JP3842415B2 - Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing - Google Patents

Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing Download PDF

Info

Publication number
JP3842415B2
JP3842415B2 JP34809197A JP34809197A JP3842415B2 JP 3842415 B2 JP3842415 B2 JP 3842415B2 JP 34809197 A JP34809197 A JP 34809197A JP 34809197 A JP34809197 A JP 34809197A JP 3842415 B2 JP3842415 B2 JP 3842415B2
Authority
JP
Japan
Prior art keywords
core rod
region
bearing
dynamic pressure
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34809197A
Other languages
Japanese (ja)
Other versions
JPH11181504A (en
Inventor
夏比古 森
誠 白波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP34809197A priority Critical patent/JP3842415B2/en
Publication of JPH11181504A publication Critical patent/JPH11181504A/en
Application granted granted Critical
Publication of JP3842415B2 publication Critical patent/JP3842415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状の焼結合金からなる軸受本体の内周面に、軸方向に傾斜した動圧溝を有する軸受面を成形するためのコアロッドに関する。
【0002】
【従来の技術】
情報機器関連の小型スピンドルモータでは、回転性能のより一層の向上や低コスト化が求められており、そのための手段として、スピンドルの軸受を転がり軸受から多孔質含油軸受に置き換えることが検討されている。しかし、多孔質含油軸受は、真円軸受の一種であるため、軸の偏心が小さいところでは、不安定な振動が発生しやすく、回転速度の1/2の速度で振れ回るいわゆるホワールが発生しやすい。そこで、軸受面にへリングボーン型やスパイラル型の動圧溝を設け、軸の回転に伴う動圧作用によって軸受隙間に動圧油膜を形成して軸を浮上支持すると共に、不安定振動を防止することが従来より試みられている。
【0003】
【発明が解決しようとする課題】
従来、軸受面における動圧溝の成形方法として、軸受素材よりも硬質の複数個のボールを円周等間隔に配列保持した軸状の治具を黄銅やアルミ合金などの軟質金属からなる軸受素材の内周面に挿入し、治具の回転と送りによってボールに螺旋運動を与えながらボールを素材内周面に加圧して動圧溝を塑性加工する方法が知られているが(特許第2541208 号)、この方法では、成形時に動圧溝に隣接する領域で素材***が起こるので、これを旋盤やリーマで除去加工する必要があり(特開平8-232958号)、工数が増加する不具合がある。
【0004】
本発明は、焼結金属からなる動圧型多孔質含油軸受の軸受面を少ない工数で精度よく成形することができ、かつ耐久性に優れ、しかも軸受面の形状に対応した成形部を容易に加工することのできるコアロッドを提供するものである。
【0005】
【課題を解決するための手段】
本発明にかかる軸受面成形用コアロッドは、動圧型多孔質含油軸受の軸受本体となる円筒状の焼結金属素材の内周面に、軸方向に傾斜した動圧溝を有する軸受面を成形するためのコアロッドであって、超硬合金からなり、上記軸受面における動圧溝の形成領域を成形するための第1領域、および動圧溝以外の領域を成形するための第2領域を有する成形部を、軸方向に離隔させて外周面の2箇所に備え、各成形部の第1領域を成形部間のコアロッドの外周面と同一径としたものである。
【0006】
このコアロッドの外径部に円筒状の焼結金属素材を供給し、焼結金属素材に圧迫力を加えると、その内周面がコアロッドの成形部に加圧され、塑性流動を起こして成形部に食い付く。これにより、成形部の形状が焼結金属素材の内周面に転写され、軸方向に傾斜した動圧溝をもつ軸受面が成形される。軸受面における動圧溝の形成領域は、成形部の第1領域によって、動圧溝以外の領域は成形部の第2領域によってそれぞれ同時に成形される。したがって、従来のような軸受面の後加工(素材***を除去するための加工)が不要となるので、工数の削減を図ることができ、しかも軸受面の成形精度を高くすることができる。軸受面の成形後は、圧迫力を除去することによる焼結金属素材のスプリングバックを利用することにより、動圧溝を崩すことなくコアロッドを焼結金属素材の内径部から離型することができる。
【0007】
ところで、上記コアロッドの成形部は軸受面の成形時に素材から大きな力を受け、またコアロッドは繰り返し使用されるものである。従って、軸受面の成形精度を維持する上でも、コアロッドは耐荷重変形性、耐摩耗性に優れたものであることが望ましい。そこで、本発明では、コアロッドを耐荷重変形性、耐摩耗性に優れる超硬合金で形成することとした。軸側に動圧溝を形成したタイプの動圧型軸受では、動圧溝のエッチング加工を可能にし、加工性を高めるため、軸の素材としてSUS系材料(SUS420J2等)を用いるのが一般的であるが、SUS系材料では、本発明に要求される上記特性が得られない。
【0008】
コアロッドを超硬合金で形成した場合、その成形部の加工方法が問題となる。すなわち、超硬合金は硬度が高いため、通常の機械加工では加工が困難で、また加工精度もでない。さらに、一般に超硬合金材には、耐腐食性を向上させるための添加材が含まれている場合が多く、エッチング加工ができない場合が多い。軸受面の成形用のコアロッドを超硬合金で形成した例もあるが、それは動圧溝を有しない軸受面(真円軸受)を成形するためのものである。
【0009】
そこで本発明では、コアロッドを耐腐食性を向上させるための添加材を含まない超硬合金で形成し、その成形部をエッチング加工で加工することにより、成形部の加工性を高めることとした。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図1乃至図9に基いて説明する。
【0011】
図1に本発明にかかる軸受面成形用コアロッド1を示す。
【0012】
コアロッド1の外周面1aの2箇所には、動圧型多孔質含油軸受の軸受本体(2:図4参照)の内周面2aに軸受面2bを成形するための成形部1bが軸方向に離隔して形成される。この成形部1bは、図2に示すように、軸受面2bにおける動圧溝2b1の形成領域を成形する第1領域1b1と、軸受面2bにおける動圧溝2b1以外の領域、すなわち動圧溝2b1間の背の部分2b2および軸受面2bの軸方向中間部の環状平滑部2b3を成形する第2領域1b2(図1にクロスハッチングで示す)とで構成される。第1領域1b1は、軸受面2bの動圧溝パターンに対応させて形成され、図面ではいわゆるへリングボーン型の動圧溝2b1に対応させた場合を例示している。第2領域1b2は、第1領域1b1に対して所定量だけ凹み、その凹み量は動圧溝2b1の深さにほぼ等しく、例えば2〜4μmである。動圧溝2b1の形状は、軸方向に対して傾斜したものである限り任意であり、スパイラル型等の他の傾斜溝とする場合には、第1領域1b1を当該溝形状に対応した形状に形成する。なお、図2では成形部1bの凹凸をかなり誇張して描いている。
【0013】
コアロッド1は、耐荷重変形性、耐摩耗性に優れた超硬合金(例えばK20クラス)で成形される。この超硬合金としては、後述するエッチング加工を可能にするため、耐腐食性を向上させる添加材を含まないもの、例えば東京タングステン株式会社製のG20等が使用される。
【0014】
上記成形部1bは以下の手順(エッチング加工)で形成することができる。
【0015】
▲1▼図面をもとに軸受面2bのフォトマスクを製作する(フォトマスクの製作)。
【0016】
▲2▼超硬合金製コアロッド1を脱脂し、これに市販のレジストをコーティングする(レジストコーティング)。
【0017】
▲3▼レジストを乾燥後、フォトマスクを超硬合金製コアロッド1に巻き付け、しかる後紫外線を照射してフォトマスクにより遮光された第2領域1b1以外の部分(第1領域1b1に相当する)のレジストを硬化させる(焼付け)。
【0018】
▲4▼現像液を用い、硬化していないレジスト、すなわち第2領域1b2に相当する部分のレジストを溶解して取り除く(現像)。
【0019】
▲5▼苛性ソーダ等のエッチング液内に所定時間(通常1〜10分)浸漬し、第2領域1b2の母材表面を溶解除去して第2領域1b2を形成する。この際、エッチング液に通電して電解エッチングとしてもよい(エッチング)。
【0020】
▲6▼有機溶剤等を用いて残った硬化レジストを剥離し、第1領域1b1を現出させる(レジスト剥離)。
【0021】
図5は、上記エッチング加工で製作したコアロッド1の軸方向での母線形状を示す。図5より、第2領域1b2の深さにばらつきがなく、従って軸方向に均等にエッチングされており、しかもエッチング部(第2領域1b2)と非エッチング部(第1領域1b1)の境界が鋭角に形成されていることが理解できる。
【0022】
図6乃至図9は、エッチング加工で製作したコアロッド1の円周方向での形状(a〜d、X〜Z)を示す。図1に示すように、a〜dは、第1領域1b1を含む4つの円周方向の領域での形状を表す。また、Yはエッチングを施していない部分の形状(真円度)、XおよびZはエッチングが施された部分の形状(真円度)をそれぞれ表す。円周方向の形状(a〜d)および真円度(X〜Z)はいずれもタリロンド(真円度測定器)で測定した。
【0023】
図6乃至図9の円周方向の形状(a〜d)より、第1領域1b1は円周方向に正確に等配(8等配)され、かつ第2領域1b2の深さのばらつきが少ないことが理解できる。また、XおよびZとYとの比較より、エッチング部と非エッチング部で真円度の差が少ないことも理解できる。従って、コアロッド1は円周方向で均等にエッチングされていると判断される。
【0024】
なお、成形部1bの加工法としては、上記エッチング加工(電解エッチング加工も含む)に限らず、超硬合金に精密加工を行ない得る他の加工法、例えばレーザ加工や放電加工等を採用することもできる。
【0025】
以上の手順で製作されたコアロッド1は、例えば図3に示す成形装置の軸受面成形型として使用される。軸受面の成形は、銅系や鉄系等を主成分とする金属粉を圧粉成形し、さらに焼成して得られた円筒状の焼結金属素材2'の内径部にコアロッド1を挿入し、これをダイ5に圧入した状態で、焼結金属素材2'を上下のパンチ6、7で軸方向両側から加圧することにより行われる。上パンチ6とコアロッド1を連動して降下させると、焼結金属素材2'に両パンチ6、7およびダイ5から圧迫力が付与され、この圧迫力によって焼結金属素材2'の上下端部が内径側に肉移動し、それぞれ対向する成形部1bに押付けられる。これにより、成形部1bの形状が焼結金属素材2'の内周面の上下端部に転写される。成形部1bの第1領域1b1で所定形状の動圧溝2b1が、第2領域1b2で背の部分2b2および平滑部2b3が同時成形される。
【0026】
その後、上下のパンチ6、7およびコアロッド1を連動して上昇させ、成形した焼結金属素材2'をダイ5から抜き出す。焼結金属素材2'はダイ5から抜き出されると同時にスプリングバックし、その内径面が僅かに拡径するので、その後焼結金属素材2'をコアロッド1から引き抜いても動圧溝2b1が成形部1bの第1領域1b1と干渉して崩れることはない。
【0027】
こうして得られた軸受本体2の内周面2aには、図4に示すように、中央部に環状の平滑部2b3を有し、その両側に相反する向きの動圧溝2b1を有する軸受面2bが軸方向2箇所に形成される。この軸受本体2を洗浄・乾燥した後、これに潤滑油や潤滑グリースを含浸させれば、内周面に動圧溝を有する動圧型焼結含油軸受が製造される。
【0028】
【発明の効果】
以上のように、本発明にかかるコアロッドによれば、少ない工数で精度よく動圧溝を有する軸受面を成形することが可能となる。コアロッドを超硬合金製とすれば、耐摩耗性を向上させて耐久性を高め、また、耐荷重変形性を向上させて軸受面の成形精度を高めることができる。成形部をエッチング加工で成形すれば、軸受面の動圧溝パターンに対応する形状の成形部を容易に形成することができ、動圧溝パターンを変更する場合にも容易に対応可能となる。また、成形部の加工精度も高い。
【図面の簡単な説明】
【図1】本発明にかかる動圧型多孔質含油軸受の軸受面成形用コアロッドの側面図である。
【図2】上記コアロッドの部分拡大側面図である。
【図3】上記コアロッドを使用したサイジング工程を示す断面図である。
【図4】上記コアロッドを用いて成形された軸受本体の断面図である。
【図5】成形部を有するコアロッドの軸方向での母線形状を示す図である。
【図6】成形部を有するコアロッドの円周方向での形状を示す図である。
【図7】成形部を有するコアロッドの円周方向での形状を示す図である。
【図8】成形部を有するコアロッドの円周方向での形状を示す図である。
【図9】成形部を有するコアロッドの円周方向での形状を示す図である。
【符号の説明】
1 コアロッド
1a 外周面
1b 成形部
1b1 第1領域
1b2 第2領域
2 軸受本体
2a 内周面
2b 軸受面
2b1 動圧溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a core rod for forming a bearing surface having dynamic pressure grooves inclined in the axial direction on the inner peripheral surface of a bearing body made of a cylindrical sintered alloy.
[0002]
[Prior art]
For small spindle motors related to information equipment, there is a need for further improvement in rotational performance and cost reduction, and as a means for that purpose, replacing spindle bearings from rolling bearings to porous oil-impregnated bearings is being considered. . However, since the porous oil-impregnated bearing is a kind of a perfect circular bearing, unstable vibrations are likely to occur where the shaft eccentricity is small, and so-called whirling occurs that sways at half the rotational speed. Cheap. Therefore, a herringbone type or spiral type dynamic pressure groove is provided on the bearing surface, and a dynamic pressure oil film is formed in the bearing gap by the dynamic pressure action accompanying the rotation of the shaft to support the shaft floating and to prevent unstable vibration Attempts have been made in the past.
[0003]
[Problems to be solved by the invention]
Conventionally, as a method of forming a dynamic pressure groove on the bearing surface, a bearing material made of a soft metal such as brass or aluminum alloy is used as a shaft-shaped jig in which a plurality of balls harder than the bearing material are arranged and held at equal circumferential intervals. A method is known in which a dynamic pressure groove is plastically processed by pressing the ball against the inner peripheral surface of the material while applying a spiral motion to the ball by rotating and feeding a jig (Japanese Patent No. 2541208). In this method, since the material bulge occurs in the area adjacent to the dynamic pressure groove during molding, it is necessary to remove this with a lathe or reamer (Japanese Patent Laid-Open No. 8-232958), which increases the number of steps. is there.
[0004]
The present invention can form a bearing surface of a hydrodynamic porous oil-impregnated bearing made of a sintered metal with a small number of man-hours with high accuracy, has excellent durability, and easily forms a molded part corresponding to the shape of the bearing surface. The core rod which can do is provided.
[0005]
[Means for Solving the Problems]
The core rod for forming a bearing surface according to the present invention forms a bearing surface having a dynamic pressure groove inclined in the axial direction on the inner peripheral surface of a cylindrical sintered metal material that becomes a bearing body of a dynamic pressure type porous oil-impregnated bearing. A core rod made of cemented carbide and having a first region for forming a dynamic pressure groove forming region on the bearing surface and a second region for forming a region other than the dynamic pressure groove The parts are spaced apart in the axial direction and provided at two locations on the outer peripheral surface , and the first region of each molded part has the same diameter as the outer peripheral surface of the core rod between the molded parts .
[0006]
When a cylindrical sintered metal material is supplied to the outer diameter portion of the core rod and a pressing force is applied to the sintered metal material, the inner peripheral surface is pressed against the molded portion of the core rod, causing plastic flow and forming the molded portion. Bite into. Thereby, the shape of the forming part is transferred to the inner peripheral surface of the sintered metal material, and a bearing surface having a dynamic pressure groove inclined in the axial direction is formed. The formation region of the dynamic pressure groove on the bearing surface is simultaneously formed by the first region of the forming portion, and the region other than the dynamic pressure groove is simultaneously formed by the second region of the forming portion. Therefore, the conventional post-processing of the bearing surface (processing for removing the material bulge) is not required, so that the number of steps can be reduced and the molding accuracy of the bearing surface can be increased. After forming the bearing surface, the core rod can be released from the inner diameter part of the sintered metal material without breaking the dynamic pressure groove by utilizing the spring back of the sintered metal material by removing the compression force. .
[0007]
By the way, the molding part of the core rod receives a large force from the material when molding the bearing surface, and the core rod is repeatedly used. Therefore, in order to maintain the molding accuracy of the bearing surface, the core rod is preferably excellent in load deformation resistance and wear resistance. Therefore, in the present invention, the core rod is formed of a cemented carbide having excellent load deformation resistance and wear resistance. In a dynamic pressure type bearing in which a dynamic pressure groove is formed on the shaft side, a SUS-based material (SUS420J2 or the like) is generally used as a shaft material in order to enable etching of the dynamic pressure groove and improve workability. However, the above characteristics required for the present invention cannot be obtained with a SUS material.
[0008]
When the core rod is formed of cemented carbide, the processing method of the molded part becomes a problem. That is, since the cemented carbide has a high hardness, it is difficult to process by normal machining, and the processing accuracy is not good. Further, in general, the cemented carbide material often contains an additive for improving the corrosion resistance, and in many cases, etching processing cannot be performed. There is an example in which the core rod for forming the bearing surface is made of cemented carbide, but it is for molding a bearing surface (round bearing) having no dynamic pressure grooves.
[0009]
Therefore, in the present invention, the core rod is formed of a cemented carbide that does not contain an additive for improving the corrosion resistance, and the formed part is processed by etching to improve the workability of the formed part.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0011]
FIG. 1 shows a core rod 1 for forming a bearing surface according to the present invention.
[0012]
Formed portions 1b for forming the bearing surface 2b on the inner peripheral surface 2a of the bearing body (2: see FIG. 4) of the dynamic pressure type porous oil-impregnated bearing are separated in the axial direction at two locations on the outer peripheral surface 1a of the core rod 1. Formed. As shown in FIG. 2, the forming portion 1b includes a first region 1b1 for forming a formation region of the dynamic pressure groove 2b1 on the bearing surface 2b, and a region other than the dynamic pressure groove 2b1 on the bearing surface 2b, that is, the dynamic pressure groove 2b1. The back portion 2b2 and the second region 1b2 (shown by cross-hatching in FIG. 1) for forming the annular smooth portion 2b3 at the axially intermediate portion of the bearing surface 2b. The first region 1b1 is formed so as to correspond to the dynamic pressure groove pattern of the bearing surface 2b, and the drawing illustrates the case where it corresponds to the so-called herringbone type dynamic pressure groove 2b1. The second region 1b2 is recessed by a predetermined amount with respect to the first region 1b1, and the amount of the recess is substantially equal to the depth of the dynamic pressure groove 2b1, for example, 2 to 4 μm. The shape of the dynamic pressure groove 2b1 is arbitrary as long as it is inclined with respect to the axial direction. When other inclined grooves such as a spiral type are used, the first region 1b1 has a shape corresponding to the groove shape. Form. In FIG. 2, the unevenness of the molded part 1b is drawn with a considerable exaggeration.
[0013]
The core rod 1 is formed of a cemented carbide (for example, K20 class) having excellent load deformation resistance and wear resistance. As this cemented carbide, in order to enable the etching process described later, an alloy that does not contain an additive that improves corrosion resistance, such as G20 manufactured by Tokyo Tungsten Co., Ltd., is used.
[0014]
The molded part 1b can be formed by the following procedure (etching process).
[0015]
(1) A photomask for the bearing surface 2b is manufactured based on the drawing (manufacture of a photomask).
[0016]
(2) The cemented carbide core rod 1 is degreased and coated with a commercially available resist (resist coating).
[0017]
(3) After drying the resist, the photomask is wound around the core rod 1 made of cemented carbide, and then the portion other than the second region 1b1 (corresponding to the first region 1b1) shielded by the photomask by irradiation with ultraviolet rays. The resist is cured (baked).
[0018]
(4) Using a developer, uncured resist, that is, the resist corresponding to the second region 1b2 is dissolved and removed (development).
[0019]
(5) Immerse in an etching solution such as caustic soda for a predetermined time (usually 1 to 10 minutes), and dissolve and remove the surface of the base material of the second region 1b2 to form the second region 1b2. At this time, the etching solution may be energized for electrolytic etching (etching).
[0020]
(6) The remaining cured resist is peeled off using an organic solvent or the like to reveal the first region 1b1 (resist peeling).
[0021]
FIG. 5 shows the shape of the bus bar in the axial direction of the core rod 1 manufactured by the etching process. As shown in FIG. 5, the depth of the second region 1b2 is not varied, and is therefore etched uniformly in the axial direction, and the boundary between the etched portion (second region 1b2) and the non-etched portion (first region 1b1) is acute. Can be understood.
[0022]
6 to 9 show the shapes (a to d, X to Z) in the circumferential direction of the core rod 1 manufactured by etching. As illustrated in FIG. 1, a to d represent shapes in four circumferential regions including the first region 1b1. Y represents the shape (roundness) of an unetched portion, and X and Z represent the shape (roundness) of an etched portion, respectively. The circumferential shape (a to d) and roundness (X to Z) were both measured with a Talirond (roundness measuring device).
[0023]
6 to 9, the first region 1b1 is accurately evenly distributed (eight equally spaced) in the circumferential direction, and the depth variation of the second region 1b2 is small. I understand that. It can also be understood from the comparison of X and Z with Y that the difference in roundness between the etched portion and the non-etched portion is small. Accordingly, it is determined that the core rod 1 is uniformly etched in the circumferential direction.
[0024]
The processing method of the molded part 1b is not limited to the above etching processing (including electrolytic etching processing), and other processing methods capable of performing precision processing on the cemented carbide, such as laser processing and electric discharge processing, are adopted. You can also.
[0025]
The core rod 1 manufactured by the above procedure is used as a bearing surface molding die of a molding apparatus shown in FIG. 3, for example. The bearing surface is formed by compacting a metal powder mainly composed of copper or iron, and then inserting the core rod 1 into the inner diameter portion of a cylindrical sintered metal material 2 'obtained by firing. In a state where this is press-fitted into the die 5, the sintered metal material 2 ′ is pressed by the upper and lower punches 6 and 7 from both sides in the axial direction. When the upper punch 6 and the core rod 1 are lowered together, the sintered metal material 2 ′ is given a pressing force from both the punches 6 and 7 and the die 5, and the upper and lower ends of the sintered metal material 2 ′ are caused by this pressing force. Moves to the inner diameter side and is pressed against the molding portions 1b facing each other. Thereby, the shape of the forming portion 1b is transferred to the upper and lower end portions of the inner peripheral surface of the sintered metal material 2 ′. The hydrodynamic groove 2b1 having a predetermined shape is simultaneously formed in the first region 1b1 of the forming portion 1b, and the back portion 2b2 and the smooth portion 2b3 are simultaneously formed in the second region 1b2.
[0026]
Thereafter, the upper and lower punches 6 and 7 and the core rod 1 are raised in conjunction with each other, and the formed sintered metal material 2 ′ is extracted from the die 5. The sintered metal material 2 'is spring-backed as soon as it is extracted from the die 5, and its inner diameter surface is slightly expanded, so that even if the sintered metal material 2' is subsequently extracted from the core rod 1, the dynamic pressure groove 2b1 is formed. It does not collapse due to interference with the first region 1b1 of the part 1b.
[0027]
On the inner peripheral surface 2a of the bearing body 2 thus obtained, as shown in FIG. 4, a bearing surface 2b having an annular smooth portion 2b3 at the center and hydrodynamic grooves 2b1 in opposite directions on both sides thereof. Are formed at two locations in the axial direction. If this bearing body 2 is washed and dried and then impregnated with lubricating oil or lubricating grease, a hydrodynamic sintered oil-impregnated bearing having dynamic pressure grooves on the inner peripheral surface is manufactured.
[0028]
【The invention's effect】
As described above, according to the core rod according to the present invention, it is possible to accurately mold the bearing surface having the dynamic pressure grooves with a small number of steps. If the core rod is made of a cemented carbide, the wear resistance can be improved and the durability can be improved, and the load deformation resistance can be improved and the molding accuracy of the bearing surface can be increased. If the molded part is formed by etching, a molded part having a shape corresponding to the dynamic pressure groove pattern on the bearing surface can be easily formed, and the dynamic pressure groove pattern can be easily changed. In addition, the processing accuracy of the molded part is high.
[Brief description of the drawings]
FIG. 1 is a side view of a core rod for forming a bearing surface of a hydrodynamic porous oil-impregnated bearing according to the present invention.
FIG. 2 is a partially enlarged side view of the core rod.
FIG. 3 is a sectional view showing a sizing process using the core rod.
FIG. 4 is a cross-sectional view of a bearing body formed using the core rod.
FIG. 5 is a diagram showing a generatrix shape in the axial direction of a core rod having a forming portion.
FIG. 6 is a view showing a shape of a core rod having a forming portion in a circumferential direction.
FIG. 7 is a view showing a shape of a core rod having a forming portion in a circumferential direction.
FIG. 8 is a view showing a shape of a core rod having a forming portion in a circumferential direction.
FIG. 9 is a view showing a shape of a core rod having a forming portion in a circumferential direction.
[Explanation of symbols]
1 Core rod
1a Outer surface
1b Molded part 1b1 First region 1b2 Second region 2 Bearing body
2a Inner peripheral surface
2b Bearing surface 2b1 Dynamic pressure groove

Claims (2)

動圧型多孔質含油軸受の軸受本体となる円筒状の焼結金属素材の内周面に、軸方向に傾斜した動圧溝を有する軸受面を成形するためのコアロッドであって、
超硬合金からなり、上記軸受面における動圧溝の形成領域を成形するための第1領域、および動圧溝以外の領域を成形するための第2領域を有する成形部を、軸方向に離隔させて外周面の2箇所に備え、各成形部の第1領域が成形部間のコアロッドの外周面と同一径である動圧型多孔質含油軸受の軸受面成形用コアロッド。
A core rod for forming a bearing surface having a dynamic pressure groove inclined in the axial direction on the inner peripheral surface of a cylindrical sintered metal material that becomes a bearing body of a dynamic pressure type porous oil-impregnated bearing,
A molding part made of cemented carbide and having a first region for molding a dynamic pressure groove forming region on the bearing surface and a second region for molding a region other than the dynamic pressure groove is separated in the axial direction. is not provided in two locations on the outer peripheral surface, core rod bearing surfaces forming the hydrodynamic type porous oil-impregnated bearing is the same diameter as the outer peripheral surface of the core rod between the first region of each molding portion is molded unit.
成形部がエッチング加工で形成されている請求項1記載の動圧型多孔質含油軸受の軸受面成形用コアロッド。  2. The core rod for forming a bearing surface of a dynamic pressure type porous oil-impregnated bearing according to claim 1, wherein the molded part is formed by etching.
JP34809197A 1997-12-17 1997-12-17 Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing Expired - Lifetime JP3842415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34809197A JP3842415B2 (en) 1997-12-17 1997-12-17 Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34809197A JP3842415B2 (en) 1997-12-17 1997-12-17 Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JPH11181504A JPH11181504A (en) 1999-07-06
JP3842415B2 true JP3842415B2 (en) 2006-11-08

Family

ID=18394685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34809197A Expired - Lifetime JP3842415B2 (en) 1997-12-17 1997-12-17 Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP3842415B2 (en)

Also Published As

Publication number Publication date
JPH11181504A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
JP3954695B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
WO2005121574A1 (en) Dynamic pressure bearing
JP3842415B2 (en) Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
US7789565B2 (en) Fluid dynamic bearing apparatus
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP3602320B2 (en) Manufacturing method of hydrodynamic sintered oil-impregnated bearing
JP3625637B2 (en) Manufacturing method of hydrodynamic bearing
JP2004340385A (en) Dynamic pressure type bearing unit
JP3782900B2 (en) Hydrodynamic bearing and hydrodynamic bearing unit
JPS6343611B2 (en)
JP2001140866A (en) Fluid dynamic pressure bearing and spindle motor
JP3698352B2 (en) Manufacturing method of bearing
JP3602330B2 (en) Dynamic pressure type sliding bearing and method of manufacturing the same
JP3856363B2 (en) Manufacturing method of bearing
JP2001056028A (en) Manufacture of bearing
JP2001012470A (en) Manufacture of bearing
KR100223239B1 (en) Manufacturing process of thrust bearing and the bearing itself
JP2005106105A (en) Bearing machining method and its machining device
JP2005351376A (en) Dynamic pressure bearing
JP2001020956A (en) Manufacture method of bearing
JP3744082B2 (en) Dynamic pressure generating groove machining method and apparatus
JP3602318B2 (en) Manufacturing method of hydrodynamic porous oil-impregnated bearing
KR100191003B1 (en) Groove forming method for bearing of dynamic press

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term