JP3858291B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP3858291B2
JP3858291B2 JP29828795A JP29828795A JP3858291B2 JP 3858291 B2 JP3858291 B2 JP 3858291B2 JP 29828795 A JP29828795 A JP 29828795A JP 29828795 A JP29828795 A JP 29828795A JP 3858291 B2 JP3858291 B2 JP 3858291B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
internal combustion
combustion engine
target air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29828795A
Other languages
Japanese (ja)
Other versions
JPH09137742A (en
Inventor
貴彦 山本
裕司 森
誠 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP29828795A priority Critical patent/JP3858291B2/en
Publication of JPH09137742A publication Critical patent/JPH09137742A/en
Application granted granted Critical
Publication of JP3858291B2 publication Critical patent/JP3858291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の空燃比制御装置に関するもので、特に、触媒の上流側と下流側とに排気ガスの空燃比を検出する各センサを設け、上流側のセンサの検出値に基づく空燃比フィードバック制御に加えて、下流側のセンサの検出値に基づく空燃比フィードバック制御を行う内燃機関の空燃比制御装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関の空燃比制御装置に関連する先行技術文献としては、特開平3−185244号公報にて開示されたものが知られている。図19は、この空燃比制御において、O2 センサの出力と目標空燃比λTGとを示すタイムチャートである。
【0003】
このものでは、触媒の上流側に内燃機関から排出される排気ガスの空燃比に応じたリニアな空燃比信号を出力するA/Fセンサが設けられ、触媒の下流側に排気ガスの空燃比が理論空燃比に対してリッチかリーンかに応じた電圧信号を出力するO2 センサが設けられている。このO2 センサの出力に基づき排気ガスの空燃比が理論空燃比を境界としてリッチ側またはリーン側のいずれに変動しているかを判別し、目標空燃比中央値λTGC を変動方向の反対側に設定し、これに目標空燃比変動を加えて目標空燃比λTGを設定している。そして、この補正後の目標空燃比λTGとA/Fセンサにて検出された実際の空燃比との偏差に基づき空燃比補正係数を算出し、実際の空燃比を理論空燃比に収束させるように構成されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述の空燃比制御では、排気ガスの空燃比が完全に理論空燃比であっても、排気ガス成分中のリッチ成分(空燃比がリッチ側のときの排出ガス成分)であるCO(一酸化炭素)やHC(炭化水素)とリーン成分(空燃比がリーン側のときの排出ガス成分)であるNOx (窒素酸化物)やO2 (酸素)との触媒表面への吸着速度と脱離速度とが異なることから、触媒表面にはリーン成分のNOx (窒素酸化物)やO2 (酸素)が少量吸着している。このため、図20に示すように、内燃機関における負荷変動により生じる瞬間的な空燃比変動(以下、単に『スパイク』と記す)により触媒の反応挙動に相違がある。即ち、リッチスパイク(リッチ側のスパイク)は比較的吸収し易いため、図20(a)に示すように、触媒の下流側のO2 センサの出力にリッチスパイクの影響は現れ難く、排出ガス濃度にも乱れが現れない。これに対し、リーンスパイク(リーン側のスパイク)は吸収し難いため、図20(b)に示すように、触媒の下流側のO2 センサの出力にリーンスパイクの影響は現れ易く、その結果、排出ガス濃度にリーン成分であるNOx が比較的排出され易いのである。
【0005】
そこで、このような排気ガス中のNOx の排出量を抑える内燃機関の空燃比制御装置として、特開平6−264798号公報にて開示されたものが知られている。図21は、この空燃比制御において、運転状態に応じた酸素濃度を検出するO2 センサの出力と制御目標値VOX2TGの設定状態を示すタイムチャートである。
【0006】
このものでは、前述の構成と同様に、触媒の上流側にA/Fセンサ、下流側にO2 センサを設け、O2 センサの出力に基づき排気ガスの空燃比が理論空燃比を境界としてリッチ側またはリーン側のいずれに変動しているかを判別し、目標空燃比を変動方向の反対側に設定している。そして、この補正後の目標空燃比とA/Fセンサにて検出された実際の空燃比との偏差に基づき空燃比補正係数を算出し、実際の空燃比を理論空燃比に収束させるように構成されている。更に、リーン成分の排出量を抑えるため運転状態に応じてO2 センサの制御目標値VOX2TGを変動させている。
【0007】
ところが、図22に示すように、触媒の下流側に設けられているO2 センサ出力の感度は、空気過剰率λA が1.0である理論空燃比の近傍で高いが、理論空燃比から少し遠ざかるだけで感度が鈍くなる。したがって、制御目標値VOX2TGを理論空燃比から変動させることで制御の応答性が悪化してしまう。
【0008】
更に、触媒の浄化効率を高め、排気ガス中の有害成分の排出量を抑える内燃機関の空燃比制御装置として、特公平7−33793号公報にて開示されたものが知られている。図23は、この空燃比制御において、空燃比を強制的に変動させたときの空燃比中央値(KFB)c の設定状態を示すタイムチャートである。
【0009】
このものでは、触媒の下流側に設けられたO2 センサの出力から空燃比強制変動制御におけるリッチ側の時間TKRとリーン側の時間TKLとの割合(比)を制御し、即ち、空燃比中央値(KFB)c を変動させ、触媒の最も浄化効率の高い領域で空燃比制御させている。ところが、前述したようにO2 センサの感度は理論空燃比の近傍で高いが、理論空燃比から少し遠ざかるだけで感度が鈍くなる。したがって、空燃比強制変動制御で空燃比中央値を変動させNOx の最も浄化率の高い空燃比に設定すると、制御の応答性が悪化するという不具合があった。
【0010】
そこで、この発明はかかる不具合を解決するためになされたもので、リッチ成分の排出量を増加させることなくリーン成分の排出量を減少させると共に、空燃比制御における応答性を損なうことのない内燃機関の空燃比制御装置の提供を課題としている。
【0011】
【課題を解決するための手段】
請求項1の内燃機関の空燃比制御装置によれば、目標空燃比設定手段で下流側空燃比検出手段による触媒を通過した排気ガスの空燃比の検出信号に応じた目標空燃比が設定され、その目標空燃比が目標空燃比変動手段によってリッチ側への空燃比変動期間がリーン側への空燃比変動期間より長い周期でその平均空燃比が排気ガスの空燃比を理論空燃比に維持するように空燃比強制変動制御が実行され、噴射量演算手段で上流側空燃比検出手段による内燃機関から排出された排気ガスの空燃比と変動後の目標空燃比との偏差に基づき燃料噴射量が算出される。これにより、排気ガス成分の触媒表面への吸着・脱離速度が最適化され触媒表面が中立化され、リッチ成分の排出量を増加させることなくリーン成分の排出量を減少させることができると共に、排気ガスの空燃比が理論空燃比となるように空燃比強制変動制御における目標空燃比中央値が設定されることで空燃比制御の応答性を損なうことがないという効果が得られる。
【0012】
請求項2の内燃機関の空燃比制御装置では、請求項1の目標空燃比変動手段で変動される目標空燃比のリッチ側への変動期間のリーン側への変動期間に対する比が2〜4となるようにされる。これにより、空燃比強制変動制御における制御性を損なうことなく、また、リッチ成分の排出量を増加させることなくリーン成分の排出量を減少させることができるという効果が得られる。
【0013】
請求項3の内燃機関の空燃比制御装置では、請求項1の構成に加えて、運転状態検出手段で内燃機関が過渡状態であると検出され、且つ下流側空燃比検出手段でリーン側であると検出されると目標空燃比変動手段による目標空燃比のリッチ側への変動期間がリーン側への変動期間に対して長い周期となるように設定される。これにより、内燃機関の過渡状態における排気ガス成分の触媒表面への吸着・脱離速度が最適化され触媒表面が中立化され、リッチ成分の排出量を増加させることなくリーン成分の排出量を減少させることができるという効果が得られる。
【0014】
請求項4の内燃機関の空燃比制御装置では、請求項3の目標空燃比変動手段で変動される目標空燃比の周期が、排気ガスの流量が多いほど短くされる。これにより、排気ガスの流量の多少に応じた排気ガス成分の触媒表面への吸着・脱離速度が最適化され触媒表面が中立化され、リッチ成分の排出量を増加させることなくリーン成分の排出量を減少させることができるという効果が得られる。
【0015】
請求項5の内燃機関の空燃比制御装置では、請求項3の構成に加えて、温度検出手段で検出された触媒の温度が高いほど目標空燃比変動手段で変動される目標空燃比の周期が長くされる。これにより、触媒の温度の高低に応じた排気ガス成分の触媒表面への吸着・脱離速度が最適化され触媒表面が中立化され、リッチ成分の排出量を増加させることなくリーン成分の排出量を減少させることができるという効果が得られる。
【0016】
請求項6の内燃機関の空燃比制御装置では、請求項3乃至請求項5のいずれか1つの構成に加えて、触媒劣化検出手段で検出された触媒の劣化状態が進行しているほど目標空燃比変動手段で変動される目標空燃比の周期が長くされる。これにより、触媒の劣化状態に応じた排気ガス成分の触媒表面への吸着・脱離速度が最適化され触媒表面が中立化され、リッチ成分の排出量を増加させることなくリーン成分の排出量を減少させることができるという効果が得られる。
【0017】
【発明の実施の形態】
以下、本発明を具体的な実施の形態に基づいて説明する。
【0018】
〈実施の形態1〉
図1は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置を用いた内燃機関とその周辺機器を示す概略構成図である。
【0019】
図1において、内燃機関1は4気筒4サイクルの火花点火式として構成され、その吸入空気は上流側からエアクリーナ2、吸気管3、スロットルバルブ4、サージタンク5及びインテークマニホルド6を通過して、インテークマニホルド6内で各燃料噴射弁7から噴射された燃料と混合され、所定空燃比の混合気として各気筒に分配供給される。また、内燃機関1の各気筒に設けられた点火プラグ8には、点火回路9から供給される高電圧がディストリビュータ10にて分配供給され、各気筒の混合気を所定タイミングで点火する。そして、燃焼後の排気ガスはエキゾーストマニホルド11及び排気管12を通過し、排気管12に設けられ、白金やロジウム等の触媒成分とセリウムやランタン等の添加物を担持した三元触媒13にて有害成分であるCO(一酸化炭素)、HC(炭化水素)、NOx (窒素酸化物)等が浄化されて大気に排出される。
【0020】
吸気管3には吸気温センサ21と吸気圧センサ22が設けられ、吸気温センサ21は吸入空気の温度Tamを、吸気圧センサ22はスロットルバルブ4の下流側の吸気圧Pm をそれぞれ検出する。スロットルバルブ4にはスロットル開度THを検出するスロットルセンサ23が設けられ、このスロットルセンサ23はスロットル開度THに応じたアナログ信号と共に、スロットルバルブ4がほぼ全閉であることを検出する図示しないアイドルスイッチからのオン・オフ信号を出力する。また、内燃機関1のシリンダブロックには水温センサ24が設けられ、この水温センサ24は内燃機関1内の冷却水温Thwを検出する。ディストリビュータ10には内燃機関1の機関回転数Ne を検出する回転数センサ25が設けられ、この回転数センサ25は内燃機関1の2回転、即ち、720°CA(クランクアングル)毎にパルス信号を24回出力する。更に、排気管12の三元触媒13の上流側には、内燃機関1から排出される排気ガスの空燃比λに応じたリニアな空燃比信号VOX1を出力するA/Fセンサ26が設けられ、三元触媒13の下流側には、排気ガスの空燃比λが理論空燃比λ=1に対してリッチかリーンかに応じた電圧信号VOX2を出力するO2 センサ27及び三元触媒13を通過した排気ガスの温度Thxを検出する温度センサ28が設けられている。
【0021】
内燃機関1の運転状態を制御するECU(Electronic Control Unit:電子制御装置)31は、周知の中央処理装置としてのCPU32、制御プログラムを格納したROM33、各種データを格納するRAM34、バックアップRAM35等を中心に論理演算回路として構成され、各センサの検出信号を入力する入力ポート36及び各アクチュエータに制御信号を出力する出力ポート37等に対しバス38を介して接続されている。そして、ECU31は入力ポート36を介して各センサから吸気温Tam、吸気圧Pm 、スロットル開度TH、冷却水温Thw、機関回転数Ne 、空燃比信号VOX1、電圧信号VOX2等を入力し、それらの各値に基づいて燃料噴射量TAU、点火時期Ig を算出して、出力ポート37を介して燃料噴射弁7及び点火回路9にそれぞれ制御信号を出力する。
【0022】
次に、上記のように構成された本実施の形態の内燃機関の空燃比制御装置の動作を説明する。
【0023】
〈燃料噴射量TAU設定ルーチン:図2参照〉
図2は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置で使用されているECU31内のCPU32における燃料噴射量設定ルーチンを示すフローチャートである。なお、この燃料噴射量算出ルーチンは内燃機関1の回転に同期して360°CA毎に実行される。
【0024】
まず、ステップS101で、吸気圧Pm 、機関回転数Ne 等に基づいて基本燃料噴射量TP が算出される。次にステップS102に移行して、空燃比λのフィードバック条件が成立しているかが判定される。ここで、周知のようにフィードバック条件は、冷却水温Thwが所定値以上で、且つ高回転・高負荷状態でないときに成立する。ステップS102で空燃比λのフィードバック条件が成立するときには、ステップS103に移行し、目標空燃比λTGが設定される(詳細は後述)。次にステップS104に移行して、空燃比λを目標空燃比λTGとすべく空燃比補正係数FAFが設定されたのち、ステップS105に移行する。即ち、ステップS104では目標空燃比λTGとA/Fセンサ26で検出された空燃比信号VOX1に応じて空燃比補正係数FAFが設定される。一方、ステップS102で、空燃比λのフィードバック条件が成立しないときには、ステップS106に移行し、空燃比補正係数FAFが1.0に設定され、ステップS105に移行する。ステップS105では、次式(1)に示すように、基本燃料噴射量TP 、空燃比補正係数FAF及び他の補正係数FALLから燃料噴射量TAUが設定され、本ルーチンを終了する。
【0025】
【数1】
TAU=TP ×FAF×FALL ・・・(1)
このようにして設定された燃料噴射量TAUに基づく制御信号が燃料噴射弁7に出力されて開弁時間、即ち、実際の燃料噴射量が制御され、その結果、混合気が目標空燃比λTGに調整される。
【0026】
次に、目標空燃比λTGの設定処理(図2のステップS103)について詳述する。
【0027】
まず、O2 センサ27の電圧信号VOX2に基づき実際の空燃比とA/Fセンサ26の空燃比信号VOX1とのずれを補正するように目標空燃比中央値λTGC が設定される。詳しくは、O2 センサ27の電圧信号VOX2がリッチ側であるときは、目標空燃比中央値λTGC を所定値λM だけリーン側に設定する。ここで、三元触媒13の浄化率ηの空燃比λに対する特性を図3に示すように、触媒ウインドウW(図3の斜線部)の範囲内で制御される。この触媒ウインドウWはA/Fで0.2(0.2A/F)程度であり、所定値λM はこの範囲より小さく設定される。
【0028】
ここで、三元触媒13の表面には、排気ガスがリッチのときにはリッチ成分(CO,HC)が吸着され、排気ガスがリーンのときにはリーン成分(NOx,O2 )が吸着される。このように、三元触媒13の表面ではリッチ成分とリーン成分とが交互に吸着・脱離が繰返されている。物性的な観点から、通常、三元触媒13の使用温度域ではリッチ成分の吸着速度とリーン成分の吸着速度はほとんど差がないが、脱離速度はリッチ成分の方がリーン成分に比べ約1.5倍程度速い。このため、三元触媒13の表面は吸着・脱離を繰返す毎に見かけ上、リーン成分の吸着が増加してしまうのである。
【0029】
本実施の形態にかかる内燃機関の空燃比制御装置では、このリーン成分の吸着の増加を抑えるため、以下に述べるような、目標空燃比λTGを強制的に変動させるような制御を実行したのである。
【0030】
設定された目標空燃比中央値λTGC に対して、図4に示すように、触媒ウインドウWの範囲内で、所定の空燃比振幅(リッチ側空燃比強制変動振幅λDZR 、リーン側空燃比強制変動振幅λDZL )で所定の周期(リッチ側空燃比変動期間TDZR 、リーン側空燃比変動期間TDZL )で目標空燃比λTGを変化させる。この時、空燃比強制変動の中心(平均空燃比)がλTGC となる条件式(2)が成立するように、リッチ側空燃比強制変動振幅λDZR 、リーン側空燃比強制変動振幅λDZL 、リッチ側空燃比変動期間TDZR 、リーン側空燃比変動期間TDZL が設定される。
【0031】
【数2】
λDZR ×TDZR =λDZL ×TDZL ・・・(2)
ここで、リッチ側空燃比変動期間TDZR とリーン側空燃比変動期間TDZL とには、図5に示すような関係がある。即ち、リッチ側空燃比変動期間TDZR をリーン側空燃比変動期間TDZL に対して長くするに連れて、触媒表面のリーン成分吸着量は減少してゆくが、(リッチ側空燃比変動期間TDZR /リーン側空燃比変動期間TDZL )=4を越えたところぐらいから制御性が悪化し、逆に触媒表面のリーン成分吸着量が増加に転じている。したがって、(リッチ側空燃比変動期間TDZR /リーン側空燃比変動期間TDZL )=2〜4とするのが望ましい。
【0032】
本実施の形態においては、リッチ側空燃比強制変動振幅λDZR を0.05A/F、リーン側空燃比強制変動振幅λDZL を0.1A/F、リッチ側空燃比変動期間TDZR を0.5秒、リーン側空燃比変動期間TDZL を0.25秒で行った。
【0033】
また、本実施の形態では、空燃比強制変動の変動波形として矩形波を用いたが、制御中心を理論空燃比に維持し、空燃比を強制変動する手法としては、変動波形が三角波や正弦波等においても適用できることは言うまでもない。
【0034】
次に、目標空燃比の設定処理について説明する。
【0035】
〈目標空燃比λTG設定ルーチン:図6参照〉
図6は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置で使用されているECU31内のCPU32における目標空燃比設定ルーチンを示すフローチャートである。
【0036】
ステップS201で、O2 センサ27からの電圧信号VOX2がリッチ側であるかが判定される。ステップS201の判定条件が成立するときには、ステップS202に移行し、目標空燃比中央値λTGC に所定値λM が加算され、即ち、目標空燃比中央値λTGC がリーン側に設定される。一方、ステップS201の判定条件が成立しないときには、ステップS203に移行し、目標空燃比中央値λTGC から所定値λM が減算され、即ち、目標空燃比中央値λTGC がリッチ側に設定される。
【0037】
ステップS202またはステップS203の処理ののち、ステップS204に移行し、リッチ側空燃比強制変動フラグXDZR=1とセットされているかが判定される。ステップS204の判定条件が成立するときには、目標空燃比λTGが目標空燃比中央値λTGC に対してリッチ側に設定されており、ステップS205に移行し、空燃比変動期間カウンタCDZAがリッチ側空燃比変動期間TDZR 以上であるかが判定される。なお、この場合の空燃比変動期間カウンタCDZAはリッチ側空燃比変動期間をカウントするものである。ステップS205の判定条件が成立せず、空燃比変動期間カウンタCDZAがリッチ側空燃比変動期間TDZR 未満であるときには、ステップS206に移行し、空燃比変動期間カウンタCDZAが「1」インクリメントされる。
【0038】
ここで、ステップS205の判定条件が成立し、空燃比変動期間カウンタCDZAがリッチ側空燃比変動期間TDZR 以上であるときには、ステップS207に移行し、空燃比変動期間カウンタCDZA=0とリセットされる。次にステップS208に移行して、リッチ側空燃比強制変動フラグXDZR=0とリセットされる。次にステップS209に移行して、リーン側空燃比強制変動振幅λDZL が設定され、ステップS210でリーン側空燃比変動期間TDZL が設定される。
【0039】
一方、ステップS204の判定条件が成立せず、リッチ側空燃比強制変動フラグXDZR=0であるときには、ステップS211に移行し、空燃比変動期間カウンタCDZAがリーン側空燃比変動期間TDZL 以上であるかが判定される。なお、この場合の空燃比変動期間カウンタCDZAはリーン側空燃比変動期間をカウントするものである。ステップS211の判定条件が成立し、空燃比変動期間カウンタCDZAがリーン側空燃比変動期間TDZL 以上であるときには、ステップS212に移行し、空燃比変動期間カウンタCDZA=0とリセットされる。次にステップS213に移行して、リッチ側空燃比強制変動フラグXDZR=1とセットされる。次にステップS214に移行して、リッチ側空燃比強制変動振幅λDZR が設定され、ステップS215でリッチ側空燃比変動期間TDZR が設定される。一方、ステップS211の判定条件が成立せず、空燃比変動期間カウンタCDZAがリーン側空燃比変動期間TDZL 未満であるときには、ステップS216に移行し、空燃比変動期間カウンタCDZAが「1」インクリメントされる。
【0040】
次に、ステップS206、ステップS210、ステップS215またはステップS216の処理ののちステップS217に移行し、目標空燃比λTGを目標空燃比中央値λTGC に対してリーン側に強制的に変動させる場合には、次式(3)に示すように、目標空燃比中央値λTGC にリーン側空燃比強制変動振幅λDZL が加算され目標空燃比λTGが設定され、本ルーチンを終了する。
【0041】
【数3】
λTG=λTGC +λDZL ・・・(3)
また、ステップS217で、目標空燃比λTGを目標空燃比中央値λTGC に対してリッチ側に強制的に変動させる場合には、次式(4)に示すように、目標空燃比中央値λTGC からリッチ側空燃比強制変動振幅λDZR が減算され目標空燃比λTGが設定され、本ルーチンを終了する。
【0042】
【数4】
λTG=λTGC −λDZR ・・・(4)
図7は上述のルーチンにより設定される目標空燃比中央値λTGC の遷移状態を示すタイムチャートである。O2 センサ27からの電圧信号VOX2がリーン側である間は、所定値λM ずつ目標空燃比中央値λTGC がリッチ側へと設定され、逆に、O2 センサ27からの電圧信号VOX2がリッチ側である間は、所定値λM ずつ目標空燃比中央値λTGC がリーン側へと設定される。これにより、目標空燃比中央値λTGC はA/Fセンサ26が示す理論空燃比とされる。したがって、実際の空燃比とA/Fセンサ26の空燃比信号とのずれを補正することができる。
【0043】
図8は上述のルーチンの空燃比強制変動制御による目標空燃比λTGの遷移状態を示すタイムチャートである。目標空燃比λTGを目標空燃比中央値λTGC に対して、リッチ側へはリッチ側空燃比変動期間TDZR の間、リッチ側空燃比強制変動振幅λDZR だけ変動させ、リーン側へはリーン側空燃比変動期間TDZL の間、リーン側空燃比強制変動振幅λDZL だけ変動させる。このようにして、三元触媒13の触媒表面のリーン成分の吸着量を低減させることでNOx の排出量を抑えることができる。
【0044】
ここで、O2 センサ27の出力特性について図9を参照して述べる。なお、図9(b)は本実施の形態のようにO2 センサ27を三元触媒13の下流側に配設したときの電圧信号VOX2を示す特性図であり、図9(a)は比較のためO2 センサ27を三元触媒13の上流側に配設したときの電圧信号VOX2を示す特性図である。
【0045】
図9(a)及び図9(b)の特性図から明らかなように、O2 センサ27を三元触媒13の下流側に配設したときの特性(図9(b))では、O2 センサ27を三元触媒13の上流側に配設したときの特性(図9(a))に比べリッチ/リーンの反転周期が長くなっている。これは、排気ガス中の有害成分が三元触媒13の酸化還元反応により浄化が実行されるためである。
【0046】
このことは、三元触媒13の触媒表面のリーン成分の吸着量を低減するため、例え、三元触媒13の上流側で空燃比λがリッチ/リーンの短い周期で繰返すように制御されても、その下流側ではその影響を受けることがない。また、三元触媒13の下流側では排気ガスが十分に混合されるため、その検出信号は特定の気筒の空燃比λに依存されることなく、全気筒の平均的な空燃比λであると言える。したがって、O2 センサ27により空燃比λを精度良く適切に補正することができる。
【0047】
このように、本実施の形態の内燃機関の空燃比制御装置は、内燃機関1の排気管12の三元触媒13の上流側に設けられ、内燃機関1から排出された排気ガスの空燃比λに応じた空燃比信号VOX1を検出するA/Fセンサ26からなる上流側空燃比検出手段と、三元触媒13の下流側に設けられ、三元触媒13を通過した排気ガスの空燃比λがリッチかリーンかの電圧信号VOX2を検出するO2 センサ27からなる下流側空燃比検出手段と、前記下流側空燃比検出手段の電圧信号VOX2に応じて目標空燃比λTGを設定するECU31内のCPU32にて達成される目標空燃比設定手段と、前記目標空燃比設定手段で設定された目標空燃比中央値λTGC に対し、リッチ側空燃比変動期間TDZR がリーン側空燃比変動期間TDZL より長い周期で、その平均空燃比が前記目標空燃比設定手段により設定された目標空燃比λTGとなるように、前記目標空燃比設定手段で設定された目標空燃比中央値λ TGC 強制的に変動させるECU31内のCPU32にて達成される目標空燃比変動手段と、前記上流側空燃比検出手段で検出された空燃比信号VOX1と前記目標空燃比変動手段で変動された目標空燃比λTGとの偏差に基づき、内燃機関1が360°CA毎の更新速度で燃料噴射弁7の燃料噴射量TAUを算出するECU31内のCPU32にて達成される噴射量演算手段とを具備するものである。
【0048】
したがって、目標空燃比設定手段としてのECU31内のCPU32で下流側空燃比検出手段としてのO2 センサ27による三元触媒13を通過した排気ガスの空燃比λの電圧信号VOX2に応じた目標空燃比λTGが設定され、その目標空燃比λTGが目標空燃比変動手段としてのECU31内のCPU32によってリッチ側空燃比変動期間TDZR がリーン側空燃比変動期間TDZL より長い周期でその平均空燃比により排気ガスの空燃比が理論空燃比λ=1を維持するように空燃比強制変動制御が実行され、噴射量演算手段としてのECU31内のCPU32で上流側空燃比検出手段としてのA/Fセンサ26による内燃機関1から排出された排気ガスの空燃比信号VOX1と変動後の目標空燃比λTGとの偏差に基づき燃料噴射量TAUが算出される。
【0049】
故に、排気ガス成分の触媒表面への吸着・脱離速度が最適化され触媒表面が中立化され、リッチ成分(CO,HC)の排出量を増加させることなくリーン成分(NOx,O2 )の排出量を減少させることができると共に、空燃比強制変動制御における目標空燃比中央値λTGC により排気ガスの空燃比が理論空燃比λ=1に設定されることで制御の応答性を損なうことがない。
【0050】
また、本実施の形態の内燃機関の空燃比制御装置は、ECU31内のCPU32にて達成される目標空燃比変動手段で変動される目標空燃比λTGの変動期間を、リッチ側空燃比変動期間TDZR のリーン側空燃比変動期間TDZL に対する比を2〜4に設定するものである。
【0051】
したがって、目標空燃比変動手段としてのECU31内のCPU32で変動される目標空燃比λTGのリッチ側空燃比変動期間TDZR のリーン側空燃比変動期間TDZL に対する比が2〜4となるようにされる。このため、空燃比強制変動制御における制御性を損なうことなく、また、リッチ成分(CO,HC)の排出量を増加させることなくリーン成分(NOx,O2 )の排出量を減少させることができる。
【0052】
〈実施の形態2〉
本発明の第二の実施の形態にかかる内燃機関の空燃比制御装置を用いた内燃機関とその周辺機器については、上述の第一の実施の形態の概略構成を示す図1と同様でありその詳細な説明を省略する。
【0053】
ここでは、第一の実施の形態との相違点のみについて述べる。
【0054】
第二の実施の形態において、第一の実施の形態との相違点は、空燃比強制変動制御におけるリッチ側空燃比変動期間TDZR 及びリーン側空燃比変動期間TDZL を固定せずに、運転状態検出手段によって検出された内燃機関1の運転状態に基づいて切換えることである。
【0055】
本実施の形態にかかる内燃機関の空燃比制御装置では、内燃機関1の定常運転時(例えば、車両が定速走行中で機関回転数Ne や吸気圧Pm 等がほぼ一定に保持されている状態)の場合と、過渡運転時(例えば、車両が加速中で機関回転数Ne や吸気圧Pm 等が変動している状態)で、且つ空燃比λが理論空燃比λ=1からある程度外れて乱れている場合とでは、リッチ側空燃比強制変動振幅λDZR 、リーン側空燃比強制変動振幅λDZL 、リッチ側空燃比変動期間TDZR 及びリーン側空燃比変動期間TDZL が異なる値とされる。このため、図10のマップに示すように、A/Fセンサ出力値に基づき空燃比強制変動制御における形状変更係数KLDが設定される。なお、図10に示すリッチ側許容量λRL、リーン側許容量λLL及び空燃比強制変動制御における形状変更係数KLDについては後述する。
【0056】
まず、定常運転時と過渡運転時との判定処理について説明する。
【0057】
〈定常・過渡判定ルーチン:図11参照〉
図11は本発明の第二の実施の形態にかかる内燃機関の空燃比制御装置で使用されているECU31内のCPU32における定常・過渡判定ルーチンを示すフローチャートである。
【0058】
ステップS301で、A/Fセンサ26で検出された空燃比λに応じたリニアな空燃比信号VOX1が予め設定されたリッチ側許容量λRLとリーン側許容量λLLとの範囲内に収束しているかが判定される。ステップS301の判定条件が成立し、内燃機関1が定常運転にあるときには、ステップS302に移行し、空燃比強制変動制御における形状変更係数KLDが1とされる。
【0059】
一方、ステップS301の判定条件が成立しないときには、ステップS303に移行し、A/Fセンサ26にて検出された実際の空燃比信号VOX1がリーン側であるかが判定される。ここで、ステップS303の判定条件が成立するときには、排気ガスの空燃比はリーンであるため、リーン成分の排出量が増大する。このため、三元触媒13の触媒表面のリーン成分吸着の抑制効果を大きくし、三元触媒13の触媒表面状態を中立化することで、排気ガス中のリーン成分が効率的に浄化される。即ち、ステップS303の判定条件が成立するときには、ステップS304に移行し、空燃比強制変動制御における形状変更係数KLDが1.2とされる。このように、空燃比強制変動制御の効果を高めるため、形状変更係数KLDが所定値に設定される(1<KLD<1.5が好ましい)。
【0060】
一方、ステップS303の判定条件が成立しないときには、排気ガスの空燃比はリッチであるため、リッチ成分の排出量が増大する。このため、排気ガス中のリッチ成分を三元触媒13で効率良く浄化するため、リーン成分を三元触媒13の触媒表面に吸着させる。したがって、空燃比強制変動制御による三元触媒13の触媒表面のリーン成分吸着を増大させるため、ステップS305に移行し、空燃比強制変動制御における形状変更係数KLDが0.833とされる。このように、空燃比強制変動制御の効果を高めるため、形状変更係数KLDが所定値に設定される(0.667<KLD<1が好ましい)。
【0061】
次に、ステップS302、ステップS304またはステップS305で形状変更係数KLDが設定されたのち、ステップS306に移行し、ROM33から読出されたリッチ側空燃比変動期間TDZR に形状変更係数KLDが乗算されリッチ側空燃比変動期間TDZR とされる(TDZR ←TDZR ×KLD)。次にステップS307に移行して、ROM33から読出されたリーン側空燃比変動期間TDZL が形状変更係数KLDで除算されリーン側空燃比変動期間TDZL とされる(TDZL ←TDZL ÷KLD)。次にステップS308に移行して、ROM33から読出されたリッチ側空燃比強制変動振幅λDZR が形状変更係数KLDで除算されリッチ側空燃比強制変動振幅λDZR とされる(λDZR ←λDZR ÷KLD)。次にステップS309に移行して、ROM33から読出されたリーン側空燃比強制変動振幅λDZL に形状変更係数KLDが乗算されリーン側空燃比強制変動振幅λDZL とされ(λDZL ←λDZL ×KLD)、本ルーチンを終了する。
【0062】
このようにして設定されたリッチ側空燃比変動期間TDZR 、リーン側空燃比変動期間TDZL 、リッチ側空燃比強制変動振幅λDZR 及びリーン側空燃比強制変動振幅λDZL に基づき、第一の実施の形態と同様に、図6に示す処理ルーチンで目標空燃比λTGが設定され、適切な空燃比強制変動制御が実行され、NOx 排出量が低減される。
【0063】
このように、本実施の形態の内燃機関の空燃比制御装置は、更に、内燃機関1の運転状態を検出するECU31内のCPU32にて達成される運転状態検出手段を具備し、前記運転状態検出手段で内燃機関1が過渡状態にあると検出され、且つO2 センサ27からなる下流側空燃比検出手段の電圧信号VOX2がリーン側であるときには、ECU31内のCPU32にて達成される目標空燃比変動手段で変動される目標空燃比λTGのリッチ側空燃比変動期間TDZR をリーン側空燃比変動期間TDZL より長い周期に設定するものである。
【0064】
したがって、運転状態検出手段としてのECU31内のCPU32で内燃機関1が過渡状態であると検出され、且つ下流側空燃比検出手段としてのO2 センサでリーン側であると検出されると目標空燃比変動手段としてのECU31内のCPU32による目標空燃比λTGのリッチ側空燃比変動期間TDZR がリーン側空燃比変動期間TDZL に対して長い周期となるように設定される。このため、内燃機関1の過渡状態における排気ガス成分の触媒表面への吸着・脱離速度が最適化され触媒表面が中立化され、リッチ成分(CO,HC)の排出量を増加させることなくリーン成分(NOx,O2 )の排出量を減少させることができる。
