JP3858136B2 - シフトレジスタ及び電子装置 - Google Patents

シフトレジスタ及び電子装置 Download PDF

Info

Publication number
JP3858136B2
JP3858136B2 JP23392999A JP23392999A JP3858136B2 JP 3858136 B2 JP3858136 B2 JP 3858136B2 JP 23392999 A JP23392999 A JP 23392999A JP 23392999 A JP23392999 A JP 23392999A JP 3858136 B2 JP3858136 B2 JP 3858136B2
Authority
JP
Japan
Prior art keywords
signal
stage
transistor
current path
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23392999A
Other languages
English (en)
Other versions
JP2001060398A (ja
Inventor
実 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP23392999A priority Critical patent/JP3858136B2/ja
Publication of JP2001060398A publication Critical patent/JP2001060398A/ja
Application granted granted Critical
Publication of JP3858136B2 publication Critical patent/JP3858136B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Shift Register Type Memory (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、撮像素子や表示素子を駆動するためのドライバとして好適なシフトレジスタ、及びこのシフトレジスタを適用した電子装置に関する。
【0002】
【従来の技術】
マトリクス状に画素が配置された撮像素子や表示素子を線順次で選択して走査するためのドライバには、前段からの出力信号を後段に順次シフトしていくシフトレジスタが広く用いられている。このようなシフトレジスタでは、従来、前段からの出力信号を減衰させることなく後段にシフトしていくことは困難であった。
【0003】
特に近年における撮像素子や表示素子の高精細化の要請により、このようなシフトレジスタの段数も多くしていく必要が生じている。段数が増えることとなると、後ろの方の段での信号の減衰が激しくなってしまうという問題が生じる。このため、従来、このようなシフトレジスタには、各段からの出力信号を所定レベルまで増幅するバッファを設けるのが通常であった。が、バッファを設けることによって、シフトレジスタが大型化してしまうという問題があった。
【0004】
ところで、このようなシフトレジスタで出力信号を順次シフトさせるために、シフトタイミングに合わせて、各段に設けられた電界効果トランジスタのゲート電極に制御信号を供給していく方法がある。例えば、電界効果トランジスタとしてnチャネル型のものを使用した場合には、ハイレベルの制御信号がゲート電極に印加される度に、ゲート絶縁膜に電子が注入される。
【0005】
電界効果トランジスタは、ゲート絶縁膜に注入された電子が電荷として蓄積されることによって、その閾値電圧特性が正方向に移動していくことが実験的に知られている。従って、ゲート電極に制御信号が頻繁に印加されると、ソース電極とドレイン電極との間に電流が流れにくくなり、シフトレジスタに誤動作が生じてしまうという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は、出力信号のレベルを減衰させることなく後段にシフトしていくことが可能なシフトレジスタ、及びこのシフトレジスタを適用した電子装置を提供することを目的とする。
【0007】
本発明は、また、トランジスタの特性変動による誤動作を防ぐことができるシフトレジスタ、及びこのシフトレジスタを適用した電子装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の第1の観点にかかるシフトレジスタは、
複数の段からなり、前記シフトレジスタの各段は、
外部から制御端子に供給される第1または第2の信号によってオンし、前の段から電流路の一端に供給された所定レベルの信号を電流路の他端に出力する第1のトランジスタと、
制御端子と前記第1のトランジスタの電流路の他端との間の容量に蓄積された電荷によってオンし、負荷を介して電流路の一端に供給される信号を電流路の他端から放出する第2のトランジスタと、
制御端子と前記第1のトランジスタの電流路の他端との間の容量に蓄積された電荷によってオンし、外部から電流路の一端に供給される第3または第4の信号を出力信号として電流路の他端から出力する第3のトランジスタと、
前記第2のトランジスタがオフしているときに負荷を介して制御端子に供給される信号によってオンし、外部から電流路の一端に供給される信号を出力信号として電流路の他端から出力する第4のトランジスタと、
他の段から所定レベルの出力信号が制御端子に供給されることによってオンし、前記第1のトランジスタの電流路の他端と前記第2、第3のトランジスタの制御端子との間に形成された容量に蓄積された電荷を排出させる第5のトランジスタと
後段から電流路の一端に供給される所定レベルの信号を、前記第1または第2の信号に応じて電流路の他端から当該段の前記第5のトランジスタの制御端子に出力する順方向制御用トランジスタと、
前段から電流路の一端に供給される所定レベルの信号を、逆方向動作用信号に応じて電流路の他端から当該段の前記第5のトランジスタの制御端子に出力する逆方向制御用トランジスタと、
を備えることを特徴とする。
【0009】
上記の第1の観点にかかるシフトレジスタでは、各段に設けた第5のトランジスタの制御端子に他の段から所定レベルの出力信号を供給することによって、前記の容量に蓄積された電荷を排出させることができる。すなわち、継続使用によって第1のトランジスタの閾値特性が変動し、ここから容量に蓄積された電荷を排出できないようになっても、第5のトランジスタを介して電荷を排出することができる。このため、継続使用による第1のトランジスタの閾値特性の変動によって誤動作が生じるのを防ぐことができる。
【0012】
なお、上記第1の観点にかかるシフトレジスタにおいて、1番目の段では、第1のトランジスタの電流路の一端に供給される信号を外部からの信号または1番後ろの段の出力信号とすることができる。また、上記の第1の観点にかかるシフトレジスタにおいて、第5のトランジスタの制御信号に供給される信号を外部からの信号または1番後ろの段の出力信号とすることができる。
【0013】
上記第1の観点にかかるシフトレジスタの各段は、制御端子に供給される第3または第4の信号のレベルを反転した信号によってオンし、前記第3のトランジスタの電流路の他端から出力された出力信号を放出させる第6のトランジスタをさらに備えるものとすることができる。
【0014】
上記第1の観点にかかるシフトレジスタのうち少なくとも1つの段は、外部から制御端子に供給される逆方向動作用信号によってオンし、後段から電流路の一端に供給された所定レベルの信号を電流路の他端に出力し、前記第1のトランジスタの電流路の他端と前記第2、第のトランジスタの制御端子との間の容量に電荷を蓄積させる第7のトランジスタをさらに備えるものとすることができる。
【0015】
この場合、第1及び第2の信号、または逆方向動作用信号のいずれかの組を選択して供給するものとすることによって、前記の容量に電荷を蓄積させる出力信号を、前の段のものまたは後ろの段のもののいずれかに選ぶことができる。このため、シフトレジスタの出力信号を順方向と逆方向とのいずれかを選択してシフトさせることができる。なお、1番後ろの段においては、第7のトランジスタの電流路の一端に供給する信号を外部からの信号とすることができる。
【0016】
ここで、上記第1の観点にかかるシフトレジスタの奇数番目の段には、第3、第4の信号のうちの第3の信号が外部から供給され、偶数番目の段には、第3、第4の信号のうちの第4の信号が外部から供給されるものとすることができる。ここで、第3、第4の信号はそれぞれ、前記シフトレジスタの出力信号をシフトしていくタイムスロットのうちの所定期間、タイムスロット毎に交互に駆動レベルとなるものとすることができる。
【0017】
この場合において、前記第1、第2の信号は、それぞれ前記第3、第4の信号が駆動レベルとなっている間の一定期間オンレベルとなるものとすることができる。
【0018】
また、上記第1の観点にかかるシフトレジスタの複数の段のそれぞれを構成する各トランジスタは、同一のチャネル型の電界効果トランジスタであることを好適とする。
【0021】
上記目的を達成するため、本発明の第の観点にかかる電子装置は、
複数の段からなり、出力信号をシフトさせることによって所定レベルの信号を各段から順次出力するドライバと、複数の画素によって構成され、前記ドライバの各段から出力された出力信号によって駆動される駆動素子とを備え、
前記ドライバの各段は、
外部から制御端子に供給される第1または第2の信号によってオンし、前の段から電流路の一端に供給された所定レベルの信号を電流路の他端に出力する第1のトランジスタと、
制御端子と前記第1のトランジスタの電流路の他端との間の容量に蓄積された電荷によってオンし、負荷を介して電流路の一端に供給される信号を電流路の他端から放出する第2のトランジスタと、
制御端子と前記第1のトランジスタの電流路の他端との間の容量に蓄積された電荷によってオンし、外部から電流路の一端に供給される第3または第4の信号を当該段の出力信号として電流路の他端から出力する第3のトランジスタと、
前記第2のトランジスタがオフしているときに負荷を介して制御端子に供給される信号によってオンし、外部から電流路の一端に供給される定電圧の信号を当該段の出力信号として電流路の他端から出力する第4のトランジスタと、
他の段から所定レベルの出力信号が制御端子に供給されることによってオンし、前記第1のトランジスタの電流路の他端と前記第2、第3のトランジスタの制御端子との間に形成された容量に蓄積された電荷を排出させる第5のトランジスタと、
後段から電流路の一端に供給される所定レベルの信号を、前記第1または第2の信号に応じて電流路の他端から当該段の前記第5のトランジスタの制御端子に出力する順方向制御用トランジスタと、
前段から電流路の一端に供給される所定レベルの信号を、逆方向動作用信号に応じて電流路の他端から当該段の前記第5のトランジスタの制御端子に出力する逆方向制御用トランジスタと、
を備えることを特徴とする。
【0023】
上記第2の観点にかかる電子装置において、前記ドライバのうち少なくとも1つの段は、外部から制御端子に供給される逆方向動作用信号によってオンし、後段から電流路の一端に供給された所定レベルの信号を電流路の他端に出力し、前記第1のトランジスタの電流路の他端と前記第2、第のトランジスタの制御端子との間の容量に電荷を蓄積させる第7のトランジスタをさらに備えるものとすることができる。
【0024】
【発明の実施の形態】
以下、添付図面を参照して、本発明の実施の形態について説明する。
【0025】
[第1の実施の形態]
図1は、この実施の形態にかかる撮像装置の構成を示すブロック図である。図示するように、この撮像装置は、画像を撮影する撮像素子1、並びにコントローラからの制御信号に従って撮像素子1を駆動するためのトップゲートドライバ2、ボトムゲートドライバ3及びドレインドライバ4から構成されている。
【0026】
撮像素子1は、マトリクス状に配置された複数のダブルゲートトランジスタ10で構成される。ダブルゲートトランジスタ10は、図2に示すように、ガラス等の基板41上に形成されたクロムよりなるボトムゲート電極42と、ボトムゲート電極42上に形成された窒化シリコンよりなるボトムゲート絶縁膜43と、ボトムゲート絶縁膜43上にボトムゲート電極42と対向して形成されたアモルファスシリコン又はポリシリコンからなる半導体層44と、半導体層44上に形成された窒化シリコンからなるブロッキング層45と、ブロッキング層45の一端上から半導体層44上に跨って設けられたn型不純物がドープされたアモルファスシリコンまたはポリシリコンからなるn型半導体層46aと、ブロッキング層45の他端上から半導体層44上に跨って設けられたn型不純物がドープされたアモルファスシリコンまたはポリシリコンからなるn型半導体層46bと、n型半導体層46a、46b上からボトムゲート絶縁膜43上にわたって形成されたクロムよりなるドレイン電極47、ソース電極48と、ボトムゲート絶縁膜43上及びソース、ドレイン電極47、48上を覆うように形成された窒化シリコンからなるトップゲート絶縁膜49と、トップゲート絶縁膜49上に半導体層44に対向するように形成されたITOよりなるトップゲート電極50と、トップゲート絶縁膜49及びトップゲート電極50を覆うように形成された窒化シリコンからなる層間絶縁膜51と、から構成される。
【0027】
ダブルゲートトランジスタ10のトップゲート電極50はトップゲートラインTGLに、ボトムゲート電極42はボトムゲートラインBGLに、ドレイン電極47はドレインラインDLに、ソース電極48は接地されたグラウンドラインGLにそれぞれ接続されている。撮像素子1を構成するダブルゲートトランジスタ10の駆動原理については後述する。
【0028】
トップゲートドライバ2は、撮像素子1のトップゲートラインTGLに接続され、コントローラからの制御信号Tcntに従って、各トップゲートラインTGLに+15(V)または−15(V)の信号を出力する。トップゲートドライバ2は、コントローラから供給される信号に従って、+15(V)の信号を各トップゲートラインTGLに順次選択的に出力するシフトレジスタで構成される。トップゲートドライバ2の詳細については後述する。
【0029】
ボトムゲートドライバ3は、撮像素子1のボトムゲートラインBGLに接続され、コントローラからの制御信号Bcntに従って、各トップゲートラインTGLに+10(V)または0(V)の信号を出力する。ボトムゲートドライバ3は、コントローラから供給される信号に従って、+10(V)の信号を各ボトムゲートラインBGLに順次選択的に出力するシフトレジスタで構成される。ボトムゲートドライバ3の詳細については後述する。
【0030】
ドレインドライバ4は、撮像素子1のドレインラインDLに接続され、コントローラからの制御信号Dcntに従って、後述する所定の期間において全てのドレインラインDLに定電圧(+10(V))を出力し、電荷をプリチャージさせる。ドレインドライバ4は、プリチャージの後の所定の期間においてダブルゲートトランジスタ10の半導体層44にチャネルが形成されているか否かによって変化する各ドレインラインDLの電位を読み出し、画像データDATAとしてコントローラに供給する。
【0031】
次に、撮像素子1を構成するダブルゲートトランジスタ10の駆動原理について、図3(a)〜(f)の模式図を参照して説明する。
【0032】
ダブルゲートトランジスタ10の半導体層44のチャネル形成領域は、n型半導体層46a、46b間のブロッキング層45の下に発生するため、チャネル長はブロッキング層45のチャネル長方向の長さに等しい。したがって、図3(a)に示すように、ボトムゲート電極(BG)42に印加されている電圧が0(V)であるときは、トップゲート電極(TG)18に印加されている電圧が+15(V)であっても、チャネルの両端にかかる電界がトップゲート電極(TG)50に印加されている電圧でなく、ソース、ドレイン電極47、48の電圧になるので半導体層44にはチャネル長方向に連続したnチャネルが形成されず、ドレイン電極46a(D)に+10(V)の電圧が供給されても、ドレイン電極(D)46aとソース電極(S)46bとの間に電流は流れない。また、この状態では、後述するように半導体層44及び半導体層44のチャネル領域直上のブロッキング層45に蓄積された正孔が同じ極性のトップゲート電極(TG)50の電圧により反発し、吐出される。以下、この状態をリセット状態という。
【0033】
図3(b)に示すように、トップゲート電極(TG)50に印加されている電圧が−15(V)であり、ボトムゲート電極(BG)42に印加されている電圧が0(V)であるときは、半導体層44にはnチャネルが形成されず、ドレイン電極46a(D)に+10(V)の電圧が供給されても、ドレイン電極(D)46aとソース電極(S)46bとの間に電流は流れない。
【0034】
このように、半導体層44のチャネル領域の両端とトップゲート電極(TG)50との間に配置されているドレイン電極(D)46aとソース電極(S)46bとの電界に影響されるため、トップゲート電極(TG)50のみの電界では連続したチャネルを形成することができないので、ボトムゲート電極(BG)42に印加されている電圧が0(V)である場合には、トップゲート電極(TG)18に印加されている電圧の如何に関わらず、半導体層44にnチャネルが形成されることはない。
【0035】
図3(c)に示すように、トップゲート電極(TG)50に印加されている電圧が+15(V)であり、ボトムゲート電極(BG)42に印加されている電圧が+10(V)であるときは、半導体層44のボトムゲート電極(BG)42側にnチャネルが形成される。これにより、半導体層44が低抵抗化し、ドレイン電極46aに+10(V)の電圧が供給されると、ドレイン電極(D)46aとソース電極(S)46bとの間に電流が流れる。
【0036】
図3(d)に示すように、後述するように半導体層44内に十分な量の正孔が蓄積されず、トップゲート電極(TG)50に印加されている電圧が−15(V)であると、ボトムゲート電極(BG)42に印加されている電圧が+10(V)であっても、半導体層44の内部に空乏層が広がり、nチャネルがピンチオフされて、半導体層44が高抵抗化する。このため、ドレイン電極46aに+10(V)の電圧が供給されても、ドレイン電極(D)46aとソース電極(S)46bとの間に電流が流れない。以下、この状態を第1の読み出し状態という。
【0037】
半導体層44には入射された励起光の光量に応じて正孔−電子対が生じる。このとき図3(e)に示すように、トップゲート電極(TG)50に印加されている電圧が−15(V)であり、ボトムゲート電極(BG)42に印加されている電圧が0(V)であると、正孔−電子対のうち正極性の正孔が半導体層44及び半導体層44のチャネル領域直上のブロッキング層45に蓄積される。以下、上述したリセット状態となり、後述する読み出し状態となるまでにおけるこの状態をフォトセンス状態という。なお、こうしてトップゲート電極(TG)50の電界に応じて半導体層44内に蓄積された正孔は、リセット状態となるまで半導体層44から吐出されることはない。
【0038】
図3(f)に示すように、トップゲート電極(TG)50に印加されている電圧が−15(V)であり、ボトムゲート電極(BG)42に印加されている電圧が+10(V)であるが、半導体層44内に正孔が蓄積されている場合には、蓄積されている正孔が負電圧の印加されているトップゲート電極50に引き寄せられて保持され、トップゲート電極50に印加されている負電圧が半導体層44に及ぼす影響を緩和する方向に働く。このため、半導体層44のボトムゲート電極(BG)42側にnチャネルが形成され、半導体層44が低抵抗化して、ドレイン電極46aに+10(V)の電圧が供給されると、ドレイン電極(D)46aとソース電極(S)46bとの間に電流が流れる。以下、この状態を第2の読み出し状態という。
【0039】
次に、図1に示すトップゲートドライバ2の詳細について説明する。図4は、トップゲートドライバ2の全体の構成を示すブロック図である。撮像素子1に配されているダブルゲートトランジスタ10の行数(トップゲートラインTGLの数)をnとすると、トップゲートドライバ2は、n個の段RS(1)〜RS(n)から構成される。但し、図4では、nが偶数である場合の構成を示している。
【0040】
コントローラからの制御信号Tcntとして、奇数番目の段RS(1),RS(3),・・・には、信号CK1、及び信号φ1が供給されている。偶数番目の段RS(2),RS(4),・・・には、信号CK2及び信号φ2が供給されている。各段共に、コントローラから定電圧Vssが供給されている。信号CK1、CK2のハイレベル(駆動レベル)は+15(V)、ローレベル(非駆動レベル)は−15(V)である。また、定電圧Vssのレベルは−15(V)である。
【0041】
また、1番目の段RS(1)には、コントローラからスタート信号INが供給される。スタート信号INのハイレベル(オンレベル)は+15(V)、ローレベル(オフレベル)は−15(V)である。2番目以降の段RS(2)〜RS(n)には、それぞれの前段RS(1)〜RS(n−1)からの出力信号OUT1〜OUTn−1が供給される。さらに、各段RS(k)(k:1〜nの整数)には、後ろの段RS(k+1)〜の出力信号OUTk+1(但し、最終段RS(n)の場合は1番目の段RS(1)の出力信号OUT1)がリセットパルスとして供給される。なお、各段RS(1)〜RS(n)の出力信号OUT1〜OUTnは、撮像素子1のトップゲートラインTGLにそれぞれ出力される。
【0042】
図5は、トップゲートドライバ2の各段RS(1)〜RS(n)の回路構成を示す図である。図示するように、各段RS(1)〜RS(n)は、基本構成として6つのTFT(Thin Film Transistor)21、22、23、25、26、31を有している。TFT21〜23、25、26、31は、いずれもnチャネルMOS型の電界効果トランジスタで構成され、ゲート絶縁膜に窒化シリコンを用い、半導体層にアモルファスシリコンを用いている。
【0043】
各段RS(k)のTFT21のドレイン電極は互いに前段RS(k−1)のTFT25のソース電極に接続され、TFT21のソース電極は、TFT22のゲート電極、TFT25のゲート電極及びTFT31のドレイン電極に接続されている。奇数段、偶数段のTFT21のゲート電極には、それぞれ信号φ1、φ2が適宜入力される。TFT22のドレイン電極は、TFT23のソース電極及びTFT26のゲート電極に接続され、TFT22のソース電極及びTFT31のソース電極には定電圧Vssが供給されている。そして、TFT23のゲート電極及びドレイン電極には基準電圧Vddが供給され、奇数段のTFT25のドレイン電極には信号CK1が供給され、偶数段のTFT25のドレイン電極には信号CK2が供給され、各段のTFT25のソース電極はTFT26のドレイン電極に接続され、TFT26のソース電極には定電圧Vssが供給されている。TFT31のゲート電極には、次段の出力信号OUTk+1が入力される。尚TFT23は、薄膜トランジスタ以外の抵抗素子であってもよい。ここで、1段目以外の奇数番目の段RS(k)を例として、各段RS(1)〜RS(n)の機能を説明する。
【0044】
TFT21のゲート電極には、コントローラからの信号φ1が供給される。TFT21のドレイン電極には、前の段RS(k−1)からの出力信号OUTk−1が供給される。TFT21は、ハイレベル(オンレベル)の信号φ1が供給されたときにオンし、出力信号OUTk−1によりドレイン電極とソース電極との間に電流が流れることによって、TFT21のソース電極とTFT22、25のゲート電極との間の配線にそれぞれ形成されている配線容量C2、C5に電荷をチャージさせる。配線容量C2、C5は、金属配線及びゲート絶縁膜等により構成される。
【0045】
TFT23のゲート電極とドレイン電極とには、基準電圧Vddが供給されている。これにより、TFT23は、常にオン状態となっている。TFT23は、基準電圧Vddを分圧する負荷としての機能を有する。
【0046】
TFT22は、配線容量C2に電荷がチャージされていないときにオフ状態となり、TFT23を介して供給された基準電圧Vddにより配線容量C6に電荷をチャージさせる。また、TFT22は、配線容量C2に電荷がチャージされているときにオン状態となり、ドレイン電極とソース電極との間に貫通電流を流させる。ここで、TFT22、23は、いわゆるEE型の構成となっているため、TFT23が完全なオフ抵抗とならないことで配線容量C6に蓄積された電荷が完全にディスチャージされないことがあるが、TFT26の閾値電圧よりも十分に低い電圧となる。
【0047】
TFT25のドレイン電極には、信号CK1が供給される。TFT25は、配線容量C5に電荷がチャージされているとき(すなわち、TFT26がオフ状態のとき)にオン状態となり、入力された信号CK1によりゲート電極とソース電極と並びにそれらの間のゲート絶縁膜からなる寄生容量へのチャージアップや、ゲート電極とドレイン電極と並びにそれらの間のゲート絶縁膜による寄生容量がオン電流によりチャージアップされることにより配線容量C5の電位が上昇しゲート飽和電圧にまで達するとソース−ドレイン電流が飽和するので、出力信号OUTkは、実質的に信号CK1とほぼ同電位となる。TFT25は、また、配線容量C5に電荷がチャージされていないとき(すなわち、TFT26がオン状態のとき)にオフ状態となり、ドレイン電極に供給された信号CK1の出力を遮断する。
【0048】
TFT26のドレイン電極には、定電圧Vssが供給される。TFT26は、配線容量C6に電荷がチャージされていないとき(すなわち、TFT25がオン状態のとき)にオフ状態となり、TFT25のソース電極から出力された信号のレベルを当該段の出力信号OUTkとして出力させる。TFT26は、また、配線容量C6に電荷がチャージされているとき(すなわち、TFT25がオフ状態のとき)にオン状態となり、ドレイン電極に供給された定電圧Vssのレベルをソース電極から当該段の出力信号OUTkとして出力させる。
【0049】
TFT31のゲート電極には、後ろの段RS(k+1)の出力信号OUTk+1が供給される。TFT31は、ゲート電極に供給される出力信号OUTk+1がハイレベルになったときにオンし、配線容量C2、C5に蓄積された電荷をディスチャージさせる。
【0050】
なお、偶数番目の段RS(k)においては、TFT21のゲート電極に信号φ2が、信号φ1の代わりにコントローラから供給される。TFT25のドレイン電極に信号CK2が、信号CK1の代わりにコントローラから供給される。また、1番目の段RS(1)においては、TFT21のドレイン電極にスタート信号INが、前の段の出力信号の代わりにコントローラから供給される。最後の段RS(n)においては、TFT31のゲート電極に1番目の段RS(1)の出力信号OUT1が、供給される。
【0051】
次に、図1に示すボトムゲートドライバ3の詳細について説明すると、ボトムゲートドライバ3は、全体の構成及び各段の構成共に、トップゲートドライバ2の構成と同じである。但し、ボトムゲートドライバ3は、定電圧Vss(−15(V))の代わりに定電圧Vss(0(V))がコントローラから供給される。信号CK1、CK2のハイレベル(駆動レベル)は10(V)であり、ローレベル(非駆動レベル)は、定電圧Vssのレベルと同じ0(V)である。また、制御信号Bcntに含まれる各信号のコントローラからの供給タイミングが、制御信号Tcntに含まれる各信号の供給タイミングと異なる。
【0052】
以下、この実施の形態にかかる撮像装置の動作について説明する。最初に、トップゲートドライバ2及びボトムゲートドライバ3の動作について説明する。なお、トップゲートドライバ2とボトムゲートドライバ3とは、実質的には信号の入力タイミングと定電圧Vssのレベルが異なり、これに合わせて出力信号の出力タイミングとレベルとが異なるだけなので、ボトムゲートドライバ3については、トップゲートドライバ2と異なる部分だけを説明することとする。
【0053】
図6は、トップゲートドライバ2(またはボトムゲートドライバ3)の動作を示すタイミングチャートである。1垂直期間が開始したタイミングtnにおいて、コントローラから1番目の段RS(1)に供給されるスタート信号INが立ち上がる。スタート信号INは、1水平期間が終了するタイミングt1までの所定期間においてハイレベルとなっている。
【0054】
タイミングtnからt1までの間の所定期間、ハイレベルのスタート信号INがコントローラから1番目の段RS(1)のTFT21のドレイン電極に供給される。この間において、信号φ1が立ち上がると、奇数番目の段RS(1),RS(3),・・・のTFT21がオンする。これにより、1番目の段RS(2)のTFT21のドレイン電極とソース電極との間に電流が流れることで、1番目の段RS(1)の配線容量C2、C5に電荷がチャージされる。そして、配線容量C2、C5の電位がハイレベルとなることで、TFT22、25がそれぞれオンする。
【0055】
TFT22がオンするまで、1番目の段RS(1)の配線容量C6は、TFT23を介して供給される基準電圧Vddによって電荷が蓄積されてハイレベルとなっている。ここで、TFT22がオンしたことによって、配線容量C6に蓄積されている電荷がディスチャージされる。これにより、1番目の段RS(1)のTFT26は、ゲート電極の電位がローレベルとなってオフする。また、ハイレベルのスタート信号INが供給されている期間は信号CK2がハイレベルとなっているため、連続して駆動している場合は、n番目の段RS(n)のTFT25から出力信号OUTnが出力される。
【0056】
