JP3861150B2 - Boron nitride nanotube and method for producing the same - Google Patents

Boron nitride nanotube and method for producing the same Download PDF

Info

Publication number
JP3861150B2
JP3861150B2 JP2003019569A JP2003019569A JP3861150B2 JP 3861150 B2 JP3861150 B2 JP 3861150B2 JP 2003019569 A JP2003019569 A JP 2003019569A JP 2003019569 A JP2003019569 A JP 2003019569A JP 3861150 B2 JP3861150 B2 JP 3861150B2
Authority
JP
Japan
Prior art keywords
boron nitride
nitride nanotube
producing
tube
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003019569A
Other languages
Japanese (ja)
Other versions
JP2004231442A (en
Inventor
義雄 板東
ファンファン・シュー
デミトリー・ゴルバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003019569A priority Critical patent/JP3861150B2/en
Publication of JP2004231442A publication Critical patent/JP2004231442A/en
Application granted granted Critical
Publication of JP3861150B2 publication Critical patent/JP3861150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この出願の発明は、窒化ホウ素ナノチューブとその製造方法に関するものである。さらに詳しくは、この出願の発明は、柔軟性及び延性を示す新規な窒化ホウ素ナノチューブとその製造方法に関するものである。
【0002】
【従来の技術】
カーボン、窒化ホウ素のナノチューブやナノ繊維は、くらげ状、脊柱状、杉の葉状、節のあるスギナや竹状等の多種の形態を有することが知られている。中でも竹状や円錐状の窒化ホウ素ナノチューブは、チューブの通路が節で閉ざされ、チューブ全体が貫通する構造ではなかった(たとえば、非特許文献1参照)。
【0003】
【非特許文献1】
Renzhi Ma外,J. Am. Chem. Soc.,2002年,第124巻,第26号,p.7672
【0004】
【発明が解決しようとする課題】
そのようにチューブ全体が貫通しない節のある窒化ホウ素ナノチューブは、硬い物性を示す。この硬い物性は、窒化ホウ素ナノチューブの一つの特性であり、これを踏まえて実用的な応用を検討することができるが、広範囲の応用を考えると、他の物性も望まれる。
【0005】
この出願の発明は、このような事情に鑑みてなされたものであり、柔軟性及び延性を示す新規な窒化ホウ素ナノチューブとその製造方法を提供することを解決すべき課題としている。
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、円錐形状が連なったらせん構造を有するとともに、節のない貫通孔を備え、柔軟性及び延性を示すことを特徴とする窒化ホウ素ナノチューブ(請求項1)を提供する。
【0007】
また、この出願の発明は、カーボンナノチューブと、コバルト粒子を堆積させたチタン基板上に配置させた酸化ホウ素とを窒素雰囲気中で1500K〜2500Kの温度範囲で反応させ、次いで1700K〜2500Kの温度範囲で後加熱を行い、請求項1記載の窒化ホウ素ナノチューブを製造することを特徴とする窒化ホウ素ナノチューブの製造方法(請求項2)を提供する。
【0008】
以下、実施例を示しつつ、この出願の発明の窒化ホウ素ナノチューブとその製造方法についてさらに詳しく説明する。
【0009】
【発明の実施の形態】
この出願の発明の窒化ホウ素ナノチューブは、円錐形状が連なったらせん構造を有するとともに、節のない貫通孔を備えている。一本のチューブ中に節が存在しないため、この出願の発明の窒化ホウ素ナノチューブは、これまでの無機材料は示さなかった柔軟性及び延性を示す。また、貫通孔を備えているため、チューブ内への各種の物質の充填が妨げられず、チューブ内全体に物質を充填することができる。
【0010】
このようなこの出願の発明の窒化ホウ素ナノチューブは、カーボンナノチューブと、コバルト粒子を堆積させたチタン基板上に配置させた酸化ホウ素とを窒素雰囲気中で1500K〜2500Kの温度範囲で反応させ、次いで1700K〜2500Kの温度範囲で後加熱を行うことにより得られる。
【0011】
カーボンナノチューブと酸化ホウ素の重量比は1:5〜1:15の範囲が好ましい。1:5よりも酸化ホウ素が少ないとカーボンナノチューブのロスが多くなり、1:15よりも酸化ホウ素の量が多くなると酸化ホウ素のロスが多くなるからである。
【0012】
反応温度については、1500Kより低いと、反応速度が遅くなり、十分に反応が進行しなくなる。2500Kを超えると、カーボンナノチューブの蒸発逸散が速く、チューブ状窒化ホウ素の収率が悪くなる。反応時間としては30分〜2時間の範囲が好ましく例示される。その理由は、30分未満では反応が十分に進行しにくく、2時間を超えても反応に特に目立った変化は見られないからである。
【0013】
後加熱は、反応生成物からカーボンを除去するための工程であり、温度が1700K未満ではカーボンが残留することとなり、2500Kを超えてもカーボンの除去効果はさほど向上しない。後加熱の時間は、1時間〜5時間の範囲が好ましく例示される。1時間未満ではカーボンの除去が不十分になりやすく、5時間でほぼ除去効果は飽和するからである。
【0014】
【実施例】
出発物質として使用する鋳型となる多層カーボンナノチューブをまず合成した。ステンレススチール製の研磨したウエハーを基板として使用し、搬送ガスとして窒素ガス(純度99.999%)を、炭素ナノチューブを生成させるためのガスとして水素ガス(純度99.999%)及びメタンガス(純度99.9%)を用い、水素ガスの流量を80sccm、メタンガスの流量を20sccmとしてプラズマCVD法により、基板温度773Kで反応させて基板上に多層カーボンナノチューブを堆積させた。
【0015】
次いで、コバルト粒子をスパッターにより堆積させたチタン製基板上に配置させた酸化ホウ素粉末と、得られた多層カーボンナノチューブとを高周波誘導加熱炉中において窒素雰囲気下に1973Kで30分間反応させた。このときのカーボンナノチューブと酸化ホウ素の重量比は1:8とした。
【0016】
反応終了後、窒素雰囲気中2073Kで後加熱した。
【0017】
生成物を走査型電子顕微鏡を用いて観察した結果、図1aに示したように、直径が平均で100nm、長さが100μm以上のらせん状の繊維状物質が高収率で得られている。図1aの右側に示した走査型電子顕微鏡像と図1bに示した透過型電子顕微鏡像から、生成物は節のない貫通孔を備えたチューブ状の形態を有し、チューブ壁の厚さが20nmであることが確認される。また、図1bより、チューブ壁はチューブの軸に対して斜めに傾いて形成されていることが確認され、図1bの左側に示した回折パターンから、チューブは円錐状に配向していることが確認される。さらに、X線回折パターンと図2に示した電子エネルギー損失スペクトル分析の結果から、格子定数がa=0.2502nm、c=0.3333nmであり、ホウ素原子と窒素原子とからなる組成であることが確認される。
【0018】
図3aは透過型電子顕微鏡像であり、図3bは図3a中の枠で囲った部分の拡大像である。図3b図中に矢印で示した部分に電子線を照射すると、図3cに示したように、大きく屈曲することが観察された。図3dはその断面形状を示した拡大像であるが、チューブは180°折れ曲がっている。図3eは電子線の照射位置をずらした時の像である。屈曲はさらに大きくなっているが、破断はしていない。
【0019】
図3fは電子線の強度を下げたときの透過型電子顕微鏡像であり、図中の枠で囲った部分の拡大像が図3gである。これら図3f、図3gから確認されるように、屈曲が小さくなり、図3a、図3bに示した像と同程度の屈曲に回復した。
【0020】
なお、図3b、図3g中の挿入図は、それぞれ、電子線の照射前後の回折パターンを示しているが、電子線を照射する前には円錐の先端角は52°であり、照射後には35°となった。このことは、電子線の照射によりチューブが伸ばされたことを物語っている。
【0021】
以上から明らかであるように、この出願の発明の窒化ホウ素ナノチューブは、柔軟性及び延性を示す。無機材料は脆いことが短所となっていたが、柔軟性及び延性を示すこの出願の発明の窒化ホウ素ナノチューブは、その意味においてきわめて画期的なものといえる。
【0022】
もちろん、この出願の発明は、以上の実施形態及び実施例によって限定されるものではない。細部については様々な態様が可能であることはいうまでもない。
【0023】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、柔軟性及び延性を示す新規な窒化ホウ素ナノチューブが提供される。この出願の発明の窒化ホウ素ナノチューブは、マイクロエレクトロニクス部品、水素吸蔵材料、オプトエレクトロニクス部品、複合材料の強化材、各種物質を内含するチューブ材料等として広範囲の応用が期待される。
【図面の簡単な説明】
【図1】a、bは、それぞれ、実施例で得られた生成物の走査型電子顕微鏡像とその拡大像、透過型電子顕微鏡像と回折パターンである。
【図2】実施例で得られた生成物の電子エネルギー損失スペクトル分析図である。
【図3】a、b、c、d、e、f、gは、それぞれ、透過型電子顕微鏡像であり、図中の挿入図は回折パターンである。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a boron nitride nanotube and a method for producing the same. More specifically, the invention of this application relates to a novel boron nitride nanotube exhibiting flexibility and ductility and a method for producing the same.
[0002]
[Prior art]
Carbon and boron nitride nanotubes and nanofibers are known to have various forms such as jellyfish, spine, cedar leaf, knotted horsetail, bamboo. Among them, bamboo-shaped or conical boron nitride nanotubes have a structure in which the tube passage is closed by a node and the entire tube penetrates (for example, see Non-Patent Document 1).
[0003]
[Non-Patent Document 1]
Renzhi Ma et al., J. Am. Chem. Soc., 2002, 124, 26, p. 7672
[0004]
[Problems to be solved by the invention]
Such boron nitride nanotubes with nodes that do not penetrate the entire tube exhibit hard physical properties. This hard physical property is one of the characteristics of boron nitride nanotubes, and practical applications can be studied based on this property. However, considering a wide range of applications, other physical properties are also desired.
[0005]
The invention of this application has been made in view of such circumstances, and an object to be solved is to provide a novel boron nitride nanotube exhibiting flexibility and ductility and a method for producing the same.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application has a helical structure in which conical shapes are continuous, and has a through-hole having no nodes, and exhibits flexibility and ductility. Item 1) is provided.
[0007]
In addition, the invention of this application is such that carbon nanotubes and boron oxide disposed on a titanium substrate on which cobalt particles are deposited are reacted in a nitrogen atmosphere at a temperature range of 1500 K to 2500 K, and then a temperature range of 1700 K to 2500 K. A method for producing boron nitride nanotubes (claim 2) is provided, wherein the boron nitride nanotubes according to claim 1 are produced by post-heating.
[0008]
Hereinafter, the boron nitride nanotube of the present invention and the method for producing the same will be described in more detail with reference to examples.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The boron nitride nanotube of the invention of this application has a spiral structure in which conical shapes are continuous, and has a through hole without a node. Due to the absence of nodes in a single tube, the boron nitride nanotubes of the invention of this application exhibit flexibility and ductility not previously exhibited by inorganic materials. Moreover, since the through-hole is provided, the filling of various substances into the tube is not hindered, and the substance can be filled in the entire tube.
[0010]
Such a boron nitride nanotube of the invention of this application is obtained by reacting a carbon nanotube and boron oxide disposed on a titanium substrate on which cobalt particles are deposited in a nitrogen atmosphere at a temperature range of 1500 K to 2500 K, and then 1700 K. It can be obtained by post-heating in a temperature range of ~ 2500K.
[0011]
The weight ratio of carbon nanotubes to boron oxide is preferably in the range of 1: 5 to 1:15. This is because if the amount of boron oxide is less than 1: 5, the loss of carbon nanotubes increases, and if the amount of boron oxide is more than 1:15, the loss of boron oxide increases.
[0012]
When the reaction temperature is lower than 1500K, the reaction rate becomes slow and the reaction does not proceed sufficiently. If it exceeds 2500K, the evaporation of carbon nanotubes is fast and the yield of tubular boron nitride is poor. The reaction time is preferably in the range of 30 minutes to 2 hours. The reason is that the reaction does not proceed sufficiently in less than 30 minutes, and no particularly noticeable change is observed in the reaction over 2 hours.
[0013]
The post-heating is a process for removing carbon from the reaction product. If the temperature is less than 1700K, carbon remains, and even if it exceeds 2500K, the effect of removing carbon is not improved so much. The post-heating time is preferably exemplified by a range of 1 hour to 5 hours. This is because if the time is less than 1 hour, the removal of carbon tends to be insufficient, and the removal effect is almost saturated in 5 hours.
[0014]
【Example】
First, multi-walled carbon nanotubes as templates used as starting materials were synthesized. A polished wafer made of stainless steel is used as a substrate, nitrogen gas (purity 99.999%) is used as the carrier gas, and hydrogen gas (purity 99.999%) and methane gas (purity 99.9%) are used as the gas for generating carbon nanotubes. The multi-walled carbon nanotubes were deposited on the substrate by a plasma CVD method at a substrate temperature of 773 K with a hydrogen gas flow rate of 80 sccm and a methane gas flow rate of 20 sccm.
[0015]
Next, boron oxide powder arranged on a titanium substrate on which cobalt particles were deposited by sputtering and the obtained multi-walled carbon nanotube were reacted in a high-frequency induction heating furnace at 1973 K for 30 minutes in a nitrogen atmosphere. At this time, the weight ratio of the carbon nanotube to boron oxide was 1: 8.
[0016]
After completion of the reaction, the mixture was post-heated at 2073 K in a nitrogen atmosphere.
[0017]
As a result of observing the product using a scanning electron microscope, as shown in FIG. 1a, a spiral fibrous material having an average diameter of 100 nm and a length of 100 μm or more was obtained in high yield. From the scanning electron microscope image shown on the right side of FIG. 1a and the transmission electron microscope image shown in FIG. 1b, the product has a tube-like form with through holes without nodes, and the thickness of the tube wall is Confirmed to be 20 nm. 1b confirms that the tube wall is formed obliquely with respect to the axis of the tube. From the diffraction pattern shown on the left side of FIG. 1b, the tube is oriented conically. It is confirmed. Furthermore, the X-ray diffraction pattern and the results of the electron energy loss spectrum analysis shown in FIG. 2 confirm that the lattice constants are a = 0.2502 nm and c = 0.3333 nm, and the composition is composed of boron atoms and nitrogen atoms. Is done.
[0018]
FIG. 3a is a transmission electron microscope image, and FIG. 3b is an enlarged image of a portion surrounded by a frame in FIG. 3a. When an electron beam was irradiated on the part indicated by the arrow in FIG. 3b, it was observed that the part was bent greatly as shown in FIG. 3c. FIG. 3d is an enlarged image showing the cross-sectional shape, but the tube is bent 180 °. FIG. 3e is an image when the irradiation position of the electron beam is shifted. The bend is even larger, but not broken.
[0019]
FIG. 3f is a transmission electron microscope image when the electron beam intensity is lowered, and FIG. 3g is an enlarged image of a portion surrounded by a frame in the figure. As can be seen from FIGS. 3f and 3g, the bending is reduced, and the bending is restored to the same degree as the image shown in FIGS. 3a and 3b.
[0020]
The insets in FIGS. 3b and 3g show the diffraction patterns before and after the electron beam irradiation, respectively, but the cone tip angle is 52 ° before the electron beam irradiation, and after the irradiation, It was 35 °. This tells us that the tube was stretched by electron beam irradiation.
[0021]
As is clear from the above, the boron nitride nanotube of the invention of this application exhibits flexibility and ductility. Inorganic materials have been disadvantageous in that they are brittle, but the boron nitride nanotubes of the invention of this application showing flexibility and ductility can be said to be extremely innovative in that sense.
[0022]
Of course, the invention of this application is not limited by the above embodiments and examples. Needless to say, various details are possible.
[0023]
【The invention's effect】
As described in detail above, the invention of this application provides a novel boron nitride nanotube exhibiting flexibility and ductility. The boron nitride nanotubes of the invention of this application are expected to have a wide range of applications as microelectronic parts, hydrogen storage materials, optoelectronic parts, composite material reinforcements, tube materials containing various substances, and the like.
[Brief description of the drawings]
1A and 1B are a scanning electron microscope image and an enlarged image, a transmission electron microscope image, and a diffraction pattern, respectively, of the product obtained in the examples.
FIG. 2 is an electron energy loss spectrum analysis diagram of the product obtained in the example.
FIG. 3 is a transmission electron microscopic image, a, b, c, d, e, f, and g, and the inset in the figure is a diffraction pattern.

Claims (2)

円錐形状が連なったらせん構造を有するとともに、節のない貫通孔を備え、柔軟性及び延性を示すことを特徴とする窒化ホウ素ナノチューブ。A boron nitride nanotube characterized by having a spiral structure with continuous conical shapes, a through hole without a node, and exhibiting flexibility and ductility. カーボンナノチューブと、コバルト粒子を堆積させたチタン基板上に配置させた酸化ホウ素とを窒素雰囲気中で1500K〜2500Kの温度範囲で反応させ、次いで1700K〜2500Kの温度範囲で後加熱を行い、請求項1記載の窒化ホウ素ナノチューブを製造することを特徴とする窒化ホウ素ナノチューブの製造方法。Carbon nanotubes and boron oxide disposed on a titanium substrate on which cobalt particles are deposited are reacted in a nitrogen atmosphere in a temperature range of 1500 K to 2500 K, and then post-heated in a temperature range of 1700 K to 2500 K. A method for producing a boron nitride nanotube, which comprises producing the boron nitride nanotube according to 1.
JP2003019569A 2003-01-28 2003-01-28 Boron nitride nanotube and method for producing the same Expired - Lifetime JP3861150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019569A JP3861150B2 (en) 2003-01-28 2003-01-28 Boron nitride nanotube and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019569A JP3861150B2 (en) 2003-01-28 2003-01-28 Boron nitride nanotube and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004231442A JP2004231442A (en) 2004-08-19
JP3861150B2 true JP3861150B2 (en) 2006-12-20

Family

ID=32949402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019569A Expired - Lifetime JP3861150B2 (en) 2003-01-28 2003-01-28 Boron nitride nanotube and method for producing the same

Country Status (1)

Country Link
JP (1) JP3861150B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347079C (en) * 2005-04-20 2007-11-07 中国科学院金属研究所 Production of boron nitride nanometer tube with water as growth improver
JP4577385B2 (en) 2008-03-14 2010-11-10 株式会社デンソー Conductor and manufacturing method thereof
CN100590069C (en) * 2008-03-28 2010-02-17 山东大学 Method for preparing boron nitride coating carbon nano-tube/nano-wire and boron nitride nano-tube

Also Published As

Publication number Publication date
JP2004231442A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US7011771B2 (en) Method of making carbon nanotubes on a substrate
Sharma et al. In situ observations of carbon nanotube formation using environmental transmission electron microscopy
Nerushev et al. Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition
Wang et al. Bamboo-like carbon nanotubes produced by pyrolysis of iron (II) phthalocyanine
Zhang et al. Coating of carbon nanotubes with tungsten by physical vapor deposition
Morjan et al. Growth of carbon nanotubes from C 60
Chen et al. One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process
Gao et al. Dense arrays of well-aligned carbon nanotubes completely filled with single crystalline titanium carbide wires on titanium substrates
JP2010503595A (en) Method for producing carbon nanotube
JP5170609B2 (en) Method for producing silicon carbide nanowire
JP3686941B2 (en) Nano thermometer and manufacturing method thereof
Lacerda et al. Thin-film metal catalyst for the production of multi-wall and single-wall carbon nanotubes
JP3861150B2 (en) Boron nitride nanotube and method for producing the same
Hiramatsu et al. High-rate growth of films of dense, aligned double-walled carbon nanotubes using microwave plasma-enhanced chemical vapor deposition
Chen et al. Tuning the morphologies of SiC nanowires via the change of the Co x Si y melts
Kharissova Vertically aligned carbon nanotubes fabricated by microwaves
Peng et al. Blue-light emission from amorphous SiOx nanoropes
Zhi et al. Boron carbonitride nanotubes
Ma et al. Novel BN tassel-like and tree-like nanostructures
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
KR20070072849A (en) Synthesis of a self assembled hybrid of ultrananocrystalline diamond and carbon nanotubes
Chen et al. Improved growth of aligned carbon nanotubes by mechanical activation
JP3921533B2 (en) Temperature sensing element, manufacturing method thereof, and nano thermometer
JP2004190183A (en) Boron nitride nanofiber having long period structure and method for producing the same
Bhaumik et al. Direct conversion of carbon nanofibers into diamond nanofibers using nanosecond pulsed laser annealing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3861150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term