【0065】
〈実施の形態3〉
本発明の第三の実施の形態にかかる内燃機関の空燃比制御装置を用いた内燃機関とその周辺機器については、上述の第一の実施の形態の概略構成を示す図1と同様でありその詳細な説明を省略する。
【0066】
ここでは、第一の実施の形態との相違点のみについて述べる。
【0067】
第三の実施の形態において、第一の実施の形態との相違点は、空燃比強制変動制御におけるリッチ側空燃比変動期間TDZR 及びリーン側空燃比変動期間TDZL を固定せずに、排気ガスの流量に応じて切換えることである。
【0068】
本実施の形態にかかる内燃機関の空燃比制御装置では、排気ガスの流量が増大すると、排気ガス成分が触媒表面へ拡散する拡散距離が短くなり、触媒表面のガスの吸着・脱離が促進され、更に、三元触媒13を通過する排気ガスの総モル数が増加される。このように、排気ガスの流量に基づき触媒表面のリーン成分の吸着量が変動されるため、排気ガスの流量を検出して空燃比強制変動制御を実行することが必要である。
【0069】
ここで、図12に示すように、空燃比強制変動制御における周期(リッチ側空燃比変動期間TDZR +リーン側空燃比変動期間TDZL )の変動に伴い、リーン成分吸着量減少能力が変化される。したがって、図13に示すような、機関回転数Ne と吸気圧Pm との二次元マップから算出される排気ガス流量に対して、空燃比強制変動制御における適切な周期となるように空燃比周期補正係数KFBが図14に示すように設定される。
【0070】
〈空燃比変動期間設定ルーチン:図15参照〉
図15は本発明の第三の実施の形態にかかる内燃機関の空燃比制御装置で使用されているECU31内のCPU32における空燃比変動期間設定ルーチンを示すフローチャートである。
【0071】
まず、ステップS401で、図14のマップに基づき、排気ガス流量から空燃比周期補正係数KFBが設定される。次にステップS402に移行して、三元触媒13の劣化を示す触媒劣化補正係数KAGが設定される。本実施の形態においては、触媒劣化度を考慮しないためKAG=1とされる。次にステップS403に移行して、ステップS401で設定された空燃比周期補正係数KFBにステップS402で設定された触媒劣化補正係数KAGが乗算され空燃比周期補正係数KFBとされる(KFB←KFB×KAG)。
【0072】
次にステップS404に移行して、ROM33から読出されたリッチ側空燃比変動期間TDZR に空燃比周期補正係数KFBが乗算されリッチ側空燃比変動期間TDZR とされる(TDZR ←TDZR ×KFB)。そして、ステップS405に移行し、ROM33から読出されたリーン側空燃比変動期間TDZL に空燃比周期補正係数KFBが乗算されリーン側空燃比変動期間TDZL とされ(TDZL ←TDZL ×KFB)、本ルーチンを終了する。
【0073】
上述のように補正されたリッチ側空燃比変動期間TDZR 及びリーン側空燃比変動期間TDZL に基づき、第一の実施の形態と同様に、図6に示す処理ルーチンで目標空燃比λTGが設定され、適切な空燃比強制変動制御が実行され、NOx 排出量が低減される。
【0074】
このように、本実施の形態の内燃機関の空燃比制御装置は、ECU31内のCPU32で達成される目標空燃比変動手段で変動される目標空燃比λTGの周期は、排気ガスの流量が多いほど短く設定するものである。
【0075】
したがって、目標空燃比変動手段としてのECU31内のCPU32で変動される目標空燃比λTGの周期が、排気ガスの流量が多いほど短くされる。このため、排気ガスの流量の多少に応じた排気ガス成分の触媒表面への吸着・脱離速度が最適化され触媒表面が中立化され、リッチ成分(CO,HC)の排出量を増加させることなくリーン成分(NOx,O2 )の排出量を減少させることができる。
【0076】
〈実施の形態4〉
本発明の第四の実施の形態にかかる内燃機関の空燃比制御装置を用いた内燃機関とその周辺機器については、上述の第一の実施の形態の概略構成を示す図1と同様でありその詳細な説明を省略する。
【0077】
ここでは、第一の実施の形態との相違点のみについて述べる。
【0078】
第四の実施の形態において、第一の実施の形態との相違点は、空燃比強制変動制御におけるリッチ側空燃比変動期間TDZR 及びリーン側空燃比変動期間TDZL を固定せずに、三元触媒13の触媒温度に応じて切換えることである。
【0079】
図16に示すように、三元触媒13の表面に吸着するリーン成分の吸着量は三元触媒13の触媒温度の変化に伴って変動するため、そのときの触媒表面のリーン成分吸着量に見合った空燃比強制変動制御を実行することがNOx 排出量の低減に有効である。
【0080】
ここで、図12に示すように、空燃比強制変動制御における周期(リッチ側空燃比変動期間TDZR +リーン側空燃比変動期間TDZL )の変動に伴い、リーン成分の吸着量を減少させる能力が変動される。したがって、三元触媒13を通過し温度センサ28によって測定された排気ガスの温度をそのときの触媒温度に等しいと見做し、その触媒温度に対する空燃比周期補正係数KFBが図17に示すように設定される。
【0081】
〈空燃比変動期間設定ルーチン:図15参照〉
図15は本発明の第四の実施の形態にかかる内燃機関の空燃比制御装置で使用されているECU31内のCPU32における空燃比変動期間設定ルーチンを示すフローチャートである。
【0082】
まず、ステップS401で、図17のマップに基づき、触媒温度から空燃比周期補正係数KFBが設定される。次にステップS402に移行して、三元触媒13の劣化を示す触媒劣化補正係数KAGが設定される。本実施の形態においては、触媒劣化度を考慮しないためKAG=1とされる。次にステップS403に移行して、ステップS401で設定された空燃比周期補正係数KFBにステップS402で設定された触媒劣化補正係数KAGが乗算され空燃比周期補正係数KFBとされる(KFB←KFB×KAG)。
【0083】
次にステップS404に移行して、ROM33から読出されたリッチ側空燃比変動期間TDZR に空燃比周期補正係数KFBが乗算されリッチ側空燃比変動期間TDZR とされる(TDZR ←TDZR ×KFB)。そして、ステップS405に移行し、ROM33から読出されたリーン側空燃比変動期間TDZL に空燃比周期補正係数KFBが乗算されリーン側空燃比変動期間TDZL とされ(TDZL ←TDZL ×KFB)、本ルーチンを終了する。
【0084】
上述のように補正されたリッチ側空燃比変動期間TDZR 及びリーン側空燃比変動期間TDZL に基づき、上述の第一の実施の形態と同様に、図6に示す処理ルーチンで目標空燃比λTGが設定され、適切な空燃比強制変動制御が実行され、NOx 排出量が低減される。
【0085】
このように、本実施の形態の内燃機関の空燃比制御装置は、更に、三元触媒13の触媒温度に相当する排気ガスの温度Thxを検出する温度センサ28からなる温度検出手段を具備し、ECU31内のCPU32にて達成される目標空燃比変動手段で変動される目標空燃比λTGの周期は、前記温度検出手段で検出された三元触媒13の触媒温度と見做す排気ガスの温度Thxが高いほど長く設定するものである。
【0086】
したがって、温度検出手段としての温度センサ28で検出された触媒の温度に相当する排気ガスの温度Thxが高いほど目標空燃比変動手段としてのECU31内のCPU32で変動される目標空燃比λTGの周期が長くされる。このため、触媒の温度と見做す排気ガスの温度Thxの高低に応じた排気ガス成分の触媒表面への吸着・脱離速度が最適化され触媒表面が中立化され、リッチ成分(CO,HC)の排出量を増加させることなくリーン成分(NOx,O2 )の排出量を減少させることができる。
【0087】
〈実施の形態5〉
本発明の第五の実施の形態にかかる内燃機関の空燃比制御装置を用いた内燃機関とその周辺機器については、上述の第一の実施の形態の概略構成を示す図1と同様でありその詳細な説明を省略する。
【0088】
ここでは、第一の実施の形態との相違点のみについて述べる。
【0089】
第五の実施の形態において、第一の実施の形態との相違点は、空燃比強制変動制御におけるリッチ側空燃比変動期間TDZR 及びリーン側空燃比変動期間TDZL を固定せずに、三元触媒13の触媒劣化度に応じて切換えることである。
【0090】
三元触媒13が劣化すると触媒の吸着点が減少するため、触媒表面の排気ガスの吸着量が減少する。したがって、劣化した触媒へのリーン成分の吸着量は減少することとなり、触媒の劣化度に見合った空燃比強制変動制御を実行することがNOx 排出量の低減に有効である。
【0091】
三元触媒13の劣化判定の一例を以下に挙げる。上述したように、触媒が劣化すると、触媒表面の排気ガスの吸着量が減少し、触媒の下流側のO2 センサ27の応答速度が速くなる。したがって、例えば、三元触媒13の上流側に新たに触媒劣化判定用のO2 センサを設けることで、この三元触媒13の上流側の触媒劣化判定用のO2 センサと三元触媒13の下流側のO2 センサとの応答性の違いに基づき三元触媒13の触媒劣化度が判定できる。
【0092】
ここで、図12に示すように、空燃比強制変動制御における周期(リッチ側空燃比変動期間TDZR +リーン側空燃比変動期間TDZL )の変動に伴い、リーン成分の吸着量を減少させる能力が変動される。したがって、三元触媒13の触媒劣化度に対して、触媒劣化補正係数KAG(1≦KAG)が図18に示すように設定される。
【0093】
〈空燃比変動期間設定ルーチン:図15参照〉
図15は本発明の第五の実施の形態にかかる内燃機関の空燃比制御装置で使用されているECU31内のCPU32における空燃比変動期間設定ルーチンを示すフローチャートである。
【0094】
まず、ステップS401で、空燃比周期補正係数KFBがKFB=1または第三の実施の形態で設定された空燃比周期補正係数KFBまたは第四の実施の形態で設定された空燃比周期補正係数KFBに設定される。次にステップS402に移行して、三元触媒13の劣化を示す触媒劣化補正係数KAGが図18に示すように設定される。次にステップS403に移行して、ステップS401で設定された空燃比周期補正係数KFBにステップS402で設定された触媒劣化補正係数KAGが乗算され空燃比周期補正係数KFBとされる(KFB←KFB×KAG)。
【0095】
次にステップS404に移行して、ROM33から読出されたリッチ側空燃比変動期間TDZR に空燃比周期補正係数KFBが乗算されリッチ側空燃比変動期間TDZR とされる(TDZR ←TDZR ×KFB)。そして、ステップS405に移行し、ROM33から読出されたリーン側空燃比変動期間TDZL に空燃比周期補正係数KFBが乗算されリーン側空燃比変動期間TDZL とされ(TDZL ←TDZL ×KFB)、本ルーチンを終了する。
【0096】
上述のように補正されたリッチ側空燃比変動期間TDZR 及びリーン側空燃比変動期間TDZL に基づき、上述の第二の実施の形態または第三の実施の形態または第四の実施の形態と同様に、図6に示す処理ルーチンで目標空燃比λTGが設定され、適切な空燃比強制変動制御が実行され、NOx 排出量が低減される。
【0097】
このように、本実施の形態の内燃機関の空燃比制御装置は、更に、三元触媒13の劣化状態を検出するECU31内のCPU32にて達成される触媒劣化検出手段を具備し、ECU31内のCPU32にて達成される目標空燃比変動手段で変動される目標空燃比λTGの周期は、前記触媒劣化検出手段で検出された三元触媒13の劣化状態が進行しているほど長く設定するものである。
【0098】
したがって、触媒劣化検出手段としてのECU31内のCPU32で検出された三元触媒13の劣化状態が進行しているほど目標空燃比変動手段としてのECU31内のCPU32で変動される目標空燃比λTGの周期が長くされる。このため、三元触媒13の劣化状態に応じた排気ガス成分の触媒表面への吸着・脱離速度が最適化され触媒表面が中立化され、リッチ成分(CO,HC)の排出量を増加させることなくリーン成分(NOx,O2 )の排出量を減少させることができる。
【図面の簡単な説明】
【図1】 図1は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置を用いた内燃機関とその周辺機器を示す概略構成図である。
【図2】 図2は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置で使用されているECU内のCPUにおける燃料噴射量設定の処理手順を示すフローチャートである。
【図3】 図3は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置における空燃比と三元触媒の浄化率ηとの関係を示す特性図である。
【図4】 図4は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置における空燃比強制変動制御を示すタイムチャートである。
【図5】 図5は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置におけるリッチ側空燃比変動期間のリーン側空燃比変動期間に対する比と触媒表面のリーン成分吸着量との関係を示す特性図である。
【図6】 図6は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置で使用されているECU内のCPUにおける目標空燃比設定の処理手順を示すフローチャートである。
【図7】 図7は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置の空燃比強制変動制御におけるO2 センサ出力と目標空燃比中央値との遷移状態を示すタイムチャートである。
【図8】 図8は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置の空燃比強制変動制御におけるO2 センサ出力と目標空燃比との遷移状態を示すタイムチャートである。
【図9】 図9は本発明の第一の実施の形態にかかる内燃機関の空燃比制御装置で用いられるO2 センサの特性を説明するためのタイムチャートである。
【図10】 図10は本発明の第二の実施の形態にかかる内燃機関の空燃比制御装置で用いられるA/Fセンサ出力値から形状変更係数を求めるマップである。
【図11】 図11は本発明の第二の実施の形態にかかる内燃機関の空燃比制御装置で使用されているECU内のCPUにおける定常・過渡判定の処理手順を示すフローチャートである。
【図12】 図12は本発明の第三の実施の形態にかかる内燃機関の空燃比制御装置の空燃比強制変動制御における周期とリーン成分吸着量減少能力との関係を示す特性図である。
【図13】 図13は本発明の第三の実施の形態にかかる内燃機関の空燃比制御装置で用いられる機関回転数と吸気圧とをパラメータとして排気ガス流量を求めるマップである。
【図14】 図14は本発明の第三の実施の形態にかかる内燃機関の空燃比制御装置で用いられる排気ガス流量から空燃比周期補正係数を求めるマップである。
【図15】 図15は本発明の第三の実施の形態または第四の実施の形態または第五の実施の形態にかかる内燃機関の空燃比制御装置で使用されているECU内のCPUにおける空燃比変動期間設定の処理手順を示すフローチャートである。
【図16】 図16は本発明の第四の実施の形態にかかる内燃機関の空燃比制御装置で用いられる触媒温度とリーン成分吸着量との関係を示す特性図である。
【図17】 図17は本発明の第四の実施の形態にかかる内燃機関の空燃比制御装置で用いられる触媒温度から空燃比周期補正係数を求めるマップである。
【図18】 図18は本発明の第五の実施の形態にかかる内燃機関の空燃比制御装置で用いられる触媒劣化度から触媒劣化補正係数を求めるマップである。
【図19】 図19は従来の内燃機関の空燃比制御装置の空燃比制御におけるO2 センサ出力と目標空燃比との遷移状態を示すタイムチャートである。
【図20】 図20は従来の内燃機関の空燃比制御装置の空燃比制御におけるスパイク発生時の触媒下流のO2 センサの挙動と排出ガス濃度との関係を示すタイムチャートである。
【図21】 図21は従来の他の内燃機関の空燃比制御装置の空燃比制御における制御目標値の設定を説明するタイムチャートである。
【図22】 図22は従来の空気過剰率とO2 センサ出力との関係を示す特性図である。
【図23】 図23は従来の内燃機関の空燃比制御装置の空燃比制御を示すタイムチャートである。
【符号の説明】
1 内燃機関
7 燃料噴射弁
13 三元触媒
26 A/Fセンサ(上流側空燃比検出手段)
27 O2 センサ(下流側空燃比検出手段)
31 ECU(電子制御装置)
32 CPU
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine, and in particular, is provided with sensors for detecting the air-fuel ratio of exhaust gas on the upstream side and downstream side of the catalyst, and the air-fuel ratio based on the detection value of the upstream sensor The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine that performs air-fuel ratio feedback control based on a detection value of a downstream sensor in addition to feedback control.
[0002]
[Prior art]
Conventionally, as a prior art document related to an air-fuel ratio control apparatus for an internal combustion engine, one disclosed in JP-A-3-185244 is known. FIG. 19 shows the O / F ratio control.23 is a time chart showing sensor output and target air-fuel ratio λTG.
[0003]
In this device, an A / F sensor that outputs a linear air-fuel ratio signal corresponding to the air-fuel ratio of the exhaust gas discharged from the internal combustion engine is provided upstream of the catalyst, and the air-fuel ratio of the exhaust gas is provided downstream of the catalyst. Outputs a voltage signal according to whether the air / fuel ratio is rich or lean with respect to the theoretical air / fuel ratio.2A sensor is provided. This O2Based on the sensor output, it is determined whether the air-fuel ratio of the exhaust gas is changing to the rich side or the lean side with the stoichiometric air-fuel ratio as the boundary, and the target air-fuel ratio median value λTGC is set to the opposite side of the fluctuation direction. The target air-fuel ratio λTG is set by adding the target air-fuel ratio fluctuation to the above. Then, an air-fuel ratio correction coefficient is calculated based on the deviation between the corrected target air-fuel ratio λTG and the actual air-fuel ratio detected by the A / F sensor so that the actual air-fuel ratio converges to the theoretical air-fuel ratio. It is configured.
[0004]
[Problems to be solved by the invention]
However, in the above-described air-fuel ratio control, even if the air-fuel ratio of the exhaust gas is completely the stoichiometric air-fuel ratio, CO (one exhaust gas component when the air-fuel ratio is on the rich side) (one exhaust gas component) NOx (nitrogen oxides) and O which are carbon oxides) and HC (hydrocarbons) and lean components (exhaust gas components when the air-fuel ratio is on the lean side)2Since the adsorption rate and desorption rate of (oxygen) on the catalyst surface are different, the catalyst surface has a lean component of NOx (nitrogen oxide) and O2A small amount of (oxygen) is adsorbed. For this reason, as shown in FIG. 20, there is a difference in the reaction behavior of the catalyst due to instantaneous air-fuel ratio fluctuations (hereinafter simply referred to as “spikes”) caused by load fluctuations in the internal combustion engine. That is, since rich spikes (rich side spikes) are relatively easy to absorb, as shown in FIG.2The effects of rich spikes are unlikely to appear in the sensor output, and the exhaust gas concentration is not disturbed. On the other hand, since lean spikes (lean side spikes) are difficult to absorb, as shown in FIG.2The effect of the lean spike is likely to appear in the sensor output, and as a result, the lean component NOx is relatively easily discharged in the exhaust gas concentration.
[0005]
Therefore, an air-fuel ratio control device for an internal combustion engine that suppresses the amount of NOx emission in the exhaust gas is known as disclosed in JP-A-6-264798. FIG. 21 shows an oxygen detection method for detecting the oxygen concentration according to the operating state in this air-fuel ratio control.2It is a time chart which shows the output state of a sensor and the setting state of control target value VOX2TG.
[0006]
In this case, similarly to the above-described configuration, the A / F sensor is upstream of the catalyst, and the O / F is downstream.2Provide a sensor, O2Based on the output of the sensor, it is determined whether the air-fuel ratio of the exhaust gas is changing to the rich side or the lean side with the theoretical air-fuel ratio as a boundary, and the target air-fuel ratio is set to the opposite side of the changing direction. The air-fuel ratio correction coefficient is calculated based on the deviation between the corrected target air-fuel ratio and the actual air-fuel ratio detected by the A / F sensor, and the actual air-fuel ratio is converged to the theoretical air-fuel ratio. Has been. Furthermore, in order to reduce the discharge amount of lean components, O2The control target value VOX2TG of the sensor is varied.
[0007]
However, as shown in FIG. 22, O provided on the downstream side of the catalyst.2The sensitivity of the sensor output is high in the vicinity of the stoichiometric air-fuel ratio where the excess air ratio λA is 1.0, but the sensitivity is lowered only by moving a little away from the stoichiometric air-fuel ratio. Therefore, the control responsiveness is deteriorated by changing the control target value VOX2TG from the theoretical air-fuel ratio.
[0008]
Further, an air-fuel ratio control device for an internal combustion engine that increases the purification efficiency of the catalyst and suppresses the emission amount of harmful components in the exhaust gas is disclosed in Japanese Patent Publication No. 7-33793. FIG. 23 is a time chart showing a setting state of the air-fuel ratio median value (KBB) c when the air-fuel ratio is forcibly changed in the air-fuel ratio control.
[0009]
In this case, O provided on the downstream side of the catalyst.2The ratio (ratio) between the rich time TKR and the lean time TKL in the air-fuel ratio forced fluctuation control is controlled from the sensor output, that is, the air-fuel ratio median value (KBB) c is varied, and the most purification efficiency of the catalyst The air-fuel ratio is controlled in a high region. However, as mentioned above, O2The sensitivity of the sensor is high in the vicinity of the stoichiometric air-fuel ratio, but the sensitivity becomes dull only by moving a little away from the stoichiometric air-fuel ratio. Therefore, if the air-fuel ratio median value is changed by the air-fuel ratio forced fluctuation control to set the air-fuel ratio with the highest NOx purification rate, the control responsiveness deteriorates.
[0010]
Accordingly, the present invention has been made to solve such a problem. The internal combustion engine reduces the discharge amount of the lean component without increasing the discharge amount of the rich component and does not impair the responsiveness in the air-fuel ratio control. It is an object to provide an air-fuel ratio control apparatus.
[0011]
[Means for Solving the Problems]
  According to the air-fuel ratio control apparatus for an internal combustion engine of claim 1, the target air-fuel ratio is set by the target air-fuel ratio setting means according to the detection signal of the air-fuel ratio of the exhaust gas that has passed through the catalyst by the downstream air-fuel ratio detection means, The average air-fuel ratio is maintained at the stoichiometric air-fuel ratio so that the target air-fuel ratio is longer than the lean-side air-fuel ratio fluctuation period by the target air-fuel ratio fluctuation means. The fuel injection amount is calculated based on the deviation between the air-fuel ratio of the exhaust gas discharged from the internal combustion engine by the upstream air-fuel ratio detection means and the target air-fuel ratio after the fluctuation by the injection amount calculation means. Is done. As a result, the adsorption / desorption rate of the exhaust gas component to the catalyst surface is optimized, the catalyst surface is neutralized, and the discharge amount of the lean component can be reduced without increasing the discharge amount of the rich component,Ensure that the air-fuel ratio of the exhaust gas becomes the stoichiometric air-fuel ratioSet the target median air-fuel ratio for forced air-fuel ratio controlIsByAir-fuel ratioThe effect of not impairing control responsiveness can be obtained.
[0012]
In the air-fuel ratio control apparatus for an internal combustion engine according to claim 2, the ratio of the variation period of the target air-fuel ratio that is varied by the target air-fuel ratio variation means of claim 1 to the rich side of the variation period to the lean side is 2-4. To be. As a result, it is possible to reduce the lean component discharge amount without impairing the controllability in the air-fuel ratio forced variation control and without increasing the rich component discharge amount.
[0013]
In the air-fuel ratio control apparatus for an internal combustion engine according to claim 3, in addition to the configuration of claim 1, the operating state detection means detects that the internal combustion engine is in a transient state, and the downstream air-fuel ratio detection means is on the lean side. Is detected, the variation period of the target air-fuel ratio to the rich side by the target air-fuel ratio variation means is set to be longer than the variation period of the lean side. This optimizes the adsorption / desorption rate of the exhaust gas component to the catalyst surface in the transient state of the internal combustion engine, neutralizes the catalyst surface, and reduces the discharge amount of the lean component without increasing the discharge amount of the rich component The effect that it can be made is acquired.
[0014]
In the air-fuel ratio control apparatus for an internal combustion engine according to claim 4, the cycle of the target air-fuel ratio that is changed by the target air-fuel ratio changing means according to claim 3 is shortened as the flow rate of the exhaust gas increases. This optimizes the adsorption / desorption rate of exhaust gas components to the catalyst surface according to the flow rate of exhaust gas, neutralizes the catalyst surface, and discharges lean components without increasing rich component emissions. The effect that the amount can be reduced is obtained.
[0015]
In the air-fuel ratio control apparatus for an internal combustion engine according to claim 5, in addition to the configuration of claim 3, the cycle of the target air-fuel ratio that is fluctuated by the target air-fuel ratio fluctuation means increases as the temperature of the catalyst detected by the temperature detection means increases. Made longer. This optimizes the adsorption / desorption rate of exhaust gas components to the catalyst surface according to the catalyst temperature level, neutralizes the catalyst surface, and discharges lean components without increasing rich component emissions. Can be reduced.
[0016]
In the air-fuel ratio control apparatus for an internal combustion engine according to a sixth aspect, in addition to the configuration of any one of the third to fifth aspects, the target sky increases as the deterioration state of the catalyst detected by the catalyst deterioration detection means progresses. The cycle of the target air-fuel ratio that is changed by the fuel-fuel ratio changing means is lengthened. This optimizes the adsorption / desorption rate of the exhaust gas component to the catalyst surface according to the deterioration state of the catalyst, neutralizes the catalyst surface, and reduces the discharge amount of the lean component without increasing the discharge amount of the rich component. The effect that it can reduce is acquired.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on specific embodiments.
[0018]
<Embodiment 1>
FIG. 1 is a schematic configuration diagram showing an internal combustion engine and peripheral devices using the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment of the present invention.
[0019]
In FIG. 1, an internal combustion engine 1 is configured as a 4-cylinder 4-cycle spark ignition type, and its intake air passes from an upstream side through an air cleaner 2, an intake pipe 3, a throttle valve 4, a surge tank 5, and an intake manifold 6. It is mixed with the fuel injected from each fuel injection valve 7 in the intake manifold 6 and distributed and supplied to each cylinder as an air-fuel mixture having a predetermined air-fuel ratio. Further, the high voltage supplied from the ignition circuit 9 is distributed and supplied to the ignition plug 8 provided in each cylinder of the internal combustion engine 1 by the distributor 10, and the air-fuel mixture of each cylinder is ignited at a predetermined timing. The exhaust gas after combustion passes through the exhaust manifold 11 and the exhaust pipe 12, and is provided in the exhaust pipe 12, in a three-way catalyst 13 carrying a catalyst component such as platinum or rhodium and an additive such as cerium or lanthanum. Harmful components such as CO (carbon monoxide), HC (hydrocarbon) and NOx (nitrogen oxide) are purified and discharged into the atmosphere.
[0020]
The intake pipe 3 is provided with an intake air temperature sensor 21 and an intake air pressure sensor 22. The intake air temperature sensor 21 detects the intake air temperature Tam, and the intake air pressure sensor 22 detects the intake air pressure Pm on the downstream side of the throttle valve 4. The throttle valve 4 is provided with a throttle sensor 23 for detecting the throttle opening TH, and the throttle sensor 23 detects that the throttle valve 4 is almost fully closed together with an analog signal corresponding to the throttle opening TH. The on / off signal from the idle switch is output. Further, a water temperature sensor 24 is provided in the cylinder block of the internal combustion engine 1, and this water temperature sensor 24 detects the cooling water temperature Thw in the internal combustion engine 1. The distributor 10 is provided with a rotational speed sensor 25 for detecting the engine rotational speed Ne of the internal combustion engine 1. The rotational speed sensor 25 outputs a pulse signal every two revolutions of the internal combustion engine 1, that is, every 720 ° CA (crank angle). Output 24 times. Further, an A / F sensor 26 that outputs a linear air-fuel ratio signal VOX1 corresponding to the air-fuel ratio λ of the exhaust gas exhausted from the internal combustion engine 1 is provided on the upstream side of the three-way catalyst 13 in the exhaust pipe 12. On the downstream side of the three-way catalyst 13, a voltage signal VOX2 is output according to whether the air-fuel ratio λ of the exhaust gas is rich or lean with respect to the theoretical air-fuel ratio λ = 1.2A temperature sensor 28 for detecting the temperature Thx of the exhaust gas that has passed through the sensor 27 and the three-way catalyst 13 is provided.
[0021]
An ECU (Electronic Control Unit) 31 for controlling the operating state of the internal combustion engine 1 is mainly composed of a CPU 32 as a well-known central processing unit, a ROM 33 storing a control program, a RAM 34 storing various data, a backup RAM 35 and the like. Are connected to an input port 36 for inputting a detection signal of each sensor and an output port 37 for outputting a control signal to each actuator via a bus 38. The ECU 31 inputs the intake air temperature Tam, the intake air pressure Pm, the throttle opening TH, the cooling water temperature Thw, the engine speed Ne, the air-fuel ratio signal VOX1, the voltage signal VOX2, etc. from each sensor via the input port 36. Based on these values, the fuel injection amount TAU and the ignition timing Ig are calculated, and control signals are output to the fuel injection valve 7 and the ignition circuit 9 via the output port 37, respectively.
[0022]
Next, the operation of the air-fuel ratio control apparatus for an internal combustion engine of the present embodiment configured as described above will be described.
[0023]
<Fuel injection amount TAU setting routine: see FIG. 2>
FIG. 2 is a flowchart showing a fuel injection amount setting routine in the CPU 32 in the ECU 31 used in the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment of the present invention. This fuel injection amount calculation routine is executed every 360 ° CA in synchronization with the rotation of the internal combustion engine 1.
[0024]
First, in step S101, the basic fuel injection amount TP is calculated based on the intake pressure Pm, the engine speed Ne, and the like. Next, the routine proceeds to step S102, where it is determined whether the feedback condition for the air-fuel ratio λ is satisfied. Here, as is well known, the feedback condition is satisfied when the coolant temperature Thw is equal to or higher than a predetermined value and is not in a high rotation / high load state. When the feedback condition for the air-fuel ratio λ is satisfied in step S102, the process proceeds to step S103, where the target air-fuel ratio λTG is set (details will be described later). Next, the process proceeds to step S104, and after the air-fuel ratio correction coefficient FAF is set so that the air-fuel ratio λ becomes the target air-fuel ratio λTG, the process proceeds to step S105. That is, in step S104, the air-fuel ratio correction coefficient FAF is set according to the target air-fuel ratio λTG and the air-fuel ratio signal VOX1 detected by the A / F sensor 26. On the other hand, when the feedback condition of the air-fuel ratio λ is not satisfied in step S102, the process proceeds to step S106, the air-fuel ratio correction coefficient FAF is set to 1.0, and the process proceeds to step S105. In step S105, as shown in the following equation (1), the fuel injection amount TAU is set from the basic fuel injection amount TP, the air-fuel ratio correction coefficient FAF, and other correction coefficients FALL, and this routine is finished.
[0025]
[Expression 1]
TAU = TP × FAF × FALL (1)
A control signal based on the fuel injection amount TAU thus set is output to the fuel injection valve 7 to control the valve opening time, that is, the actual fuel injection amount, and as a result, the air-fuel mixture becomes the target air-fuel ratio λTG. Adjusted.
[0026]
Next, the process for setting the target air-fuel ratio λTG (step S103 in FIG. 2) will be described in detail.
[0027]
First, O2Based on the voltage signal VOX2 of the sensor 27, the target air-fuel ratio median value λTGC is set so as to correct the deviation between the actual air-fuel ratio and the air-fuel ratio signal VOX1 of the A / F sensor 26. Specifically, O2When the voltage signal VOX2 of the sensor 27 is on the rich side, the target air-fuel ratio median value λTGC is set to the lean side by a predetermined value λM. Here, the characteristic of the purification rate η of the three-way catalyst 13 with respect to the air-fuel ratio λ is controlled within the range of the catalyst window W (shaded portion in FIG. 3) as shown in FIG. The catalyst window W is about 0.2 (0.2 A / F) in terms of A / F, and the predetermined value λM is set smaller than this range.
[0028]
Here, the rich component (CO, HC) is adsorbed on the surface of the three-way catalyst 13 when the exhaust gas is rich, and the lean component (NOx, O when the exhaust gas is lean).2) Is adsorbed. As described above, the adsorption and desorption of the rich component and the lean component are alternately repeated on the surface of the three-way catalyst 13. From the viewpoint of physical properties, in general, there is almost no difference between the adsorption rate of the rich component and the adsorption rate of the lean component in the operating temperature range of the three-way catalyst 13, but the desorption rate is about 1 for the rich component compared to the lean component. .5 times faster. For this reason, the surface of the three-way catalyst 13 apparently increases the adsorption of lean components every time the adsorption / desorption is repeated.
[0029]
In the air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment, the control for forcibly changing the target air-fuel ratio λTG as described below is executed in order to suppress the increase in the lean component adsorption. .
[0030]
With respect to the set target air-fuel ratio median λTGC, as shown in FIG. 4, within a range of the catalyst window W, a predetermined air-fuel ratio amplitude (rich side air-fuel ratio forced fluctuation amplitude λDZR, lean side air-fuel ratio forced fluctuation amplitude The target air-fuel ratio λTG is changed in a predetermined cycle (rich side air-fuel ratio fluctuation period TDZR, lean side air-fuel ratio fluctuation period TDZL) at λDZL). At this time, the rich-side air-fuel ratio forced fluctuation amplitude λDZR, the lean-side air-fuel ratio forced fluctuation amplitude λDZL, the rich-side air-fuel ratio so that the conditional expression (2) in which the center (average air-fuel ratio) of the air-fuel ratio forced fluctuation is λTGC is satisfied. A fuel ratio fluctuation period TDZR and a lean side air-fuel ratio fluctuation period TDZL are set.
[0031]
[Expression 2]
λDZR × TDZR = λDZL × TDZL (2)
Here, the rich side air-fuel ratio fluctuation period TDZR and the lean side air-fuel ratio fluctuation period TDZL have a relationship as shown in FIG. That is, as the rich side air-fuel ratio fluctuation period TDZR becomes longer than the lean side air-fuel ratio fluctuation period TDZL, the lean component adsorption amount on the catalyst surface decreases, but the rich side air-fuel ratio fluctuation period TDZR / lean The controllability deteriorates from the point where the side air-fuel ratio fluctuation period TDZL) exceeds 4, and conversely, the lean component adsorption amount on the catalyst surface starts to increase. Therefore, it is desirable that (rich side air-fuel ratio fluctuation period TDZR / lean side air-fuel ratio fluctuation period TDZL) = 2-4.
[0032]
In the present embodiment, the rich side air-fuel ratio forced fluctuation amplitude λDZR is 0.05 A / F, the lean side air-fuel ratio forced fluctuation amplitude λDZL is 0.1 A / F, the rich side air-fuel ratio fluctuation period TDZR is 0.5 seconds, The lean side air-fuel ratio fluctuation period TDZL was performed at 0.25 seconds.
[0033]
In this embodiment, a rectangular wave is used as the fluctuation waveform of the air-fuel ratio forced fluctuation. However, as a method of maintaining the control center at the theoretical air-fuel ratio and forcibly changing the air-fuel ratio, the fluctuation waveform is a triangular wave or a sine wave. Needless to say, the present invention can also be applied.
[0034]
Next, the target air-fuel ratio setting process will be described.
[0035]
<Target air-fuel ratio λTG setting routine: See FIG. 6>
FIG. 6 is a flowchart showing a target air-fuel ratio setting routine in the CPU 32 in the ECU 31 used in the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment of the present invention.
[0036]
In step S201, O2It is determined whether the voltage signal VOX2 from the sensor 27 is on the rich side. When the determination condition of step S201 is satisfied, the routine proceeds to step S202, where the predetermined value λM is added to the target air-fuel ratio median λTGC, that is, the target air-fuel ratio median λTGC is set to the lean side. On the other hand, when the determination condition in step S201 is not satisfied, the routine proceeds to step S203, where the predetermined value λM is subtracted from the target air-fuel ratio median value λTGC, that is, the target air-fuel ratio median value λTGC is set to the rich side.
[0037]
After the process of step S202 or step S203, the process proceeds to step S204, and it is determined whether or not the rich side air-fuel ratio forced fluctuation flag XDZR = 1 is set. When the determination condition in step S204 is satisfied, the target air-fuel ratio λTG is set to the rich side with respect to the target air-fuel ratio median value λTGC, the process proceeds to step S205, and the air-fuel ratio fluctuation period counter CDZA is changed to the rich-side air-fuel ratio fluctuation. It is determined whether or not the time period is TDZR or longer. In this case, the air-fuel ratio fluctuation period counter CDZA counts the rich air-fuel ratio fluctuation period. When the determination condition in step S205 is not satisfied and the air-fuel ratio fluctuation period counter CDZA is less than the rich side air-fuel ratio fluctuation period TDZR, the process proceeds to step S206, and the air-fuel ratio fluctuation period counter CDZA is incremented by “1”.
[0038]
If the determination condition in step S205 is satisfied and the air-fuel ratio fluctuation period counter CDZA is equal to or greater than the rich side air-fuel ratio fluctuation period TDZR, the process proceeds to step S207, and the air-fuel ratio fluctuation period counter CDZA = 0 is reset. Next, the routine proceeds to step S208, where the rich side air-fuel ratio forced fluctuation flag XDZR = 0 is reset. Next, the routine proceeds to step S209, where the lean side air-fuel ratio forced fluctuation amplitude λDZL is set, and at step S210, the lean side air-fuel ratio fluctuation period TDZL is set.
[0039]
On the other hand, when the determination condition of step S204 is not satisfied and the rich side air-fuel ratio forced fluctuation flag XDZR = 0, the process proceeds to step S211 and whether the air-fuel ratio fluctuation period counter CDZA is equal to or greater than the lean side air-fuel ratio fluctuation period TDZL. Is determined. In this case, the air-fuel ratio fluctuation period counter CDZA counts the lean side air-fuel ratio fluctuation period. When the determination condition in step S211 is satisfied and the air-fuel ratio fluctuation period counter CDZA is equal to or greater than the lean side air-fuel ratio fluctuation period TDZL, the process proceeds to step S212, and the air-fuel ratio fluctuation period counter CDZA = 0 is reset. Next, the routine proceeds to step S213, where the rich side air-fuel ratio forced fluctuation flag XDZR = 1 is set. Next, the routine proceeds to step S214, where the rich side air-fuel ratio forced fluctuation amplitude λDZR is set, and at step S215, the rich side air-fuel ratio fluctuation period TDZR is set. On the other hand, when the determination condition of step S211 is not satisfied and the air-fuel ratio fluctuation period counter CDZA is less than the lean side air-fuel ratio fluctuation period TDZL, the routine proceeds to step S216, and the air-fuel ratio fluctuation period counter CDZA is incremented by "1". .
[0040]
Next, after the process of step S206, step S210, step S215 or step S216, the process proceeds to step S217, and when the target air-fuel ratio λTG is forcibly changed to the lean side with respect to the target air-fuel ratio median λTGC, As shown in the following equation (3), the lean side air-fuel ratio forced fluctuation amplitude λDZL is added to the target air-fuel ratio median value λTGC to set the target air-fuel ratio λTG, and this routine ends.
[0041]
[Equation 3]
λTG = λTGC + λDZL (3)
In step S217, when the target air-fuel ratio λTG is forcibly changed to the rich side with respect to the target air-fuel ratio median value λTGC, as shown in the following equation (4), the target air-fuel ratio median value λTGC is The target air-fuel ratio λTG is set by subtracting the side air-fuel ratio forced fluctuation amplitude λDZR, and this routine is terminated.
[0042]
[Expression 4]
λTG = λTGC −λDZR (4)
FIG. 7 is a time chart showing the transition state of the target air-fuel ratio median value λTGC set by the routine described above. O2While the voltage signal VOX2 from the sensor 27 is on the lean side, the target air-fuel ratio median value λTGC is set to the rich side by a predetermined value λM.2While the voltage signal VOX2 from the sensor 27 is on the rich side, the target air-fuel ratio median value λTGC is set to the lean side by a predetermined value λM. As a result, the target air-fuel ratio median λTGC is set to the stoichiometric air-fuel ratio indicated by the A / F sensor 26. Therefore, the deviation between the actual air-fuel ratio and the air-fuel ratio signal of the A / F sensor 26 can be corrected.
[0043]
FIG. 8 is a time chart showing a transition state of the target air-fuel ratio λTG by the air-fuel ratio forced fluctuation control of the routine described above. The target air-fuel ratio λTG is changed by the rich-side air-fuel ratio forced fluctuation amplitude λDZR during the rich-side air-fuel ratio fluctuation period TDZR with respect to the target air-fuel ratio median λTGC. During the period TDZL, the lean side air-fuel ratio forced variation amplitude λDZL is varied. In this way, the amount of NOx emitted can be suppressed by reducing the amount of adsorption of the lean component on the catalyst surface of the three-way catalyst 13.
[0044]
Where O2The output characteristics of the sensor 27 will be described with reference to FIG. Note that FIG. 9B shows O as in this embodiment.2FIG. 9A is a characteristic diagram showing a voltage signal VOX2 when the sensor 27 is disposed on the downstream side of the three-way catalyst 13, and FIG.2FIG. 7 is a characteristic diagram showing a voltage signal VOX2 when the sensor 27 is disposed on the upstream side of the three-way catalyst 13.
[0045]
As is apparent from the characteristic diagrams of FIGS. 9A and 9B, O2In the characteristics when the sensor 27 is disposed downstream of the three-way catalyst 13 (FIG. 9B), O2The rich / lean reversal period is longer than the characteristics when the sensor 27 is disposed upstream of the three-way catalyst 13 (FIG. 9A). This is because the harmful components in the exhaust gas are purified by the oxidation-reduction reaction of the three-way catalyst 13.
[0046]
In order to reduce the adsorption amount of the lean component on the catalyst surface of the three-way catalyst 13, even if the air-fuel ratio λ is controlled so as to be repeated at a short cycle of rich / lean upstream of the three-way catalyst 13. The downstream side is not affected. Further, since the exhaust gas is sufficiently mixed on the downstream side of the three-way catalyst 13, the detection signal is not dependent on the air-fuel ratio λ of a specific cylinder, but the average air-fuel ratio λ of all the cylinders. I can say that. Therefore, O2The sensor 27 can appropriately correct the air-fuel ratio λ with high accuracy.
[0047]
  As described above, the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment is provided on the upstream side of the three-way catalyst 13 of the exhaust pipe 12 of the internal combustion engine 1 and the air-fuel ratio λ of the exhaust gas discharged from the internal combustion engine 1. An upstream air-fuel ratio detection means comprising an A / F sensor 26 that detects an air-fuel ratio signal VOX1 corresponding to the air-fuel ratio signal, and an air-fuel ratio λ of the exhaust gas that is provided downstream of the three-way catalyst 13 and passes through the three-way catalyst 13 O to detect a rich or lean voltage signal VOX22 A downstream air-fuel ratio detecting means comprising a sensor 27; a target air-fuel ratio setting means achieved by a CPU 32 in the ECU 31 that sets a target air-fuel ratio λTG in accordance with a voltage signal VOX2 of the downstream air-fuel ratio detecting means; The rich air-fuel ratio fluctuation period TDZR is longer than the lean air-fuel ratio fluctuation period TDZL with respect to the target air-fuel ratio median value λTGC set by the target air-fuel ratio setting means, and the average air-fuel ratio is set by the target air-fuel ratio setting means. So that the target air-fuel ratio λTG is set, The target air-fuel ratio median value λ set by the target air-fuel ratio setting means TGC TheThe target air-fuel ratio changing means achieved by the CPU 32 in the ECU 31 forcibly changing, the air-fuel ratio signal VOX1 detected by the upstream air-fuel ratio detecting means, and the target air-fuel ratio changed by the target air-fuel ratio changing means The internal combustion engine 1 includes an injection amount calculation means that is achieved by the CPU 32 in the ECU 31 that calculates the fuel injection amount TAU of the fuel injection valve 7 based on the deviation from λTG at an update rate of every 360 ° CA. is there.
[0048]
Accordingly, the CPU 32 in the ECU 31 as the target air-fuel ratio setting means is used as the downstream air-fuel ratio detection means.2A target air-fuel ratio λTG is set according to the voltage signal VOX2 of the air-fuel ratio λ of the exhaust gas that has passed through the three-way catalyst 13 by the sensor 27, and the target air-fuel ratio λTG is rich by the CPU 32 in the ECU 31 as the target air-fuel ratio varying means. The air-fuel ratio forced fluctuation control is executed so that the air-fuel ratio of the exhaust gas is maintained at the theoretical air-fuel ratio λ = 1 by the average air-fuel ratio in a period longer than the lean air-fuel ratio fluctuation period TDZL. A deviation between the air-fuel ratio signal VOX1 of the exhaust gas discharged from the internal combustion engine 1 by the A / F sensor 26 as the upstream air-fuel ratio detection means and the target air-fuel ratio λTG after the fluctuation by the CPU 32 in the ECU 31 as the amount calculation means. Based on this, the fuel injection amount TAU is calculated.
[0049]
Therefore, the adsorption / desorption rate of the exhaust gas component on the catalyst surface is optimized, the catalyst surface is neutralized, and the lean component (NOx, O without increasing the exhaust amount of rich component (CO, HC))2) And the responsiveness of the control is impaired by setting the air-fuel ratio of the exhaust gas to the theoretical air-fuel ratio λ = 1 by the target air-fuel ratio median value λTGC in the air-fuel ratio forced fluctuation control There is no.
[0050]
Further, the air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment uses the rich air-fuel ratio fluctuation period TDZR as the fluctuation period of the target air-fuel ratio λTG that is fluctuated by the target air-fuel ratio fluctuation means achieved by the CPU 32 in the ECU 31. The ratio to the lean side air-fuel ratio fluctuation period TDZL is set to 2-4.
[0051]
Therefore, the ratio of the target air-fuel ratio λTG, which is changed by the CPU 32 in the ECU 31 as the target air-fuel ratio changing means, to the lean-side air-fuel ratio change period TDZL to the lean-side air-fuel ratio change period TDZL is set to 2-4. Therefore, the lean components (NOx, O) are not lost without impairing the controllability in the air-fuel ratio forced fluctuation control and without increasing the discharge amount of the rich components (CO, HC).2) Emissions can be reduced.
[0052]
<Embodiment 2>
The internal combustion engine using the air-fuel ratio control apparatus for an internal combustion engine according to the second embodiment of the present invention and its peripheral devices are the same as those in FIG. Detailed description is omitted.
[0053]
Here, only differences from the first embodiment will be described.
[0054]
The second embodiment differs from the first embodiment in that the operating state detection is performed without fixing the rich side air-fuel ratio fluctuation period TDZR and the lean side air-fuel ratio fluctuation period TDZL in the air-fuel ratio forced fluctuation control. Switching is based on the operating state of the internal combustion engine 1 detected by the means.
[0055]
In the air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment, during steady operation of the internal combustion engine 1 (for example, when the vehicle is traveling at a constant speed, the engine speed Ne, the intake pressure Pm, etc. are maintained substantially constant). ) And during transient operation (for example, when the vehicle is accelerating and the engine speed Ne, the intake pressure Pm, etc. are fluctuating), and the air-fuel ratio λ deviates from the theoretical air-fuel ratio λ = 1 to some extent. In this case, the rich side air-fuel ratio forced fluctuation amplitude λDZR, the lean side air-fuel ratio forced fluctuation amplitude λDZL, the rich side air-fuel ratio fluctuation period TDZR, and the lean side air-fuel ratio fluctuation period TDZL are set to different values. For this reason, as shown in the map of FIG. 10, the shape change coefficient KLD in the air-fuel ratio forced fluctuation control is set based on the A / F sensor output value. Note that the rich side allowable amount λRL, the lean side allowable amount λLL, and the shape change coefficient KLD in the air-fuel ratio forced fluctuation control shown in FIG. 10 will be described later.
[0056]
First, the determination process between steady operation and transient operation will be described.
[0057]
<Normal / transient judgment routine: see FIG. 11>
FIG. 11 is a flowchart showing a routine / transient determination routine in the CPU 32 in the ECU 31 used in the air-fuel ratio control apparatus for an internal combustion engine according to the second embodiment of the present invention.
[0058]
In step S301, whether the linear air-fuel ratio signal VOX1 corresponding to the air-fuel ratio λ detected by the A / F sensor 26 has converged within the range of the preset rich-side allowable amount λRL and lean-side allowable amount λLL. Is determined. When the determination condition in step S301 is satisfied and the internal combustion engine 1 is in a steady operation, the process proceeds to step S302, and the shape change coefficient KLD in the air-fuel ratio forced variation control is set to 1.
[0059]
On the other hand, when the determination condition in step S301 is not satisfied, the process proceeds to step S303, where it is determined whether the actual air-fuel ratio signal VOX1 detected by the A / F sensor 26 is on the lean side. Here, when the determination condition in step S303 is satisfied, the exhaust amount of the lean component increases because the air-fuel ratio of the exhaust gas is lean. For this reason, the lean component adsorption | suction suppression effect of the catalyst surface of the three-way catalyst 13 is enlarged, and the lean component in exhaust gas is efficiently purified by neutralizing the catalyst surface state of the three-way catalyst 13. That is, when the determination condition in step S303 is satisfied, the process proceeds to step S304, and the shape change coefficient KLD in the air-fuel ratio forced fluctuation control is set to 1.2. Thus, in order to enhance the effect of the air-fuel ratio forced fluctuation control, the shape change coefficient KLD is set to a predetermined value (1 <KLD <1.5 is preferable).
[0060]
On the other hand, when the determination condition of step S303 is not satisfied, the air-fuel ratio of the exhaust gas is rich, so the rich component discharge amount increases. For this reason, the lean component is adsorbed on the catalyst surface of the three-way catalyst 13 in order to efficiently purify the rich component in the exhaust gas by the three-way catalyst 13. Therefore, in order to increase the lean component adsorption on the catalyst surface of the three-way catalyst 13 by the air-fuel ratio forced variation control, the process proceeds to step S305, and the shape change coefficient KLD in the air-fuel ratio forced variation control is set to 0.833. Thus, in order to enhance the effect of the air-fuel ratio forced fluctuation control, the shape change coefficient KLD is set to a predetermined value (0.667 <KLD <1 is preferable).
[0061]
Next, after the shape change coefficient KLD is set in step S302, step S304, or step S305, the process proceeds to step S306, where the rich side air-fuel ratio fluctuation period TDZR read from the ROM 33 is multiplied by the shape change coefficient KLD and the rich side The air-fuel ratio fluctuation period TDZR is set (TDZR ← TDZR × KLD). In step S307, the lean side air-fuel ratio fluctuation period TDZL read from the ROM 33 is divided by the shape change coefficient KLD to obtain the lean side air-fuel ratio fluctuation period TDZL (TDZL ← TDZL ÷ KLD). In step S308, the rich side air-fuel ratio forced fluctuation amplitude λDZR read from the ROM 33 is divided by the shape change coefficient KLD to obtain the rich side air-fuel ratio forced fluctuation amplitude λDZR (λDZR ← λDZR ÷ KLD). In step S309, the lean side air-fuel ratio forced fluctuation amplitude λDZL read from the ROM 33 is multiplied by the shape change coefficient KLD to obtain the lean side air-fuel ratio forced fluctuation amplitude λDZL (λDZL ← λDZL × KLD). Exit.
[0062]
Based on the rich-side air-fuel ratio fluctuation period TDZR, the lean-side air-fuel ratio fluctuation period TDZL, the rich-side air-fuel ratio forced fluctuation amplitude λDZR, and the lean-side air-fuel ratio forced fluctuation amplitude λDZL set in this way, Similarly, the target air-fuel ratio λTG is set in the processing routine shown in FIG. 6, appropriate air-fuel ratio forced fluctuation control is executed, and the NOx emission amount is reduced.
[0063]
As described above, the air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment further includes an operation state detection unit that is achieved by the CPU 32 in the ECU 31 that detects the operation state of the internal combustion engine 1. Means that the internal combustion engine 1 is detected in a transient state and O2When the voltage signal VOX2 of the downstream air-fuel ratio detection means comprising the sensor 27 is on the lean side, the rich-side air-fuel ratio fluctuation period of the target air-fuel ratio λTG that is changed by the target air-fuel ratio fluctuation means achieved by the CPU 32 in the ECU 31 TDZR is set to a period longer than the lean side air-fuel ratio fluctuation period TDZL.
[0064]
Therefore, the CPU 32 in the ECU 31 as the operating state detecting means detects that the internal combustion engine 1 is in a transient state, and the downstream air-fuel ratio detecting means is the O2When the sensor detects that the engine is on the lean side, the rich air-fuel ratio fluctuation period TDZR of the target air-fuel ratio λTG by the CPU 32 in the ECU 31 as the target air-fuel ratio fluctuation means becomes longer than the lean air-fuel ratio fluctuation period TDZL. Is set as follows. Therefore, the adsorption / desorption rate of the exhaust gas component to the catalyst surface in the transient state of the internal combustion engine 1 is optimized, the catalyst surface is neutralized, and the lean component is not increased without increasing the exhaust amount of rich components (CO, HC). Ingredients (NOx, O2) Emissions can be reduced.
[0065]
<Embodiment 3>
The internal combustion engine using the air-fuel ratio control device for an internal combustion engine according to the third embodiment of the present invention and its peripheral devices are the same as those shown in FIG. 1 showing the schematic configuration of the first embodiment. Detailed description is omitted.
[0066]
Here, only differences from the first embodiment will be described.
[0067]
In the third embodiment, the difference from the first embodiment is that the rich side air-fuel ratio fluctuation period TDZR and the lean side air-fuel ratio fluctuation period TDZL in the air-fuel ratio forced fluctuation control are not fixed, and the exhaust gas It is to switch according to the flow rate.
[0068]
In the air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment, when the flow rate of the exhaust gas increases, the diffusion distance in which the exhaust gas component diffuses to the catalyst surface is shortened, and gas adsorption / desorption on the catalyst surface is promoted. Further, the total number of moles of exhaust gas passing through the three-way catalyst 13 is increased. Thus, since the amount of lean component adsorbed on the catalyst surface varies based on the exhaust gas flow rate, it is necessary to detect the exhaust gas flow rate and execute air-fuel ratio forced variation control.
[0069]
Here, as shown in FIG. 12, the ability to decrease the lean component adsorption amount is changed with the fluctuation of the cycle (rich side air-fuel ratio fluctuation period TDZR + lean side air-fuel ratio fluctuation period TDZL) in the air-fuel ratio forced fluctuation control. Therefore, the air-fuel ratio cycle correction is performed so that the exhaust gas flow rate calculated from the two-dimensional map of the engine speed Ne and the intake pressure Pm as shown in FIG. The coefficient KFB is set as shown in FIG.
[0070]
<Air-fuel ratio fluctuation period setting routine: see FIG. 15>
FIG. 15 is a flowchart showing an air-fuel ratio fluctuation period setting routine in the CPU 32 in the ECU 31 used in the air-fuel ratio control apparatus for an internal combustion engine according to the third embodiment of the present invention.
[0071]
First, in step S401, an air-fuel ratio cycle correction coefficient KFB is set from the exhaust gas flow rate based on the map of FIG. Next, the process proceeds to step S402, where a catalyst deterioration correction coefficient KAG indicating the deterioration of the three-way catalyst 13 is set. In the present embodiment, KAG = 1 is set because the degree of catalyst deterioration is not taken into consideration. Next, the process proceeds to step S403, where the air-fuel ratio cycle correction coefficient KFB set in step S402 is multiplied by the air-fuel ratio cycle correction coefficient KFB set in step S401 to obtain the air-fuel ratio cycle correction coefficient KFB (KFB ← KFB × KAG).
[0072]
In step S404, the rich air-fuel ratio fluctuation period TDZR read from the ROM 33 is multiplied by the air-fuel ratio period correction coefficient KFB to obtain the rich air-fuel ratio fluctuation period TDZR (TDZR ← TDZR × KFB). In step S405, the lean side air-fuel ratio fluctuation period TDZL read from the ROM 33 is multiplied by the air-fuel ratio cycle correction coefficient KFB to obtain the lean side air-fuel ratio fluctuation period TDZL (TDZL ← TDZL × KFB). finish.
[0073]
Based on the rich side air-fuel ratio fluctuation period TDZR and the lean side air-fuel ratio fluctuation period TDZL corrected as described above, the target air-fuel ratio λTG is set in the processing routine shown in FIG. 6 as in the first embodiment. Appropriate air-fuel ratio forced fluctuation control is executed, and NOx emissions are reduced.
[0074]
Thus, in the air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment, the cycle of the target air-fuel ratio λTG that is changed by the target air-fuel ratio changing means achieved by the CPU 32 in the ECU 31 increases as the exhaust gas flow rate increases. It should be set short.
[0075]
Therefore, the cycle of the target air-fuel ratio λTG that is changed by the CPU 32 in the ECU 31 as the target air-fuel ratio changing means is shortened as the flow rate of the exhaust gas increases. For this reason, the adsorption / desorption rate of the exhaust gas component to the catalyst surface according to the exhaust gas flow rate is optimized, the catalyst surface is neutralized, and the exhaust amount of rich components (CO, HC) is increased. Without lean components (NOx, O2) Emissions can be reduced.
[0076]
<Embodiment 4>
The internal combustion engine using the air-fuel ratio control device for an internal combustion engine according to the fourth embodiment of the present invention and its peripheral devices are the same as those in FIG. Detailed description is omitted.
[0077]
Here, only differences from the first embodiment will be described.
[0078]
In the fourth embodiment, the difference from the first embodiment is that the three-way catalyst is used without fixing the rich side air-fuel ratio fluctuation period TDZR and the lean side air-fuel ratio fluctuation period TDZL in the air-fuel ratio forced fluctuation control. 13 is switched according to the catalyst temperature.
[0079]
As shown in FIG. 16, the adsorption amount of the lean component adsorbed on the surface of the three-way catalyst 13 varies with the change in the catalyst temperature of the three-way catalyst 13, and therefore corresponds to the lean component adsorption amount on the catalyst surface at that time. It is effective to reduce the NOx emission amount by executing the air-fuel ratio forced fluctuation control.
[0080]
Here, as shown in FIG. 12, the ability to decrease the adsorption amount of the lean component fluctuates with the fluctuation of the cycle (rich side air-fuel ratio fluctuation period TDZR + lean side air-fuel ratio fluctuation period TDZL) in the air-fuel ratio forced fluctuation control. Is done. Accordingly, it is assumed that the temperature of the exhaust gas passing through the three-way catalyst 13 and measured by the temperature sensor 28 is equal to the catalyst temperature at that time, and the air-fuel ratio period correction coefficient KFB for the catalyst temperature is as shown in FIG. Is set.
[0081]
<Air-fuel ratio fluctuation period setting routine: see FIG. 15>
FIG. 15 is a flowchart showing an air-fuel ratio fluctuation period setting routine in the CPU 32 in the ECU 31 used in the air-fuel ratio control apparatus for an internal combustion engine according to the fourth embodiment of the present invention.
[0082]
First, in step S401, the air-fuel ratio cycle correction coefficient KFB is set from the catalyst temperature based on the map of FIG. Next, the process proceeds to step S402, where a catalyst deterioration correction coefficient KAG indicating the deterioration of the three-way catalyst 13 is set. In the present embodiment, KAG = 1 is set because the degree of catalyst deterioration is not taken into consideration. Next, the process proceeds to step S403, where the air-fuel ratio cycle correction coefficient KFB set in step S402 is multiplied by the air-fuel ratio cycle correction coefficient KFB set in step S401 to obtain the air-fuel ratio cycle correction coefficient KFB (KFB ← KFB × KAG).
[0083]
In step S404, the rich air-fuel ratio fluctuation period TDZR read from the ROM 33 is multiplied by the air-fuel ratio period correction coefficient KFB to obtain the rich air-fuel ratio fluctuation period TDZR (TDZR ← TDZR × KFB). In step S405, the lean side air-fuel ratio fluctuation period TDZL read from the ROM 33 is multiplied by the air-fuel ratio cycle correction coefficient KFB to obtain the lean side air-fuel ratio fluctuation period TDZL (TDZL ← TDZL × KFB). finish.
[0084]
Based on the rich side air-fuel ratio fluctuation period TDZR and lean side air-fuel ratio fluctuation period TDZL corrected as described above, the target air-fuel ratio λTG is set in the processing routine shown in FIG. 6 in the same manner as in the first embodiment. Then, appropriate air-fuel ratio forced fluctuation control is executed, and the NOx emission amount is reduced.
[0085]
As described above, the air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment further includes temperature detection means including the temperature sensor 28 that detects the exhaust gas temperature Thx corresponding to the catalyst temperature of the three-way catalyst 13. The cycle of the target air-fuel ratio λTG that is changed by the target air-fuel ratio changing means achieved by the CPU 32 in the ECU 31 is the exhaust gas temperature Thx that is regarded as the catalyst temperature of the three-way catalyst 13 detected by the temperature detecting means. The higher the is, the longer it is set.
[0086]
Therefore, the higher the exhaust gas temperature Thx corresponding to the temperature of the catalyst detected by the temperature sensor 28 as the temperature detecting means, the higher the cycle of the target air-fuel ratio λTG that is changed by the CPU 32 in the ECU 31 as the target air-fuel ratio changing means. Made longer. For this reason, the adsorption / desorption rate of the exhaust gas component on the catalyst surface according to the level of the exhaust gas temperature Thx considered as the catalyst temperature is optimized, the catalyst surface is neutralized, and the rich component (CO, HC ) Lean components (NOx, O without increasing emissions)2) Emissions can be reduced.
[0087]
<Embodiment 5>
An internal combustion engine using an air-fuel ratio control device for an internal combustion engine according to a fifth embodiment of the present invention and its peripheral devices are the same as those in FIG. 1 showing the schematic configuration of the first embodiment described above. Detailed description is omitted.
[0088]
Here, only differences from the first embodiment will be described.
[0089]
The fifth embodiment differs from the first embodiment in that a three-way catalyst is used without fixing the rich side air-fuel ratio fluctuation period TDZR and the lean side air-fuel ratio fluctuation period TDZL in the air-fuel ratio forced fluctuation control. 13 is switched according to the degree of catalyst deterioration.
[0090]
When the three-way catalyst 13 deteriorates, the adsorption point of the catalyst decreases, so that the amount of exhaust gas adsorbed on the catalyst surface decreases. Therefore, the amount of lean component adsorbed on the deteriorated catalyst decreases, and it is effective to reduce the NOx emission amount by executing the air-fuel ratio forced fluctuation control corresponding to the degree of deterioration of the catalyst.
[0091]
An example of determining the deterioration of the three-way catalyst 13 is given below. As described above, when the catalyst deteriorates, the amount of exhaust gas adsorbed on the catalyst surface decreases, and the downstream side of the catalyst becomes O 2.2The response speed of the sensor 27 is increased. Therefore, for example, an O for catalyst deterioration determination is newly provided on the upstream side of the three-way catalyst 13.2By providing a sensor, an O for judging catalyst deterioration on the upstream side of the three-way catalyst 13 is obtained.2O downstream of the sensor and the three-way catalyst 132The degree of catalyst deterioration of the three-way catalyst 13 can be determined based on the difference in responsiveness with the sensor.
[0092]
Here, as shown in FIG. 12, the ability to decrease the adsorption amount of the lean component fluctuates with the fluctuation of the cycle (rich side air-fuel ratio fluctuation period TDZR + lean side air-fuel ratio fluctuation period TDZL) in the air-fuel ratio forced fluctuation control. Is done. Therefore, the catalyst deterioration correction coefficient KAG (1 ≦ KAG) is set as shown in FIG. 18 with respect to the degree of catalyst deterioration of the three-way catalyst 13.
[0093]
<Air-fuel ratio fluctuation period setting routine: see FIG. 15>
FIG. 15 is a flowchart showing an air-fuel ratio fluctuation period setting routine in the CPU 32 in the ECU 31 used in the air-fuel ratio control apparatus for an internal combustion engine according to the fifth embodiment of the present invention.
[0094]
First, in step S401, the air-fuel ratio cycle correction coefficient KFB is KFB = 1, the air-fuel ratio cycle correction coefficient KFB set in the third embodiment, or the air-fuel ratio cycle correction coefficient KFB set in the fourth embodiment. Set to Next, proceeding to step S402, a catalyst deterioration correction coefficient KAG indicating deterioration of the three-way catalyst 13 is set as shown in FIG. Next, the process proceeds to step S403, where the air-fuel ratio cycle correction coefficient KFB set in step S402 is multiplied by the air-fuel ratio cycle correction coefficient KFB set in step S401 to obtain the air-fuel ratio cycle correction coefficient KFB (KFB ← KFB × KAG).
[0095]
In step S404, the rich air-fuel ratio fluctuation period TDZR read from the ROM 33 is multiplied by the air-fuel ratio period correction coefficient KFB to obtain the rich air-fuel ratio fluctuation period TDZR (TDZR ← TDZR × KFB). In step S405, the lean side air-fuel ratio fluctuation period TDZL read from the ROM 33 is multiplied by the air-fuel ratio cycle correction coefficient KFB to obtain the lean side air-fuel ratio fluctuation period TDZL (TDZL ← TDZL × KFB). finish.
[0096]
Based on the rich side air-fuel ratio fluctuation period TDZR and the lean side air-fuel ratio fluctuation period TDZL corrected as described above, similarly to the second embodiment, the third embodiment, or the fourth embodiment described above. The target air-fuel ratio λTG is set in the processing routine shown in FIG. 6, appropriate air-fuel ratio forced fluctuation control is executed, and the NOx emission amount is reduced.
[0097]
As described above, the air-fuel ratio control apparatus for an internal combustion engine according to the present embodiment further includes catalyst deterioration detection means that is achieved by the CPU 32 in the ECU 31 that detects the deterioration state of the three-way catalyst 13. The cycle of the target air-fuel ratio λTG that is changed by the target air-fuel ratio changing means achieved by the CPU 32 is set longer as the deterioration state of the three-way catalyst 13 detected by the catalyst deterioration detecting means progresses. is there.
[0098]
Therefore, as the deterioration state of the three-way catalyst 13 detected by the CPU 32 in the ECU 31 as the catalyst deterioration detecting means progresses, the cycle of the target air-fuel ratio λTG that is changed by the CPU 32 in the ECU 31 as the target air-fuel ratio changing means. Is lengthened. For this reason, the adsorption / desorption rate of the exhaust gas component on the catalyst surface according to the deterioration state of the three-way catalyst 13 is optimized, the catalyst surface is neutralized, and the discharge amount of rich components (CO, HC) is increased. Without lean component (NOx, O2) Emissions can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an internal combustion engine and its peripheral devices using an air-fuel ratio control apparatus for an internal combustion engine according to a first embodiment of the present invention.
FIG. 2 is a flowchart showing a procedure for setting a fuel injection amount in a CPU in an ECU used in the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment of the present invention.
FIG. 3 is a characteristic diagram showing the relationship between the air-fuel ratio and the purification rate η of the three-way catalyst in the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment of the present invention.
FIG. 4 is a time chart showing air-fuel ratio forced fluctuation control in the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment of the present invention.
FIG. 5 is a graph showing a ratio of a rich side air-fuel ratio fluctuation period to a lean side air-fuel ratio fluctuation period and a lean component adsorption amount on a catalyst surface in the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment of the present invention; It is a characteristic view which shows the relationship.
FIG. 6 is a flowchart showing a processing procedure for setting a target air-fuel ratio in a CPU in the ECU used in the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment of the present invention.
FIG. 7 is a diagram showing an O / F in the air-fuel ratio forced fluctuation control of the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment of the present invention;2It is a time chart which shows the transition state of a sensor output and a target air fuel ratio median.
FIG. 8 is a diagram showing an O / F in the air-fuel ratio forced fluctuation control of the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment of the present invention;2It is a time chart which shows the transition state of a sensor output and a target air fuel ratio.
FIG. 9 is a view of an O used in the air-fuel ratio control apparatus for an internal combustion engine according to the first embodiment of the present invention.2It is a time chart for demonstrating the characteristic of a sensor.
FIG. 10 is a map for obtaining a shape change coefficient from an output value of an A / F sensor used in an air-fuel ratio control apparatus for an internal combustion engine according to a second embodiment of the present invention.
FIG. 11 is a flowchart showing a routine / transient determination processing procedure in a CPU in an ECU used in an air-fuel ratio control apparatus for an internal combustion engine according to a second embodiment of the present invention.
FIG. 12 is a characteristic diagram showing the relationship between the cycle and the lean component adsorption amount reducing ability in the air-fuel ratio forced fluctuation control of the air-fuel ratio control apparatus for an internal combustion engine according to the third embodiment of the present invention.
FIG. 13 is a map for obtaining an exhaust gas flow rate using as parameters the engine speed and the intake pressure used in the air-fuel ratio control apparatus for an internal combustion engine according to the third embodiment of the present invention.
FIG. 14 is a map for obtaining an air-fuel ratio period correction coefficient from an exhaust gas flow rate used in an air-fuel ratio control apparatus for an internal combustion engine according to a third embodiment of the present invention.
FIG. 15 is a diagram illustrating an empty space in a CPU in an ECU used in an air-fuel ratio control apparatus for an internal combustion engine according to a third embodiment, a fourth embodiment, or a fifth embodiment of the present invention. It is a flowchart which shows the process sequence of fuel ratio fluctuation | variation period setting.
FIG. 16 is a characteristic diagram showing the relationship between the catalyst temperature and the lean component adsorption amount used in the air-fuel ratio control apparatus for an internal combustion engine according to the fourth embodiment of the present invention.
FIG. 17 is a map for obtaining an air-fuel ratio period correction coefficient from a catalyst temperature used in an air-fuel ratio control apparatus for an internal combustion engine according to a fourth embodiment of the present invention.
FIG. 18 is a map for obtaining a catalyst deterioration correction coefficient from the degree of catalyst deterioration used in the air-fuel ratio control apparatus for an internal combustion engine according to the fifth embodiment of the present invention.
FIG. 19 is a diagram illustrating an O / F ratio in an air / fuel ratio control of a conventional air / fuel ratio control apparatus for an internal combustion engine;2It is a time chart which shows the transition state of a sensor output and a target air fuel ratio.
FIG. 20 is a diagram showing an example of O downstream of a catalyst when a spike is generated in air-fuel ratio control of an air-fuel ratio control apparatus for a conventional internal combustion engine.2It is a time chart which shows the relationship between the behavior of a sensor, and exhaust gas concentration.
FIG. 21 is a time chart for explaining setting of a control target value in air-fuel ratio control of another conventional air-fuel ratio control apparatus for an internal combustion engine.
FIG. 22 shows conventional excess air ratio and O2It is a characteristic view which shows the relationship with a sensor output.
FIG. 23 is a time chart showing air-fuel ratio control of a conventional air-fuel ratio control apparatus for an internal combustion engine.
[Explanation of symbols]
1 Internal combustion engine
7 Fuel injection valve
13 Three-way catalyst
26 A / F sensor (upstream air-fuel ratio detection means)
27 O2Sensor (downstream air-fuel ratio detection means)
31 ECU (electronic control unit)
32 CPU

Claims (6)

内燃機関の排気経路の触媒の上流側に設けられ、前記内燃機関から排出された排気ガスの空燃比を検出する上流側空燃比検出手段と、
前記触媒の下流側に設けられ、前記触媒を通過した排気ガスの空燃比を検出する下流側空燃比検出手段と、
前記下流側空燃比検出手段の検出信号に応じて目標空燃比を設定する目標空燃比設定手段と、
前記目標空燃比設定手段で設定された目標空燃比に対し、リッチ側への変動期間がリーン側への変動期間より長い周期で、その平均空燃比が前記目標空燃比設定手段により設定された目標空燃比となるように、前記目標空燃比設定手段で設定された目標空燃比を強制的に変動させる目標空燃比変動手段と、
前記上流側空燃比検出手段で検出された空燃比と前記目標空燃比変動手段で変動された目標空燃比との偏差に基づき、所定の更新速度で燃料噴射弁の燃料噴射量を算出する噴射量演算手段と
を具備することを特徴とする内燃機関の空燃比制御装置。
An upstream air-fuel ratio detection means that is provided upstream of the catalyst in the exhaust path of the internal combustion engine and detects the air-fuel ratio of the exhaust gas discharged from the internal combustion engine;
A downstream air-fuel ratio detection means that is provided downstream of the catalyst and detects an air-fuel ratio of exhaust gas that has passed through the catalyst;
Target air-fuel ratio setting means for setting a target air-fuel ratio according to a detection signal of the downstream air-fuel ratio detection means;
The target air-fuel ratio set by the target air-fuel ratio setting means is set to a target air-fuel ratio set by the target air-fuel ratio setting means with a cycle in which the fluctuation period to the rich side is longer than the fluctuation period to the lean side. Target air-fuel ratio changing means for forcibly changing the target air-fuel ratio set by the target air-fuel ratio setting means so as to be the air-fuel ratio ;
An injection amount for calculating the fuel injection amount of the fuel injection valve at a predetermined update speed based on a deviation between the air-fuel ratio detected by the upstream air-fuel ratio detection means and the target air-fuel ratio changed by the target air-fuel ratio fluctuation means An air-fuel ratio control apparatus for an internal combustion engine, comprising: an arithmetic means.
前記目標空燃比変動手段で変動される目標空燃比の変動期間は、リッチ側への変動期間のリーン側への変動期間に対する比を2〜4に設定することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。  2. The ratio of the variation period to the rich side to the variation period to the lean side in the variation period of the target air-fuel ratio that is varied by the target air-fuel ratio variation unit is set to 2 to 4. An air-fuel ratio control apparatus for an internal combustion engine. 更に、前記内燃機関の運転状態を検出する運転状態検出手段を具備し、
前記運転状態検出手段で前記内燃機関が過渡状態にあると検出され、且つ前記下流側空燃比検出手段の検出信号がリーン側であるときには、前記目標空燃比変動手段で変動される目標空燃比のリッチ側への変動期間をリーン側への変動期間より長い周期に設定することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
Furthermore, it comprises operating state detection means for detecting the operating state of the internal combustion engine,
When it is detected that the internal combustion engine is in a transient state by the operating state detecting means and the detection signal of the downstream air-fuel ratio detecting means is on the lean side, the target air-fuel ratio changed by the target air-fuel ratio changing means 2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the fluctuation period toward the rich side is set to a cycle longer than the fluctuation period toward the lean side.
前記目標空燃比変動手段で変動される目標空燃比の周期は、排気ガスの流量が多いほど短く設定することを特徴とする請求項3に記載の内燃機関の空燃比制御装置。  4. The air-fuel ratio control apparatus for an internal combustion engine according to claim 3, wherein the cycle of the target air-fuel ratio that is changed by the target air-fuel ratio changing means is set shorter as the flow rate of the exhaust gas increases. 更に、前記触媒の温度を検出する温度検出手段を具備し、前記目標空燃比変動手段で変動される目標空燃比の周期は、前記温度検出手段で検出された前記触媒の温度が高いほど長く設定することを特徴とする請求項3に記載の内燃機関の空燃比制御装置。  Further, the apparatus includes temperature detecting means for detecting the temperature of the catalyst, and the cycle of the target air-fuel ratio that is changed by the target air-fuel ratio changing means is set longer as the temperature of the catalyst detected by the temperature detecting means is higher. The air-fuel ratio control apparatus for an internal combustion engine according to claim 3, wherein 更に、前記触媒の劣化状態を検出する触媒劣化検出手段を具備し、前記目標空燃比変動手段で変動される目標空燃比の周期は、前記触媒劣化検出手段で検出された前記触媒の劣化状態が進行しているほど長く設定することを特徴とする請求項3乃至請求項5のいずれか1つに記載の内燃機関の空燃比制御装置。  Further, it comprises catalyst deterioration detection means for detecting the deterioration state of the catalyst, and the cycle of the target air-fuel ratio that is changed by the target air-fuel ratio fluctuation means is the deterioration state of the catalyst detected by the catalyst deterioration detection means. The air-fuel ratio control apparatus for an internal combustion engine according to any one of claims 3 to 5, wherein the air-fuel ratio control apparatus is set to be longer as it travels.
JP29828795A 1995-11-16 1995-11-16 Air-fuel ratio control device for internal combustion engine Expired - Lifetime JP3858291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29828795A JP3858291B2 (en) 1995-11-16 1995-11-16 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29828795A JP3858291B2 (en) 1995-11-16 1995-11-16 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09137742A JPH09137742A (en) 1997-05-27
JP3858291B2 true JP3858291B2 (en) 2006-12-13

Family

ID=17857691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29828795A Expired - Lifetime JP3858291B2 (en) 1995-11-16 1995-11-16 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3858291B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221025B2 (en) 2006-12-25 2009-02-12 三菱電機株式会社 Air-fuel ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JPH09137742A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JP2893308B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007032357A (en) Catalyst diagnosis device for internal combustion engine and automobile equipped with internal combustion engine including catalyst diagnosis device
JP3625163B2 (en) Exhaust purification catalyst deterioration detection device
JP3759567B2 (en) Catalyst degradation state detection device
US10859018B1 (en) Exhaust gas purification system using three-way catalyst and method of controlling the same
JP2000345895A (en) Air-fuel ratio controller for internal combustion engine
JPH07305644A (en) Air-fuel ratio controller of internal combustion engine
US6564544B2 (en) Engine exhaust purification arrangement
JP3316066B2 (en) Failure diagnosis device for exhaust gas purification device
US7159385B2 (en) Apparatus for and method of detecting deterioration of catalyst in internal combustion engine
JP3528698B2 (en) Fuel sulfur concentration estimation device
JPH07229439A (en) Air-fuel ratio control device of internal combustion engine
JP3858291B2 (en) Air-fuel ratio control device for internal combustion engine
JP3788497B2 (en) Air-fuel ratio control device for internal combustion engine
JP2906205B2 (en) Air-fuel ratio control device for internal combustion engine
JP3114414B2 (en) Air-fuel ratio control device for internal combustion engine
JP2002349316A (en) Exhaust emission purifying system for internal combustion engine
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
JPH1162666A (en) Exhaust emission control device for internal combustion engine
JP3292019B2 (en) Catalyst deterioration determination device for internal combustion engine
JPH07166938A (en) Air-fuel ratio controller of lean burn engine
JP3318702B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2004204716A (en) Air-fuel ratio subfeedback control abnormality detector
JP3610798B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0617660B2 (en) Air-fuel ratio controller for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6