次に、タイミングt1からt2までの所定期間、信号CK1がハイレベルとなる。このとき、1番目の段RS(1)においては、TFT25がオン、TFT26がオフとなることから、TFT25のソース電極から、ほぼ信号CK1のハイレベルが出力信号OUT1として出力される。
【0057】
また、タイミングt1からt2までの所定期間、1番目の段RS(1)から出力されているハイレベルの出力信号OUT1は、2番目の段RS(2)のTFT21のドレイン電極に供給され、ゲート電極には、ハイレベル(オンレベル)の信号φ2が供給されている。これにより、1番目の段RS(1)にハイレベルのスタート信号IN、ハイレベルの信号φ1が供給された場合と同様に、2番目の段RS(2)の配線容量C2、C5に電荷がチャージされる。タイミングt1からt2までの所定期間、2番目の段RS(2)においては、TFT25がオン、TFT26がオフとなるが、TFT25のドレイン電極に供給されている信号CK2がローレベルであるため、ほぼ信号CK2のローレベルが出力信号OUT2として出力される。
【0058】
また同時にハイレベルの出力信号OUT1は、n番目の段RS(n)のTFT31のゲート電極に供給されているので、前の垂直期間においてn番目の段RS(n)の配線容量C2、C5に蓄積された電荷がTFT31を介してディスチャージされ、定電圧Vssとなる。このためn番目の段RS(n)のTFT21が再びオンするまでの間、n番目の段RS(n)の配線容量C2、C5がフローティング状態になることがなく安定して駆動することができる。こうして3〜n番目の段RS(3)〜RS(n)では、タイミングt1からt2までの間、配線容量C2、C5の電位がローレベルとなり、TFT22、25がオフ状態となる。配線容量C6の電位がハイレベルとなり、TFT26がオン状態となる。これにより、3〜n番目の段RS(3)〜RS(n)においては、ほぼ定電圧Vssのレベルが出力信号OUT3〜OUTnとしてそれぞれ出力される。
【0059】
次に、タイミングt2からt3までの所定期間、信号CK2がハイレベルとなる。タイミングt2からt3までの間においては、タイミングt1からt2の間における段RS(1)、RS(2)、RS(n)をそれぞれ段RS(2)、RS(3)、RS(1)に、信号CK1、CK2をそれぞれ信号CK2、CK1に、信号φ2を信号φ1に置き換えると、各段RS(1)〜RS(n)はタイミングt1からt2までの間と同様に動作することとなる。すなわち、タイミングt2からt3までの間においては、2番目の段RS(2)からの出力信号OUT2が所定期間ハイレベルとなり、それ以外の段RS(1)、RS(3)〜RS(n)からの出力信号OUT1、OUT3〜OUTnがローレベルとなる。
【0060】
また、1垂直期間中、1番目の段RS(1)のTFT21のゲート電極には、ハイレベルの信号φ1が段数nの半分の数だけ入力されるため、駆動する頻度が高くなるとTFT21のしきい値ゲート電圧が正側にシフトすることがあるが、TFT21を用いずとも2番目の段RS(2)からのハイレベルの出力信号OUT2が、1番目の段RS(1)のTFT31のゲート電極へ出力され、1番目の段RS(1)の配線容量C2、C5の電位を定電圧Vssまでディスチャージすることができる。ここで出力信号OUT2は1垂直期間中に1度しかハイレベルにならないため、TFT31のゲート絶縁膜及び半導体層には、TFT31のしきい値ゲート電圧に大きな影響を及ぼす程度に電子が蓄積され続けることはないため、TFT31はTFT21よりも電荷排出能力に優れている。したがって、1番目の段RS(1)のTFT21が再びオンするまでの間、1番目の段RS(1)の配線容量C2、C5がフローティング状態になることがなく安定して駆動することができる。
【0061】
また、タイミングt3からt4までの間においては、タイミングt1からt2までの間における段RS(1)、RS(2)、RS(n)をそれぞれ段RS(3)、RS(4)、RS(2)に置き換えると、各段RS(1)〜RS(n)はタイミングt1からt2までの間と同様に動作することとなる。すなわち、タイミングt3からt4までの間においては、3番目の段RS(3)からの出力信号OUT3が所定期間ハイレベルとなり、それ以外の段RS(1)、RS(2)、RS(4)〜RS(n)からの出力信号OUT1、OUT2、OUT4〜OUTnがローレベルとなる。
【0062】
また、3番目の段RS(3)からのハイレベルの出力信号OUT3は、2番目の段RS(2)のTFT31のゲート電極へ出力され、2番目の段RS(2)の配線容量C2、C5の電位を定電圧Vssにする。このため2番目の段RS(2)のTFT21が再びオンするまでの間、2番目の段RS(2)の配線容量C2、C5がフローティング状態になることがなく安定して駆動することができる。
【0063】
以下同様に、タイミングtn−1からtnまでの所定期間においては、n−1番目の段RS(n−1)のTFT25からハイレベルの出力信号OUTn−1が出力され、タイミングtnからt1の所定期間にn番目の段RS(n)のTFT25からハイレベルの出力信号OUTnが出力される。したがって、タイミングt1から次のタイミングt1までの間が1垂直期間となって、ハイレベルの出力信号OUT1からOUTnを順次出力する。
【0064】
なお、図6のタイミングチャートにおいて、トップゲートドライバ2として適用した場合には、コントローラからの信号CK1、CK2がハイレベルとなっている所定期間は、1水平期間の全体であっても、1水平期間の一部でもよい。すなわち、トップゲートドライバ2では、後述するようにリセット電圧を1Tの期間出力してもよく、また1T未満の間出力してもよい。一方、ボトムゲートドライバ3として適用した場合には、コントローラからの信号CK1、CK2がハイレベルとなっている所定期間は、1水平期間のうちの前半半分である。すなわち、ボトムゲートドライバ3では、ハイレベルの出力信号OUTkとハイレベルの出力信号OUTk+1との間に、後述するようにドレインラインDLにプリチャージ電圧を供給する期間がある。
【0065】
また、信号CK1、CK2のローレベル、定電圧Vssのレベルの違いにより、各段RS(1)〜RS(n)から出力される出力信号OUT1〜OUTnのローレベルは、トップゲートドライバ2として適用した場合は−15(V)、ボトムゲートドライバ3として適用した場合は0(V)である。さらに、信号CK1、CK2のハイレベルの違いにより、各段RS(1)〜RS(n)から出力される出力信号OUT1〜OUTnのハイレベルは、トップゲートドライバ2として適用した場合は+15(V)、ボトムゲートドライバ3として適用した場合は+10(V)である。
【0066】
次に、撮像素子1を駆動して画像を撮影するための全体の動作について、図7(a)〜(i)に示す模式図を参照して説明する。なお、以下の説明において、1Tの期間は、1水平期間と同じ長さを有するものとする。また、説明を簡単にするため、撮像素子1に配置されているダブルゲートトランジスタ10のうち、最初の3行のみを考えることとする。
【0067】
まず、タイミングT1からT2までの1Tの期間において、図7(a)に示すように、トップゲートドライバ2は、1行目のトップゲートラインTGLを選択して+15(V)を出力し、2、3行目(他の全行)のトップゲートラインTGLに−15(V)を出力する。一方、ボトムゲートドライバ3は、すべてのボトムゲートラインBGLに0(V)を出力する。この期間において、1行目のダブルゲートトランジスタ10がリセット状態となり、2、3行目のダブルゲートトランジスタ10が前の垂直期間での読み出し状態を終了した状態(フォトセンスに影響しない状態)となる。
【0068】
次に、タイミングT2からT3までの1Tの期間において、図7(b)に示すように、トップゲートドライバ2は、2行目のトップゲートラインTGLを選択して+15(V)を出力し、他のトップゲートラインTGLに−15(V)を出力する。一方、ボトムゲートドライバ3は、すべてのボトムゲートラインBGLに0(V)を出力する。この期間において、1行目のダブルゲートトランジスタ10がフォトセンス状態となり、2行目のダブルゲートトランジスタ10がリセット状態となり、3行目のダブルゲートトランジスタ10が前の垂直期間での読み出し状態を終了した状態(フォトセンスに影響しない状態)となる。
【0069】
次に、タイミングT3からT4までの1Tの期間において、図7(c)に示すように、トップゲートドライバ2は、3行目のトップゲートラインTGLを選択して+15(V)を出力し、他のトップゲートラインTGLに−15(V)を出力する。一方、ボトムゲートドライバ3は、すべてのボトムゲートラインBGLに0(V)を出力する。この期間において、1、2行目のダブルゲートトランジスタがフォトセンス状態となり、3行目のダブルゲートトランジスタ10がリセット状態となる。
【0070】
次に、タイミングT4からT4.5までの0.5Tの期間において、図7(d)に示すように、トップゲートドライバ2は、すべてのトップゲートラインTGLに−15(V)を出力する。一方、ボトムゲートドライバ3は、すべてのボトムゲートラインBGLに0(V)を出力する。また、ドレインドライバ4は、すべてのドレインラインDLに+10(V)を出力する。この期間において、すべての行のダブルゲートトランジスタ10がフォトセンス状態となる。
【0071】
次に、タイミングT4.5からT5までの0.5Tの期間において、図7(e)に示すように、トップゲートドライバ2は、すべてのトップゲートラインTGLに−15(V)を出力する。一方、ボトムゲートドライバ3は、1行目のボトムゲートラインBGLを選択して+10(V)を出力し、他のボトムゲートラインBGLに0(V)を出力する。この期間において、1行目のダブルゲートトランジスタ10が第1または第2の読み出し状態となり、2、3行目のダブルゲートトランジスタ10がフォトセンス状態のままとなる。
【0072】
ここで、1行目のダブルゲートトランジスタ10は、フォトセンス状態となっていたタイミングT2からT4.5までの期間で十分な光が半導体層に照射されていると、第2の読み出し状態となって半導体層内にnチャネルが形成されるため、対応するドレインラインDL上の電荷がディスチャージされる。一方、タイミングT2からT4.5までの期間で十分な光が半導体層に照射されていないと、第1の読み出し状態となって半導体層内のnチャネルがピンチオフされるため、対応するドレインラインDL上の電荷はディスチャージされない。データドライバ4は、タイミングT4.5からT5までの期間で各ドレインラインDL上の電位を読み出し、1行目のダブルゲートトランジスタ10が検出した画像データDATAとしてコントローラに供給する。
【0073】
次に、タイミングT5からT5.5までの0.5Tの期間において、図7(f)に示すように、トップゲートドライバ2は、すべてのトップゲートラインTGLに−15(V)を出力する。一方、ボトムゲートドライバ3は、すべてのボトムゲートラインBGLに0(V)を出力する。また、ドレインドライバ4は、すべてのドレインラインDLに+10(V)を出力する。この期間において、1行目のダブルゲートトランジスタ10が読み出しを終了した状態となり、2、3行目のダブルゲートトランジスタ10がフォトセンス状態となる。
【0074】
次に、タイミングT5.5からT6までの0.5Tの期間において、図7(g)に示すように、トップゲートドライバ2は、すべてのトップゲートラインTGLに−15(V)を出力する。一方、ボトムゲートドライバ3は、2行目のボトムゲートラインBGLを選択して+10(V)を出力し、他のボトムゲートラインBGLに0(V)を出力する。この期間において、1行目のダブルゲートトランジスタ10が読み出しを終了した状態となり、2行目のダブルゲートトランジスタ10が第1または第2の読み出し状態となり、3行目のダブルゲートトランジスタ10がフォトセンス状態となる。
【0075】
ここで、2行目のダブルゲートトランジスタ10は、フォトセンス状態となっていたタイミングT3からT5.5までの期間で十分な光が半導体層に照射されていると、第2の読み出し状態となって半導体層内にnチャネルが形成されるため、対応するドレインラインDL上の電荷がディスチャージされる。一方、タイミングT3からT5.5までの期間で十分な光が半導体層に照射されていないと、第1の読み出し状態となって半導体層内のnチャネルがピンチオフされるため、対応するドレインラインDL上の電荷はディスチャージされない。データドライバ4は、タイミングT5.5からT6までの期間で各ドレインラインDL上の電位を読み出し、2行目のダブルゲートトランジスタ10が検出した画像データDATAとしてコントローラに供給する。
【0076】
次に、タイミングT6からT6.5までの0.5Tの期間において、図7(h)に示すように、トップゲートドライバ2は、すべてのトップゲートラインTGLに−15(V)を出力する。一方、ボトムゲートドライバ3は、すべてのボトムゲートラインBGLに0(V)を出力する。また、ドレインドライバ4は、すべてのドレインラインDLに+10(V)を出力する。この期間において、1、2行目のダブルゲートトランジスタ10が読み出しを終了した状態となり、3行目のダブルゲートトランジスタ10がフォトセンス状態となる。
【0077】
次に、タイミングT6.5からT7までの0.5Tの期間において、図7(i)に示すように、トップゲートドライバ2は、すべてのトップゲートラインTGLに−15(V)を出力する。一方、ボトムゲートドライバ3は、3行目のボトムゲートラインBGLを選択して+10(V)を出力し、他のボトムゲートラインBGLに0(V)を出力する。この期間において、1、2行目のダブルゲートトランジスタ10が読み出しを終了した状態となり、3行目のダブルゲートトランジスタ10が第1または第2の読み出し状態となる。
【0078】
ここで、3行目のダブルゲートトランジスタ10は、フォトセンス状態となっていたタイミングT4からT6.5までの期間で十分な光が半導体層に照射されていると、第2の読み出し状態となって半導体層内にnチャネルが形成されるため、対応するドレインラインDL上の電荷がディスチャージされる。一方、タイミングT4からT6.5までの期間で十分な光が半導体層に照射されていないと、第1の読み出し状態となって半導体層内のnチャネルがピンチオフされるため、対応するドレインラインDL上の電荷はディスチャージされない。データドライバ4は、タイミングT6.5からT7までの期間で各ドレインラインDL上の電位を読み出し、3行目のダブルゲートトランジスタ10が検出した画像データDATAとしてコントローラに供給する。
【0079】
こうしてドレインドライバ4から行毎に供給された画像データDATAに対して、コントローラが所定の処理を行うことで、撮像対象物の画像データが生成される。
【0080】
なお、フォトセンス時以外、例えば読み出し後でも、ダブルゲートトランジスタ10は、トップゲート電極50に−15(V)、ボトムゲート電極42に0(V)が印加され、励起光に応じて半導体層44内に電子−正孔対が発生する。が、読み出し後に蓄積されたキャリアをリセットにより吐出してからフォトセンスを開始するので、フォトセンス時にダブルゲートトランジスタ10の半導体層44で発生した電子−正孔対は、所定期間中の光入射によるものであり、高い精度で撮像することができる。
【0081】
また、励起光に対して感度がよい半導体層44を適用した場合、フォトセンス期間が長いと暗くても明るいときと同程度のキャリアを蓄積してしまうことがあるためフォトセンスの暗と明の電圧比が低くなってしまうが、トップゲートドライバ2とボトムゲートドライバ3の転送速度を制御することにより最適な電圧比になるようにフォトセンス時間を設定することができる。
【0082】
以上説明したように、この実施の形態にかかる撮像装置では、撮像素子1のトップゲートラインTGL及びボトムゲートラインBGLを選択するためのトップゲートドライバ2及びボトムゲートドライバ3は、コントローラから制御信号Tcnt、Bcntとして供給される信号CK1、CK2の電圧レベルを各段RS(1)〜RS(n)の出力信号として出力することができる。このため、撮像素子1に配置されたダブルゲートトランジスタ10の行数が多くなり、トップゲートドライバ2及びボトムゲートドライバ3の段数が多くなっても、後ろの方の段で出力信号のレベルが減衰してしまうことがない。
【0083】
また、トップゲートドライバ2及びボトムゲートドライバ3において、各段RS(1)〜RS(n)の配線容量C2、C5に蓄積された電荷は、それぞれの後ろの段RS(2)〜RS(n)、RS(1)からの出力信号OUT2〜OUTn、OUT1によってオンしたTFT31を介して排出される。このため、継続使用によるオン/オフ駆動の回数の増大によりTFT21の閾値特性が変動し、配線容量C2、C5に蓄積された電荷をTFT21を介して排出することができなくなっても、TFT31を介して排出することができる。このため、TFT21の閾値特性の変動による誤動作を防ぐことができる。
【0084】
さらに、この実施の形態にかかる撮像装置では、撮像素子1を構成する素子は、ダブルゲートトランジスタ10だけであるのに対して、トップゲートドライバ2及びボトムゲートドライバ3を構成する素子は、TFT21〜23、25、26、31だけである。ここで、TFT21〜23、25、26、31は、ダブルゲートトランジスタ10のトップゲート電極(またはボトムゲート電極)を除いた構造のものとすることができるので、トップゲートドライバ2及びボトムゲートドライバ3は、撮像素子1と同一の基板上に、同一のプロセスで形成することができる。
【0085】
従って、撮像素子1、トップゲートドライバ2及びボトムゲートドライバ3を含む撮像装置を低コストで製造することが可能になると共に、撮像素子1とトップゲートドライバ2またはボトムゲートドライバ3との間の接続不良が発生することを抑えることができる。さらには、トップゲートドライバ2及びボトムゲートドライバ3を別モジュールで製造して取り付けるよりも、撮像装置全体を薄型に形成することができる。
【0086】
また、この実施の形態の変形例として各段に出力信号をハイレベルから強制的にローレベルにするために図8に示すようにTFT24を付加してもよい。TFT24はドレイン電極がTFT25のソース電極に接続され、ソース電極には定電圧Vssが供給され、奇数段のゲート電極には信号¬CK1(¬は、論理否定を表す。以下、同じ)が、偶数段のゲート電極には信号¬CK2が、供給される。信号¬CK1、¬CK2は、ハイレベル(オンレベル)でTFT24をオンして出力信号OUTを定電圧Vssにし、ローレベル(オフレベル)でTFT24をオフ状態にする。
【0087】
したがって、TFT26の駆動能力が高くなくても、迅速に出力信号をハイレベル(駆動レベル)からローレベル(非駆動レベル)にすることができる。図9に上記シフトレジスタのタイミングチャートを示す。上記シフトレジスタをボトムゲートドライバ3に適用した場合、信号CK1の立ち下がりから信号CK2の立ち上がりまでの期間、並びに信号CK2の立ち下がりから信号CK1の立ち上がりまでの期間に、コントローラからの制御信号Dcntに従ってドレインドライバ4からドレインラインDLへプリチャージ電圧が供給される。
【0088】
[第2の実施の形態]
この実施の形態にかかる撮像装置の基本構成は、第1の実施の形態で示したもの(図1)と同じである。但し、トップゲートドライバ2及びボトムゲートドライバ3が第1の実施の形態のものと異なり、それぞれ順方向と逆方向との双方向に動作可能である。
【0089】
図10は、この実施の形態で適用されるトップゲートドライバ2またはボトムゲートドライバ3の全体の構成を示すブロック図である。図11は、図10に示したトップゲートドライバ2またはボトムゲートドライバ3の各段の回路構成を示す図である。トップゲートドライバ2とボトムゲートドライバ3との違いは、第1の実施の形態と同様に、コントローラから供給される信号のレベル及びタイミングだけであるので、ここではトップゲートドライバ2を例として説明する。
【0090】
まず、全体の構成について説明する。撮像素子1に配されているダブルゲートトランジスタ10の行数(トップゲートラインTGLの数)をnとすると、図10のトップゲートドライバ2は、n個の段RS2(1)〜RS2(n)から構成される。但し、nは偶数である。
【0091】
各段RS2(k)(k:1〜nの整数)には、TFT27、34、35が付加され、コントローラからの制御信号Tcntには、信号φ3、φ4が付加される。各段RS2(k)のTFT34は、ソース電極がTFT31のゲート電極に接続され、n段目の段RS2(n)を除く段のドレイン電極には出力信号OUTk+1が供給され、n段目の段RS2(n)のドレイン電極には出力信号OUT1が供給される。そして、奇数段のTFT34のゲート電極にはそれぞれ信号φ1が供給され、偶数段のTFT34のゲート電極にはそれぞれ信号φ2が供給される。
【0092】
各段RS2(k)のTFT35は、ソース電極がTFT31のゲート電極に接続され、1段目の段RS2(1)を除く段のドレイン電極には出力信号OUTk−1が供給され、1段目の段RS2(1)のドレイン電極にはスタート信号INが供給される。奇数段のTFT35のゲート電極には、それぞれ信号φ3が供給され、偶数段のTFT35のゲート電極には、それぞれ信号φ4が供給される。
【0093】
各段RS2(k)のTFT27は、ソース電極が同段のTFT21のソース電極及びTFT25のゲート電極に接続され、n段目の段RS2(n)を除く段のTFT27のドレイン電極には、次段の出力信号OUTk+1が供給され、n段目の段RS2(n)のTFT27のドレイン電極には、スタート信号INが供給される。そして、奇数段のTFT27のゲート電極にはそれぞれ信号φ3が供給され、偶数段のTFT27のゲート電極にはそれぞれ信号φ4が供給される。
【0094】
次に、各段RS2(1)〜RS2(n)の回路構成について説明する。1段目以外の奇数番目の段RS2(k)を例として説明すると、図11に示すように、TFT27のゲート電極には、コントローラからの信号φ3が供給される。TFT27のドレイン電極には、後ろの段RS2(k+1)からの出力信号OUTk+1が供給される。TFT27は、ハイレベル(オンレベル)の信号φ3が供給されたときにオンし、出力信号OUTk+1によりドレイン電極とソース電極との間に電流が流れることによって、TFT21と同様に、配線容量C2、C5に電荷をチャージさせる。
【0095】
順方向モードにおいて、TFT34のゲート電極には、コントローラからの信号φ1が供給され、ドレイン電極には、後ろの段RS2(k+1)からの出力信号OUTk+1が供給される。TFT34は、ハイレベル(オンレベル)の信号φ1が供給されたときにオンし、後ろの段RS2(k+1)からの出力信号OUTk+1をTFT31のゲート電極に供給することによって、TFT31をオンさせる。
【0096】
逆方向モードにおいて、TFT35のゲート電極には、コントローラからの信号φ4が供給され、ドレイン電極には、前の段RS2(k−1)からの出力信号OUTk−1が供給される。TFT35は、ハイレベル(オンレベル)のφ4が供給されたときにオンし、前の段RS2(k−1)からの出力信号OUTk−1をTFT31のゲート電極に供給することによって、TFT31をオンさせる。
【0097】
なお、n番目の段RS2(n)では、コントローラからのスタート信号INが出力信号OUTk+1の代わりに、TFT27のドレイン電極に供給される。n番目以外の偶数番目の段RS2(k)では、信号φ3の代わりに信号φ4がコントローラから供給される。
【0098】
以下、この実施の形態にかかる撮像装置の動作について説明する。最初に、トップゲートドライバ2及びボトムゲートドライバ3の動作について、順方向の場合と逆方向の場合とに分けて説明する。ここでも、トップゲートドライバ2の動作とボトムゲートドライバ3の動作とで大きな違いはないため、トップゲートドライバ2を例として説明する。
【0099】
図12は、この実施の形態で適用されるトップゲートドライバ2(またはボトムゲートドライバ3)の順方向の動作を示すタイミングチャートである。図示するように、信号φ3、φ4は、常にローレベルとなっており、各段RS2(1)〜RS2(n)においてTFT27は常にオフされている。
【0100】
このため、k番目の段RS2(k)を例とすると、当該段のTFT34は、ドレイン電極にk+1番目の段RS2(k+1)からの出力信号OUTk+1が供給され、kが奇数であればハイレベルの信号φ1、偶数であればハイレベルの信号φ2が、同期してゲート電極に供給され、TFT31を介し配線容量C2、C5の電荷をディスチャージする。このとき信号φ3、φ4がローレベルのため、全段のTFT35は常時オフ状態であるこのため、順方向動作時において、トップゲートドライバ2(またはボトムゲートドライバ3)は、図6に示した第1の実施の形態のものと実質的に同一に動作することとなる。
【0101】
図13は、この実施の形態で適用されるトップゲートドライバ2(またはボトムゲートドライバ3)の逆方向の動作を示すタイミングチャートである。図示するように、信号φ1、φ2は、常にローレベルとなっており、各段RS2(1)〜RS2(n)においてTFT21、TFT34は常にオフされ、出力信号OUTn、OUTn−1、……、OUT2、OUT1の順にハイレベルになる。
【0102】
このため、k番目の段RS2(k)を例にすると、当該段のTFT35は、ドレイン電極にk−1番目の段RS2(k−1)からの出力信号OUTk−1が供給され、これに同期してkが奇数であればハイレベルの信号φ3、偶数であればハイレベルの信号φ4が、ゲート電極に供給され、TFT31を介し配線容量C2、C5の電荷をディスチャージする。このとき信号φ1、2がローレベルのため、全段のTFT34は常時オフ状態である。また、信号φ4がハイレベルとなるタイミングと信号φ3とがハイレベルとなるタイミングとは、順方向動作における信号φ1、φ2と同様に、互い違いである。さらに、信号CK1がハイレベルとなる期間と、信号CK2がハイレベルとなる期間とは、スタート信号INに対し順方向動作の場合とはほぼ逆になっている。
【0103】
タイミングt0からt1までの所定期間、ハイレベルのスタート信号INがコントローラからn番目の段RS2(n)のTFT27のドレイン電極と1番目の段RS2(1)のTFT21のドレイン電極とに供給される。この間において、信号φ4が立ち上がると、偶数番目の段RS2(2),RS2(4),・・・,RS2(n)のTFT27がオンする。これにより、n番目の段RS2(n)の配線容量C2、C5に電荷がチャージされ、当該段のTFT22、25がオンし、配線容量C6から電荷がディスチャージされてTFT26がオフする。
【0104】
次に、タイミングt1からt2までの所定期間、信号CK2がハイレベルとなる。このとき、n番目の段RS2(n)は、TFT25がオン、TFT26がオフとなっていることから、ブートストラップ効果によりほぼ信号CK2のハイレベルを出力信号OUTnとして出力する。
【0105】
また、この期間では、信号φ3が立ち上がると、n−1番目の段RS2(n−1)の配線容量C2、C5に電荷がチャージされ、TFT22、25がオンすると共に、配線容量C6から電荷がディスチャージされ、TFT26がオフする。が、n−1番目の段RS2(n−1)のTFT25のドレイン電極に供給される信号CK1はローレベルであるため、n−1番目の段RS2(n−1)は、ほぼ信号CK1のローレベルを出力信号OUTn−1として出力する。
【0106】
タイミングt2からt3の所定期間、信号CK1がハイレベルとなる。タイミングt2からt3の期間においては、タイミングt1からt2の間における段RS2(n)、RS2(1)、RS2(n−1)をそれぞれ段RS2(n−1)、RS(n)、RS(n−2)に、信号CK2、CK1をそれぞれ信号CK1、CK2に、信号φ4と信号φ3を互いに置き換えると、各段RS2(1)〜RS2(n)は、タイミングt1からt2の期間と同様に動作することとなる。すなわち、n−1番目の段RS2(n−1)からの出力信号OUTn−1が所定期間ハイレベルとなり、それ以外の段RS2(1)〜RS2(n−2)、RS2(n)からの出力信号OUT1〜OUTn−2、OUTnがローレベルとなる。
【0107】
このとき、ハイレベルの出力信号OUTn−1は、n番目の段RS2(n)のTFT35のドレイン電極に供給され、同期してハイレベルの信号φ4がTFT35のゲート電極に供給されるため、段RS2(n)の配線容量C2、C5に蓄積された電荷がTFT31を介してディスチャージされる。すなわち、逆方向での段RS2(k)の配線容量C2、C5に蓄積された電荷をディスチャージは、段RS2(k−1)のハイレベルの出力信号OUTkを段RS2(k)のTFT35のドレイン電極に供給し、同期してゲート電極にハイレベルの信号φ3又はφ4を供給することにより達成される。
【0108】
以下同様に動作を繰り返し、タイミングtn−2からtn−1の期間においては、3番目の段RS2(3)からの出力信号OUT3が所定期間ハイレベルとなり、それ以外の段RS2(1),RS2(2),RS2(4)〜RS2(n)からの出力信号OUT1、OUT2、OUT4〜OUTnがローレベルとなる。タイミングtn−1からtnの期間においては、2番目の段RS2(2)からの出力信号OUT2が所定期間ハイレベルとなり、それ以外の段RS2(1),RS2(3)〜RS2(n)から出力信号OUT1、OUT3〜OUTnがローレベルとなる。タイミングtnからt1の期間においては、1番目の段RS2(1)からの出力信号OUT1が所定期間ハイレベルとなり、それ以外の段RS2(2)〜RS2(n)から出力信号OUT2〜OUTnがローレベルとなる。
【0109】
なお、図12、図13のタイミングチャートにおいても、第1の実施の形態の場合(図6)と同様に、トップゲートドライバ2として適用した場合には、コントローラからの信号CK1、CK2がハイレベルとなっている所定期間は、1水平期間の全体であっても、1水平期間の一部でもよい。すなわち、トップゲートドライバ2では、リセット電圧を1Tの期間出力してもよく、また1T未満の間出力してもよい。。一方、ボトムゲートドライバ3として適用した場合には、コントローラからの信号CK1、CK2がハイレベルとなっている所定期間は、1水平期間のうちの前半半分である。すなわち、ボトムゲートドライバ3では、ハイレベルの出力信号OUTkとハイレベルの出力信号OUTk+1との間に、ドレインラインDLにプリチャージ電圧を供給する期間がある。
【0110】
次に、撮像素子1を駆動して画像を撮影するための全体の動作について説明する。撮像素子1を駆動する場合、トップゲートドライバ2及びボトムゲートドライバ3は、コントローラからの制御信号Tcnt、Bcntに従って、双方共に順方向で動作するか逆方向で動作する。順方向の場合は、第1の実施の形態で説明したものと同様に動作する。一方、逆方向で動作する場合は、ダブルゲートトランジスタ10のn行目から1行目を順方向の場合の1行目からn行目と考えたのと同様に動作することとなる。
【0111】
以上説明したように、この実施の形態にかかる撮像装置では、トップゲートドライバ2及びボトムゲートドライバ3は、それぞれトップゲートラインTGLとボトムゲートラインBGLを、順方向と逆方向との双方向で走査できることとなる。このため、撮像対象物の画像を反転させて取得するときに、コントローラは、トップゲートドライバ2及びボトムゲートドライバ3に供給する制御信号Tcnt、Bcntを変えるだけで、複雑な処理を行う必要がない。
【0112】
また、上記実施の形態における各段に図14に示すようにTFT24を付加させてもよい。このとき、奇数段のTFT24のゲート電極には信号¬CK1が、偶数段のTFT24のゲート電極には信号¬CK2が、それぞれ入力される。
【0113】
[実施の形態の変形]
本発明は、上記の第1、第2の実施の形態に限られず、種々の変形、応用が可能である。以下、本発明に適用可能な上記の実施の形態の変形態様について、説明する。
【0114】
上記の第1の実施の形態では、図4に示したトップゲートドライバ2及びボトムゲートドライバ3は、各段が基本構成としての5つのTFT21〜23、25、26と、付加構成としての1つのTFT31とから構成されるものとしていた。しかしながら、トップゲートドライバ2及びボトムゲートドライバ3は、この構成に限られるものではない。図4に示すトップゲートドライバ2及びボトムゲートドライバ3の他の構成例について、図15〜図18を参照して説明する。
【0115】
図15に示す構成では、トップゲートドライバ2またはボトムゲートドライバ3の各段(k:1〜nの整数)は、基本構成としてのTFT21〜23、25、26に加えて、付加構成としてのTFT32を有している。TFT32は、ゲート電極に基準電圧Vddが印加され、ドレイン電極が配線容量C2、C5に接続され、ソース電極が定電圧Vssに接続されている。TFT21がオンし、ハイレベルの信号がそのドレイン電極から出力されたときに配線容量C2、C5に蓄積された電荷は、TFT21がオフするとTFT32を介して徐々に排出される。このため、TFT21の閾値特性の変動によって、配線容量C2、C5に蓄積された電荷をTFT21を介して排出するのが困難になっても、TFT32を介して排出することができ、TFT21の閾値特性の変動に起因する誤動作を防ぐことができる。
【0116】
図16に示す構成では、図15に示すトップゲートドライバ2またはボトムゲートドライバ3の各段(k:1〜nの整数)に、TFT24を付加している。
【0117】
図17に示す構成では、トップゲートドライバ2またはボトムゲートドライバ3の各段(k:1〜nの整数)は、基本構成としてのTFT21〜23、25、26に加えて、付加構成としての抵抗素子33を有している。抵抗素子33は、一端が配線容量C2、C5に接続され、他端が接地されている。TFT21がオンし、ハイレベルの信号がそのドレイン電極から出力されたときに配線容量C2、C5に蓄積された電荷は、TFT21がオフすると抵抗素子33を介して徐々に排出される。このため、TFT21の閾値特性の変動によって、配線容量C2、C5に蓄積された電荷をTFT21を介して排出するのが困難になっても、抵抗素子33を介して排出することができ、TFT21の閾値特性の変動に起因する誤動作を防ぐことができる。
【0118】
また、図18に示す構成では、図17に示すトップゲートドライバ2またはボトムゲートドライバ3の各段(k:1〜nの整数)に、TFT24を付加している。
【0119】
ここで、TFT24がなくても動作可能な理由について説明する。TFT25のソース電極から出力される信号CK1(またはCK2)のレベルがローレベルに変化すると、ハイレベル時にドレイン電極に接続された配線に蓄積された電荷が強制的にディスチャージされることはないものの、出力信号OUTkのレベルは、信号CK1のローレベルまで変化することができる。すなわち、出力信号OUTkのレベルをローレベルまでに変化させるための時間は、チャージされた電荷の量が多く、TFT26の駆動能力が小さいと、図8、図14の例に比べてかかるものの、一定時間の間で出力信号OUTkのレベルをローレベルに変化させることができることによるものである。
【0120】
上記の第2の実施の形態では、図11に示したトップゲートドライバ2及びボトムゲートドライバ3は、各段が基本構成としての7つのTFT21〜23、25〜27と、付加構成としての1つのTFT31、34、35とから構成されるものとしていた。しかしながら、トップゲートドライバ2及びボトムゲートドライバ3は、この構成に限られるものではない。図11に示すトップゲートドライバ2及びボトムゲートドライバ3の他の構成例について、図19〜図22を参照して説明する。
【0121】
図19〜図22に示す構成では、それぞれ図15〜図18に示す構成のものに基本構成のTFT27を付加した構成となっている。ここで、TFT27の機能は、図11に示したものと同じである。TFT34、35の機能は、図11に示したものと同じである。つまり、トップゲートドライバ2及びボトムゲートドライバ3の各段RS2(1)〜RS2(n)を図19〜図22に示すように構成しても、順方向と逆方向との双方向に動作するものとすることができる。
【0122】
また、上記の第1、第2の実施の形態では、1番目の段RS(1)の出力信号OUTnをn番目の段RS(n)のTFT31のゲート電極に供給し、これによって配線容量C2、C5に蓄積された電荷をディスチャージさせていた。しかしながら、1番目の段RS(1)のTFT31のゲート電極には、コントローラから所定のタイミングで制御信号を供給するものとしてもよい。これにより、1垂直期間中の最後の水平期間から次の垂直期間の最初の水平期間に至るまでの時間を任意に設定することが可能となる。
【0123】
また、上記の第1、第2の実施の形態では、図6、図12、図13のタイミングチャートで示したように、1垂直期間が開始するとコントローラからハイレベルのスタート信号INをトップゲートドライバ2(またはボトムゲートドライバ3)の1番目の段RS(1)またはn番目の段RS(n)に供給するものとしていた。しかしながら、この場合におけるスタート信号INは、n番目の段RS(n)または1番目の段RS(1)から出力される出力信号OUTnまたはOUT1と同じである。従って、トップゲートドライバ2(またはボトムゲートドライバ3)を連続駆動させる場合には、1番最初にイニシャルパルスとしてハイレベルのスタート信号INを供給する以外は、スタート信号INの替わりに出力信号OUTn(順方向)またはOUT1(逆方向)を1番目の段RS(1)またはn番目の段RS(n)に供給するものとしてもよい。
【0124】
また、上記の第1、第2の実施の形態では、TFT24を付加した場合、トップゲートドライバ2の奇数番目の段RS(1),RS(3),・・・には信号CK1、¬CK1を、偶数番目の段RS(2),RS(4),・・・には信号CK2、¬CK2をそれぞれコントローラから供給するものとしていた。しかしながら、トップゲートドライバ2の場合は、ボトムゲートドライバ3と異なり、常に信号CK1、CK2のどちらかがハイレベルの状態とさせることができる。すると、信号CK2は信号¬CK1と、信号¬CK2は信号CK1とそれぞれ等価なものとなる。従って、偶数番目の段RS(2),RS(4),・・・には信号¬CK1、CK1をコントローラから供給するものとしてもよい。
【0125】
また、上記の第1、第2の実施の形態では、図5、図8、図11、図14に示すシフトレジスタを、撮像素子1を駆動するためのトップゲートドライバ2またはボトムゲートドライバ3として適用した場合を説明した。しかしながら、このような構成のシフトレジスタは、複数の画素が配置された任意の撮像素子または表示素子について、画素を行毎に選択するドライバとして適用することができる。さらには、このような構成のシフトレジスタは、撮像素子または表示素子を駆動するためのドライバとしてだけではなく、直列のデータを並列のデータに変換する場合などの他の用途にも適用することができる。
【0126】
上記シフトレジスタをデジタルスチルカメラの液晶表示装置のゲートドライバに適用した例を以下に説明する。
【0127】
図23は、この実施の形態にかかるデジタルスチルカメラの外観を示す斜視図である。図示するように、このデジタルスチルカメラは、カメラ本体部101とレンズユニット部102とから構成されている。
【0128】
カメラ本体部101は、その正面に表示部110と、モード設定キー112aとを備える。モード設定キー112aは、画像を撮影し、後述する画像メモリに記録する撮影モードと、記録された画像を再生する再生モードとの切り換えを行うためのキーである。表示部110は、液晶表示装置によって構成され、撮影モード時には撮影前にレンズで捉えている画像を表示する(モニタリングモード)ためのビューファインダとして機能し、再生モード時には記録された画像を表示するためのディスプレイとして機能する。表示部110の構成については、詳しく後述する。
【0129】
カメラ本体部101は、また、その上面に電源キー111と、シャッターキー112bと、「+」キー112cと、「−」キー112dと、シリアル入出力端子113とを備える。電源キー111は、スライド操作することによって、デジタルスチルカメラの電源をオン/オフするためのキーである。
【0130】
シャッターキー112bは、撮影モード時に画像の記録を指示すると共に、再生モード時に選択内容の決定を指示するためのキーである。「+」キー112c及び「−」キー112dは、再生モード時に画像メモリに記録されている画像データから表示部110に表示するための画像データを選択したり、記録/再生時の条件設定のために用いられる。シリアル入出力端子113は、外部の装置(パーソナルコンピュータ、プリンタなど)との通信を行うためのケーブルを挿入するための端子である。
【0131】
レンズユニット部102は、撮影すべき画像を結像するレンズを図の背面側に備える。レンズユニット部2は、カメラ本体部101に結合した軸にを中心に上下方向に360°回動可能に取り付けられている。
【0132】
図24は、図23のデジタルスチルカメラの回路構成を示すブロック図である。図示するように、このデジタルスチルカメラの回路は、表示部110と、キー入力部112a、112b、112c、112dと、マトリクス状に複数の撮像画素が配列され、受光した光の強度によって電荷を蓄積するCCD(Charge Coupled Device)121と、サンプルホールド回路122と、A/D変換器123と、垂直ドライバ124と、タイミングジェネレータ125と、カラープロセス回路126と、DMAコントローラ127と、DRAM128と、記録用メモリ130と、キー入力部112a、112b、112c、112dからのコマンドに従ってに格納されたプログラムを実行し、デジタルスチルカメラの各回路部を制御するCPU(Central Processing Unit)31と、画像圧縮伸長回路132と、VRAMコントローラ133と、VRAM134と、デジタルビデオエンコーダ135と、シリアル入出力端子113とを備える。
【0133】
撮影モードにおける上記回路の動作状態を説明する。撮影モードには2つの動作モードがあり、撮影した画像を表示部110にて表示するモニタリングモードと、撮影した画像を画像データとして記録する画像記録モードと、に分けられる。
【0134】
モニタリングモードでは、CPU131が予め設定された撮像周期毎にタイミングジェネレータ125及びカラープロセス回路126を制御することによりCCD121を駆動させる。CCD121は、垂直ドライバ124から出力された駆動信号Spに基づいて撮影した画像の光量に応じて変換された電気信号Seをサンプルホールド回路122に順次出力する。サンプルホールド回路122は、この電気信号Seのうちの実効部分Se’をA/D変換器123に出力する。A/D変換器123は実効部分Se’をデジタルデータSdに変換し、カラープロセス回路126に出力し、カラープロセス回路126はデジタルデータSdから輝度/色差デジタルデータであるYUVデータをDMAコントローラ127に出力する。DMAコントローラ127は、 YUVデータをDRAM128に記録・更新する。
【0135】
CPU131は、DMAコントローラ127から転送された1フレーム分のYUVデータをDRAM128から読み出し、VRAMコントローラ133を介してVRAM134に書き込む。また、デジタルビデオエンコーダ135は、一定周期毎にVRAMコントローラ133を介してVRAM134より1フレーム分のYUVデータを線順次で読み出してアナログビデオ信号Saを生成し、表示部110に出力する。 シリアル入出力端子113は、CPU131が外部機器とデータのシリアル転送を行うための入出力端子である。
【0136】
キー入力部112a、112b、112c、112dは、それぞれカメラ本体部101に配されたモード設定キー112a、シャッターキー112b、「+」キー112c及び「−」キー112dから構成され、これらの各キーからの入力に従ったコマンドをCPU131に投入する。
【0137】
以下に、画像記録モードを説明する。
まずCCD121がサンプルホールド回路122に電気信号Seが出力し続けている状態で操作者がデジタルスチルカメラのシャッターキー112bを押すことにより、CPU131がタイミングジェネレータ125及びカラープロセス回路126を制御して転送動作が停止される。そして、最後に転送された1フレーム分の電気信号Seはモニタリングモードと同様に、サンプルホールド回路122、 A/D変換器123、及びカラープロセス回路126を介してYUVデータに変換される。CPU131は、このYUVデータをDMAコントローラ127を介して所定のフォーマットで読み出し、画像圧縮伸長回路132に入力し圧縮させる。圧縮されたデータは、記録用メモリ130で保存される。
この保存が終了後、CPU131は、タイミングジェネレータ125及びカラープロセス回路126を再び起動し、モニタリングモードに自動的に戻る。
【0138】
再生モードでは、キー入力部112a、112b、112c、112dでの操作に応じて、記録用メモリ130で保存された圧縮データを画像圧縮伸長回路132で伸長し、この圧縮を解凍された1フレーム分のYUVデータを画像圧縮伸長回路132から読み出し、VRAMコントローラ133を介してVRAM134に書き込む。 VRAM134に書き込まれた1フレーム分のYUVデータは、ビデオエンコーダ135で線順次で読み出して変換され、アナログビデオ信号Saとして表示部110に出力される。また画像記録モードで撮影が終了直後に再生モードに切り替わり、表示部110が撮影した1フレーム分の画像を表示するように設定してもよい。
【0139】
図25は、図23、図24の表示部110の構成を示すブロック図である。
表示部110は、液晶表示装置によって構成されるもので、クロマ回路211と、位相比較器212と、レベルシフタ213と、液晶コントローラ101と、液晶パネル202と、ゲートドライバ203と、ドレインドライバ204とを備える。
【0140】
モニタリングモード及び画像記録モードのいずれにおいても、クロマ回路211はデジタルビデオエンコーダ135のアナログビデオ信号SaからアナログRGB信号SR1,SG1,SB1を生成する。このとき、アナログビデオ信号SR1,SG1,SB1は、液晶パネル202の視覚特性に合わせてガンマ補正が行われている。レベルシフタ213は、液晶を交流駆動するため、及び明るさを調整するためクロマ回路211で生成されたアナログRGB信号SR1,SG1,SB1の極性を1ラインまたは1フレーム毎に反転し、且つ振幅の制御を行い、レベルシフト処理されたアナログRGB信号SR2,SG2,SB2を出力する。
【0141】
液晶コントローラ101は、発振回路を内蔵し、クロマ回路211がアナログビデオ信号Saから同期分離処理により生成した垂直同期信号VDが入力されることにより垂直方向の同期をとり、水平同期信号HDと位相比較信号CKHによる位相比較器出力によりPLL(Phase Locked Loop)を構成して水平方向の同期をとる。そして、液晶コントローラ101は、極性反転制御用信号CKFをレベルシフタ213に出力し、ドレインドライバ204に制御信号群DCNTを出力し、ゲートドライバ203に制御信号群GCNTを出力する。
【0142】
液晶パネル202は、m×n個の画素によって構成されるアクティブマトリクス駆動のものであり、一対の基板間に液晶を封入することによって構成されている。液晶パネル202の一方の基板には、クロマ回路211で生成され、ACレベル増幅及びDCレベル増幅されたコモン電圧VCOM(VCOMはその値を経時的に変位しても可)が印加されている共通電極が形成され、液晶パネル202の他方の基板には、画素に対応する画素電極と半導体層がアモルファスシリコンまたはポリシリコンからなる薄膜トランジスタ(TFT)202aとがマトリクス状に配置されており、画素電極の間にはn本のゲートラインGL1〜GLnとm本のドレインラインDL1〜DLmとがそれぞれ平行に形成されている。そして、ゲートラインGL1〜GLnと平行してキャパシタラインCL1〜CLnが設けられている。
【0143】
液晶パネル202の1画素分の等価回路を図25に示す。TFT202aのゲートはゲートラインGLに、ドレインはドレインラインDLに、ソースは画素電極にそれぞれ接続され、画素容量202bは、画素電極、共通電極及びその間の液晶とで構成される。ドレインラインDL上の表示信号は、選択されているゲートラインGLに対応するTFT102を介して画素容量202bに書き込まれる。画素容量202bに書き込まれた表示信号に従って液晶の配向状態が制御され、液晶を透過する光の量が変化することによって画像が表示される。キャパシタ202cは、キャパシタラインCL1〜CLn、それに重なるゲート絶縁膜及び画素電極から構成され、キャパシタラインCL1〜CLnには、キャパシタ電圧VCSが常時印加されている。そして全ての共通電極にはライン毎に可変のコモン電圧VCOMが常時印加されている。
【0144】
ゲートドライバ203は、上記実施の形態に示すn段構成のシフトレジスタによって構成され、コントローラ101から供給される制御信号群GCNT中の信号CK1、CK2及びstart信号INに従って、ゲートラインGL1〜GLnのいずれかを順次選択して、アクティブ(ハイレベル)にする。
【0145】
ドレインドライバ204は、シフトレジスタと、レベルシフタと、サンプルホールドバッファーと、マルチプレクサーとから構成される。
【0146】
ドレインドライバ204のシフトレジスタは、液晶パネル202の水平方向の画素数に対応するm段構成のもので、制御信号群DCNTのうちのクロック信号、反転クロック信号及びスタート信号が入力されてアナログRGB信号のサンプリングを行うためのサンプリング信号を生成する。レベルシフタは、サンプリング信号をサンプルホールドバッファーの動作レベルに変換するための回路である。マルチプレクサーは、制御信号群DCNTのうちの配列信号に基づいてレベルシフタ213からのアナログビデオ信号SR2,SG2,SB2を各ラインの画素のRGB配列に応じた順番に整列させて出力する。サンプルホールドバッファーは、レベルシフタからのサンプリング信号に基づいてアナログビデオ信号SR2,SG2,SB2をバッファで増幅してドレインラインDL1〜DLmに出力する。
【0147】
以下、この実施の形態にかかるデジタルスチルカメラの動作について、説明する。
【0148】
モード設定キー112aの操作により、デジタルスチルカメラのモードが撮影モード(モニタリングモード及び画像記録モード)に設定されている場合には、レンズによって結像された画像に応じてCCD121の各画素が蓄積した電荷に対応する電気信号Seが垂直ドライバ124から供給される駆動信号に従ってサンプルホールド回路122に順次入力され、実効部分のアナログ電気信号Se’としてA/D変換器123に入力される。読み出された撮像信号Seは、を介してA/D変換器123に供給され、デジタルの画像データSdに変換されてカラープロセス回路126に供給される。
【0149】
カラープロセス回路126はデジタルデータSdから輝度/色差デジタルデータであるYUVデータをDMAコントローラ127に出力し、DMAコントローラ127は、 YUVデータをDRAM128に記録・更新する。CPU131は、DMAコントローラ127から転送された1フレーム毎のYUVデータをDRAM128から読み出し、VRAMコントローラ133を介してVRAM134に書き込む。そして、デジタルビデオエンコーダ135は、一定周期毎にVRAMコントローラ133を介してVRAM134より1フレーム分のYUVデータを線順次で読み出してアナログビデオ信号Saを生成し、表示部110に出力し、表示部110で表示される。
【0150】
ここで、シャッターキー112bが操作されると、CPU131からの指示に従ってCPU131がタイミングジェネレータ125及びカラープロセス回路126を制御して転送動作が停止される。そして、最後に転送された1フレーム分の電気信号Seが、サンプルホールド回路122、A/D変換器123、及びカラープロセス回路126を介してYUVデータに変換される。YUVデータは、DMAコントローラ127を介して所定のフォーマットで読み出し、画像圧縮伸長回路132に入力し圧縮され、記録用メモリ130で保存される。
【0151】
一方、モード設定キー112aの操作により、デジタルスチルカメラのモードが再生モードに設定されている場合には、CPU131は、「+」キー112cまたは「−」キー112dの操作によって指示された圧縮画像データを記録用メモリ130から読み出し、画像圧縮伸長回路132で伸長され、VRAMコントローラ133の制御によりVRAM134に書き込まれる。この書き込まれたYUVデータは、デジタルビデオエンコーダによりアナログ化され、アナログ信号Saとして表示部110に出力される。
【0152】
アナログビデオ信号Saはクロマ回路211に入力され、ガンマ補正されたアナログビデオ信号SR1,SG1,SB1、垂直同期信号VD及び水平同期信号HDに分離される。位相比較器212は、クロマ回路211からの水平同期信号HD及び液晶コントローラ101からの位相比較信号CKHにより水平方向のタイミングを測り液晶コントローラ101に出力する。液晶コントローラ101は、これらの信号に応じて、ドレインドライバ204に制御信号群DCNTを出力するとともに、ゲートドライバ203に制御信号群GCNTを出力する。液晶コントローラ101からの極性反転制御用信号CKFに基づき、クロマ回路211から出力されたアナログビデオ信号SR1,SG1,SB1は、レベルシフタ213で1ラインまたは1フレーム毎に極性反転される。この適宜反転されたアナログビデオ信号SR2,SG2,SB2は、制御信号群DCNTに応じてドレインドライバ204に入力される。
【0153】
コントローラ101が生成した制御信号群GCNT中のstart信号INがゲートドライバ203に供給されることによって、ゲートドライバ203が動作を開始する。
【0154】
液晶コントローラ101からは、クロック信号が順次供給され、このとき、ゲートラインGL1本毎に出力されるスタート信号により各段にサンプリング信号が転送される。転送されたサンプリング信号は、レベルシフタにより動作レベルに変換し、順次出力される。アナログビデオ信号SR2,SG2,SB2は、マルチプレクサーにパラで入力され、制御信号群DCNTのうちの配列信号に基づいて各ラインの画素のRGB配列に応じた順番に整列させて出力される。マルチプレクサーから出力されたアナログビデオ信号SR2,SG2,SB2は、レベルシフタからのサンプリング信号に応じてサンプルホールドバッファー内で順次サンプリングされ、内部のバッファーを介してドレインラインDL1〜DLmにパラ出力される。
【0155】
ドレインラインDL1〜DLmにそれぞれ供給された表示信号は、ゲートドライバ203による選択に従ってオンされているTFT202aを介して画素容量202bに、1水平期間の間で書き込まれる。
【0156】
表示部110は、以上のような動作を繰り返すことによって、液晶パネル202の各画素の画素容量202bに表示信号を書き込んでいく。この表示信号に応じて液晶の配向状態が変化し、「暗」または「明」で各画素が表されている画像が液晶パネル202に表示される。
【0157】
上記の液晶表示装置のゲートドライバは、逆方向モードで画像データを変えることなく画像を上下に反転することができる。このため、表示部110に対しレンズユニット部102の向きを略180゜回転すると逆方向モードになり画像反転するように設定すれば、表示部110の画像がそれを視認する視認者にとって常に上下が逆さまにならないようにすることができる。
【0158】
上記シフトレジスタに用いられるTFTはいずれもnチャネルMOS型の電界効果トランジスタであったが、すべてpチャネルMOS型の電界効果トランジスタとしてもよい。この場合、上記実施の形態の各信号のハイレベルとローレベルを互いに反転させる。
【0159】
【発明の効果】
以上説明したように、本発明によれば、信号レベルを減衰させることなく、出力信号をシフトしていくことが可能となる。また、継続使用によるトランジスタの閾値特性の変動に起因する誤動作を防ぐことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態にかかる撮像装置の構成を示すブロック図である。
【図2】撮像素子を構成するダブルゲートトランジスタの断面図である。
【図3】(a)〜(f)は、撮像素子を構成するダブルゲートトランジスタの駆動原理を説明する模式図である。
【図4】本発明の第1の実施の形態にかかるトップゲートドライバ(またはボトムゲートドライバ)の全体構成を示す回路構成を示す図である。
【図5】図3のトップゲートドライバ(またはボトムゲートドライバ)の各段の回路構成を示す図である。
【図6】本発明の第1の実施の形態にかかるトップゲートドライバ(またはボトムゲートドライバ)の動作を示すタイミングチャートである。
【図7】(a)〜(i)は、この実施の形態にかかる撮像装置の動作を説明する模式図である。
【図8】図4のトップゲートドライバ(またはボトムゲートドライバ)の各段の他の回路構成を示す図である。
【図9】図8のトップゲートドライバ(またはボトムゲートドライバ)の動作を示すタイミングチャートである。
【図10】本発明の第2の実施の形態にかかるトップゲートドライバ(またはボトムゲートドライバ)の全体構成の回路構成を示すブロック図である。
【図11】図10のトップゲートドライバ(またはボトムゲートドライバ)の各段の回路構成を示す図である。
【図12】本発明の第2の実施の形態にかかるトップゲートドライバ(またはボトムゲートドライバ)の順方向の動作を示すタイミングチャートである。
【図13】本発明の第2の実施の形態にかかるトップゲートドライバ(またはボトムゲートドライバ)の逆方向の動作を示すタイミングチャートである。
【図14】図10のトップゲートドライバ(またはボトムゲートドライバ)の各段の他の回路構成を示す図である。
【図15】図4のトップゲートドライバ(またはボトムゲートドライバ)の各段の他の回路構成を示す図である。
【図16】図4のトップゲートドライバ(またはボトムゲートドライバ)の各段の他の回路構成を示す図である。
【図17】図4のトップゲートドライバ(またはボトムゲートドライバ)の各段の他の回路構成を示す図である。
【図18】図4のトップゲートドライバ(またはボトムゲートドライバ)の各段の他の回路構成を示す図である。
【図19】図10のトップゲートドライバ(またはボトムゲートドライバ)の各段の他の回路構成を示す図である。
【図20】図10のトップゲートドライバ(またはボトムゲートドライバ)の各段の他の回路構成を示す図である。
【図21】図10のトップゲートドライバ(またはボトムゲートドライバ)の各段の他の回路構成を示す図である。
【図22】図10のトップゲートドライバ(またはボトムゲートドライバ)の各段の他の回路構成を示す図である。
【図23】液晶表示素子を備えたデジタルスチルカメラを示す斜視図である。
【図24】図23のデジタルスチルカメラの構成を示すブロック図である。
【図25】図24の表示部を示す回路図である。
【符号の説明】
1…撮像素子、2…トップゲートドライバ、3…ボトムゲートドライバ、4…ドレインドライバ、10…ダブルゲートトランジスタ、21〜27…TFT(基本構成)、31、32、34、35…TFT(付加構成)、33…抵抗素子(付加構成)、RS(1)〜RS(n)…段、RS2(1)〜RS2(n)…段、TGL…トップゲートライン、BGL…ボトムゲートライン、DL…ドレインライン、GL…グラウンドライン

Claims (12)

  1. 複数の段からなるシフトレジスタであって、前記シフトレジスタの各段は、
    外部から制御端子に供給される第1または第2の信号によってオンし、前の段から電流路の一端に供給された所定レベルの信号を電流路の他端に出力する第1のトランジスタと、
    制御端子と前記第1のトランジスタの電流路の他端との間の容量に蓄積された電荷によってオンし、負荷を介して電流路の一端に供給される信号を電流路の他端から放出する第2のトランジスタと、
    制御端子と前記第1のトランジスタの電流路の他端との間の容量に蓄積された電荷によってオンし、外部から電流路の一端に供給される第3または第4の信号を出力信号として電流路の他端から出力する第3のトランジスタと、
    前記第2のトランジスタがオフしているときに負荷を介して制御端子に供給される信号によってオンし、外部から電流路の一端に供給される信号を出力信号として電流路の他端から出力する第4のトランジスタと、
    他の段から所定レベルの出力信号が制御端子に供給されることによってオンし、前記第1のトランジスタの電流路の他端と前記第2、第3のトランジスタの制御端子との間に形成された容量に蓄積された電荷を排出させる第5のトランジスタと
    後段から電流路の一端に供給される所定レベルの信号を、前記第1または第2の信号に応じて電流路の他端から当該段の前記第5のトランジスタの制御端子に出力する順方向制御用トランジスタと、
    前段から電流路の一端に供給される所定レベルの信号を、逆方向動作用信号に応じて電流路の他端から当該段の前記第5のトランジスタの制御端子に出力する逆方向制御用トランジスタと、
    を備えることを特徴とするシフトレジスタ。
  2. 前記シフトレジスタの各段は、制御端子に供給される第3または第4の信号のレベルを反転した信号によってオンし、前記第3のトランジスタの電流路の他端から出力された出力信号を放出させる第6のトランジスタをさらに備える
    ことを特徴とする請求項に記載のシフトレジスタ。
  3. 前記シフトレジスタのうち少なくとも1つの段は、外部から制御端子に供給される逆方向動作用信号によってオンし、後段から電流路の一端に供給された所定レベルの信号を電流路の他端に出力し、前記第1のトランジスタの電流路の他端と前記第2、第のトランジスタの制御端子との間の容量に電荷を蓄積させる第7のトランジスタをさらに備える
    ことを特徴とする請求項1または2に記載のシフトレジスタ。
  4. 後段から前記第7のトランジスタの電流路の一端に供給される所定レベルの信号は、前記後段の出力信号であることを特徴とする請求項に記載のシフトレジスタ。
  5. 前記シフトレジスタの奇数番目の段には、第3、第4の信号のうちの第3の信号が外部から供給され、
    前記シフトレジスタの偶数番目の段には、第3、第4の信号のうちの第4の信号が外部から供給され、
    第3、第4の信号はそれぞれ、前記シフトレジスタの出力信号をシフトしていくタイムスロットのうちの所定期間、タイムスロット毎に交互に駆動レベルとなる
    ことを特徴とする請求項1乃至のいずれか1項に記載のシフトレジスタ。
  6. 前記第1、第2の信号は、それぞれ前記第3、第4の信号が駆動レベルとなっている間の一定期間オンレベルとなる
    ことを特徴とする請求項に記載のシフトレジスタ。
  7. 前記複数の段のそれぞれを構成する各トランジスタは、同一のチャネル型の電界効果トランジスタである
    ことを特徴とする請求項1乃至のいずれか1項に記載のシフトレジスタ。
  8. 複数の段からなり、出力信号をシフトさせることによって所定レベルの信号を各段から順次出力するドライバと、複数の画素によって構成され、前記ドライバの各段から出力された出力信号によって駆動される駆動素子とを備え、
    前記ドライバの各段は、
    外部から制御端子に供給される第1または第2の信号によってオンし、前の段から電流路の一端に供給された所定レベルの信号を電流路の他端に出力する第1のトランジスタと、
    制御端子と前記第1のトランジスタの電流路の他端との間の容量に蓄積された電荷によってオンし、負荷を介して電流路の一端に供給される信号を電流路の他端から放出する第2のトランジスタと、
    制御端子と前記第1のトランジスタの電流路の他端との間の容量に蓄積された電荷によってオンし、外部から電流路の一端に供給される第3または第4の信号を当該段の出力信号として電流路の他端から出力する第3のトランジスタと、
    前記第2のトランジスタがオフしているときに負荷を介して制御端子に供給される信号によってオンし、外部から電流路の一端に供給される定電圧の信号を当該段の出力信号として電流路の他端から出力する第4のトランジスタと、
    他の段から所定レベルの出力信号が制御端子に供給されることによってオンし、前記第1のトランジスタの電流路の他端と前記第2、第3のトランジスタの制御端子との間に形成された容量に蓄積された電荷を排出させる第5のトランジスタと
    後段から電流路の一端に供給される所定レベルの信号を、前記第1または第2の信号に応じて電流路の他端から当該段の前記第5のトランジスタの制御端子に出力する順方向制御用トランジスタと、
    前段から電流路の一端に供給される所定レベルの信号を、逆方向動作用信号に応じて電流路の他端から当該段の前記第5のトランジスタの制御端子に出力する逆方向制御用トランジスタと、
    を備えることを特徴とする電子装置。
  9. 前記ドライバのうち少なくとも1つの段は、外部から制御端子に供給される逆方向動作用信号によってオンし、後段から電流路の一端に供給された所定レベルの信号を電流路の他端に出力し、前記第1のトランジスタの電流路の他端と前記第2、第のトランジスタの制御端子との間の容量に電荷を蓄積させる第7のトランジスタをさらに備える
    ことを特徴とする請求項8に記載の電子装置。
  10. 前記駆動素子は、撮像素子であることを特徴とする請求項8または9に記載の電子装置。
  11. 前記撮像素子の各画素は、
    励起光によりキャリアを生成する複数の半導体層と、
    前記複数の半導体層の各々の両端にそれぞれ設けられたソース、ドレイン電極と、
    第1ゲート絶縁膜を介して前記半導体層の一方側に設けられた第1ゲート電極と、
    第2ゲート絶縁膜を介して前記半導体層の他方側に設けられた第2ゲート電極と、
    を備えることを特徴とする請求項10に記載の電子装置。
  12. 前記駆動素子は、液晶表示素子であることを特徴とする請求項8または9に記載の電子装置。
JP23392999A 1999-08-20 1999-08-20 シフトレジスタ及び電子装置 Expired - Fee Related JP3858136B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23392999A JP3858136B2 (ja) 1999-08-20 1999-08-20 シフトレジスタ及び電子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23392999A JP3858136B2 (ja) 1999-08-20 1999-08-20 シフトレジスタ及び電子装置

Publications (2)

Publication Number Publication Date
JP2001060398A JP2001060398A (ja) 2001-03-06
JP3858136B2 true JP3858136B2 (ja) 2006-12-13

Family

ID=16962828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23392999A Expired - Fee Related JP3858136B2 (ja) 1999-08-20 1999-08-20 シフトレジスタ及び電子装置

Country Status (1)

Country Link
JP (1) JP3858136B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4439761B2 (ja) 2001-05-11 2010-03-24 株式会社半導体エネルギー研究所 液晶表示装置、電子機器
JP3774678B2 (ja) * 2002-05-10 2006-05-17 アルプス電気株式会社 シフトレジスタ装置および表示装置
JP4425547B2 (ja) 2003-01-17 2010-03-03 株式会社半導体エネルギー研究所 パルス出力回路、シフトレジスタ、および電子機器
JP3681066B1 (ja) 2004-01-30 2005-08-10 松下電器産業株式会社 シフトレジスタおよびmos型固体撮像装置
US7663592B2 (en) * 2005-10-19 2010-02-16 Tpo Displays Corp. Systems involving signal driving circuits for driving displays
JP4654923B2 (ja) * 2006-01-26 2011-03-23 カシオ計算機株式会社 シフトレジスタ回路、及び表示駆動装置
JP4963314B2 (ja) * 2009-11-16 2012-06-27 株式会社半導体エネルギー研究所 半導体装置、シフトレジスタ、電子機器
JP5025714B2 (ja) * 2009-12-01 2012-09-12 株式会社半導体エネルギー研究所 表示装置、半導体装置、表示モジュール及び電子機器
CN102651239B (zh) * 2012-03-29 2014-06-18 京东方科技集团股份有限公司 一种移位寄存器、驱动电路及显示装置

Also Published As

Publication number Publication date
JP2001060398A (ja) 2001-03-06

Similar Documents

Publication Publication Date Title
KR100393750B1 (ko) 시프트레지스터 및 전자장치
JP3680601B2 (ja) シフトレジスタ、表示装置、撮像素子駆動装置及び撮像装置
JP4899327B2 (ja) シフトレジスタ回路及びその駆動制御方法並びに駆動制御装置
JP3777894B2 (ja) シフトレジスタ及び電子装置
JP4501048B2 (ja) シフトレジスタ回路及びその駆動制御方法並びに表示駆動装置、読取駆動装置
JP3873165B2 (ja) シフトレジスタ及び電子装置
TW200845736A (en) Imaging device and display device
JP3809750B2 (ja) シフトレジスタ及び電子装置
JP3911923B2 (ja) シフトレジスタ及び電子装置
JP3858136B2 (ja) シフトレジスタ及び電子装置
JPH06113215A (ja) 固体撮像装置
JP2002055660A (ja) 電子装置
JP2005251335A (ja) シフトレジスタ回路及びその駆動制御方法並びに駆動制御装置
JP3997674B2 (ja) シフトレジスタ及び電子装置
JP4115842B2 (ja) 液晶表示装置及びその駆動方法、並びにカメラシステム
JP3823614B2 (ja) シフトレジスタ及び電子装置
JP2001035180A (ja) シフトレジスタ及び電子装置
JP4086046B2 (ja) シフトレジスタ、表示装置、撮像素子駆動装置及び撮像装置
JP4923858B2 (ja) シフトレジスタ及び電子装置
JP4956091B2 (ja) シフトレジスタ及び電子装置
JP2006120308A (ja) シフトレジスタ及び電子装置
JP2007048439A (ja) シフトレジスタ及び電子装置
JP2001268452A (ja) 固体撮像装置およびこれを用いたカメラシステム
JPH0775018A (ja) 増幅型固体撮像装置
JPH05167928A (ja) 増幅型固体撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees