JP3625637B2 - Manufacturing method of hydrodynamic bearing - Google Patents

Manufacturing method of hydrodynamic bearing Download PDF

Info

Publication number
JP3625637B2
JP3625637B2 JP01721998A JP1721998A JP3625637B2 JP 3625637 B2 JP3625637 B2 JP 3625637B2 JP 01721998 A JP01721998 A JP 01721998A JP 1721998 A JP1721998 A JP 1721998A JP 3625637 B2 JP3625637 B2 JP 3625637B2
Authority
JP
Japan
Prior art keywords
bearing
peripheral surface
inner peripheral
bearing material
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01721998A
Other languages
Japanese (ja)
Other versions
JPH11218123A (en
Inventor
夏比古 森
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP01721998A priority Critical patent/JP3625637B2/en
Publication of JPH11218123A publication Critical patent/JPH11218123A/en
Application granted granted Critical
Publication of JP3625637B2 publication Critical patent/JP3625637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Rotational Drive Of Disk (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軟質金属からなる動圧型軸受に関し、特にレーザビームプリンタ(LBP)のポリゴンスキャナモータ、磁気ディスクドライブ(HDD等)など、高速下で高回転精度が要求される機器のスピンドルモータや、DVD−ROM、DVD−RAM、CD−ROMなど、ディスクが載ることによって大きなアンバランス荷重が作用し高速で駆動する機器のスピンドルモータに好適である。
【0002】
【従来の技術】
情報関連機器例えばレーザビームプリンタ(LBP)や、磁気ディスクドライブ(HDD等)などの小型スピンドルモータでは、高速化、高回転精度の要請に対応すべく、スピンドル軸を支持する軸受として、従来の転がり軸受に代えて、非接触型の動圧型軸受を使用することが検討されている。
【0003】
この種の動圧型軸受として、軟質金属からなる軸受素材の内周面に、へリングボーン型や、スパイラル型等の動圧溝を有する軸受面を形成したものがある。
【0004】
従来、軸受面における動圧溝を成形する方法としては、軸受素材よりも硬質の複数個のボールを、軸受素材の内径よりもわずかに突出するように軸の先端に放射状に配置したものを治具とし、この治具を軸受素材の内周面に廻しながら押込んで動圧溝を転造(塑性加工)する方法が知られている(特許2541208号)。
【0005】
【発明が解決しようとする課題】
上記方法では、動圧溝の形成領域に隣接する領域で素材の***(ばり)が生じるので、転造後に、これを旋盤或いはリーマで切削除去する必要がある(特開平8−232958号)。そのため、加工工程が多くなるという問題がある。
【0006】
また、ばりを除去する際に、軸受素材をチャックで固定する必要があるため、チャックの加圧力によって軸受素材の内周面が変形したり、外周面との円筒度が悪化する等の問題を生じる。
【0007】
さらに、この種の動圧型軸受においては、安定した動圧作用を得るため、軸受面を精度良く形成する必要があるが、軸受面における動圧溝の深さは、通常2〜4μmであり、用途に応じて深さを調節する必要がある。例えば、HDDやDVD−RAMなどのように高いデジタル剛性が必要な場合は、通常軸受隙間を小さく設定する。この場合、動圧溝の深さは軸受隙間に応じて浅い方が良い。
【0008】
上述のボール転造による動圧溝の成形において、治具に取付けられる複数のボールの突出量をこのような微小かつ一定量に設定することは困難である。ボールの突出量にばらつきがあると、各ボールの加圧力にばらつきが生じるため、動圧溝の深さが一定とならない。
【0009】
そこで、本発明は、軟質金属製の動圧型軸受における上記のような問題点を解決することを目的とする。
【0010】
【課題を解決するための手段】
本発明の動圧型軸受の製造方法は、内周面に支持すべき回転軸の外周面と軸受隙間を介して対向し、かつ、傾斜状の動圧溝を有する軸受面を備え、外周面につば部が形成された軟質金属からなる動圧型軸受の製造方法において、軟質金属からなり、外周面につば部が形成された円筒状の軸受素材を作製し、軸受素材の内周面に、軸受面に対応した形状を有する成形型を設けたコアロッドを挿入し、軸受素材をコアロッドと伴にダイに収容すると共に、軸受素材の両端面を上下の1次パンチで上下方向から押さえた状態で、軸受素材の外周面とダイとの間に上下の2次パンチをつば部を挟んで上下方向から圧入し、それによって、軸受素材を外周側から圧迫し、軸受素材の内周部をコアロッドの成形型に加圧して、軸受素材の内周面に軸受面の動圧溝の形成領域とそれ以外の領域とを同時成形するものである。
【0011】
成形の後、上記圧迫力を除去することによる軸受素材のスプリングバックを利用して、コアロッドを軸受素材の内周面から離型することができる。
【0012】
あるいは、コアロッドを、弾性的に縮拡径可能な中空状で、その外周面に軸受面に対応した形状を有する成形型を備えた軸部材と、軸部材の内周部に挿入され、軸部材を一定径に保持するコア部材とで構成し、成形の後、コア部材を軸部材の内周部から抜いて軸部材を縮径可能な状態にしてから、軸部材を軸受素材の内周面から離型するができる。
【0013】
このような動圧型軸受は、軸受面において安定した動圧膜を形成し、回転軸を軸受面に対して回転自在に非接触支持することができるので、情報機器のスピンドルモータに適している。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づき説明する。
【0015】
図1は、CD−ROM用スピンドルモータAを例示している。このスピンドルモータAは、回転軸1と、回転軸1が挿入される軸受3と、半径方向のギャップを介して対向配置されたロータ5及びステータコイル6を主要構成とする。
【0016】
回転軸1の上端には、情報記録媒体となるディスクを装着するターンテーブル8が取付けられる。ターンテーブル8の下面には、筒状のロータケース9が取付けられ、その内周面にロータ5が固定される。
【0017】
軸受3は、アルミニウム、黄銅、青銅等の軟質金属からなる略円筒状の部材である。
【0018】
軸受3の内周面3bには、回転軸1の外周面1aと所定の軸受隙間cを介して対向する軸受面3cが形成される。また、軸受3の外周面3dには、つば部3d1が一体成形され、つば部3d1を挟んで上側にステータコイル6が外挿固定され、下側にモータ基板10が外挿固定される。本実施形態の場合、ロータ5とステータコイル6は、互いに半径方向に電磁力を及ぼすように所定のラジアルギャップを介して取付けられる。
【0019】
図2に示すように、軸受3の内周面3bには、軸方向に離隔する2つの軸受面3cが形成され、2つの軸受面3cの双方に、それぞれ軸方向に対して傾斜させた複数の動圧溝3eが円周方向に配列形成される。軸受面3cにおける動圧溝3eとそれ以外の領域3fとの段差(動圧溝3eの深さ)は、例えば、2〜4μm程度である。なお、動圧溝3eは軸方向に対して傾斜して形成されていれば足り、この条件を満たす限り同図に示す形状には限定されない。
【0020】
本発明における軸受3の軸受面3cは、例えば、図3に示すような略円筒形状の軟質金属素材3’ の内周に、完成品(軸受3)の軸受面3cに対応した形状の成形型を挿入し、内周面3b’ の軸受面成形領域3c’ を成形型に加圧することによって、軸受面3cの動圧溝3eの形成領域とそれ以外の領域3fとを同時成形することによって形成される。従って、本発明の軸受3は、従来軸受(特許2541208号)に比べ、軸受面のばりを除去する工程が不要であり、軸受面3cの円筒度が悪化することもない。また、軸受面3cの全領域が成形型の加圧によって同時成形されるので、軸受面3cにおいて2〜4μmという微小な段差で形成される動圧溝3eを精度良く成形することができる。このため、この軸受3は、動圧型軸受として安定した動圧効果を発揮し、回転軸1を精度良く支持することができる。
【0021】
例えば、軸受隙間cに流体潤滑剤(潤滑グリース、潤滑油)を介在させる場合、回転軸1の回転に伴う動圧溝3eの引き込み作用によって、軸受面3cの軸方向中央領域に油が引き込まれて動圧油膜が発生する。そして、その動圧油膜によって回転軸1の外周面1aが軸受面3cに対して回転自在に非接触支持される。流体潤滑剤を使用しない場合は、動圧溝3eの引き込み作用によって軸受面3cの軸方向中央領域に空気が引き込まれて動圧空気膜が発生し、その動圧空気膜によって回転軸1の外周面1cが軸受面3cに対して回転自在に非接触支持される。
【0022】
以下、軸受3の製造方法について説明する。
【0023】
図4は、第一の製造方法における軸受面成形工程で使用する成形装置の概略構造を例示している。この装置は、円筒状のダイ20、軟質金属素材3’ の内周面3b’ の軸受面成形領域3c’ を成形するコアロッド21、軟質金属素材3’ の両端面を上下方向から押さえる上下の1次パンチ22、23、軟質金属素材3’ を外周面から加圧する上下の2次パンチ24、25を主要な要素として構成される。
【0024】
コアロッド21の外周面には、完成品(軸受3)の軸受面3cの形状に対応した形状を有するの2つの成形型21aが軸方向に離隔して設けられている。図5に示すように各成形型21aの凸状の第1成形部21a1は軸受面3cにおける動圧溝3eの領域を成形し、凹状の第2成形部21a2は動圧溝3e以外の領域3fを成形するものである。なお、図5は成形型21aの概略図であり、第1成形部21a1と第2成形部21a2との段差は誇張してある。成形型21aにおける第1成形部21a1と第2成形部21a2との段差は、軸受面3cにおける動圧溝3eの深さと同じ2〜4μmである。
【0025】
コアロッド21を、軟質金属素材3’ の内周面3b’ に、隙間をもって挿入して位置合わせをした後、上1次パンチ22およびコアロッド21を降下させて、軟質金属素材3’ をダイ20に圧入し、さらに下1次パンチ23に押し付ける。その後、上下2次パンチ(24,25)を圧入して、軟質金属素材3’ を外周側から加圧する。
【0026】
このとき軟質金属素材3’ は、上下1次パンチ(22,23)および上下2次パンチ(24,25)から圧迫力を受けて変形を起こし、内周面3b’ の軸受面成形領域3c’ がコアロッド21の側に塑性流動を起こして成形型21aに食い付く。これにより、成形型21aの形状が軟質金属素材3’ の内周面3b’ の軸受面成形領域3c’ に転写され、軸受面3cが図2に示す形状に成形される。
【0027】
軸受面3cの成形が完了した後、上下2次パンチ(24,25)を抜き、上1次パンチ22を上昇させ、軟質金属素材3’ にコアロッド21を挿入したままの状態で下1次パンチ23とコアロッド21を連動して上昇させ、軟質金属素材3’ をダイ20から抜く。軟質金属素材3’ をダイ20から抜くと、軟質金属素材3’ にスプリングバックが生じ、その内径寸法が拡大するので、動圧溝3eを崩すことなく、軟質金属素材3’ の内周面3b’ からコアロッド21(成形型21a)を抜き取ることができる。なお、軟質金属素材3’ のスプリングバック量の半径量が動圧溝3eの深さよりも大きい場合は、成形型21aを軟質金属素材3’ の内周面に干渉させることなく離型することができるが、軟質金属素材3’ のスプリングバック量の半径量が動圧溝3eの深さよりも小さく、成形型21aが軟質金属素材3’ の内周面に多少干渉する場合であっても、軟質金属素材の材料弾性による拡径量(半径量)を付加して、動圧溝3eを崩すことなく成形型21aを素材3’ の内周面から離型できれば良い。
【0028】
次に、軸受3の第二の製造方法について説明する。
【0029】
図6は、第二の製造方法における軸受面成形工程で使用する成形装置の概略構造を例示している。この装置は、円筒状のダイ30、軟質金属素材3’ の内周面3b’ の軸受面成形領域3c’ を成形するコアロッド(31,32)、軟質金属素材3’ の両端面を上下方向から押さえる上下の1次パンチ(33,34)、軟質金属素材3’ を外周面から加圧する上下の2次パンチ(35,36)を主要な要素として構成される。コアロッドは、中空状の軸部材31と、軸部材31の内周部に挿入されるコア部材32とで構成される。軸部材31は硬質の材料からなる中空の薄肉円筒形状の部材で、外周面に成形型31aを有し、かつ、先端部に複数のスリット31bを備えている。コア部材32は、中実の断面円形の部材である。
【0030】
軸部材31の外周面に形成される成形型31aは、第一の製造方法に用いられるコアロッド21の成形型21aと同様であり、2つの成形型31aが軸方向に離隔して設けられている。各成形型31aの凸状の第1成形部31a1は軸受面3cにおける動圧溝3eの領域を成形し、凹状の第2成形部31a2は動圧溝3e以外の領域3fを成形するものである。成形型31aにおける第1成形部31a1と第2成形部31a2との段差は、軸受面3bにおける動圧溝3eの深さと同じ2〜4μmである。
【0031】
軸部材31の先端部に設けられるスリット31bは軸方向に形成され、軸部材31の先端から2つの成形型31aの形成位置を含んで形成される。この軸部材31は、スリット31bを有することによって弱い力でも弾性的に縮拡径可能に構成されるものであり、本実施形態の軸部材31は、スリット31bが、円周方向に2箇所形成されたものである。軸部材31は、その内周部に挿入されたコア部材32によって一定径に保持される。
【0032】
軸部材31の内周部にコア部材32を挿入し、軸部材31を一定径に保持した状態で、コアロッド(31,32)を軟質金属素材3’ の内周面3b’ に挿入して位置合わせをした後、上1次パンチ33及びコアロッド(31,32)を下降させて、軟質金属素材3’ をダイ30に圧入し、さらに下1次パンチ34に押しつける。その後、上下2次パンチ(35,36)を圧入して、軟質金属素材3’ を外周側から加圧する。これにより、第1の製造方法と同様に、成形型31aの形状が軟質金属素材3’ の内周面3b’ の軸受面形成領域に転写され、軸受面2cが図2に示す形状に成形される。
【0033】
軸受面3cの成形が完了した後、上下2次パンチ(35,36)、を抜き、上1次パンチ33を上昇させ、軟質金属素材3’ にコアロッド(31,32)を挿入したままの状態で、下1次パンチ34とコアロッド(31、32)とを連動して上昇させ、軟質金属素材3’ をダイ30から抜く。その後、コア部材32を軸部材31から抜き、軟質金属素材3’ を軸部材31から抜き取る。このとき、軸部材31は弱い力で弾性変形して縮径するので、動圧溝3eを崩すことなく、軟質金属素材3’ の内周面3bから軸部材31の成形型31aを抜き取ることができる。
【0034】
上述の2つの製造方法は、軟質金属素材3’ に軸受面3cを成形した後、軸受面3cから成形型21a、31aを離型する手段として、それぞれ、軟質金属素材3’ のスプリングバックや、コアロッド(軸部材31)の弾性変形を利用しているが、軸受面3cの形状を崩すことなく成形型を離型できれば良く、特に以上に例示した手段に限定されるものではない。
【0035】
上述のいずれの製造方法による場合も、コアロッドに形成される成形型を精度良く仕上げておけば、軸受面の精度も良くなる。コアロッドの精度を、必要とされる精度、例えば真円度1μm以内、円筒度2μm以内などに仕上げることはさほど難しくない。なお、軸受面成形を行う前に、軟質金属素材の内周面に回転サイジング(多角形状のサイジングピンを回転させながら内周面のサイジングを行う加工)等を施し、当該内周面を予め均一化させておくことが望ましい。
【0036】
スピンドルモータAは、上述のようにして成形された軸受面3cを有する軸受3に、スラスト受け4、ステータコイル6、モータ基板10を取りつけた後、ターンテーブル8、ロータケース9、ロータ5を取付けた回転軸1を軸受3の軸受面3cに挿入することによって完成する。
【0037】
このスピンドルモータAは、回転軸1の回転に伴ない、軸受3の軸受隙間cに介在する潤滑油又は潤滑グリース、或いは、軸受隙間cに介在する空気が、動圧溝3eによって軸受隙間cの軸方向中央領域に向けて引き込まれる。この動圧溝3eの動圧作用によって軸受隙間c内に動圧膜(動圧油膜或いは動圧空気膜)が形成され、この動圧膜によって、回転軸1はホワール等の不安定振動を生じることなく、軸受面3bに対して浮上支持(非接触支持)される。スピンドルモータAは、軸受3の軸受面3cの円筒度や動圧溝の形状精度が良く、軸受隙間cに安定した動圧膜が形成されるので、回転軸1の回転性能が良い。
【0038】
本実施形態におけるスピンドルモータAは、CD−ROM用の構成であるから、上記に示した軸受3の形状や、その他の部品の形状、モータの構造等は、CD−ROM用に適したものを示したが、本発明のスピンドルモータは、用途に応じてこれらを変更して用いられるものである。
