JP3845941B2 - イミダゾール金属錯体及びそれを用いた有機電界発光素子 - Google Patents

イミダゾール金属錯体及びそれを用いた有機電界発光素子 Download PDF

Info

Publication number
JP3845941B2
JP3845941B2 JP07166197A JP7166197A JP3845941B2 JP 3845941 B2 JP3845941 B2 JP 3845941B2 JP 07166197 A JP07166197 A JP 07166197A JP 7166197 A JP7166197 A JP 7166197A JP 3845941 B2 JP3845941 B2 JP 3845941B2
Authority
JP
Japan
Prior art keywords
group
substituent
imidazole
light emitting
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07166197A
Other languages
English (en)
Other versions
JPH10265478A (ja
Inventor
晶子 市野澤
佳晴 佐藤
勇吉 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP07166197A priority Critical patent/JP3845941B2/ja
Publication of JPH10265478A publication Critical patent/JPH10265478A/ja
Application granted granted Critical
Publication of JP3845941B2 publication Critical patent/JP3845941B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は新規なイミダゾール金属錯体及び有機電界発光素子に関するものであり、詳しくは、長期間に渡って安定な発光特性を維持し得る新規青色発光材料、及びこの発光材料を用い、有機化合物からなる正孔輸送層と有機発光層との組み合わせにより、電界をかけて光を放出する薄膜型デバイスに関するものである。
【0002】
【従来の技術】
従来、薄膜型の電界発光(EL)素子としては、無機材料のII−VI族化合物半導体であるZnS、CaS、SrS等に、発光中心であるMnや希土類元素(Eu、Ce、Tb、Sm等)をドープしたものが一般的であるが、上記の無機材料から作製したEL素子は、
1)交流駆動が必要とされる(一般に50〜1000Hz)。
2)駆動電圧が高い(一般に200V程度)。
3)フルカラー化が困難で、特に青色に問題がある。
4)周辺駆動回路のコストが高い。
という問題点を有している。
【0003】
しかし、近年、上記問題点の改良のため、有機薄膜を用いた電界発光素子の開発が行われるようになった。特に、発光効率を高めるために電極からのキャリアー注入の効率向上を目的とした電極種類の最適化を行い、芳香族ジアミンから成る正孔輸送層と8−ヒドロキシキノリンのアルミニウム錯体から成る発光層を設けた有機電界発光素子の開発(Appl.Phys.Lett.,51巻,913頁,1987年)により、従来のアントラセン等の単結晶を用いた電界発光素子と比較して発光効率の大幅な改善がなされ、実用特性に近づいてきている。
【0004】
上記の様な低分子材料を用いた電界発光素子の他にも、発光層の材料として、ポリ(p−フェニレンビニレン)(Nature,347巻,539頁,1990年他)、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン](Appl.Phys.Lett.,58巻,1982頁,1991年他)、ポリ(3-アルキルチオフェン)(Jpn.J.Appl.Phys,30巻,L1938頁,1991年他)等の高分子材料を用いた電界発光素子の開発や、ポリビニルカルバゾール等の高分子に低分子の発光材料と電子移動材料を混合した素子(応用物理,61巻,1044頁,1992年)の開発も行われている。
【0005】
ところで、有機電界発光素子の特徴の一つに青色発光が実現できることが挙げられる。青色の電界発光を示す有機材料としては、アントラセン(Jpn.J.Appl.Phys.,27巻,L269頁,1988年)、テトラフェニルブタジエン、ペンタフェニルシクロペンタジエン(Appl.Phys.Lett.,56巻,799頁,1990年)、ジスチリルベンゼン誘導体(日本化学会誌,1162頁,1992年)、スチリルアミン含有ポリカーボネート(Appl.Phys.Lett.,61巻,2503頁,1992年)、オキサジアゾール誘導体(Jpn.J.Appl.Phys.,31巻,1812頁,1992年;日本化学会誌,1540頁,1991年)、アゾメチン亜鉛錯体(Jpn.J.Appl.Phys.,32巻,L511頁,1993年)、ベンズアゾール金属錯体(特開平8-81472号公報)、混合配位子アルミニウム錯体(特開平5-198377号公報、特開平5-198378号公報、特開平5-214332号公報、特開平6-172751号公報)等が報告されている。
【0006】
【発明が解決しようとする課題】
前述の青色発光材料を有機電界発光素子の発光層として用いる場合、次のような問題点が挙げられる。
【0007】
1)青色発光を示す有機分子の構造は単純なものが多いので、分子量が小さくなり薄膜状態が不安定なため、結晶化しやすく一様な膜が得にくい。
2)発光効率が低く、高輝度が得られない。
3)正孔輸送材料と相互作用して、エキサイプレックスを形成し、電界発光が長波長化してしまう。
4)素子として駆動した時の寿命が短い。
【0008】
上述の理由から、青色発光有機電界発光素子は実用化のためには多くの問題を抱えているのが実状である。
【0009】
なお、上記特開平8−81472号公報には、イミダゾール環の窒素原子に水素が結合しているイミダゾール金属錯体が報告されているが、このものは吸湿性があり、錯体の安定性が悪いという欠点がある。
【0010】
本発明は上記従来の問題点を解決し、長期間に渡って安定な発光特性を示す新規青色発光材料及びこの発光材料を用いた青色発光特性の安定した有機電界発光素子を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の有機電界発光素子用イミダゾール金属錯体は、下記一般式(I)で表されるものである。
【0012】
【化3】
Figure 0003845941
【0013】
式中、Aは、ハロゲン原子、シアノ基、ニトロ基、カルボキシル基、水酸基、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよい芳香族炭化水素環基又は置換基を有していてもよい芳香族複素環基置換基を示し、R1,R2,R3,R4,R5,R6,R7,R8は、各々独立して水素原子、ハロゲン原子、シアノ基、ニトロ基、カルボキシル基、水酸基、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよい芳香族炭化水素環基又は置換基を有していてもよい芳香族複素環基を示す。Mは、Be、Zn、Cd、Al、Ga、In又はgを示し、nは1から3までの整数を示す。ただし、R 〜R が下記一般式で示される置換基であることを除く。
【化4】
Figure 0003845941
(式中、Y ,Y およびY は、水素原子、シアノ基、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基を表し、Y とY は互いに結合して、酸素原子、硫黄原子または窒素原子を含んで良い環を形成しても良い。)]
本発明の有機電界発光素子は、基板上に、陽極及び陰極により挟持された正孔輸送層及び有機発光層が形成された有機電界発光素子において、該有機発光層が、上記一般式(I)で表されるイミダゾール金属錯体を含有することを特徴とする。
【0014】
イミダゾール環の窒素原子に特定の置換基Aを導入したイミダソール金属錯体であれば、耐熱性が高く、長期間に渡って安定な青色発光特性を維持することができ、このようなイミダゾール金属錯体を青色発光材料として用いた有機電界発光素子であれば、熱的に安定な薄膜構造の有機発光層を形成することができ、長期に渡り安定した青色発色特性を得ることができる。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
【0016】
まず、本発明のイミダゾール金属錯体について説明する。
【0017】
本発明のイミダゾール金属錯体を表す前記一般式(I)において、好ましくは、Aとしては、ハロゲン原子;シアノ基;ニトロ基;カルボキシル基;水酸基;メチル基、エチル基等の炭素数1〜6のアルキル基;α−ハロアルキル基;ベンジル基、フェネチル基等のアラルキル基;ビニル基等のアルケニル基;ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等のジアルキルアミノ基;ジベンジルアミノ基、ジフェニルアミノ基などのジアリールアミノ基;アミド基、メトキシカルボニル基、エトキシカルボニル基等の炭素数1〜6のアルコキシカルボニル基;メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基;フェノキシ基、ベンジルオキシ基などのアリールオキシ基;フェニル基、ビフェニル基等の芳香族炭化水素基;ピリジル基、キノリル基、チエニル基、カルバゾル基、インドリル基、フリル基等の芳香族複素環基が挙げられ、これら飽和もしくは不飽和の脂肪族炭化水素基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、ジアリールアミノ基は置換基を有していてもよい。更に好ましくは、Aとしてはメチル基、エチル基等の炭素数1〜6のアルキル基;ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等のジアルキルアミノ基;ジベンジルアミノ基、ジフェニルアミノ基などのジアリールアミノ基;フェニル基、ビフェニル基等の芳香族炭化水素基が挙げられる。R1ないしR8としては、好ましくは、水素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メチル基、エチル基等の炭素数1〜6のアルキル基;ベンジル基、フェネチル基等のアラルキル基;シアノ基、アミノ基、ジメチルアミノ基;メトキシカルボニル基、エトキシカルボニル基等の炭素数1〜6のアルコキシカルボニル基;カルボキシル基;メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基;フェニル基、ナフチル基、アセナフチル基、アントリル基等の芳香族炭化水素基;ピリジル基、キノリル基、チエニル基、カルバゾル基、インドリル基、フリル基等の芳香族複素環基等が挙げられる。これらの芳香族炭化水素基又は芳香族複素環基に置換する置換基としてはメチル基、エチル基等の炭素数1〜6のアルキル基;メトキシ基等の低級アルコキシ基;フェノキシ基、トリオキシ基等のアリールオキシ基;ベンジルオキシ基等のアリールアルコキシ基;フェニル基、ナフチル基等のアリール基;ジメチルアミノ基等の置換アミノ基等が挙げられる。R1〜R8としては、特に好ましくは、水素原子、塩素原子等のハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、フェニル基、ナフチル基等のアリール基が挙げられる
【0018】
MはBe、Zn、Cd、Al、Ga、In又はgの金属原子を表。nは金属原子の価数により決定され、2価の金属の場合は2を、3価の金属の場合は3を示す。Mとしては、更に好ましくは、Zn、Al、Ga、Mgが挙げられる。
【0019】
前記一般式(I)で表されるイミダゾール金属錯体は、対応する金属塩とイミダゾール誘導体との間の錯体形成反応により合成される。
【0020】
このイミダゾール誘導体は、例えば、次のような経路で合成される。即ち、下記一般式(II)で表される1,2-フェニレンジアミン誘導体を、下記一般式(III)で表されるサリチルアルデヒド誘導体とエタノール中で反応させ(J.Chem.Soc.,1949巻,2971頁,1949年)、下記一般式(IV)で表されるSchiff's塩基を合成し、氷酢酸中で、四酢酸鉛を用いて酸化することにより、下記一般式(V)で表されるイミダゾール誘導体を得る。
【0021】
【化5】
Figure 0003845941
【0022】
【化6】
Figure 0003845941
【0023】
【化7】
Figure 0003845941
【0024】
【化8】
Figure 0003845941
【0025】
上記一般式(V)で表されるイミダゾール誘導体の好ましい具体例を下記の表1〜表6に示すが、本発明は何らこれらに限定されるものではない。
【0026】
【表1】
Figure 0003845941
【0027】
【表2】
Figure 0003845941
【0028】
【表3】
Figure 0003845941
【0029】
【表4】
Figure 0003845941
【0030】
【表5】
Figure 0003845941
【0031】
【表6】
Figure 0003845941
【0032】
前記一般式(V)で表されるイミダゾール誘導体と錯体を形成する金属塩としては、塩化物、臭化物等のハロゲン化塩、硫酸塩、硝酸塩等が挙げられる。
【0033】
錯体形成反応は、例えば、「ケイ光・紫外吸収分析」(共立出版,43頁,1965年)に示される方法で行われ、通常、イミダゾール誘導体のエタノール溶液と金属塩のメタノール溶液を混合、攪拌し、沈澱としてイミダゾール金属錯体を得る。
【0034】
本発明においては、前記一般式(I)に示す分子構造により、ガラス転移温度Tgを100℃以上と高くすることができる。そして、この耐熱性の向上により、容易には結晶化しない非晶質薄膜を与えることが可能となり、正孔輸送層との分子の相互拡散を100℃以上の高温下でも十分に抑制することができる。
【0035】
次に、前記一般式(I)で表されるイミダゾール金属錯体を用いた本発明の有機電界発光素子の実施の形態について、図面を参照しながら説明する。
【0036】
図1〜4は本発明に用いられる一般的な有機電界発光素子の構造例を模式的に示す断面図であり、1は基板、2は陽極、3は陽極バッファ層、4は正孔輸送層、5は有機発光層、5Aは電子注入層、6は界面層、7は陰極を各々表わす。
【0037】
基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。ただし、合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。即ち、基板のガスバリヤ性が低すぎると、基板を通過する外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板のいずれか一方の面もしくは両面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
【0038】
基板1上には陽極2が設けられるが、陽極2は正孔輸送層4への正孔注入の役割を果たすものである。この陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、あるいは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などにより構成される。陽極2の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などの場合には、適当なバインダー樹脂溶液に分散し、基板1上に塗布することにより陽極2を形成することもできる。さらに、導電性高分子の場合は電解重合により直接基板1上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。陽極2は異なる物質よりなる積層構造とすることも可能である。陽極2の厚みは、必要とされる透明性により異なる。陽極2に透明性が必要とされる場合は、可視光の透過率が、通常、60%以上、好ましくは80%以上であることが望ましく、この場合、陽極2の厚みは、通常、5〜1000nm、好ましくは10〜500nm程度である。不透明でよい場合には、陽極2は基板1と同一でもよい。また、さらには上記の陽極2の上に異なる導電材料を積層することも可能である。
【0039】
陽極2の上には正孔輸送層4が設けられる。正孔輸送層4の材料に要求される条件としては、陽極2からの正孔注入効率が高く、かつ、注入された正孔を効率よく輸送することができる材料であることである。そのためには、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが要求される。上記の一般的要求以外に、車載表示用の応用を考えた場合、素子にはさらに耐熱性が要求される。この場合には、ガラス転移温度Tgとして80℃以上の値を有する材料が望ましい。
【0040】
このような正孔輸送材料としては、例えば、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン等の3級芳香族アミンユニットを連結した芳香族ジアミン化合物(特開昭59−194393号公報)、4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表される2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族アミン(特開平5−234681号公報)、トリフェニルベンゼンの誘導体でスターバースト構造を有する芳香族トリアミン(米国特許第4,923,774号)、N,N'-ジフェニル-N,N'-ビス(3-メチルフェニル)ビフェニル-4,4'-ジアミン等の芳香族ジアミン(米国特許第4,764,625号)、α,α,α',α'-テトラメチル-α,α'-ビス(4-ジ-p-トリルアミノフェニル)-p-キシレン(特開平3−269084号公報)、分子全体として立体的に非対称なトリフェニルアミン誘導体(特開平4−129271号公報)、ピレニル基に芳香族ジアミノ基が複数個置換した化合物(特開平4−175395号公報)、エチレン基で3級芳香族アミンユニットを連結した芳香族ジアミン(特開平4−264189号公報)、スチリル構造を有する芳香族ジアミン(特開平4−290851号公報)、チオフェン基で芳香族3級アミンユニットを連結したもの(特開平4−304466号公報)、スターバースト型芳香族トリアミン(特開平4−308688号公報)、ベンジルフェニル化合物(特開平4−364153号公報)、フルオレン基で3級アミンを連結したもの(特開平5−25473号公報)、トリアミン化合物(特開平5−239455号公報)、ビスジピリジルアミノビフェニル(特開平5−320634号公報)、N,N,N-トリフェニルアミン誘導体(特開平6−1972号公報)、フェノキサジン構造を有する芳香族ジアミン(特開平7−138562号公報)、ジアミノフェニルフェナントリジン誘導体(特開平7−252474号公報)、ヒドラゾン化合物(特開平2−311591号公報)、シラザン化合物(米国特許第4,950,950号公報)、シラナミン誘導体(特開平6−49079号公報)、ホスファミン誘導体(特開平6−25659号公報)、キナクリドン化合物等が挙げられる。これらの化合物は、単独で用いてもよいし、必要に応じて、2種以上を混合して用いてもよい。
【0041】
上記の化合物以外に、正孔輸送層4の材料として、ポリビニルカルバゾールやポリシラン(Appl.Phys.Lett.,59巻,2760頁,1991年)、ポリフォスファゼン(特開平5−310949号公報)、ポリアミド(特開平5−310949号公報)、ポリビニルトリフェニルアミン(特開平7−53953号公報)、トリフェニルアミン骨格を有する高分子(特開平4−133065号公報)、トリフェニルアミン単位をメチレン基等で連結した高分子(Synthetic Metals,55-57巻,4163頁,1993年)、芳香族アミンを含有するポリメタクリレート(J.Polym.Sci.,Polym.Chem.Ed.,21巻,969頁,1983年)等の高分子材料も挙げられる。
【0042】
正孔輸送層4は、上記の正孔輸送材料を塗布法或は真空蒸着法により前記陽極2上に成膜することにより形成される。
【0043】
塗布法の場合は、正孔輸送材料の1種又は2種以上と、必要により正孔のトラップにならないバインダー樹脂や塗布性改良剤などの添加剤とを添加し、溶剤に溶解して塗布溶液を調製し、スピンコート法などの方法により陽極2上に塗布し、乾燥して正孔輸送層4を形成する。この場合、バインダー樹脂としては、ポリカーボネート、ポリアリレート、ポリエステル等が挙げられる。バインダー樹脂は添加量が多いと正孔移動度を低下させるので、少ない方が望ましく、通常、50重量%以下が好ましい。
【0044】
真空蒸着法の場合には、正孔輸送材料を真空容器内に設置されたルツボに入れ、真空容器内を適当な真空ポンプで10-6Torrにまで排気した後、ルツボを加熱して、正孔輸送材料を蒸発させ、ルツボに対向配置された基板上に層を形成する。
【0045】
正孔輸送層4の膜厚は、通常、10〜300nm、好ましくは30〜100nmである。この様に薄い膜を一様に形成するためには、一般に真空蒸着法がよく用いられる。
【0046】
なお、陽極2と正孔輸送層4のコンタクトを向上させるために、図2に示すように、陽極バッファ層3を設けることが考えられる。この場合、陽極バッファ層3に用いられる材料に要求される条件としては、陽極2とのコンタクトがよく均一な薄膜が形成でき、熱的に安定、即ち、融点及びガラス転移温度が高く、融点としては300℃以上、ガラス転移温度としては100℃以上が要求される。さらに、イオン化ポテンシャルが低く陽極からの正孔注入が容易なこと、正孔移動度が大きいことが挙げられる。このような条件を満たすために、従来、陽極バッファ層の材料としてポルフィリン誘導体やフタロシアニン化合物(特開昭63−295695号公報)、スターバスト型芳香族トリアミン(特開平4−308688号公報)、ヒドラゾン化合物(特開平4−320483号公報)、アルコキシ置換の芳香族ジアミン誘導体(特開平4−220995号公報)、p-(9-アントリル)-N,N-ジ-p-トリルアニリン(特開平3−111485号公報)、ポリチエニレンビニレンやポリ−p−フェニレンビニレン(特開平4−145192号公報)、ポリアニリン(Appl.Phys.Lett.,64巻,1245頁,1994年参照)等の有機化合物や、スパッタ・カーボン膜(特開平8−31573号公報)や、バナジウム酸化物、ルテニウム酸化物、モリブデン酸化物等の金属酸化物(第43回応用物理学関係連合講演会,27a-SY-9,1996年)が報告されている。
【0047】
これらのうち、陽極バッファ層材料としてよく使用される化合物としては、ポルフィリン化合物又はフタロシアニン化合物が挙げられる。これらの化合物は中心金属を有していてもよいし、無金属のものでもよい。好ましいこれらの化合物の具体例としては、以下の化合物が挙げられる。
【0048】
ポルフィン
5,10,15,20-テトラフェニル-21H,23H-ポルフィン
5,10,15,20-テトラフェニル-21H,23H-ポルフィンコバルト(II)
5,10,15,20-テトラフェニル-21H,23H-ポルフィン銅(II)
5,10,15,20-テトラフェニル-21H,23H-ポルフィン亜鉛(II)
5,10,15,20-テトラフェニル-21H,23H-ポルフィンバナジウム(IV)オキシド
5,10,15,20-テトラ(4-ピリジル)-21H,23H-ポルフィン
29H,31H-フタロシアニン
銅(II)フタロシアニン
亜鉛(II)フタロシアニン
チタンフタロシアニンオキシド
マグネシウムフタロシアニン
鉛フタロシアニン
銅(II)4,4',4'',4'''-テトラアザ-29H,31H-フタロシアニン
陽極バッファ層3もまた、正孔輸送層4と同様にして薄膜形成可能であるが、陽極バッファ層材料が無機物の場合には、さらに、スパッタ法や電子ビーム蒸着法、プラズマCVD法による成膜も可能である。
【0049】
このようにして形成される陽極バッファ層3の膜厚は、通常、3〜100nm、好ましくは10〜50nmである。
【0050】
正孔輸送層4の上には有機発光層5が設けられる。有機発光層5は、電界を与えられた電極間において陰極からの電子を効率よく正孔輸送層4の方向に輸送することができる化合物より形成される。
【0051】
有機発光層5に用いられる電子輸送性化合物としては、陰極7からの電子注入効率が高く、かつ、注入された電子を効率よく輸送することができる化合物であることが必要である。そのためには、電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れトラップとなる不純物が製造時や使用時に発生しにくい化合物であることが要求される。また、正孔と電子の再結合の際に青色発光をもたらす役割も求められる。さらに、均一な薄膜形状を与えることも素子の安定性の点で重要である。
【0052】
本発明者等はこのような条件を満たす材料として、前記一般式(I)で表されるイミダゾール金属錯体が好適であることを見出した。
【0053】
本発明においては、有機電界発光素子の有機発光層5に、前記一般式(I)で表されるイミダゾール金属錯体を含有させることにより、安定した青色発光特性をもたらすことができる。
【0054】
有機発光層5の膜厚は、通常、10〜200nm、好ましくは30〜100nmである。
【0055】
有機発光層5も正孔輸送層4と同様の方法で形成することができるが、通常は真空蒸着法が用いられる。
【0056】
なお、素子の発光効率を向上させると共に発光色を変える目的で、従来、例えば、8−ヒドロキシキノリンのアルミニウム錯体をホスト材料として、クマリン等のレーザ用蛍光色素をドープすること(J.Appl.Phys.,65巻,3610頁,1989年)等も行われているが、本発明においても上記のイミダゾール金属錯体をホスト材料として、青色の蛍光色素であるペリレンやクマリン480(KODAK Laser Dyes,20頁)などを10-3〜10モル%ドープすることにより、素子の発光特性をさらに向上させることができる。
【0057】
この場合、ペリレン等の蛍光色素をドープする方法としては、共蒸着による方法や蒸着源を予め所定の濃度で混合しておく方法がある。ドーパントとしての蛍光色素は、有機発光層中にドープされる場合、有機発光層の膜厚方向において均一にドープされるが、膜厚方向において濃度分布があっても構わない。例えば、正孔輸送層との界面近傍にのみドープされていても、逆に、陰極界面近傍にドープされていてもよい。
【0058】
有機電界発光素子の発光効率をさらに向上させる方法として、図3に示すように、有機発光層5の上にさらに電子注入層5Aを積層することもできる。この電子注入層5Aに用いられる化合物には、陰極からの電子注入が容易で、電子の輸送能力がさらに大きいことが要求される。このような電子輸送材料としては、既に有機発光層材料として挙げた8−ヒドロキシキノリンのアルミ錯体や、下記構造式で表されるオキサジアゾール誘導体(Appl.Phys.Lett.,55巻,1489頁,1989年他)やそれらをポリメタクリル酸メチル(PMMA)等の樹脂に分散した系(Appl.Phys.Lett.,61巻,2793頁,1992年)、フェナントロリン誘導体(特開平5−331459号公報)、2-t-ブチル-9,10-N,N'-ジシアノアントラキノンジイミン(Phys.Stat.Sol.(a),142巻,489頁,1994年)、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛等が挙げられる。
【0059】
【化9】
Figure 0003845941
【0060】
【化10】
Figure 0003845941
【0061】
電子注入層5Aの膜厚は、通常、5〜200nm、好ましくは10〜100nmである。
【0062】
陰極7は、有機発光層5に電子を注入する役割を果たす。陰極7として用いられる材料は、前記陽極2に使用される材料が挙げられるが、効率よく電子注入を行なうには、仕事関数の低い金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金が用いられる。陰極7の膜厚は通常、陽極2と同様である。低仕事関数金属からなる陰極を保護する目的で、この上にさらに、仕事関数が高く大気に対して安定な金属層を積層することは素子の安定性を増す上で有効である。この場合、積層する金属層としては、アルミニウム、銀、ニッケル、クロム、金、白金等の金属層が用いられる。
【0063】
陰極7と有機発光層5又は電子注入層5Aとのコンタクトを向上させるために、図4に示すように両者の間に界面層6を設けてもよい。界面層6の役割としては、有機発光層5との親和性があると同時に陰極との密着性が良く、かつ、化学的に安定で陰極形成時及び/又は形成後の有機発光層7と陰極との反応を抑制する効果を有することが挙げられる。また、均一な薄膜形状を与えることも陰極7との密着性の点で重要である。この界面層6に用いられる化合物としては、芳香族ジアミン化合物(特開平6−267658号公報)、キナクリドン化合物(特開平6−330031号公報)、ナフタセン誘導体(特開平6−330032号公報)、有機シリコン化合物(特開平6−325871号公報)、有機リン化合物(特開平5−325872号公報)、N−フェニルカルバゾール骨格を有する化合物(特開平8−60144号公報)、N−ビニルカルバゾール重合体(特開平8−60145号公報)等が例示できる。
【0064】
界面層7の膜厚は、通常、2〜100nm、好ましくは5〜30nmである。
【0065】
なお、界面層を設ける代わりに、有機発光層の陰極界面近傍に上記界面層の材料を50重量%以上含む領域を設けてもよい。
【0066】
図1〜4は、本発明で採用される素子構造の一例を示すものであって、本発明は何ら図示のものに限定されるものではない。例えば、図1とは逆の構造、即ち、基板上に陰極7、有機発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、少なくとも一方が透明性の高い2枚の基板の間に本発明の有機電界発光素子を設けることも可能である。同様に、図2〜図4に示したものについても、各構成層を逆の構造に積層することも可能である。
【0067】
【実施例】
以下に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
【0068】
実施例1:表1のイミダゾール誘導体(1)の亜鉛錯体の製造
50℃に加熱したN-フェニル-1,2-フェニレンジアミン8.08gのエタノール30ml溶液中にサリチルアルデヒド5.38gのエタノール10ml溶液を加えて3時間加熱攪拌した。反応終了後、一晩放置し、再結晶させた。生じた沈殿を冷エタノールで洗浄し、黄色結晶のN-フェニル-N'-ベンジリデン-1,2-フェニレンジアミン11.42gを得た(収率90%)。
【0069】
得られたN-フェニル-N'-ベンジリデン-1,2-フェニレンジアミン11.42gを氷酢酸30ml中で四酢酸鉛19.49g用いて酸化し、水中に放出、中和した。生じた沈殿をカラムクロマトグラフィーで精製し、濃黄色粉末状のイミダゾール誘導体(1)4.48gを得た(収率36%:融点114℃)。このイミダゾール誘導体(1)の構造式を以下に示す。
【0070】
【化11】
Figure 0003845941
【0071】
得られたイミダゾール誘電体(1)1.90gのエタノール20ml溶液と、硫酸亜鉛(7水和物)1.01gをメタノール16ml中に溶かしたものを混合し、15%炭酸ナトリウム水溶液20mlを加えて反応混合物を塩基性にして、60℃で2時間撹拌して反応させた。反応終了後、生成した沈澱を脱塩水、アセトンで洗浄後、昇華精製を行ったところ、1.50gの乳白色の粉末を得た(収率71%)。
【0072】
この化合物の質量分析を行ったところ、分子量が634であり、さらにIRスペクトル(図5に示す)より目的化合物であることを確認した。この化合物をセイコー電子社製DSC−20により示差熱分析測定したところ、Tgは155℃と高い値を示した。また、結晶化温度は197℃、融点は349℃であった。
【0073】
この最終精製物の元素分析結果を以下に示す。
【0074】
分子式:Zn(C19132O)2
計算値[%]C:71.76 H:4.12 N:8.81 Zn:10.28
分析値[%]C:71.00 H:4.12 N:8.66 Zn:10.2
このイミダゾール亜鉛錯体(E−1)の構造式を以下に示す。
【0075】
【化12】
Figure 0003845941
【0076】
実施例2:表4のイミダゾール誘電体(32)の亜鉛錯体の製造
50℃に加熱したN-メチル-1,2-フェニレンジアミン3.80gのエタノール15ml溶液中にサリチルアルデヒド3.82gのエタノール6ml溶液を加えて1時間加熱攪拌した。反応終了後、一晩放置し、再結晶させた。生じた沈殿を冷エタノールで洗浄し、黄色結晶のN-メチル-N'-ベンジリデン-1,2-フェニレンジアミン6.18gを得た(収率88%)。
【0077】
得られたN-メチル-N'-ベンジリデン-1,2-フェニレンジアミン6.18gを氷酢酸20ml中で四酢酸鉛13.47g用いて酸化し、水中に放出、中和した。生じた沈殿をカラムクロマトグラフィーで精製し、濃黄色粉末状のイミダゾール誘電体(32)1.22gを得た(収率18%:融点158℃)。このイミダゾール誘電体(32)の構造式を以下に示す。
【0078】
【化13】
Figure 0003845941
【0079】
得られたイミダゾール誘電体(32)1.82gのエタノール:テトラヒドロフラン混合溶液25mlと、硫酸亜鉛(7水和物)1.24gをメタノール20ml中に溶かしたものを混合し、15%炭酸ナトリウム水溶液20mlを加えて反応混合物を塩基性にして、60℃で5時間撹拌して反応させた。反応終了後、生成した沈澱を脱塩水、アセトンで洗浄後、昇華精製を行ったところ、1.29gの薄黄色の粉末を得た(収率62%)。
【0080】
この化合物の質量分析を行ったところ、分子量が510であり、さらにIRスペクトル(図6に示す)により目的化合物であることを確認した。融点は361℃であった。
【0081】
この最終精製物の元素分析結果を以下に示す。
【0082】
分子式:Zn(C14112O)2
計算値[%]C:65.70 H:4.33 N:10.95 Zn:12.77
分析値[%]C:64.85 H:4.33 N:10.84 Zn:12.7
このイミダゾール亜鉛錯体(E−2)の構造式を以下に示す。
【0083】
【化14】
Figure 0003845941
【0084】
実施例3:イミダゾール亜鉛錯体(E−1)の発光特性の測定
ガラス基板をアセトンで超音波洗浄した後、純水で水洗し、次いで、イソプロピルアルコールで超音波洗浄した後、乾燥窒素で乾燥し、更に紫外線オゾン洗浄を行った。その後、真空蒸着装置内に設置して、装置内の真空度が2×10-6Torr以下になるまで油拡散ポンプを用いて排気した。
【0085】
実施例1で合成したイミダゾール亜鉛錯体(E−1)をセラミックルツボに入れ、ルツボの周囲のタンタル線ヒーターで加熱して蒸着を行った。この時のルツボの温度は、250〜280℃の範囲で制御した。蒸着時の真空度は3.0×10-6Torr(約4.0x10-4Pa)で、蒸着速度0.1〜0.3nm/秒で膜厚90nmの一様で透明な膜を得た。
【0086】
この蒸着膜を水銀ランプ(波長350nm)で励起して測定した蛍光測定の結果は、470nmで、青色蛍光を示した。標準試料として、下記に示すアルミニウムの8−ヒドリキシキノリン錯体(E−3)の蒸着膜を同様にして作製し、530nmの蛍光ピークの強度と比較したところ、イミダゾール亜鉛錯体(E−1)は4.6倍もの強い蛍光を示した。
【0087】
【化15】
Figure 0003845941
【0088】
また、この蒸着膜は大気中で183日間保存した後も一様で結晶化は観測されず、蛍光性や蛍光強度は維持された。
【0089】
実施例4:イミダゾール亜鉛錯体(E−2)の発光特性の測定
蒸着原料として実施例2で合成したイミダゾール亜鉛錯体(E−2)を用いた他は実施例3と同様にしてガラス基板上に膜厚90nmの一様で透明な膜を得た。この蒸着膜を水銀ランプ(波長350nm)で励起して測定した蛍光測定の結果は、470nmで、青色蛍光を示した。実施例1と同様にアルミニウムの8−ヒドリキシキノリン錯体(E−3)と蛍光ピークの強度と比較したところ、イミダゾール亜鉛錯体(E−2)は1.1倍の強い蛍光を示した。また、この蒸着膜は大気中で183日間保存した後も一様で結晶化は観測されず、蛍光性や蛍光強度は維持された。
【0090】
比較例1
イミダゾール環の窒素に水素が置換している下記に示す2-(2-ヒドロキシフェニル)ベンズイミダゾールの亜鉛錯体を実施例3と同様に蒸着しようとしたが、錯体が分解し、蒸着膜が得られない程、不安定な錯体であった。
【0091】
【化16】
Figure 0003845941
【0092】
比較例2
蒸着原料としてイミダゾール亜鉛錯体(E−1)に代えて、下記に示すビス(2−メチル−8−キノリノラト)(パラ−フェニルフェノラト)アルミニウム(III)(E−4)を用いた他は実施例3と同様にして蒸着膜を作製した。この蒸着膜を水銀ランプ(波長350nm)で励起して測定した蛍光測定の結果は、500nmで、青緑色蛍光を示した。
【0093】
しかし、この蒸着膜は大気中で7日間保存したところ、膜の透明性が失われ、蛍光性も失われた。また、ドット状の欠陥も生じた。
【0094】
【化17】
Figure 0003845941
【0095】
実施例5:イミダゾール亜鉛錯体(E−1)を用いた有機電界発光素子の作製及び評価
図1に示す構造を有する有機電界発光素子を以下の方法で作製した。
【0096】
ガラス基板1上にインジウム・スズ酸化物(ITO)透明導電膜を120nm堆積したもの(ジオマテック社製;電子ビーム成膜品;シート抵抗15Ω)を通常のフォトリソグラフィ技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極2を形成した。パターン形成したITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行って、真空蒸着装置内に設置した。上記装置の粗排気を油回転ポンプにより行った後、装置内の真空度が2x10-6Torr(約2.7x10-4Pa)以下になるまで液体窒素トラップを備えた油拡散ポンプを用いて排気した。
【0097】
正孔輸送層材料として、以下に示す4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(H−1)をセラミックルツボに入れ、ルツボの周囲のタンタル線ヒーターで加熱して蒸着を行った。この時のルツボの温度は、210〜240℃の範囲で制御した。蒸着時の真空度は3.0×10-6Torr(約4.0x10-4Pa)で、蒸着速度0.1〜0.6nm/秒で膜厚60nmの正孔輸送層4を得た。
【0098】
【化18】
Figure 0003845941
【0099】
次に、有機発光層5の材料として、実施例1で合成したイミダゾール亜鉛錯体(E−1)を上記正孔輸送層4の上に同様にして蒸着を行なった。この時のルツボの温度は250〜280℃の範囲で制御した。蒸着時の真空度は2.7×10-6Torr(約3.6x10-4Pa)で、蒸着速度0.1〜0.3nm/秒で、膜厚は75nmであった。
【0100】
上記の正孔輸送層4及び有機発光層5を真空蒸着する時の基板温度は室温に保持した。
【0101】
ここで、有機発光層5までの蒸着を行った素子を一度前記真空蒸着装置内より大気中に取り出して、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプとは直交するように素子に密着させて、別の真空蒸着装置内に設置して上記と同様にして装置内の真空度が2x10-6Torr(約2.7x10-4Pa)以下になるまで排気した。続いて、陰極7として、マグネシウムと銀の合金電極を2元同時蒸着法によって膜厚110nmで蒸着した。蒸着はモリブデンボートを用いて、真空度は8.7×10-6Torr(約1.2x10-3Pa)で、蒸着速度0.6〜0.8nm/秒で光沢のある膜が得られた。マグネシウムと銀の原子比は10:1.0であった。このマグネシウム・銀合金陰極の蒸着時の基板温度は室温に保持した。
【0102】
以上の様にして、2mmx2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。
【0103】
この素子の発光特性として、250mA/cm2の電流密度での輝度、100cd/m2での発光効率、100cd/m2での電圧(V100)、輝度−電流密度特性(L−J)の傾きを調べ、結果を表7に示した。また、CIE色度座標(JISZ8701)でのx、yの値を表7に併記した。
【0104】
この素子は一様な青色の発光を示し、発光のピーク波長は470nmであった。そして、長期間保存後も、駆動電圧の顕著な上昇はみられず、発光効率の低下もなく、安定した素子の保存安定性が得られた。
【0105】
実施例6:イミダノール亜鉛錯体(E−2)を用いた有機電界発光素子の作製及び評価
有機発光層5の材料として、イミダゾール亜鉛錯体(E−1)に代えて、実施例2で合成したイミダゾール亜鉛錯体(E−2)を用いた他は実施例5と同様にして有機電界発光素子を作製し、同様に評価を行い、結果を表7に示した。
【0106】
この素子は一様な青色の発光を示し、発光のピーク波長は470nmであった。そして、乾燥窒素中で60日保存後も、駆動電圧の顕著な上昇はみられず、輝度低下は5%以下で、安定した素子の保存安定性が得られた。
【0107】
【表7】
Figure 0003845941
【0108】
実施例7:イミダゾール亜鉛錯体(E−1)と共に青色蛍光色素であるペリレンを併用し
た有機電界発光素子の作製及び評価
有機発光層5中にイミダゾール亜鉛錯体(E−1)と共に、下記構造式で表されるペリレンを3.4モル%共蒸着ドープした他は実施例5と同様にして有機電界発光素子を作製した。
【0109】
【化19】
Figure 0003845941
【0110】
得られた有機電界発光素子の発光特性の測定結果を表8に示す。表8より、ペリレンをドープしたことにより、発光効率が改善されたことがわかる。このものは、乾燥窒素中で120日保存後の非発光部分(DS)は3%で、保存安定性に優れていた。
【0111】
【表8】
Figure 0003845941
【0112】
比較例3
有機発光層5にイミダゾール亜鉛錯体(E−1)に代えて、ビス(2−メチル−8−キノリノラト)(パラ−フェニルフェノラト)アルミニウム(III)(E−4)を用いた他は実施例7と同様にして有機電界発光素子を作製した。この素子を乾燥窒素中で60日保存した後の非発光部分(DS)は60で%、保存安定性に劣るものであった。
【0113】
【発明の効果】
以上詳述した通り、本発明のイミダゾール金属錯体は、耐熱性に優れ、良好な発光特性を示す青色蛍光化合物であり、このような本発明のイミダゾール金属錯体を用いることにより、熱的に安定な薄膜構造を有し、長期に渡り安定した青色発光特性を示す有機電界発光素子が提供される。
【0114】
従って、本発明の有機電界発光素子は、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)の分野や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値は大きいものである。
【図面の簡単な説明】
【図1】 本発明の有機電界発光素子の実施の形態を示す模式的断面図である。
【図2】 本発明の有機電界発光素子の別の実施の形態を示す模式的断面図である。
【図3】 本発明の有機電界発光素子の他の実施の形態を示す模式的断面図である。
【図4】 本発明の有機電界発光素子の異なる実施の形態を示す模式的断面図である。
【図5】 実施例1で合成したイミダゾール金属錯体の赤外吸収スペクトル線図である。
【図6】 実施例2で合成したイミダゾール金属錯体の赤外吸収スペクトル線図である。
【符号の説明】
1 基板
2 陽極
3 陽極バッファ層
4 正孔輸送層
5 有機発光層
5A 電子注入層
6 界面層
7 陰極

Claims (2)

  1. 下記一般式(I)で表される有機電界発光素子用イミダゾール金属錯体。
    Figure 0003845941
    (式中、Aは、ハロゲン原子、シアノ基、ニトロ基、カルボキシル基、水酸基、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよい芳香族炭化水素環基又は置換基を有していてもよい芳香族複素環基置換基を示し、R1,R2,R3,R4,R5,R6,R7,R8は、各々独立して水素原子、ハロゲン原子、シアノ基、ニトロ基、カルボキシル基、水酸基、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよい芳香族炭化水素環基又は置換基を有していてもよい芳香族複素環基を示す。Mは、Be、Zn、Cd、Al、Ga、In又はgを示し、nは1から3までの整数を示す。ただし、R 〜R が下記一般式で示される置換基であることを除く。)
    Figure 0003845941
    (式中、Y ,Y およびY は、水素原子、シアノ基、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基を表し、Y とY は互いに結合して、酸素原子、硫黄原子または窒素原子を含んで良い環を形成しても良い。)]
  2. 基板上に、陽極及び陰極により挟持された正孔輸送層及び有機発光層が形成された有機電界発光素子において、該有機発光層が、請求項1に記載のイミダゾール金属錯体を含有することを特徴とする有機電界発光素子。
JP07166197A 1997-03-25 1997-03-25 イミダゾール金属錯体及びそれを用いた有機電界発光素子 Expired - Fee Related JP3845941B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07166197A JP3845941B2 (ja) 1997-03-25 1997-03-25 イミダゾール金属錯体及びそれを用いた有機電界発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07166197A JP3845941B2 (ja) 1997-03-25 1997-03-25 イミダゾール金属錯体及びそれを用いた有機電界発光素子

Publications (2)

Publication Number Publication Date
JPH10265478A JPH10265478A (ja) 1998-10-06
JP3845941B2 true JP3845941B2 (ja) 2006-11-15

Family

ID=13467023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07166197A Expired - Fee Related JP3845941B2 (ja) 1997-03-25 1997-03-25 イミダゾール金属錯体及びそれを用いた有機電界発光素子

Country Status (1)

Country Link
JP (1) JP3845941B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755999A (en) * 1997-05-16 1998-05-26 Eastman Kodak Company Blue luminescent materials for organic electroluminescent devices
GB9823761D0 (en) * 1998-11-02 1998-12-23 South Bank Univ Entpr Ltd Novel electroluminescent materials
KR20000046588A (ko) * 1998-12-31 2000-07-25 김선욱 발광물질로 사용가능한 고분자 금속 착체
KR20010066303A (ko) * 1999-12-31 2001-07-11 김상국 신규한 유기금속발광물질 및 이를 포함하는유기전기발광소자
US6448281B1 (en) 2000-07-06 2002-09-10 Boehringer Ingelheim (Canada) Ltd. Viral polymerase inhibitors
JP4711617B2 (ja) * 2002-12-17 2011-06-29 富士フイルム株式会社 有機電界発光素子
JP4524093B2 (ja) * 2002-12-17 2010-08-11 富士フイルム株式会社 有機電界発光素子
US7678474B2 (en) 2005-07-22 2010-03-16 Lg Chem. Ltd. Imidazole derivatives and organic electronic device using the same
KR100952966B1 (ko) 2007-12-31 2010-04-15 제일모직주식회사 유기광전소자용 유기금속착체 화합물, 및 이를 포함하는유기광전소자
TWI426629B (zh) * 2009-10-05 2014-02-11 Everlight Electronics Co Ltd 白光發光裝置、其製造方法及應用
MX344784B (es) * 2010-09-29 2017-01-06 Basf Se Elemento de seguridad.
CN103044491B (zh) * 2012-12-23 2015-05-13 延安常泰药业有限责任公司 甲醇与二氧化碳合成碳酸二甲酯的方法
CN105085555A (zh) * 2015-08-20 2015-11-25 齐鲁工业大学 含混合配体二维镉聚合物及其制备方法和应用
CN105601570A (zh) * 2016-03-02 2016-05-25 吉林奥来德光电材料股份有限公司 一种含杂环配体的化合物及其制备方法、应用
CN105712936A (zh) * 2016-03-02 2016-06-29 吉林奥来德光电材料股份有限公司 一种含杂环配体的锂化合物及其制备方法和应用
CN105623650B (zh) * 2016-03-22 2017-10-27 河南省医疗器械检验所 一种质子转移蓝色发光材料及其制备方法
CN106560472A (zh) * 2016-10-21 2017-04-12 吉林化工学院 具有热致荧光变色性质的铜(ⅰ)‑卤簇基化合物及其制备方法

Also Published As

Publication number Publication date
JPH10265478A (ja) 1998-10-06

Similar Documents

Publication Publication Date Title
JP3855675B2 (ja) 有機電界発光素子
JP3945123B2 (ja) 有機電界発光素子
JP4003299B2 (ja) 有機電界発光素子
JP3845941B2 (ja) イミダゾール金属錯体及びそれを用いた有機電界発光素子
JP4038833B2 (ja) 有機電界発光素子
JP4066619B2 (ja) ビナフチル系化合物及びその製造方法並びに有機電界発光素子
JPH09289081A (ja) 有機電界発光素子
JP2004014187A (ja) 有機電界発光素子
JP3750315B2 (ja) 有機電界発光素子
JP4135411B2 (ja) 非対称1,4−フェニレンジアミン誘導体、及びこれを用いた有機電界発光素子
JP3807018B2 (ja) 有機電界発光素子及び蛍光材料
JP3243887B2 (ja) 有機電界発光素子
JPH0812967A (ja) 有機電界発光素子
JP2004327166A (ja) 有機電界発光素子及びその製造方法
JP3903645B2 (ja) 有機電界発光素子
JP3757583B2 (ja) 有機電界発光素子
JP3719328B2 (ja) 蛍光材料およびこれを用いた有機電界発光素子
JP3775020B2 (ja) 有機電界発光素子
JP4201917B2 (ja) 金属錯体化合物およびそれを用いた有機電界発光素子
JPH11302639A (ja) 有機電界発光素子
JP3760556B2 (ja) 有機電界発光素子
JP3933789B2 (ja) 有機電界発光素子
JP3925116B2 (ja) 有機電界発光素子
JPH11312586A (ja) 有機電界発光素子
JP4078961B2 (ja) ビスアミノフェニルメタン系化合物とこれを用いた電荷輸送材料、有機電界発光素子材料及び有機電界発光素子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees