JP3851147B2 - Non-tempered high strength and high toughness forged product and its manufacturing method - Google Patents

Non-tempered high strength and high toughness forged product and its manufacturing method Download PDF

Info

Publication number
JP3851147B2
JP3851147B2 JP2001349100A JP2001349100A JP3851147B2 JP 3851147 B2 JP3851147 B2 JP 3851147B2 JP 2001349100 A JP2001349100 A JP 2001349100A JP 2001349100 A JP2001349100 A JP 2001349100A JP 3851147 B2 JP3851147 B2 JP 3851147B2
Authority
JP
Japan
Prior art keywords
strength
average
forging
forged product
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001349100A
Other languages
Japanese (ja)
Other versions
JP2003147482A (en
Inventor
崇史 藤田
敏三 樽井
尚仁 大野
元秀 森
茂夫 廣田
直樹 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp, Aichi Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001349100A priority Critical patent/JP3851147B2/en
Publication of JP2003147482A publication Critical patent/JP2003147482A/en
Application granted granted Critical
Publication of JP3851147B2 publication Critical patent/JP3851147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は鍛造品及び鍛造方法に関し、さらに詳しくは、自動車、建設機械および各種産業機械等の部品として使用される材料として、熱間鍛造後に調質処理を行わずに優れた強度と靭性を有する鍛造品及び鍛造方法に関するものである。
【0002】
【従来の技術】
従来、機械構造用熱間鍛造品は、一般に、中炭素鋼または低合金鋼素材を熱間鍛造した後、再加熱し、焼入れ・焼戻し、すなわち調質処理を施し、目的、用途に応じた強度および靭性を付与して、使用に供されていた。しかし、上記調質処理には多大の熱エネルギー費用を要すると共に、処理工程の増加、仕掛品の増大等のために製造費用が高くならざるを得ない。そこで近年、機械構造用熱間鍛造品の製造において、製造工程を簡略化、特に、熱間鍛造後の調質処理を省略するために、種々の非調質型熱間鍛造用鋼や、非調質熱間鍛造品の製造方法が提案されている。このような従来の非調質型熱間鍛造用鋼の多くは、中炭素鋼に微量のV、Nb、Ti、Zr等のいわゆる析出硬化型合金元素を添加した析出硬化型非調質鋼であって、熱間鍛造後の冷却工程においてこれらを析出させ、その析出硬化によって高強度を得ようとするものである。
【0003】
例えば、特公昭58−2243号公報には、中炭素鋼に微量のVを添加し、これを1100℃以上の温度に加熱して型打鍛造し、この後、500℃まで10〜100℃/分の冷却速度で空冷することにより、フェライト中に微細なV炭窒化物を析出させたフェライト・パーライト組織からなる非調質鍛造品の製造方法が記載されている。しかし、このような析出硬化型非調質鋼を用いる場合には、上記のように1000〜1100℃またはそれ以上の高温に加熱することが必要であり、そのまま通常の鍛造を行った場合、鍛造品においても結晶粒が著しく粗大化するので、充分な靭性を得ることができない。
【0004】
このような問題を解決するために、素材鋼や鍛造方法に関して、析出硬化型元素の添加量を極力少なくする(例えば、特開昭55−82750号公報)、低C高Mn化する、(例えば特開昭54−121225号公報)、析出物の種類を制御する、(例えば、特開昭56−38448号公報)、制御冷却によって結晶粒を微細化する、(例えば特開昭56−169723号公報)等の方法が従来より提案されているが、いずれによっても、強度・靭性共に優れる非調質熱間鍛造品を得ることは、容易ではない。
【0005】
一方、特開平10−195530号広報では、800〜1100℃の温度域で鍛造を行い、フェライト結晶粒微細化によって強度・靭性を向上させる方法が提案されている。しかし、この温度域では加工温度の低下と共に、結晶粒径微細化による強度上昇とフェライト分率増加による強度低下が同時に起こり、強度上昇は顕著ではない。
【0006】
【発明が解決しようとする課題】
本発明は強度・靭性共に優れる非調質熱間鍛造品を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記の課題を解決するため、その要旨とするところは、下記の通りである。
(1) 質量%で、C:0.1〜0.8%、Si:0.05〜2.5%、Mn:0.2〜3%、Al:0.005〜0.1%、N:0.001〜0.02%を含有し、更に、V:0.05〜0.5%、Nb:0.005〜0.1%の1種または2種を含有し、残部がFeおよび不可避的不純物からなり、下記式(2)によって求められる平均結晶粒径が5μm以下のフェライト+パーライト組織からなることを特徴とする非調質高強度・高靭性鍛造品。
平均粒径=(フェライト平均粒径)×(フェライト分率)
+(パーライト平均ブロック径)×(1−(フェライト分率)) …(2)
(2)(1)の成分に、質量%で、Mg:0.0001〜0.005%、Zr:0.0001〜0.005%の1種または2種を添加することを特徴とする非調質高強度・高靭性鍛造品。
(3)(1)又は(2)の成分に、質量%で、Cr:0.05〜3%、Ni:0.05〜3%、Mo:0.05〜3%、Cu:0.01〜2%、Ti:0.003〜0.05%、B:0.0005〜0.005%の1種または2種以上を添加することを特徴とする非調質高強度・高靭性鍛造品。
(4)(1)〜(3)のいずれか1項に記載の成分に、質量%で、S:0.01〜0.3%、Pb:0.03〜0.3%、Ca:0.001〜0.05%、Bi:0.03〜0.3%の1種または2種以上を添加することを特徴とする非調質高強度・高靭性鍛造品。
(5)引張強さが9401300MPaであり、2mmU切欠き試験片を用いて20℃で測定したシャルピー衝撃値が173〜232J/cm であることを特徴とする(1)〜(4)の何れか1項に記載の非調質高強度・高靭性鍛造品。
(6)降伏比が0.7〜0.95であることを特徴とする(1)〜(5)の何れか1項に記載の非調質高強度・高靭性鍛造品。
(7)(1)〜(4)の何れか1項に記載の鋼を熱間鍛造する際に、Ac点以上1350℃以下に加熱し、対数歪みで〜3の加工を与える熱間鍛造を700℃以上800℃未満で少なくとも1回以上行い、該熱間鍛造後、Ar点以下500℃以上の温度域を下記(1)式で示した冷速(CR)で冷却することを特徴とする非調質高強度・高靭性鍛造品の製造方法。
【0008】
0.1℃/sec≦CR≦(2.5ε+1)℃/sec …(1)
(ε:700℃以上800℃未満で与えた対数歪み)
(8)(7)に記載の対数歪みが、鍛造前素材の鍛造方向の高さの平均値である元厚高さ平均と、鍛造後の高さの平均値である仕上げ厚高さ平均により下記式(4)で示した対数歪みであることを特徴とする非調質高強度・高靭性鍛造品の製造方法。
対数歪み=ln(元厚高さ平均/仕上げ厚高さ平均) …(4)
【0009】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の根幹をなす技術思想は以下の通りである。
強度・靭性共に優れる鍛造品を得るためには、その鍛造品の金属組織を微細にすれば良いことは知られてきた。最終組織を微細化するには、その前組織であるγ(オーステナイト)に熱間鍛造により歪みを与えて再結晶により微細化する方法、および、より鍛造温度を低めて未再結晶温度で鍛造することにより通常再結晶により減少してしまう転位を変態時まで残留させ核生成速度を増加させる方法がある。従来は、再結晶温度域での鍛造、すなわち高温での鍛造の方が反力が少ないこと、および反力が少ない方が鍛造精度を上げやすい等の理由で、再結晶温度域の鍛造により組織を微細化することが前提であった。本発明者等は、従来鍛造で用いられなかった未再結晶温度域での鍛造を行うことにより、飛躍的に組織が微細化し、材質も向上することを見いだした。
【0010】
以下に本発明の限定理由を述べる。
【0011】
Cは、鋼を強化するのに有効な元素であるが、0.1%未満では充分な強度が得られない。一方、過多に添加すると靭性が低下するため、添加量の上限を0.8%とする。
【0012】
Siは、鋼の強化元素として有効であるが、0.05%未満ではその効果がない。一方、過多に添加すると靭性および被削性が低下するため、添加量の上限を2.5%とする。
【0013】
Mnは、鋼の強化に有効な元素であるが、0.2%未満では充分な効果が得られない。一方、過多に添加すると靭性および被削性が低下するため、添加量の上限を3%とする。
【0014】
Alは、鋼の脱酸および結晶粒の微細化のために有効な元素であるが、0.005%未満ではその効果がない。一方、過多に添加すると被削性が低下するため、添加量の上限を0.1%とする。
【0015】
Nは、V炭窒化物やNb炭窒化物を生成し析出強化のために必要な元素であるが、0.001%未満では充分な効果が得られない。一方、過多に添加すると靭性が劣化するため、添加量の上限を0.02%とする。
【0016】
Vは、固溶原子が転位の回復および再結晶を遅らせる効果がある。すなわち未再結晶温度域を高温側に広げ、未再結晶域鍛造を容易にする元素である。また、未再結晶圧延後、転位のもつれた部分にVの炭窒化物が微細に析出し、いわゆる加工誘起析出により、強度が上昇するため有効な元素である。これらの効果を享受するためには0.05%以上の添加が必要である。一方、過多に添加すると靭性が劣化するため、添加量の上限を0.5%とする。
【0017】
NbもVと同様、未再結晶を容易にし、析出強化のために必要な元素であるが、0.005%未満では充分な効果が得られない。一方、過多に添加すると靭性が劣化するため、添加量の上限を0.1%とする。
【0018】
MgおよびZrはともに酸化物や硫化物、あるいはこれらの複合物を形成し、加熱時のオーステナイトの粗大化を抑制する効果を持つ元素である。更に800℃未満の鍛造においては、フェライト変態時の粒成長も抑制するので組織微細化に極めて有効である。いずれも、0.0001%未満ではその効果はなく、0.005%を越えると、靱性が劣化するため、添加量の上限を0.005%とする。
【0019】
Cr,Ni,Mo,Cuはいずれも適量の添加においては靱性を損なうことなく強度を増大する元素である。Cr,Ni,Moは、いずれも0.05%未満ではその効果はなく、3%を越えると靱性が大きく劣化するため、その添加量の下限をそれぞれ0.05%、上限を3%とする。
【0020】
Tiは,窒化物・炭化物を生成する。窒化物は高温まで固溶せずに残るため、加熱時のオーステナイト粗大化を防止するのに有効である。また炭化物は微細に分散して析出強化に有効である。0.003%未満ではこれらの効果は現れず、0.05%を越えると靱性が劣化するため、その添加量の下限を0.003%、上限を0.05%とする。
【0021】
Bは焼き入れ性を増加する元素である。焼き入れ性を増加することにより強度を増し、さらに粗大な初析フェライトの生成を防止して組織の微細化を促進するのに有効な元素である。0.0005%未満ではこれらの効果は現れず、0.005%を越えると靱性が劣化するため、その添加量の下限を0.0005%、上限を0.005%とする。
【0022】
S,Pb,Ca,Biは、いずれも被削性を向上する元素である。いずれも過小の添加はその効果がなく、過大の添加は靱性を劣化させるため、Sは0.01%以上0.3%以下に、Pbは0.03%以上0.3%以下に、Caは0.001%以上0.05%以下に、Biは0.03%以上0.3%以下に添加量を限定する。
【0023】
次に、本発明の、組織の形態について述べる。
【0024】
通常、再結晶γでは再結晶により粒内の転位は整理され転位密度は低い。このため、ほとんどの変態はγ粒界を基点として始まり、粒内に向かって成長していく。また再結晶γである限り、粒界単位面積当たりの変態核生成数はほぼ一定の値をとる。このため変態後の組織の粒数は単位体積当たりのγ粒界の面積にほぼ比例し、再結晶後のγ粒径が小さいほど、変態後の組織は細かくなる。一方、未再結晶γでは再結晶による転位の整理が未だ行われていない状態であるので、粒内の転位密度は高い。これにより、粒界のみならず粒内からも変態が開始する。さらに粒界にも加工の影響が残っており、粒界単位面積当たりの変態核生成数も再結晶γと比べ大きい値をとる。このため粗大なγからでも、微細な変態組織が得られる。未再結晶γからの変態によって得られる変態組織は、加工後の冷速によってフェライト+パーライト、ベイナイト、マルテンサイトに大別できるが、冷速によっては、これらの組織の混合組織となり、靭性が著しく劣化するため、後述の冷速制御によりフェライト+パーライト鋼とする。通常のフェライト+パーライト鋼の場合、図3の第1写真に示すように、写真で白い縞状に見えるパーライト・ブロック径は黒い塊状に見えるフェライト粒径より遙かに大きく、一つのパーライト・ブロック径又はフェライト粒を切断する最大長さを最大長と定義すれば、第1写真のパーライト・ブロック径の最大長は約16μmであり、破壊の抵抗となるのは最大長が4μm程度のフェライト粒のみである。しかるに、本発明では、図4の第2写真のように、フェライト粒径とパーライト・ブロック径はほぼ等しく、それぞれ最大長は約1〜3μm程度であり、微細なフェライト粒の間に微細なパーライト・ブロックが点在した組織形態をとる。このため、パーライト・ブロックも破壊の抵抗となり、強度・靭性に優れた鋼となる。また、粒径が微細になると強度、靭性、降伏比、伸びが向上することは知られているが、平均結晶粒径が10μm以下であると、これらの効果が顕著に現れてくる。さらに効果を求めるのであれば、平均結晶粒径が5μm 以下であることが望ましい。一方、平均結晶粒径の下限は特に定めないが、鍛造コストの面から、2μm 以上とすることが好ましい。
【0025】
尚、本発明において、平均結晶粒径とは光学顕微鏡ないしは反射型電子顕微鏡により断面厚1/4t位置を200〜5000倍で3〜5視野観察し、フェライト平均粒径およびパーライト平均ブロック径を切断法により各々求め、(2)式に示す面積平均値と定義した。例えば、フェライト粒径7μm、パーライト平均ブロック径15.3μm、フェライト分率0.45の場合、平均粒径は11.6μmとなる。
【0026】
(平均粒径)=(フェライト平均粒径)×(フェライト分率)+(パーライト平均ブロック径)×(1−(フェライト分率)) …(2)
引張強さは、鍛造品の軽量化の点で下限を800MPa に限定した。一方、1300MPa を越えると、靭性が著しく低下し、切削寿命および金型寿命も著しく低下するため、上限を1300MPa 以下にした。
【0027】
また、降伏比は疲労強度向上のため、0.7に下限を限定した。一方、0.95以上に降伏比を上げても疲労強度の向上は飽和するので、上限は0.95に限定した。
【0028】
次に、製造方法について述べる。
【0029】
加熱温度は、鍛造時にγ単相である必要性からAc3 点以上とする。また、その上限は現在の炉の最高加熱温度1350℃とした。前述のように、未再結晶圧延を容易にするためには、VないしはNbをある程度固溶させておくことが望ましいため、1050℃以上の加熱が望ましい。
【0030】
尚、Ac3 点は(3)式により求めた値と定義する。
【0031】
Ac3 =910−203(C)1/2 −15.2(Ni)+44.7(Si)+104(V)+31.5(Mo)+13.1(W) …(3)
未再結晶γからの変態による組織微細化の効果は、未再結晶温度域で与える歪みに依存する。対数歪みで0.3未満の歪みでは、充分な組織微細化ができないため、その下限を対数歪み0.3とする。でき得れば、0.8以上の歪みが望ましい。一方、歪みを増加すれば組織は微細化するが、その効果は飽和する傾向にある。歪みの増加は鍛造反力の増加および金型寿命の低下によりコスト上昇を招くため対数歪みは3以下とする。複数回の鍛造で成形する場合には、再結晶温度域での鍛造と組み合わせてもよい。
【0032】
尚、ここで述べた対数歪みとは、(4)式で定義した歪みである。元厚高さ平均とは、鍛造前素材の鍛造方向を高さとしたときの平均値であり、仕上げ厚高さ平均とは、鍛造後の高さの平均値である。ただし、押し出し等の加工の場合は、(5)式に従うものとする。元断面積平均とは鍛造前素材の鍛造方向に垂直な面の平均断面積であり、仕上げ断面積平均とは、鍛造後の断面積平均である。
【0033】
対数歪み=ln(元厚高さ平均/仕上げ厚高さ平均) …(4)
対数歪み=ln(元断面積平均/仕上げ断面積平均) …(5)
さらに、前述のように、加工温度の低下と共に組織微細化による強度上昇とフェライト分率上昇による強度低下が同時に起こる。粒径は加工温度の低下と共に減少するが、高温側では粒径減少による強度上昇以上に、フェライト分率増加による強度減少が効き、加工温度の低下と共に強度は低下する。一方、低温側ではこの関係が逆転し、加工温度の低下と共に強度が急激に上昇するようになる。図1に典型的な加工温度と強度の関係を示した。この成分では850℃近傍に強度の谷間が現れているが、800℃以上では顕著な強度上昇が現れない。このため、本発明では、急激に強度の立ち上がる800℃未満の鍛造に限定する。
【0034】
また、700℃未満の鍛造温度では鍛造前にフェライトが生成し、鍛造時に加工フェライトとなり靭性を劣化させるため、鍛造下限温度を700℃とする。
【0035】
鍛造後の冷速によって組織形態が異なることは前述したが、以下冷速について述べる。
【0036】
未再結晶γからの変態は、核生成速度が増大しているため、T−T−Tノーズが短時間側にシフトし、フェライトが生成しやすくなっている。このため、フェライト+パーライトを生成するためには、Ar3 点以下500℃以上の温度域を(1)式に示した冷速で冷却すればよい。(1)式は図2の直線より求めた式である。冷却速度の下限を0.1℃/secとしたのは、それより遅い冷速であると、充分な核生成速度が得られず、フェライトが粗大化してしまうからである。一方、上限を(2.5ε+1)℃/secとしたのは、それより速い冷速ではフェライト+パーライトが生成せず、ベイナイトないしはマルテンサイトとの混合組織となり,靱性が劣化してしまうからである。また、冷却制御温度域をAr3点以下としたのは、変態が始まる温度だからである。一方、その下限を500℃としたのは、この温度ではすでにフェライト+パーライト変態が終了しているからである。
【0037】
0.1℃/sec≦CR≦(2.5ε+1)℃/sec …(1)
(ε:700℃以上800℃未満で与えた対数歪み)
尚、Ar3 点は(6)式により求めた値と定義する。
【0038】
Ar3 =868−396(C)+24.6(Si)−58.7(Mn)−50(Ni)−35(Cu)+190(V) …(6)
【0039】
【実施例】
第1表に示す成分の鋼から、φ50×h60の鍛造用試験片を切り出し、高周波で加熱して、第2表に示す本発明方法および比較方法を適用して高さ方向の平板圧縮鍛造を行った。第2表中の対数歪みは(4)式を適用して求めた。さらに本発明方法を適用して冷却した場合、第2表中に示したような粒径、強度、降伏比、靭性となった。尚、冷却時の温度制御は保熱台車、衝風ないしは水スプレー冷却で行った。組織は鍛造品の中央から30mm離れた場所の1/4t位置を光顕撮影し、切断法により平均粒径(平均パケット・サイズ)を求めた。中央から30mm離したのはデッドメタル部を避けるためである。機械特性はJISA3号引張試験片およびJIS3号シャルピー試験片(幅5mm)を用いて測定した。第2表中、比較鋼1,2,10は本発明必須元素のNb,Vを必要量含んでいないため再結晶が生じ、粗大な組織となっている。このため強度・降伏比・靭性が低値である。比較鋼9,11は、Nb,Vを必要以上含んでいるため、靭性が低値である。比較鋼3は、加熱温度が低すぎたため加熱時にγ単相とならず、γ+α二相状態で鍛造したため、αが加工されて降伏比・靭性が低値である。比較鋼4は加工温度が高く再結晶が生じたため、粗大な組織となり強度・降伏比・靭性が低値である。比較鋼5は加工度が少ないため、充分な核生成速度が得られず、粗大な組織となり強度・降伏比・靭性が低値である。比較鋼6は加工後の冷速が遅すぎたため、充分な核生成速度が得られず、粗大な組織となり強度・降伏比・靭性が低値である。比較鋼7は、加工後の冷速が早すぎたため一部ベイナイトが生成し、降伏比・靭性が低値である。比較鋼8は加工温度が低すぎ、加工時に一部αが生成した状態で加工したため、αが加工されて降伏比・靭性が低値である。
【0040】
【表1】

Figure 0003851147
【0041】
【表2】
Figure 0003851147
【0042】
【表3】
Figure 0003851147
【0043】
【発明の効果】
本発明により、明らかに強度、降伏比、靭性が向上しており、本発明は有効である。
【図面の簡単な説明】
【図1】 加工温度と強度の関係を示す図である。
【図2】 組織生成に及ぼす未再結晶域で付与する対数歪みと500℃〜Ar3 の温度域の冷速の影響を示す図である。
【図3】 比較例の顕微鏡写真である(製造条件:加熱温度1200℃、鍛造時対数歪み2.3、鍛造温度850℃、Ar3 点以下500℃以上の冷速0.5℃/sec)。
【図4】 本発明例の顕微鏡写真である(製造条件:加熱温度1200℃、鍛造時対数歪み2.3、鍛造温度700℃、Ar3 点以下500℃以上の冷速0.5℃/sec)。[0001]
[Industrial application fields]
The present invention relates to a forged product and a forging method. More specifically, the present invention has excellent strength and toughness without being subjected to a tempering treatment after hot forging as a material used as a part of automobiles, construction machines, and various industrial machines. The present invention relates to a forged product and a forging method.
[0002]
[Prior art]
Conventionally, hot forged products for machine structures are generally forged for medium-carbon steel or low alloy steel, then reheated, quenched and tempered, that is, subjected to tempering treatment, and strength according to the purpose and application. And provided toughness with use. However, the tempering treatment requires a large amount of heat energy, and the manufacturing cost is inevitably increased due to an increase in processing steps and an increase in work in progress. Therefore, in recent years, in the manufacture of hot forged products for machine structures, various non-tempered hot forging steels, A method for producing a tempered hot forged product has been proposed. Many of these conventional non-tempered hot forging steels are precipitation hardened non-heat treated steels in which so-called precipitation hardening alloying elements such as V, Nb, Ti and Zr are added to medium carbon steel. Then, these are precipitated in the cooling step after hot forging, and high strength is obtained by precipitation hardening.
[0003]
For example, in Japanese Examined Patent Publication No. 58-2243, a small amount of V is added to medium carbon steel, and this is heated to a temperature of 1100 ° C. or higher and die-cut forged. Describes a method for producing a non-tempered forged product comprising a ferrite pearlite structure in which fine V carbonitrides are precipitated in ferrite by air cooling at a cooling rate of 1 minute. However, when using such precipitation hardening type non-tempered steel, it is necessary to heat it to 1000 to 1100 ° C. or higher as described above. Also in the product, crystal grains are remarkably coarsened, so that sufficient toughness cannot be obtained.
[0004]
In order to solve such a problem, the amount of precipitation hardening type elements is reduced as much as possible with respect to the raw steel and the forging method (for example, JP-A-55-82750), and the low C and the high Mn are achieved (for example, JP-A-54-121225), controlling the kind of precipitates (for example, JP-A-56-38448), refining crystal grains by controlled cooling (for example, JP-A-56-169723). However, in any case, it is not easy to obtain a non-tempered hot forged product excellent in both strength and toughness.
[0005]
On the other hand, Japanese Patent Application Laid-Open No. 10-195530 has proposed a method in which forging is performed in a temperature range of 800 to 1100 ° C. and the strength and toughness are improved by refining ferrite crystal grains. However, in this temperature range, the strength increase due to the refinement of the crystal grain size and the strength decrease due to the increase in the ferrite fraction occur at the same time as the processing temperature decreases, and the strength increase is not significant.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a non-tempered hot forged product excellent in both strength and toughness.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the gist of the present invention is as follows.
(1) In mass%, C: 0.1-0.8%, Si: 0.05-2.5%, Mn: 0.2-3%, Al: 0.005-0.1%, N : 0.001 to 0.02%, V: 0.05 to 0.5%, Nb: 0.005 to 0.1% of one or two, with the balance being Fe and A non-tempered high-strength and high-toughness forged product comprising unavoidable impurities and comprising ferrite + pearlite structure having an average crystal grain size of 5 μm or less determined by the following formula (2) .
Average particle size = (Ferrite average particle size) x (Ferrite fraction)
+ (Pearlite average block diameter) x (1- (ferrite fraction)) ... (2)
(2) One or two of Mg: 0.0001 to 0.005% and Zr: 0.0001 to 0.005% are added to the component (1) by mass%. Tempered high strength and high toughness forged products.
(3) In the component (1) or (2), in mass%, Cr: 0.05 to 3%, Ni: 0.05 to 3%, Mo: 0.05 to 3%, Cu: 0.01 Non-tempered high-strength and high-toughness forged product characterized by adding one or more of ˜2%, Ti: 0.003-0.05%, B: 0.0005-0.005% .
(4) In the component according to any one of (1) to (3), in mass%, S: 0.01 to 0.3%, Pb: 0.03 to 0.3%, Ca: 0 A non-tempered high strength and high toughness forged product characterized by adding one or more of 0.001 to 0.05% and Bi: 0.03 to 0.3%.
(5) a tensile strength of Ri 940 ~ 1300 MPa der, Charpy impact value measured at 20 ° C. using a 2mmU notched specimen is characterized 173~232J / cm 2 der Rukoto (1) - (4) The non-tempered high strength and high toughness forged product according to any one of (4).
(6) The non-tempered high strength and high toughness forged product according to any one of (1) to (5), wherein the yield ratio is 0.7 to 0.95.
(7) When hot forging the steel according to any one of (1) to (4), the steel is heated to Ac 3 points or more and 1350 ° C. or less, and is subjected to processing of 1 to 3 with logarithmic strain. forging have at least one time line below 700 ° C. or higher 800 ° C., after heat forging, cooling the temperature region of more than or less 500 ° C. 3-point Ar by the following (1) shown in the formula and cooling rate (CR) microalloyed high strength and high toughness forging method of manufacturing you characterized.
[0008]
0.1 ° C./sec≦CR≦(2.5ε+1)° C./sec (1)
(Ε: logarithmic strain given at 700 ° C. or higher and lower than 800 ° C.)
(8) The logarithmic strain described in (7) is based on the average thickness height average that is the average height in the forging direction of the raw material before forging and the finished thickness height average that is the average height after forging. A method for producing a non-tempered, high-strength, high-toughness forged product characterized by the logarithmic strain represented by the following formula (4).
Logarithmic strain = ln (original thickness average / finish thickness average) (4)
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The technical idea forming the basis of the present invention is as follows.
It has been known that in order to obtain a forged product excellent in both strength and toughness, the metal structure of the forged product should be made fine. In order to refine the final structure, γ (austenite), which is the previous structure, is strained by hot forging and refined by recrystallization, and forging is performed at a lower forging temperature by lowering the forging temperature. Therefore, there is a method of increasing the nucleation rate by allowing dislocations that are usually reduced by recrystallization to remain until transformation. Conventionally, forging in the recrystallization temperature range, that is, forging at a high temperature has less reaction force, and forging in the recrystallization temperature range is easier because the forging accuracy is easier when the reaction force is less. It was premised on miniaturization. The present inventors have found that by performing forging in a non-recrystallization temperature range that has not been used in conventional forging, the structure is remarkably refined and the material is improved.
[0010]
The reasons for limiting the present invention will be described below.
[0011]
C is an element effective for strengthening steel, but if it is less than 0.1%, sufficient strength cannot be obtained. On the other hand, if added excessively, toughness decreases, so the upper limit of the amount added is 0.8%.
[0012]
Si is effective as a steel strengthening element, but less than 0.05% has no effect. On the other hand, if added in excess, the toughness and machinability deteriorate, so the upper limit of the amount added is 2.5%.
[0013]
Mn is an element effective for strengthening steel, but if it is less than 0.2%, a sufficient effect cannot be obtained. On the other hand, if added in excess, the toughness and machinability deteriorate, so the upper limit of the amount added is 3%.
[0014]
Al is an element effective for deoxidation of steel and refinement of crystal grains, but if it is less than 0.005%, there is no effect. On the other hand, if added in excess, the machinability decreases, so the upper limit of the amount added is 0.1%.
[0015]
N is an element required for precipitation strengthening by generating V carbonitride or Nb carbonitride, but if it is less than 0.001%, a sufficient effect cannot be obtained. On the other hand, if added excessively, the toughness deteriorates, so the upper limit of the amount added is 0.02%.
[0016]
V has an effect that the solid solution atoms delay recovery of dislocation and recrystallization. That is, it is an element that widens the non-recrystallized temperature range to the high temperature side and facilitates forging of the non-recrystallized region. Further, after non-recrystallizing rolling, V carbonitride is finely precipitated in the entangled portion, and the strength is increased by so-called process-induced precipitation, which is an effective element. In order to enjoy these effects, addition of 0.05% or more is necessary. On the other hand, if added excessively, the toughness deteriorates, so the upper limit of the amount added is 0.5%.
[0017]
Nb, like V, facilitates non-recrystallization and is an element necessary for precipitation strengthening, but if it is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if added excessively, toughness deteriorates, so the upper limit of the amount added is 0.1%.
[0018]
Mg and Zr are both elements that form an oxide, sulfide, or a composite thereof, and have an effect of suppressing austenite coarsening during heating. Further, forging at temperatures lower than 800 ° C. is extremely effective for refining the structure because grain growth during ferrite transformation is also suppressed. In any case, if less than 0.0001%, there is no effect, and if over 0.005%, the toughness deteriorates, so the upper limit of the addition amount is made 0.005%.
[0019]
Cr, Ni, Mo, and Cu are all elements that increase strength without impairing toughness when added in appropriate amounts. Cr, Ni, and Mo all have no effect if less than 0.05%, and if 3% is exceeded, the toughness is greatly deteriorated. Therefore, the lower limit of the addition amount is 0.05%, and the upper limit is 3%. .
[0020]
Ti produces nitrides and carbides. Since nitride remains without dissolving at high temperatures, it is effective in preventing austenite coarsening during heating. In addition, carbides are finely dispersed and effective for precipitation strengthening. If the content is less than 0.003%, these effects do not appear. If the content exceeds 0.05%, the toughness deteriorates, so the lower limit of the amount added is 0.003% and the upper limit is 0.05%.
[0021]
B is an element that increases the hardenability. It is an element effective for increasing the strength by increasing the hardenability and further preventing the formation of coarse pro-eutectoid ferrite and promoting the refinement of the structure. If the content is less than 0.0005%, these effects do not appear. If the content exceeds 0.005%, the toughness deteriorates. Therefore, the lower limit of the amount added is 0.0005% and the upper limit is 0.005%.
[0022]
S, Pb, Ca, and Bi are all elements that improve machinability. In any case, too small addition has no effect, and excessive addition deteriorates toughness, so that S is 0.01% or more and 0.3% or less, Pb is 0.03% or more and 0.3% or less, Ca Limits the addition amount to 0.001% or more and 0.05% or less, and Bi limits 0.03% to 0.3%.
[0023]
Next, the form of the tissue of the present invention will be described.
[0024]
Usually, in recrystallization γ, dislocations in grains are arranged by recrystallization and the dislocation density is low. For this reason, most transformations start from the γ grain boundary and grow into the grains. Further, as long as the recrystallization γ, the number of transformation nuclei generated per grain boundary unit area takes a substantially constant value. For this reason, the number of grains in the structure after transformation is substantially proportional to the area of the γ grain boundary per unit volume, and the smaller the γ grain size after recrystallization, the finer the structure after transformation. On the other hand, in the case of unrecrystallized γ, dislocation rearrangement by recrystallization has not yet been performed, so that the dislocation density in the grains is high. Thereby, the transformation starts not only from the grain boundaries but also from within the grains. Further, the effect of processing remains at the grain boundaries, and the number of transformation nuclei generated per grain boundary unit area is larger than that of recrystallized γ. Therefore, a fine transformation structure can be obtained even from coarse γ. The transformation structure obtained by transformation from unrecrystallized γ can be broadly classified into ferrite + pearlite, bainite, and martensite depending on the cold speed after processing, but depending on the cold speed, it becomes a mixed structure of these structures, and the toughness is remarkable. Since it deteriorates, it is made ferrite + pearlite steel by cold speed control described later. In the case of normal ferrite + pearlite steel, the pearlite block diameter that appears as white stripes in the photograph is much larger than the ferrite grain size that appears as a black lump, as shown in the first photograph in FIG. If the maximum length that cuts the diameter or the ferrite grain is defined as the maximum length, the maximum length of the pearlite block diameter in the first photograph is about 16 μm, and the resistance to fracture is the ferrite grain with a maximum length of about 4 μm. Only. However, in the present invention, as shown in the second photograph in FIG. 4, the ferrite grain size and the pearlite block diameter are substantially equal, and the maximum length is about 1 to 3 μm, respectively.・ Takes an organizational form with scattered blocks. For this reason, the pearlite block also becomes resistance to fracture, and the steel is excellent in strength and toughness. Further, it is known that the strength, toughness, yield ratio, and elongation are improved when the grain size becomes fine, but when the average crystal grain size is 10 μm or less, these effects are remarkably exhibited. In order to obtain further effects, it is desirable that the average crystal grain size is 5 μm or less. On the other hand, the lower limit of the average crystal grain size is not particularly defined, but is preferably 2 μm or more from the viewpoint of forging cost.
[0025]
In the present invention, the average crystal grain size is observed by observing 3 to 5 fields at 200-5000 times the cross-sectional thickness 1 / 4t with an optical microscope or a reflection electron microscope, and cutting the ferrite average grain size and the pearlite average block diameter. Each was determined by the method and defined as the area average value shown in equation (2). For example, when the ferrite particle diameter is 7 μm, the pearlite average block diameter is 15.3 μm, and the ferrite fraction is 0.45, the average particle diameter is 11.6 μm.
[0026]
(Average particle diameter) = (ferrite average particle diameter) × (ferrite fraction) + (pearlite average block diameter) × (1- (ferrite fraction)) (2)
The lower limit of the tensile strength was limited to 800 MPa in terms of weight reduction of the forged product. On the other hand, if it exceeds 1300 MPa, the toughness is remarkably reduced, and the cutting life and die life are also remarkably reduced. Therefore, the upper limit was made 1300 MPa or less.
[0027]
Further, the lower limit of the yield ratio was limited to 0.7 in order to improve fatigue strength. On the other hand, even if the yield ratio is increased to 0.95 or more, the improvement in fatigue strength is saturated, so the upper limit was limited to 0.95.
[0028]
Next, a manufacturing method will be described.
[0029]
The heating temperature is set to Ac 3 point or higher because of the necessity of being a γ single phase during forging. Moreover, the upper limit was made into the highest heating temperature of the present furnace 1350 degreeC. As described above, in order to facilitate non-recrystallization rolling, it is desirable to dissolve V or Nb to some extent, so that heating at 1050 ° C. or higher is desirable.
[0030]
The Ac 3 point is defined as the value obtained from the equation (3).
[0031]
Ac 3 = 910-203 (C) 1/2 -15.2 (Ni) +44.7 (Si) +104 (V) +31.5 (Mo) +13.1 (W) (3)
The effect of refining the structure by transformation from unrecrystallized γ depends on the strain applied in the non-recrystallized temperature range. When the strain is less than 0.3 in logarithmic strain, the structure cannot be sufficiently refined, so the lower limit is set to logarithmic strain 0.3. If possible, a strain of 0.8 or higher is desirable. On the other hand, if the strain is increased, the structure becomes finer, but the effect tends to be saturated. Since an increase in strain causes an increase in cost due to an increase in forging reaction force and a decrease in mold life, the logarithmic strain is set to 3 or less. When forming by multiple forgings, it may be combined with forging in the recrystallization temperature range.
[0032]
The logarithmic distortion described here is a distortion defined by the equation (4). The original thickness height average is an average value when the forging direction of the material before forging is the height, and the finished thickness height average is an average value of the height after forging. However, in the case of processing such as extrusion, the equation (5) is followed. The original cross-sectional area average is the average cross-sectional area of the surface perpendicular to the forging direction of the material before forging, and the finished cross-sectional area average is the cross-sectional area average after forging.
[0033]
Logarithmic strain = ln (original thickness height average / finished thickness height average) (4)
Logarithmic strain = ln (original cross-sectional area average / finished cross-sectional area average) (5)
Further, as described above, the strength increase due to the refinement of the structure and the strength decrease due to the increase in the ferrite fraction occur simultaneously with the decrease in the processing temperature. The particle size decreases with a decrease in the processing temperature, but on the high temperature side, the strength decrease due to the increase in the ferrite fraction is more effective than the strength increase due to the decrease in the particle size, and the strength decreases with a decrease in the processing temperature. On the other hand, this relationship is reversed on the low temperature side, and the strength rapidly increases as the processing temperature decreases. FIG. 1 shows a typical relationship between processing temperature and strength. In this component, a valley of strength appears in the vicinity of 850 ° C., but no significant increase in strength appears at 800 ° C. or higher. For this reason, in this invention, it limits to the forging below 800 degreeC which intensity | strength rises rapidly.
[0034]
Further, at a forging temperature of less than 700 ° C., ferrite is generated before forging and becomes a processed ferrite during forging to deteriorate toughness. Therefore, the forging lower limit temperature is set to 700 ° C.
[0035]
As described above, the structure morphology varies depending on the cooling speed after forging. The cooling speed will be described below.
[0036]
In the transformation from non-recrystallized γ, the nucleation rate is increased, so that the TT-T nose is shifted to the short time side, and ferrite is easily generated. For this reason, in order to produce ferrite + pearlite, a temperature range of Ar 3 point or lower and 500 ° C. or higher may be cooled at the cold speed shown in the equation (1). Equation (1) is an equation obtained from the straight line in FIG. The lower limit of the cooling rate is set to 0.1 ° C./sec because if the cooling rate is slower than that, a sufficient nucleation rate cannot be obtained and the ferrite becomes coarse. On the other hand, the upper limit was set to (2.5ε + 1) ° C./sec because at a faster cooling speed, ferrite + pearlite was not generated, and a mixed structure with bainite or martensite was formed, and the toughness deteriorated. . The reason why the cooling control temperature range is set to the Ar3 point or less is that the transformation starts. On the other hand, the lower limit is set to 500 ° C. because the ferrite + pearlite transformation has already been completed at this temperature.
[0037]
0.1 ° C./sec≦CR≦(2.5ε+1)° C./sec (1)
(Ε: logarithmic strain given at 700 ° C. or higher and lower than 800 ° C.)
Note that the Ar 3 point is defined as a value obtained by the equation (6).
[0038]
Ar 3 = 868-396 (C) +24.6 (Si) -58.7 (Mn) -50 (Ni) -35 (Cu) +190 (V) (6)
[0039]
【Example】
A forging test piece of φ50 × h60 is cut out from the steel of the components shown in Table 1 and heated at high frequency, and the flat plate compression forging in the height direction is applied by applying the method of the present invention and the comparative method shown in Table 2. went. The logarithmic distortion in Table 2 was determined by applying equation (4). Further, when the method of the present invention was applied and cooled, the particle size, strength, yield ratio, and toughness as shown in Table 2 were obtained. In addition, temperature control at the time of cooling was performed by heat insulation cart, blast or water spray cooling. The structure was optically photographed at a 1/4 t position 30 mm away from the center of the forged product, and the average particle size (average packet size) was determined by a cutting method. The reason why it is 30 mm away from the center is to avoid the dead metal part. The mechanical properties were measured using a JIS No. 3 tensile test piece and a JIS No. 3 Charpy test piece (width 5 mm). In Table 2, since the comparative steels 1, 2, and 10 do not contain the necessary amounts of the essential elements Nb and V of the present invention, recrystallization occurs and a coarse structure is obtained. For this reason, strength, yield ratio, and toughness are low. Since the comparative steels 9 and 11 contain Nb and V more than necessary, the toughness is low. Since the comparative steel 3 was too low in heating temperature to become a γ single phase during heating and forged in a γ + α two-phase state, α was processed and the yield ratio and toughness were low. Since the comparative steel 4 has a high processing temperature and recrystallization occurs, it has a coarse structure and has low strength, yield ratio, and toughness. Since the comparative steel 5 has a small degree of work, a sufficient nucleation rate cannot be obtained, resulting in a coarse structure and low strength, yield ratio, and toughness. Since the comparative steel 6 was too slow after processing, a sufficient nucleation rate could not be obtained, resulting in a coarse structure and low strength, yield ratio, and toughness. Since the comparative steel 7 has a too low cooling speed after processing, a part of bainite is generated, and the yield ratio and toughness are low. Since the comparative steel 8 was processed in a state where the processing temperature was too low and a part of α was generated during the processing, α was processed and the yield ratio and toughness were low.
[0040]
[Table 1]
Figure 0003851147
[0041]
[Table 2]
Figure 0003851147
[0042]
[Table 3]
Figure 0003851147
[0043]
【The invention's effect】
According to the present invention, the strength, yield ratio, and toughness are clearly improved, and the present invention is effective.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between processing temperature and strength.
FIG. 2 is a diagram showing the influence of logarithmic strain imparted in an unrecrystallized region and cold speed in a temperature range of 500 ° C. to Ar 3 on texture formation.
FIG. 3 is a micrograph of a comparative example (manufacturing conditions: heating temperature 1200 ° C., logarithmic strain 2.3 during forging, forging temperature 850 ° C., cooling rate 0.5 ° C./sec at 3 or less Ar 3 points) .
FIG. 4 is a photomicrograph of an example of the present invention (manufacturing conditions: heating temperature 1200 ° C., logarithmic strain 2.3 at forging, forging temperature 700 ° C., cooling rate 0.5 ° C./sec below Ar 3 point and below 500 ° C.) ).

Claims (8)

質量%で
C 0.1〜0.8%
Si 0.05〜2.5%
Mn 0.2〜3%
Al 0.005〜0.1%
N 0.001〜0.02%
を含有し、更に
V 0.05〜0.5%
Nb 0.005〜0.1%
の1種または2種を含有し、残部がFeおよび不可避的不純物からなり、下記式(2)によって求められる平均結晶粒径が5μm以下のフェライト+パーライト組織からなることを特徴とする非調質高強度・高靭性鍛造品。
平均粒径=(フェライト平均粒径)×(フェライト分率)
+(パーライト平均ブロック径)×(1−(フェライト分率)) …(2)
C 0.1-0.8% by mass
Si 0.05-2.5%
Mn 0.2-3%
Al 0.005-0.1%
N 0.001-0.02%
And V 0.05-0.5%
Nb 0.005-0.1%
1 or 2 of the above, the balance being Fe and inevitable impurities, and the average crystal grain size determined by the following formula (2) consisting of ferrite + pearlite structure of 5 μm or less High strength and high toughness forged product.
Average particle size = (Ferrite average particle size) x (Ferrite fraction)
+ (Pearlite average block diameter) x (1- (ferrite fraction)) ... (2)
質量%で
Mg 0.0001〜0.005%
Zr 0.0001〜0.005%
の1種または2種を含有することを特徴とする請求項1記載の非調質高強度・高靭性鍛造品。
Mg 0.0001 to 0.005% by mass%
Zr 0.0001-0.005%
The non-tempered high-strength and high-toughness forged product according to claim 1, comprising one or two of the following.
質量%で
Cr 0.05〜3%
Ni 0.05〜3%
Mo 0.05〜3%
Cu 0.01〜2%
Ti 0.003〜0.05%
B 0.0005〜0.005%
の1種または2種以上を含有することを特徴とする請求項1又は2記載の非調質高強度・高靭性鍛造品。
0.05 to 3% Cr by mass%
Ni 0.05-3%
Mo 0.05-3%
Cu 0.01-2%
Ti 0.003-0.05%
B 0.0005-0.005%
The non-tempered high-strength and high-toughness forged product according to claim 1, comprising one or more of the following.
質量%で
S 0.01〜0.3%
Pb 0.03〜0.3%
Ca 0.001〜0.05%
Bi 0.03〜0.3%
の1種または2種以上を含有することを特徴とする請求項1〜3の何れか1項に記載の非調質高強度・高靭性鍛造品。
S 0.01 to 0.3% by mass%
Pb 0.03-0.3%
Ca 0.001-0.05%
Bi 0.03-0.3%
1 type or 2 types or more of these are contained, The non-tempered high strength and toughness forged product of any one of Claims 1-3 characterized by the above-mentioned.
引張強さが940〜1300MPaであり、2mmU切欠き試験片を用いて20℃で測定したシャルピー衝撃値が173〜232J/cm であることを特徴とする請求項1〜4の何れか1項に記載の非調質高強度・高靭性鍛造品。Tensile strength of 940 ~1300MPa der is, any one of claims 1 to 4 Charpy impact value measured at 20 ° C. using a 2mmU notched specimen is characterized 173~232J / cm 2 der Rukoto The non-tempered high strength and high toughness forged product according to item 1. 降伏比が0.7〜0.95であることを特徴とする請求項1〜5の何れか1項に記載の非調質高強度・高靭性鍛造品  The non-tempered high strength and high toughness forged product according to any one of claims 1 to 5, wherein the yield ratio is 0.7 to 0.95. 請求項1〜4の何れか1項に記載の成分からなる鋼を熱間鍛造する際に、Ac 点以上1350℃以下に加熱し、対数歪みで1〜3の加工を与える熱間鍛造を700℃以上800℃未満で少なくとも1回以上行い、該熱間鍛造後、Ar点以下500℃以上の温度域を下記(1)式で示した冷速(CR)で冷却することを特徴とする非調質高強度・高靭性鍛造品の製造方法。
0.1℃/sec≦CR≦(2.5ε+1)℃/sec …(1)
(ε:700℃以上800℃未満で与えた対数歪み)
When hot forging the steel comprising the component according to any one of claims 1 to 4, the hot forging is performed by heating Ac to 3 points or more and 1350 ° C or less, and giving processing of 1 to 3 with logarithmic strain. It is performed at least once at 700 ° C. or more and less than 800 ° C., and after the hot forging, the temperature range of Ar 3 points or less and 500 ° C. or more is cooled at a cooling rate (CR) represented by the following formula (1). non-tempered high strength and high toughness forged products manufacturing method of you.
0.1 ° C./sec≦CR≦(2.5ε+1)° C./sec (1)
(Ε: logarithmic strain given at 700 ° C. or higher and lower than 800 ° C.)
請求項7に記載の対数歪みが、鍛造前素材の鍛造方向の高さの平均値である元厚高さ平均と、鍛造後の高さの平均値である仕上げ厚高さ平均により下記式(4The logarithmic strain according to claim 7 is expressed by the following formula (average thickness height average which is an average value of the height in the forging direction of the material before forging and finish thickness height average which is an average value of the height after forging: 4 )で示した対数歪みであることを特徴とする非調質高強度・高靭性鍛造品の製造方法。A method for producing a non-tempered high-strength and high-toughness forged product characterized by the logarithmic strain shown in FIG.
対数歪み=ln(元厚高さ平均/仕上げ厚高さ平均)Logarithmic strain = ln (average original thickness height / average finished thickness height) …(4)(4)
JP2001349100A 2001-11-14 2001-11-14 Non-tempered high strength and high toughness forged product and its manufacturing method Expired - Fee Related JP3851147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349100A JP3851147B2 (en) 2001-11-14 2001-11-14 Non-tempered high strength and high toughness forged product and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349100A JP3851147B2 (en) 2001-11-14 2001-11-14 Non-tempered high strength and high toughness forged product and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2003147482A JP2003147482A (en) 2003-05-21
JP3851147B2 true JP3851147B2 (en) 2006-11-29

Family

ID=19161822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349100A Expired - Fee Related JP3851147B2 (en) 2001-11-14 2001-11-14 Non-tempered high strength and high toughness forged product and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3851147B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497842B2 (en) * 2003-05-26 2010-07-07 新日本製鐵株式会社 Method for manufacturing ultra-high temperature hot forged non-tempered parts
KR100991335B1 (en) 2006-07-28 2010-11-01 신닛뽄세이테쯔 카부시키카이샤 Steel part with surface layer of fine grain and process for producing the same
JP4757744B2 (en) * 2006-08-29 2011-08-24 新日本製鐵株式会社 Surface fine-grained steel parts and manufacturing method thereof
JP4604251B2 (en) * 2007-07-23 2011-01-05 独立行政法人物質・材料研究機構 S-containing high strength fine grain steel precursor steel
JP5556191B2 (en) * 2009-01-30 2014-07-23 愛知製鋼株式会社 Hot forged non-heat treated steel parts and non-heat treated steel for hot forging used therefor
CN104213019B (en) * 2014-08-28 2016-07-06 首钢总公司 A kind of 600MPa level automobile axle housing steel and production method thereof
KR101674750B1 (en) * 2014-12-04 2016-11-10 주식회사 포스코 Non-quenched and tempered steel wire rod having excellent surface case hardening and manufacturing method thereof
JP6984117B2 (en) * 2016-10-28 2021-12-17 スズキ株式会社 Driving support device
KR102181788B1 (en) * 2018-12-12 2020-11-24 주식회사 포스코 High strength medium carbon steel for earthquake-proof and its manufacturing method
CN110616379A (en) * 2019-09-27 2019-12-27 邯郸钢铁集团有限责任公司 Q345C steel and production method thereof
CN112575242B (en) * 2019-09-27 2022-06-24 宝山钢铁股份有限公司 Steel for alloy structure and manufacturing method thereof
JP7014213B2 (en) * 2019-10-29 2022-02-01 スズキ株式会社 Driving support device
KR102325473B1 (en) * 2019-12-19 2021-11-15 주식회사 포스코 Steel material for earthquake-resistant structures and method of manufacturing the same

Also Published As

Publication number Publication date
JP2003147482A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
WO2001002615A1 (en) Cold workable steel bar or wire and process
JP3901994B2 (en) Non-tempered high-strength and high-toughness forged product and its manufacturing method
JP3851147B2 (en) Non-tempered high strength and high toughness forged product and its manufacturing method
JP2004137542A (en) Method for manufacturing hot-forged member of microalloyed steel
JP3036416B2 (en) Hot forged non-heat treated steel having high fatigue strength and method for producing forged product
JP4134355B2 (en) Manufacturing method of continuous cast tempered high strength steel plate with excellent toughness
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JPH0892687A (en) High strength and high toughness non-heattreated steel for hot forging and its production
US7678207B2 (en) Steel product for induction hardening, induction-hardened member using the same, and methods producing them
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JPH08277437A (en) Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP3851146B2 (en) Non-tempered high strength and high toughness forging steel, method for producing the same, and method for producing forged products
JP4405026B2 (en) Method for producing high-tensile strength steel with fine grain
JP4038361B2 (en) Non-tempered high strength and high toughness forged product and its manufacturing method
JP2009215576A (en) Method for producing rolled non-heat treated steel material
JP4757744B2 (en) Surface fine-grained steel parts and manufacturing method thereof
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
JP3750737B2 (en) Manufacturing method of non-tempered high strength and high toughness forgings
JPH09137222A (en) Production of steel for high strength and low yield ratio reinforcing bar
JPH10306315A (en) Production of non-heat treated high tensile-strength steel excellent in low temperature toughness
JP3772382B2 (en) Manufacturing method for high strength and low yield ratio steel
JP3747365B2 (en) Manufacturing method of non-tempered high strength and high toughness forgings
JP3214731B2 (en) Method for producing non-heat treated steel bar with excellent low temperature toughness
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

R150 Certificate of patent or registration of utility model

Ref document number: 3851147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees