JP3844327B2 - Method and apparatus for processing radioactive graphite - Google Patents

Method and apparatus for processing radioactive graphite Download PDF

Info

Publication number
JP3844327B2
JP3844327B2 JP20880699A JP20880699A JP3844327B2 JP 3844327 B2 JP3844327 B2 JP 3844327B2 JP 20880699 A JP20880699 A JP 20880699A JP 20880699 A JP20880699 A JP 20880699A JP 3844327 B2 JP3844327 B2 JP 3844327B2
Authority
JP
Japan
Prior art keywords
radioactive
graphite
melting furnace
oxygen
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20880699A
Other languages
Japanese (ja)
Other versions
JP2001033587A (en
Inventor
勝敏 部田
豪 立本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP20880699A priority Critical patent/JP3844327B2/en
Publication of JP2001033587A publication Critical patent/JP2001033587A/en
Application granted granted Critical
Publication of JP3844327B2 publication Critical patent/JP3844327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力施設から発生する放射性黒鉛の処理方法及び装置に関するものであり、特に放射性雑固体廃棄物とともに放射性黒鉛を処理するに適した放射性黒鉛の処理方法及び装置に関するものである。
【0002】
【従来の技術】
黒鉛減速型原子炉からは、その廃止措置に伴い多量の放射性黒鉛が廃棄物として発生する。またこれとともに、黒鉛以外の金属やコンクリート等の不燃性の雑固体廃棄物も廃炉廃棄物として発生するため、これらを高周波溶融またはプラズマ溶融する計画が進められている。これらの方法は溶融炉内に空気又は酸素を導入することにより、放射性黒鉛の焼却と不燃性の雑固体廃棄物の溶融とを同時に行わせる方法である。
【0003】
ところが放射性黒鉛と不燃性の雑固体廃棄物とを一緒に高周波溶融またはプラズマ溶融しようとすると、黒鉛は不燃物の溶湯の中に沈んでしまい、酸素との接触が悪くなる。このため黒鉛の燃焼速度が大幅に低下し、実用的な処理速度が得られない。特に廃止措置に伴って発生する放射性黒鉛はこぶし大程度のものが大半であるため溶湯に沈み易くなっている。
【0004】
そこで所定の黒鉛の処理能力を確保するためには、同一の溶融炉を放射性黒鉛の単独焼却処理と、不燃物の溶融処理との二つの運転モードで運転する必要がある。しかしその結果、不燃物の溶融時間が減少するため、年間の不燃物処理目標を達成するためには大容量の処理設備が必要となって、建設コスト及びランニングコストが高くなるという問題が生ずる。しかもこぶし大の放射性黒鉛は燃焼速度が極めて小さいために、破砕・粉砕等の前処理が必要となり、更に設備コストの高騰を招くこととなる。
【0005】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、放射性黒鉛を不燃性の雑固体廃棄物とともにコンパクトな装置で迅速に焼却処理することができる放射性黒鉛の処理方法及び装置を提供するためになされたものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明の放射性黒鉛の処理方法は、放射性雑固体廃棄物の溶融炉の排ガス出口に接続された二次燃焼室の内部に固定床が設けられ、この固定床にこぶし大の放射性黒鉛の塊を供給して、酸素濃度が23〜35%の富酸素空気により1000〜1300℃で燃焼させ、出口のCO濃度を10ppm以下としつつ、その放射性黒鉛を焼却するとともに、放射性黒鉛の燃焼によって発生した高温ガスにより溶融炉から送り込まれる排ガスを二次燃焼させ、かつこの二次燃焼 室から取り出される高温ガスを溶融炉に燃焼空気として返送して残余の酸素を放射性雑固体廃棄物中の可燃物の燃焼に利用することを特徴とするものである。
【0007】
また上記の課題を解決するためになされた本発明の放射性黒鉛の処理装置は、如上の放射性黒鉛の処理方法を実施するための放射性黒鉛の処理装置であって、放射性雑固体廃棄物の溶融炉の排ガス出口に接続された二次燃焼室の炉体に、溶融炉からの排ガス導入口、放射性黒鉛の供給口、加熱用バーナ、酸素含有ガス供給口、放射性黒鉛の燃焼用固定床、二次燃焼室排ガス出口、溶融炉への二次燃焼室排ガス返送配管を設けたことを特徴とするものである。なお、加熱用バーナ酸素含有ガス供給口を備えた富酸素バーナとすることができる。
【0008】
本発明によれば、放射性雑固体廃棄物の溶融炉からの排ガス中に含まれる未燃分を完全燃焼させるために設けられている二次燃焼室の床を利用して、放射性黒鉛を酸素含有ガスで燃焼させる。この結果、二次燃焼室内の温度を1000℃以上の高温に維持しつつ、こぶし大の放射性黒鉛をも迅速に燃焼させることができる。しかもこれにより発生したCO濃度を10ppm以下の高温ガスを溶融炉に返送して溶融炉における燃焼空気として利用することにより、熱効率の向上と溶融処理速度の向上とを図ることができる。この結果、設備を大型化することなく放射性黒鉛を不燃性の雑固体廃棄物とともに迅速に焼却処理することができ、また放射性黒鉛を予め破砕・粉砕する必要もない。なお、廃活性炭等炭素質の廃棄物も黒鉛と同様に処理することができる。以下に図面を参照しつつ、本発明の好ましい実施形態を示す。
【0009】
【発明の実施の形態】
図1は本発明の装置全体の概略的な断面図、図2は二次燃焼室の拡大断面図である。
図1に示される1は溶融炉、2はその出口に接続された二次燃焼室である。金属、コンクリート等の放射性雑固体廃棄物は炉内のるつぼ3に投入され、加熱源4により加熱されて溶融される。この図1では溶融炉1は高周波溶融炉であるため加熱源4として高周波コイルが設置されているが、プラズマトーチを加熱源4としたプラズマ溶融炉としてもよい。このような放射性雑固体廃棄物の溶融炉自体は公知のものである。
【0010】
この溶融炉1の排ガスは、二次燃焼室2に導かれて未燃分を完全燃焼させる。通常は二次燃焼室2は単にバーナーを備えた空間であるが、本発明の二次燃焼室2には、溶融炉1からの排ガス導入口5及び排ガス出口6のほかに、放射性黒鉛の供給口7と放射性黒鉛の燃焼用固定床8とが設けられている。前記したように廃止措置に伴い発生する放射性黒鉛はほぼこぶし大の大きさであり、そのような放射性黒鉛の塊が図2に示すように供給口7から燃焼用固定床8に供給される。供給はバッチ供給としてもよいが、連続的に定量供給することが安定性を確保するうえで好ましい。
【0011】
二次燃焼室2には溶融炉1から数百℃の排ガスが流入してくるが、前記したように黒鉛の塊はそのままでは燃焼速度が小さい。そこで本発明では二次燃焼室2に、加熱用バーナと酸素含有ガス供給口とを設け、放射性黒鉛を1000〜1300℃で富酸素燃焼させるようにした。酸素含有ガス供給口は加熱用バーナと別に設けてもよいが、この実施形態では酸素含有ガス供給口を備えた富酸素バーナ9を用い、燃焼用固定床8上の放射性黒鉛を酸素含有ガスで燃焼させる。
【0012】
この燃焼は、二次燃焼室2の内部への供給酸素濃度が21%でも燃焼が可能であるが、21%よりやや高いことが好ましく、実験の結果では23〜35%程度とすればよいことが判明した。酸素濃度が21%の通常燃焼の場合には放射性黒鉛の燃焼速度が低く、しかも二次燃焼室2の出口のCO濃度が1000ppmを越えるためにバーナで助燃する必要があった。しかし23%を越えれば放射性黒鉛の燃焼速度は向上し、出口のCO濃度も10ppm以下となり、バーナの助燃も不要であった。なお酸素濃度が高すぎると二次燃焼室2の温度が上昇し過ぎるうえ、不経済となる。このため、二次燃焼室2の内部の酸素濃度は23〜35%程度が好ましく、より好ましくは25〜32%である。
【0013】
この結果、放射性黒鉛は迅速に燃焼するとともに、1000℃以上の高温ガスを発生する。この高温によって溶融炉1から送り込まれてくる排ガス中の未燃分は完全燃焼され、図1に示される冷却塔10、セラミックフィルタ11、HEPAフィルタ12等を経由して放射性を除去されたうえで更に脱硝装置等に送られる。また、二次燃焼室2のCO濃度が10ppm以下の高温ガスの一部は配管13を経由して溶融炉1に送られ、不燃物中に含まれる可燃物の燃焼用空気として利用することができる。このように高温ガスを溶融炉1に返送すれば、高温ガス中の残余の酸素を放射性雑固体廃棄物中の可燃物の燃焼に利用でき、溶融炉1の熱効率及び溶融処理速度を向上させることができる。
【0014】
なお、運転開始時の二次燃焼室2の温度が上昇していない状態で放射性黒鉛を投入してもうまく燃焼させることができないので、予めオイル等を燃料としてバーナーを焚き、所定温度まで昇温させてからため放射性黒鉛を投入すべきである。なお、富酸素燃焼する場合には黒鉛の燃焼が開始したらバーナを焚く必要はない。また、二次燃焼室2で焼却すべき放射性黒鉛の量が多い場合には、二次燃焼室2の炉体を水冷構造としたり、炉内に水を吹き込むことによって出口温度を調整することもできる。
【0015】
このように、本発明によれば二次燃焼室2を利用して放射性黒鉛を酸素含有ガスで燃焼させるので、設備を大型化することなく、放射性黒鉛を不燃性の雑固体廃棄物とともに迅速に焼却処理することができる。しかも放射性黒鉛を予め破砕・粉砕する必要もない。
【0016】
【実施例】
図1に示した本発明の装置を用いて、放射性雑固体廃棄物の溶融と放射性黒鉛の焼却とを行った。溶融炉1への放射性雑固体廃棄物の投入速度は250kg/hであり、二次燃焼室2への放射性黒鉛の投入速度は50kg/hである。二次燃焼室2の酸素濃度を21%、26%、32%、37%に変化させて放射性黒鉛を燃焼させた。
【0017】
この結果、酸素濃度を21%とした場合には放射性黒鉛の投入速度を10kg/hまで落とさねばならず、しかも二次燃焼室出口のCO濃度が1400ppmに達した。このためバーナを焚いてCO濃度を低減する必要があった。しかし酸素濃度を26%、32%とした場合にはバーナを焚くことなく、放射性黒鉛を迅速に燃焼させることができ、しかも二次燃焼室出口のCO濃度は10ppm以下となった。なお酸素濃度を37%とすると放射性黒鉛の燃焼速度は多少増加するが、二次燃焼室2の温度が1300℃を越えて上昇傾向を示すため、安定運転のためには好ましくないと評価した。
【0018】
【発明の効果】
以上に説明したように本発明によれば、黒鉛減速型原子炉の廃止措置に伴い大量に発生する放射性黒鉛を、不燃性の雑固体廃棄物とともにコンパクトな装置で迅速に焼却処理することができ、また放射性黒鉛を予め破砕・粉砕する必要もない等の利点がある。
【図面の簡単な説明】
【図1】本発明の装置の実施形態を示す断面図である。
【図2】二次燃焼室の拡大断面図である。
【符号の説明】
1 溶融炉、2 二次燃焼室、3 るつぼ、4 加熱源、5 排ガス導入口、6 排ガス出口、7 放射性黒鉛の供給口、8 放射性黒鉛の燃焼用固定床、9 富酸素バーナ、10 冷却塔、11 セラミックフィルタ、12 HEPAフィルタ、13 配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for treating radioactive graphite generated from nuclear facilities, and more particularly to a method and apparatus for treating radioactive graphite suitable for treating radioactive graphite together with radioactive miscellaneous solid waste.
[0002]
[Prior art]
A large amount of radioactive graphite is generated as waste from the graphite slowdown reactor. Along with this, nonflammable miscellaneous solid waste such as metal other than graphite and concrete is also generated as decommissioning waste, and plans for melting these at high frequency or plasma are underway. These methods are methods in which air or oxygen is introduced into a melting furnace to simultaneously incinerate radioactive graphite and melt noncombustible miscellaneous solid waste.
[0003]
However, if the radioactive graphite and nonflammable miscellaneous solid waste are tried to be melted together by high frequency or plasma, the graphite will sink into the molten incombustible material, resulting in poor contact with oxygen. For this reason, the burning rate of graphite is greatly reduced, and a practical processing rate cannot be obtained. In particular, most of the radioactive graphite generated with decommissioning is of a fist size, so it is easy to sink into the molten metal.
[0004]
Therefore, in order to ensure a predetermined graphite processing capacity, it is necessary to operate the same melting furnace in two operation modes: a single incineration process of radioactive graphite and a melting process of non-combustible materials. However, as a result, the melting time of the incombustible material is reduced, so that a large-capacity processing facility is required to achieve the annual incombustible material processing target, resulting in a problem that the construction cost and the running cost become high. In addition, since the fist-sized radioactive graphite has a very low burning rate, pretreatment such as crushing and pulverization is required, which further increases the equipment cost.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned conventional problems, and to provide a method and apparatus for treating radioactive graphite that can rapidly incinerate radioactive graphite with non-combustible miscellaneous solid waste in a compact apparatus. Is.
[0006]
[Means for Solving the Problems]
The radioactive graphite treatment method of the present invention made to solve the above-mentioned problem is provided with a fixed bed inside the secondary combustion chamber connected to the exhaust gas outlet of the melting furnace for radioactive miscellaneous solid waste. A large lump of radioactive graphite is supplied to the floor , burned at 1000 to 1300 ° C. with oxygen-rich air having an oxygen concentration of 23 to 35% , and the radioactive graphite is incinerated while reducing the CO concentration at the outlet to 10 ppm or less. At the same time, the exhaust gas sent from the melting furnace by the high-temperature gas generated by the combustion of radioactive graphite is subjected to secondary combustion, and the high-temperature gas taken out from the secondary combustion chamber is returned to the melting furnace as combustion air to radiate the remaining oxygen. those characterized to have access to the combustion of combustible materials in the miscellaneous solid wastes.
[0007]
Further, the radioactive graphite processing apparatus of the present invention made to solve the above problems is a radioactive graphite processing apparatus for carrying out the above-described radioactive graphite processing method, and a melting furnace for radioactive miscellaneous solid waste To the furnace body of the secondary combustion chamber connected to the exhaust gas outlet of the furnace, exhaust gas inlet from the melting furnace, radioactive graphite supply port, heating burner, oxygen-containing gas supply port, radioactive graphite combustion fixed bed, secondary A combustion chamber exhaust gas outlet and a secondary combustion chamber exhaust gas return pipe to the melting furnace are provided. The heating burner can be an oxygen-rich burner provided with an oxygen-containing gas supply port.
[0008]
According to the present invention, the radioactive graphite is oxygen-containing by using the floor of the secondary combustion chamber provided to completely burn the unburned components contained in the exhaust gas from the melting furnace of the radioactive miscellaneous solid waste. Burn with gas. As a result, the fist-sized radioactive graphite can be rapidly burned while maintaining the temperature in the secondary combustion chamber at a high temperature of 1000 ° C. or higher. In addition, the high-temperature gas having a CO concentration of 10 ppm or less is returned to the melting furnace and used as combustion air in the melting furnace, thereby improving the thermal efficiency and the melting processing speed. As a result, it is possible to quickly incinerate the radioactive graphite together with the non-combustible miscellaneous solid waste without increasing the size of the facility, and it is not necessary to crush and pulverize the radioactive graphite in advance. Carbonaceous waste such as waste activated carbon can be treated in the same manner as graphite. Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic sectional view of the entire apparatus of the present invention, and FIG. 2 is an enlarged sectional view of a secondary combustion chamber.
In FIG. 1, 1 is a melting furnace, and 2 is a secondary combustion chamber connected to the outlet thereof. Radioactive miscellaneous solid waste such as metal and concrete is put into a crucible 3 in a furnace and heated by a heating source 4 to be melted. In FIG. 1, since the melting furnace 1 is a high-frequency melting furnace, a high-frequency coil is installed as the heating source 4, but a plasma melting furnace using a plasma torch as the heating source 4 may be used. Such a melting furnace for radioactive miscellaneous solid waste itself is known.
[0010]
The exhaust gas from the melting furnace 1 is guided to the secondary combustion chamber 2 to completely burn the unburned portion. Normally, the secondary combustion chamber 2 is simply a space provided with a burner. However, in addition to the exhaust gas inlet 5 and the exhaust gas outlet 6 from the melting furnace 1, the secondary combustion chamber 2 of the present invention is supplied with radioactive graphite. A mouth 7 and a fixed bed 8 for combustion of radioactive graphite are provided. As described above, the radioactive graphite generated in accordance with the decommissioning has a size of almost fist, and such a mass of radioactive graphite is supplied from the supply port 7 to the fixed bed 8 for combustion as shown in FIG. The supply may be a batch supply, but it is preferable to continuously supply a constant amount in order to ensure stability.
[0011]
Exhaust gas of several hundred degrees C. flows into the secondary combustion chamber 2 from the melting furnace 1, but as described above, the combustion rate is low if the graphite lump is left as it is. Therefore, in the present invention, the secondary combustion chamber 2 is provided with a heating burner and an oxygen-containing gas supply port so that the radioactive graphite is oxygen-rich burned at 1000 to 1300 ° C. Although the oxygen-containing gas supply port may be provided separately from the heating burner, in this embodiment, the oxygen-rich burner 9 provided with the oxygen-containing gas supply port is used, and the radioactive graphite on the combustion fixed bed 8 is oxygen-containing gas. Burn.
[0012]
This combustion can be performed even if the oxygen concentration supplied to the inside of the secondary combustion chamber 2 is 21%, but it is preferably slightly higher than 21%, and it should be about 23 to 35% in the experimental results. There was found. In the case of normal combustion with an oxygen concentration of 21%, the burning rate of radioactive graphite is low, and since the CO concentration at the outlet of the secondary combustion chamber 2 exceeds 1000 ppm, it is necessary to support combustion with a burner. However, if it exceeded 23%, the burning rate of the radioactive graphite was improved, the CO concentration at the outlet was also 10 ppm or less, and no burner support was required. If the oxygen concentration is too high, the temperature of the secondary combustion chamber 2 will rise too much and it will be uneconomical. For this reason, the oxygen concentration inside the secondary combustion chamber 2 is preferably about 23 to 35%, more preferably 25 to 32%.
[0013]
As a result, radioactive graphite burns quickly and generates a high-temperature gas of 1000 ° C. or higher. The unburned matter in the exhaust gas sent from the melting furnace 1 at this high temperature is completely burned, and after removing the radioactivity via the cooling tower 10, the ceramic filter 11, the HEPA filter 12 and the like shown in FIG. Further, it is sent to a denitration device or the like. Further, a part of the high-temperature gas having a CO concentration of 10 ppm or less in the secondary combustion chamber 2 is sent to the melting furnace 1 via the pipe 13 and used as combustion air for combustible materials contained in incombustible materials. it can. If the high temperature gas is returned to the melting furnace 1 in this way, the remaining oxygen in the high temperature gas can be used for combustion of combustibles in the radioactive miscellaneous solid waste, and the thermal efficiency and the melting processing speed of the melting furnace 1 are improved. Can do.
[0014]
In addition, even if radioactive graphite is put in without the temperature of the secondary combustion chamber 2 at the start of operation being burned, it cannot be burned well, so a burner is burned in advance using oil or the like as a fuel, and the temperature is raised to a predetermined temperature. Therefore, radioactive graphite should be added. In the case of oxygen-rich combustion, it is not necessary to burn a burner when the combustion of graphite starts. In addition, when the amount of radioactive graphite to be incinerated in the secondary combustion chamber 2 is large, the outlet temperature can be adjusted by making the furnace body of the secondary combustion chamber 2 water-cooled or by blowing water into the furnace. it can.
[0015]
As described above, according to the present invention, the radioactive graphite is burned with the oxygen-containing gas using the secondary combustion chamber 2, so that the radioactive graphite can be quickly combined with the non-combustible miscellaneous solid waste without increasing the size of the facility. Can be incinerated. Moreover, it is not necessary to crush and pulverize the radioactive graphite in advance.
[0016]
【Example】
Using the apparatus of the present invention shown in FIG. 1, radioactive miscellaneous solid waste was melted and radioactive graphite was incinerated. The charging speed of radioactive miscellaneous solid waste into the melting furnace 1 is 250 kg / h, and the charging speed of radioactive graphite into the secondary combustion chamber 2 is 50 kg / h. The radioactive graphite was burned by changing the oxygen concentration in the secondary combustion chamber 2 to 21%, 26%, 32%, and 37%.
[0017]
As a result, when the oxygen concentration was 21%, the input rate of radioactive graphite had to be reduced to 10 kg / h, and the CO concentration at the outlet of the secondary combustion chamber reached 1400 ppm. For this reason, it was necessary to use a burner to reduce the CO concentration. However, when the oxygen concentration was 26% or 32%, the radioactive graphite could be burned quickly without burning the burner, and the CO concentration at the outlet of the secondary combustion chamber was 10 ppm or less. When the oxygen concentration was 37%, the combustion rate of the radioactive graphite slightly increased, but the temperature of the secondary combustion chamber 2 showed an upward tendency exceeding 1300 ° C., so that it was evaluated that it was not preferable for stable operation.
[0018]
【The invention's effect】
As described above, according to the present invention, radioactive graphite generated in large quantities due to decommissioning of a graphite moderation reactor can be incinerated quickly with a compact device together with non-combustible miscellaneous solid waste. Further, there is an advantage that the radioactive graphite need not be crushed and pulverized in advance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the apparatus of the present invention.
FIG. 2 is an enlarged cross-sectional view of a secondary combustion chamber.
[Explanation of symbols]
1 melting furnace, 2 secondary combustion chamber, 3 crucible, 4 heating source, 5 exhaust gas inlet, 6 exhaust gas outlet, 7 radioactive graphite supply port, 8 fixed bed for combustion of radioactive graphite, 9 rich oxygen burner, 10 cooling tower , 11 Ceramic filter, 12 HEPA filter, 13 Piping

Claims (3)

放射性雑固体廃棄物の溶融炉の排ガス出口に接続された二次燃焼室の内部に固定床が設けられ、この固定床にこぶし大の放射性黒鉛の塊を供給して、酸素濃度が23〜35%の富酸素空気により1000〜1300℃で燃焼させ、出口のCO濃度を10ppm以下としつつ、その放射性黒鉛を焼却するとともに、放射性黒鉛の燃焼によって発生した高温ガスにより溶融炉から送り込まれる排ガスを二次燃焼させ、かつこの二次燃焼室から取り出される高温ガスを溶融炉に燃焼空気として返送して残余の酸素を放射性雑固体廃棄物中の可燃物の燃焼に利用することを特徴とする放射性黒鉛の処理方法。A fixed bed is provided inside the secondary combustion chamber connected to the exhaust gas outlet of the melting furnace for radioactive miscellaneous solid waste, and a large lump of radioactive graphite is supplied to the fixed bed so that the oxygen concentration is 23 to 35. % Of the oxygen-rich air is burned at 1000 to 1300 ° C. , the radioactive graphite is incinerated while the outlet CO concentration is 10 ppm or less, and the exhaust gas sent from the melting furnace by the high-temperature gas generated by the combustion of the radioactive graphite is following the combustion, and radioactive characterized to have access to residual oxygen hot gases and return as combustion air into the melting furnace taken out from the secondary combustion chamber for combustion of combustible materials in the radioactive miscellaneous solid wastes Graphite processing method. 請求項1記載の放射性黒鉛の処理方法を実施するための放射性黒鉛の処理装置であって、放射性雑固体廃棄物の溶融炉の排ガス出口に接続された二次燃焼室の炉体に、溶融炉からの排ガス導入口、放射性黒鉛の供給口、加熱用バーナ、酸素含有ガス供給口、放射性黒鉛の燃焼用固定床、二次燃焼室排ガス出口、溶融炉への二次燃焼室排ガス返送配管を設けたことを特徴とする放射性黒鉛の処理装置。 A radioactive graphite processing apparatus for carrying out the radioactive graphite processing method according to claim 1, wherein a melting furnace is connected to a furnace body of a secondary combustion chamber connected to an exhaust gas outlet of a melting furnace for radioactive miscellaneous solid waste. Exhaust gas introduction port, radioactive graphite supply port, heating burner, oxygen-containing gas supply port, fixed bed for combustion of radioactive graphite, secondary combustion chamber exhaust gas outlet , secondary combustion chamber exhaust gas return piping to melting furnace A processing apparatus for radioactive graphite. 加熱用バーナが酸素含有ガス供給口を備えた富酸素バーナである請求項2に記載の放射性黒鉛の処理装置。The processing apparatus for radioactive graphite according to claim 2 , wherein the heating burner is an oxygen-rich burner provided with an oxygen-containing gas supply port.
JP20880699A 1999-07-23 1999-07-23 Method and apparatus for processing radioactive graphite Expired - Lifetime JP3844327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20880699A JP3844327B2 (en) 1999-07-23 1999-07-23 Method and apparatus for processing radioactive graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20880699A JP3844327B2 (en) 1999-07-23 1999-07-23 Method and apparatus for processing radioactive graphite

Publications (2)

Publication Number Publication Date
JP2001033587A JP2001033587A (en) 2001-02-09
JP3844327B2 true JP3844327B2 (en) 2006-11-08

Family

ID=16562441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20880699A Expired - Lifetime JP3844327B2 (en) 1999-07-23 1999-07-23 Method and apparatus for processing radioactive graphite

Country Status (1)

Country Link
JP (1) JP3844327B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495546B1 (en) 2013-06-25 2015-02-26 주식회사 멘도타 Processing Method of Radwaste Spent Activated Carbon
KR101474384B1 (en) 2014-08-04 2014-12-18 주식회사 선광티앤에스 Real Time Monitoring Method for Controlling Decontamination Process of Spent Activated Carbon
CN106531277B (en) * 2016-12-26 2018-10-23 西南科技大学 A kind of processing method of live graphite
CN112700902B (en) * 2020-11-20 2024-06-07 中核北方核燃料元件有限公司 Treatment method of waste graphite crucible

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230680B2 (en) * 1983-05-18 1990-07-09 Ngk Insulators Ltd HOSHASEIHAIKIBUTSUNOSHORIHOHO
JPS61233399A (en) * 1984-12-24 1986-10-17 千代田化工建設株式会社 Method of treating waste generated from facility treating radioactive substance
JP3043185B2 (en) * 1992-09-14 2000-05-22 日本碍子株式会社 How to treat radioactive graphite waste
JP2545190B2 (en) * 1993-03-11 1996-10-16 日本碍子株式会社 Method for treating radioactive waste and apparatus used therefor
JPH10132229A (en) * 1996-10-31 1998-05-22 Ngk Insulators Ltd Waste melting furnace and waste melting method
JPH11138128A (en) * 1997-11-10 1999-05-25 Toshiba Corp Evaporated matter recovering system and metal recovering device
JP3071172B2 (en) * 1998-03-24 2000-07-31 日本碍子株式会社 Waste melting equipment

Also Published As

Publication number Publication date
JP2001033587A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
BG61820B1 (en) Method and device for continous preheating of iron scrap
JP3844327B2 (en) Method and apparatus for processing radioactive graphite
JP2001227714A (en) Method for incinerating disposal of waste
JPH07301409A (en) Method and equipment for simultaneously generating effectivegas and inert inorganic residue and incinerating waste
JPH11159718A (en) Device and method for combustion
JP4179122B2 (en) Method and apparatus for processing molten slag water
KR200231985Y1 (en) Melting processing installation for brown gas
JPH02122109A (en) Disposal method of city garbage incinerated ash
JP3764635B2 (en) Waste incinerator
JP3020671B2 (en) Incineration method of radioactive solid waste
JP2889558B1 (en) Incineration melting method and incineration melting apparatus
JPH10169944A (en) Fluidized layer control method in waste thermal decomposition furnace
JP2002089813A (en) Waste gas processing method for ash melting furnace and its apparatus
JP3071172B2 (en) Waste melting equipment
JP3027330B2 (en) Waste incineration / melting method
JP3725770B2 (en) Radiocarbon waste disposal equipment
JP3190316B2 (en) Heat treatment equipment with carbonization furnace
JP2005291590A (en) Ultra-high temperature flame generating method, ultra-high temperature combustion furnace, garbage incinerator, and flue gas cooling device
JP3962178B2 (en) Hazardous material processing method and apparatus
JP4336226B2 (en) Waste melting treatment method
JPH0526428A (en) Collecting process for co2 in exhaust gas produced by combustion of waste
JP4972458B2 (en) Ash melting furnace combustion chamber
JPH1114025A (en) Garbage incineration melting apparatus
JP3212663B2 (en) Ash melting equipment
JPH09318028A (en) Method for igniting and melting waste material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Ref document number: 3844327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

EXPY Cancellation because of completion of term