidation scale that occurs when sufficient non-oxidizing brazing is not performed during construction of the liquid-side refrigerant piping and gas-side refrigerant piping should flow into the sludge filter during operation. There is an effect that there is no danger of blocking the flow path or deforming or destroying the sludge filter.
[0119]
Other inventions of this application According to Above In the present invention, since a bypass heat exchanger for cooling the refrigeration oil is provided upstream of the sludge filter in the middle of the oil return bypass circuit, Above In addition to the effect of the present invention, the temperature of the refrigerating machine oil flowing into the sludge filter is lowered and the concentration of the refrigerant in the refrigerating machine oil is increased, so that the deteriorated refrigerating machine oil that has been dissolved in the refrigerating machine oil is deposited and originally frozen. What has been dissolved in the machine oil is also captured by the sludge filter, and there is an effect that the content of the deteriorated refrigeration oil in the refrigeration oil in the main refrigerant circuit is further reduced.
[0120]
Other inventions of this application According to Above In the present invention, since a liquid refrigerant injection circuit for injecting liquid refrigerant upstream of the sludge filter in the middle of the oil return bypass circuit is provided, Above In addition to the effect of the invention, the refrigerant concentration in the refrigerating machine oil flowing into the sludge filter is increased by the refrigerating machine oil in the oil return bypass circuit joining with the liquid refrigerant flowing out of the liquid injection circuit, and is dissolved in the refrigerating machine oil. The refrigeration oil deterioration product that has been deposited and originally dissolved in the refrigeration oil is also captured by the sludge filter, and the content of the refrigeration oil deterioration product in the refrigeration oil in the main refrigerant circuit is further reduced.
[0121]
Other inventions of this application According to Above In the invention, since the sludge filter in the middle of the oil return bypass is a dryer that absorbs moisture and has a sludge filter function, Above In addition to the effects of the invention, by directly absorbing moisture from the refrigeration oil flowing through the oil return bypass, the hydrolysis of the refrigeration oil is suppressed, and the content of the refrigeration oil degradation product in the refrigeration oil in the main refrigerant circuit is further reduced. There is an effect of doing.
[0123]
Other inventions of this application According to Above In the present invention, because it is configured to pass through the lowermost part of the heat source unit side heat exchanger as all or part of the bypass heat exchanger, Above In addition to the effect of the present invention, there is an effect that it is difficult for the wind to pass through by the drain flow at the upper part, and the lowermost part of the heat exchanger that is likely to be frosted is warmed and is less likely to be frosted.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 2.
FIG. 3 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 3.
FIG. 4 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 4.
FIG. 5 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 5.
6 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 6. FIG.
FIG. 7 is a block diagram relating to composition calculation of an air conditioner according to a seventh embodiment;
FIG. 8 is a flowchart showing the operation of the composition calculating means of the air conditioner according to the seventh embodiment.
FIG. 9 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 8.
FIG. 10 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 9.
FIG. 11 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 10.
12 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 11. FIG.
FIG. 13 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 12.
FIG. 14 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 13.
FIG. 15 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 14.
FIG. 16 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 15.
FIG. 17 is a longitudinal sectional view showing a sixteenth embodiment of a dryer used in the first to sixth embodiments.
FIG. 18 is a longitudinal sectional view showing an axial state 17 according to a seventeenth embodiment used in each embodiment.
FIG. 19 is a longitudinal sectional view showing an eighteenth embodiment of an accumulator.
FIG. 20 is a longitudinal sectional view showing an embodiment 19 of an accumulator.
FIG. 21 is a longitudinal sectional view showing an embodiment 20 of an accumulator.
FIG. 22 is a longitudinal sectional view showing an embodiment 21 of an accumulator.
FIG. 23 is a configuration diagram showing a refrigerant circuit and a control circuit of an air-conditioning apparatus according to Embodiments 22 and 23.
FIG. 24 is a block diagram showing a diaphragm control device according to a twenty-second embodiment;
FIG. 25 is a flowchart for explaining a diaphragm device control operation according to the twenty-second embodiment;
FIG. 26 is a block diagram showing a defrosting control apparatus according to a twenty-third embodiment;
FIG. 27 is a flowchart for explaining a defrosting control operation according to a twenty-third embodiment;
FIG. 28 is a refrigerant circuit diagram of a conventional air conditioner.
[Explanation of symbols]
A heat source machine, B, C, D indoor unit, 1 compressor, 2 switching valve, 3 heat source machine side heat exchanger, 4 accumulator, 5 oil return hole of accumulator, 6 second throttling device ( 7b, 7c, 7d indoor unit side heat exchangers, 8b, 8c, 8d first expansion device (cooling time expansion device), 9 liquid side connection refrigerant pipe, 10 gas side connection refrigerant pipe, 15 Bypass circuit, 16 dryer, 17 Third expansion device (bypass expansion device), 18, 27 Bypass heat exchanger, 18a First bypass heat exchanger, 18b Second bypass heat exchanger, 19 First temperature detection Means, 20 second temperature detecting means, 21 suction pressure detecting means, 22 composition calculating means, 23 oil separator, 24 oil return bypass circuit, 25 fourth throttling device, 26 sludge filter, 28 liquid refrigerant injection circuit, 29 Liquid injection circuit heat exchanger , 30 fifth throttling device, 31 discharge pressure detecting means, 32 third temperature detecting means, 33b, 33c, 33d fourth temperature detecting means, 34b, 34c, 34d fifth temperature detecting means, 35 throttling device control Device, 36 SC calculation means, 37 SH calculation means, 38 throttling device control means, 39b, 39c, 39d defrost blower, 40b, 40c, 40d drain pump, 41b, 41c, 41d defrost control device, 62 accumulator Outflow piping, 64 oil return piping.

Claims (5)

圧縮機、凝縮器、絞り装置、蒸発器より構成された主冷媒回路を備え、ハイドロフルオロカ−ボン系の冷媒を作動媒体として用い、この冷媒と相溶性のある油を冷凍機油として用いる空気調和装置において、
上記圧縮機吐出部に油分離器を設け、分離した冷凍機油を圧縮機吸入部に戻す返油バイパス回路と、上記返油バイパス回路途中に上記冷凍機油が劣化して生成される冷凍機油劣化物を補足するスラッジフィルタを設けたことを特徴とする空気調和装置。
An air conditioner that includes a main refrigerant circuit composed of a compressor, a condenser, a throttle device, and an evaporator, uses a hydrofluorocarbon refrigerant as a working medium, and uses oil compatible with the refrigerant as a refrigerator oil. In the device
An oil separator is provided at the compressor discharge section, and a return oil bypass circuit for returning the separated refrigerating machine oil to the compressor suction section, and a refrigerating machine oil deterioration product generated by the deterioration of the refrigerating machine oil in the middle of the return oil bypass circuit An air conditioner provided with a sludge filter for supplementing.
返油バイパス回路途中のスラッジフィルタ上流に冷凍機油を冷却するバイパス熱交換器を設けたことを特徴とする請求項1記載の空気調和装置。 The air conditioner according to claim 1, wherein a bypass heat exchanger for cooling the refrigeration oil is provided upstream of the sludge filter in the middle of the oil return bypass circuit. 返油バイパス回路途中のスラッジフィルタ上流に液冷媒を注入する液冷媒注入回路を設けたことを特徴とする請求項1記載の空気調和装置。 The air conditioner according to claim 1, further comprising a liquid refrigerant injection circuit for injecting liquid refrigerant upstream of the sludge filter in the middle of the oil return bypass circuit. 返油バイパス回路途中のスラッジフィルタを、水分を吸収しかつスラッジフィルタ機能を有するドライヤとしたことを特徴とする請求項1〜3の何れかに記載の空気調和装置。 The air conditioner according to any one of claims 1 to 3, wherein the sludge filter in the middle of the oil return bypass circuit is a dryer that absorbs moisture and has a sludge filter function. バイパス熱交換器の全部または一部として熱源機側熱交換器の最下部を通す構成としたことを特徴とする請求項2に記載の空気調和装置。 The air conditioner according to claim 2, wherein the lowermost part of the heat source unit side heat exchanger is passed as all or part of the bypass heat exchanger.
JP06305597A 1997-03-17 1997-03-17 Air conditioner Expired - Lifetime JP3866359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06305597A JP3866359B2 (en) 1997-03-17 1997-03-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06305597A JP3866359B2 (en) 1997-03-17 1997-03-17 Air conditioner

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005200759A Division JP4566845B2 (en) 2005-07-08 2005-07-08 Air conditioner
JP2005200758A Division JP4331145B2 (en) 2005-07-08 2005-07-08 Air conditioner

Publications (2)

Publication Number Publication Date
JPH10253179A JPH10253179A (en) 1998-09-25
JP3866359B2 true JP3866359B2 (en) 2007-01-10

Family

ID=13218282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06305597A Expired - Lifetime JP3866359B2 (en) 1997-03-17 1997-03-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP3866359B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086954A1 (en) 2009-01-27 2010-08-05 三菱電機株式会社 Air conditioner and method of returning refrigerating machine oil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6615351B2 (en) * 2016-07-26 2019-12-04 三菱電機株式会社 Refrigeration cycle equipment
WO2024095339A1 (en) * 2022-10-31 2024-05-10 三菱電機株式会社 Refrigeration cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086954A1 (en) 2009-01-27 2010-08-05 三菱電機株式会社 Air conditioner and method of returning refrigerating machine oil
US9115917B2 (en) 2009-01-27 2015-08-25 Mitsubishi Electric Corporation Air-conditioner and method of returning and cooling compressor oil

Also Published As

Publication number Publication date
JPH10253179A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
JP4566845B2 (en) Air conditioner
JP3630632B2 (en) refrigerator
CN100565038C (en) Refrigerating plant
ES2607989T3 (en) Air conditioning device refrigerator
JP3671850B2 (en) Refrigeration cycle
JP4331145B2 (en) Air conditioner
US5953934A (en) Refrigerant circulating apparatus and method of assembling a refrigerant circuit
KR100846567B1 (en) Refrigerating apparatus
AU749518B2 (en) Refrigerating device
JP3743861B2 (en) Refrigeration air conditioner
EP2211127A1 (en) Heat pump type air conditioner
CN109515115B (en) Automobile air conditioning system using carbon dioxide as working medium and control method
CN104838219A (en) Air conditioning device
JP2000193327A (en) Air conditioner equipment and control method thereof
KR20120111923A (en) Refrigeration cycle apparatus
JP5062039B2 (en) Refrigeration equipment
US20100326125A1 (en) Refrigeration system
JP2007322048A (en) Refrigerating device
JP3866359B2 (en) Air conditioner
JP6758485B2 (en) Refrigeration cycle equipment
JP2008128570A (en) Refrigerating apparatus
WO2018221613A1 (en) Gas-liquid separation unit for refrigeration device, and refrigeration device
JP3788309B2 (en) Refrigeration equipment
JPH06323636A (en) Refrigerator
JP2018173195A (en) Refrigerator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term