【0039】
【発明の効果】
本発明の製造方法によって製造された動圧型軸受は、軟質金属からなる軸受本体の内周面に、動圧溝の形成領域とそれ以外の領域とが同時に成形された軸受面を有するので、軸受面の形状精度が良く、安定した動圧効果を発揮し、回転軸の支持性能が高い。
【0040】
また、軸受面成形工程において、従来方法のような軸受面の後加工(ばりの除去加工)が不要であるので、従来に比べ加工工数が減少し、作業時間を短縮でき、かつ、加工コストの低減を図ることができる。しかも、軸受面成形後に軸受をチャックする必要がないので、軸受面の円筒度等の精度を良好なものにできる。また、成形時には軸受面にむらなく一定の圧力が掛かるので、動圧溝が一定の深さで精度良く形成される。
【0041】
上記のような動圧型軸受を具備する情報機器のスピンドルモータは、回転軸の不安定振動や回転むらがなく、高い回転精度を有するので、情報機器の性能や耐久性向上に寄与する。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るCD−ROM用スピンドルモータの縦断面図。
【図2】本発明の一実施形態に係るCD−ROM用スピンドルモータの軸受の縦断面図。
【図3】本発明の軸受の軸受製造工程に用いられる軟質金属素材の縦断面図。
【図4】本発明の第一の製造方法における軸受の成形装置の概略断面図。
【図5】本発明の第一の製造方法におけるコアロッドの成形面の概略図。
【図6】本発明の第二の製造方法における軸受の成形装置の概略断面図。
【符号の説明】
1 回転軸
3 軸受
3b 内周面
3c 軸受面
3d 外周面
3d1 つば部
3e 動圧溝
3f 軸受面の動圧溝以外の領域
4 スラスト受け
5 ロータ
6 ステータコイル
8 ターンテーブル
9 ロータケース
10 モータ基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodynamic bearing made of a soft metal, and in particular, a spindle motor of a device that requires high rotational accuracy at high speed, such as a polygon scanner motor of a laser beam printer (LBP), a magnetic disk drive (HDD, etc.), It is suitable for a spindle motor of a device such as a DVD-ROM, a DVD-RAM, a CD-ROM, etc., which is driven at a high speed due to a large unbalanced load acting on the disk.
[0002]
[Prior art]
In small spindle motors such as information-related equipment, such as laser beam printers (LBP) and magnetic disk drives (HDD, etc.), conventional rolling is used as a bearing to support the spindle shaft in order to meet the demand for high speed and high rotational accuracy. The use of a non-contact type dynamic pressure type bearing instead of the bearing has been studied.
[0003]
As this type of dynamic pressure type bearing, there is one in which a bearing surface having a dynamic pressure groove such as a herringbone type or a spiral type is formed on the inner peripheral surface of a bearing material made of a soft metal.
[0004]
Conventionally, as a method of forming the dynamic pressure groove on the bearing surface, a plurality of balls harder than the bearing material are radially arranged at the end of the shaft so as to protrude slightly from the inner diameter of the bearing material. There is known a method of rolling a dynamic pressure groove (plastic working) by pushing the jig around the inner peripheral surface of the bearing material while rolling it (plastic working).
[0005]
[Problems to be solved by the invention]
In the above method, since the material is raised in the region adjacent to the region where the dynamic pressure groove is formed, it is necessary to remove the material after rolling with a lathe or reamer (Japanese Patent Laid-Open No. Hei 8-232958). Therefore, there is a problem that the number of processing steps increases.
[0006]
In addition, since it is necessary to fix the bearing material with a chuck when removing the flash, problems such as deformation of the inner peripheral surface of the bearing material due to the applied pressure of the chuck and deterioration of the cylindricity with the outer peripheral surface are caused. Arise.
[0007]
Furthermore, in this type of dynamic pressure type bearing, in order to obtain a stable dynamic pressure action, it is necessary to form the bearing surface with high accuracy, but the depth of the dynamic pressure groove on the bearing surface is usually 2 to 4 μm, It is necessary to adjust the depth according to the application. For example, when high digital rigidity is required, such as HDD and DVD-RAM, the bearing clearance is usually set small. In this case, the depth of the dynamic pressure groove should be shallow according to the bearing gap.
[0008]
In the formation of the dynamic pressure groove by the above-described ball rolling, it is difficult to set the protrusion amount of the plurality of balls attached to the jig to such a minute and constant amount. If the amount of protrusion of the ball varies, the pressure applied to each ball varies, and the depth of the dynamic pressure groove is not constant.
[0009]
Accordingly, an object of the present invention is to solve the above-described problems in a hydrodynamic bearing made of soft metal.
[0010]
[Means for Solving the Problems]
The method for manufacturing a hydrodynamic bearing according to the present invention includes a bearing surface that is opposed to an outer peripheral surface of a rotating shaft to be supported on an inner peripheral surface via a bearing gap and has an inclined dynamic pressure groove, and is provided on the outer peripheral surface. In a method of manufacturing a hydrodynamic bearing made of a soft metal with a collar formed, a cylindrical bearing material made of a soft metal and having a collar formed on the outer peripheral surface is manufactured, and a bearing is formed on the inner peripheral surface of the bearing material. Inserting a core rod provided with a molding die having a shape corresponding to the surface, housing the bearing material in the die together with the core rod, and holding both end surfaces of the bearing material with the upper and lower primary punches from above and below, Insert the upper and lower secondary punches between the outer peripheral surface of the bearing material and the die from above and below, and press the bearing material from the upper and lower sides to form the core rod. Pressurize the mold and place the bearing surface on the inner peripheral surface of the bearing material. It is intended to co-molding a formation area and other areas of the grooves.
[0011]
After molding, the core rod can be released from the inner peripheral surface of the bearing material by utilizing the springback of the bearing material by removing the compression force.
[0012]
Alternatively, the core rod has a hollow shape that can be elastically contracted and expanded, a shaft member having a molding die having a shape corresponding to the bearing surface on the outer peripheral surface thereof, and the shaft member inserted into the inner peripheral portion of the shaft member. And after the molding, the core member is pulled out from the inner peripheral portion of the shaft member so that the shaft member can be reduced in diameter, and then the shaft member is moved to the inner peripheral surface of the bearing material. It can be released from.
[0013]
Such a dynamic pressure type bearing is suitable for a spindle motor of an information device because it forms a stable dynamic pressure film on the bearing surface and can rotatably support the rotating shaft with respect to the bearing surface.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 illustrates a spindle motor A for CD-ROM. The spindle motor A mainly includes a rotating shaft 1, a bearing 3 into which the rotating shaft 1 is inserted, and a rotor 5 and a stator coil 6 that are arranged to face each other with a gap in the radial direction.
[0016]
At the upper end of the rotating shaft 1 is attached a turntable 8 on which a disk serving as an information recording medium is mounted. A cylindrical rotor case 9 is attached to the lower surface of the turntable 8, and the rotor 5 is fixed to the inner peripheral surface thereof.
[0017]
The bearing 3 is a substantially cylindrical member made of a soft metal such as aluminum, brass, or bronze.
[0018]
A bearing surface 3 c is formed on the inner circumferential surface 3 b of the bearing 3 so as to face the outer circumferential surface 1 a of the rotating shaft 1 with a predetermined bearing gap c. A flange portion 3d1 is integrally formed on the outer peripheral surface 3d of the bearing 3, the stator coil 6 is externally fixed on the upper side of the flange portion 3d1, and the motor substrate 10 is externally fixed on the lower side. In the case of the present embodiment, the rotor 5 and the stator coil 6 are attached via a predetermined radial gap so as to exert an electromagnetic force in the radial direction.
[0019]
As shown in FIG. 2, two bearing surfaces 3 c that are spaced apart in the axial direction are formed on the inner peripheral surface 3 b of the bearing 3, and both of the two bearing surfaces 3 c are inclined with respect to the axial direction. The dynamic pressure grooves 3e are arranged in the circumferential direction. The step (depth of the dynamic pressure groove 3e) between the dynamic pressure groove 3e and the other region 3f on the bearing surface 3c is, for example, about 2 to 4 μm. The dynamic pressure groove 3e is only required to be inclined with respect to the axial direction, and is not limited to the shape shown in FIG.
[0020]
The bearing surface 3c of the bearing 3 according to the present invention has, for example, a molding die having a shape corresponding to the bearing surface 3c of the finished product (bearing 3) on the inner periphery of a substantially cylindrical soft metal material 3 'as shown in FIG. Is formed by simultaneously molding the formation region of the dynamic pressure groove 3e of the bearing surface 3c and the other region 3f by pressing the bearing surface molding region 3c 'of the inner peripheral surface 3b' to the molding die. Is done. Therefore, the bearing 3 of the present invention does not require a process for removing the flash on the bearing surface as compared with the conventional bearing (Japanese Patent No. 2541208), and the cylindricity of the bearing surface 3c does not deteriorate. Further, since the entire region of the bearing surface 3c is simultaneously molded by pressurization of the molding die, the dynamic pressure groove 3e formed with a minute step of 2 to 4 μm on the bearing surface 3c can be accurately molded. For this reason, this bearing 3 exhibits a stable dynamic pressure effect as a dynamic pressure type bearing, and can support the rotating shaft 1 with high accuracy.
[0021]
For example, when a fluid lubricant (lubricating grease, lubricating oil) is interposed in the bearing gap c, the oil is drawn into the axial center region of the bearing surface 3c by the drawing action of the dynamic pressure groove 3e accompanying the rotation of the rotating shaft 1. As a result, a dynamic oil film is generated. And the outer peripheral surface 1a of the rotating shaft 1 is rotatably supported by the dynamic pressure oil film with respect to the bearing surface 3c. When the fluid lubricant is not used, air is drawn into the axial center region of the bearing surface 3c by the pulling action of the dynamic pressure groove 3e, and a dynamic pressure air film is generated. The surface 1c is rotatably supported with respect to the bearing surface 3c.
[0022]
Hereinafter, a method for manufacturing the bearing 3 will be described.
[0023]
FIG. 4 illustrates a schematic structure of a molding apparatus used in the bearing surface molding process in the first manufacturing method. This device includes a cylindrical die 20, a core rod 21 for forming a bearing surface molding region 3c 'of an inner peripheral surface 3b' of a soft metal material 3 ', and upper and lower ones that hold both end surfaces of the soft metal material 3' from above and below. The upper and lower secondary punches 24 and 25 that pressurize the secondary punches 22 and 23 and the soft metal material 3 'from the outer peripheral surface are configured as main elements.
[0024]
On the outer peripheral surface of the core rod 21, two forming dies 21a having a shape corresponding to the shape of the bearing surface 3c of the finished product (bearing 3) are provided apart in the axial direction. As shown in FIG. 5, the convex first molding portion 21a1 of each molding die 21a molds the region of the dynamic pressure groove 3e on the bearing surface 3c, and the concave second molding portion 21a2 is the region 3f other than the dynamic pressure groove 3e. Is formed. FIG. 5 is a schematic view of the molding die 21a, and the step between the first molding part 21a1 and the second molding part 21a2 is exaggerated. The level difference between the first molding portion 21a1 and the second molding portion 21a2 in the molding die 21a is 2 to 4 μm, which is the same as the depth of the dynamic pressure groove 3e in the bearing surface 3c.
[0025]
After the core rod 21 is inserted into the inner peripheral surface 3b ′ of the soft metal material 3 ′ with a gap and aligned, the upper primary punch 22 and the core rod 21 are lowered to place the soft metal material 3 ′ on the die 20. Press-fit and press against the lower primary punch 23. Thereafter, the upper and lower secondary punches (24, 25) are press-fitted to press the soft metal material 3 ′ from the outer peripheral side.
[0026]
At this time, the soft metal material 3 ′ is deformed by receiving a pressing force from the upper and lower primary punches (22, 23) and the upper and lower secondary punches (24, 25), and a bearing surface forming region 3 c ′ of the inner peripheral surface 3 b ′. Causes plastic flow on the core rod 21 side and bites into the mold 21a. Thereby, the shape of the forming die 21a is transferred to the bearing surface forming region 3c ′ of the inner peripheral surface 3b ′ of the soft metal material 3 ′, and the bearing surface 3c is formed into the shape shown in FIG.
[0027]
After the formation of the bearing surface 3c is completed, the upper and lower secondary punches (24, 25) are pulled out, the upper primary punch 22 is raised, and the lower primary punch is left inserted into the soft metal material 3 '. 23 and the core rod 21 are raised in conjunction with each other, and the soft metal material 3 ′ is removed from the die 20. When the soft metal material 3 ′ is pulled out of the die 20, a spring back is generated in the soft metal material 3 ′ and the inner diameter thereof is enlarged. Therefore, the inner peripheral surface 3b of the soft metal material 3 ′ is not destroyed without breaking the dynamic pressure groove 3e. The core rod 21 (molding die 21a) can be extracted from the '. When the radius of the springback amount of the soft metal material 3 ′ is larger than the depth of the dynamic pressure groove 3e, the mold 21a can be released without interfering with the inner peripheral surface of the soft metal material 3 ′. Although the radius of the springback amount of the soft metal material 3 ′ is smaller than the depth of the dynamic pressure groove 3e, the soft metal material 3 ′ is soft even if the mold 21a slightly interferes with the inner peripheral surface of the soft metal material 3 ′. It is only necessary to add a diameter expansion amount (radial amount) due to material elasticity of the metal material and release the molding die 21a from the inner peripheral surface of the material 3 ′ without breaking the dynamic pressure groove 3e.
[0028]
Next, the 2nd manufacturing method of the bearing 3 is demonstrated.
[0029]
FIG. 6 illustrates a schematic structure of a molding apparatus used in the bearing surface molding step in the second manufacturing method. This apparatus includes a cylindrical die 30, a core rod (31, 32) for forming a bearing surface forming region 3c 'of an inner peripheral surface 3b' of a soft metal material 3 ', and both end surfaces of the soft metal material 3' from above and below. The upper and lower primary punches (33, 34) to be pressed and the upper and lower secondary punches (35, 36) to press the soft metal material 3 'from the outer peripheral surface are mainly configured. The core rod includes a hollow shaft member 31 and a core member 32 inserted into the inner peripheral portion of the shaft member 31. The shaft member 31 is a hollow thin cylindrical member made of a hard material, has a molding die 31a on the outer peripheral surface, and includes a plurality of slits 31b at the tip. The core member 32 is a solid member having a circular cross section.
[0030]
The molding die 31a formed on the outer peripheral surface of the shaft member 31 is the same as the molding die 21a of the core rod 21 used in the first manufacturing method, and the two molding dies 31a are provided apart in the axial direction. . The convex first molding part 31a1 of each molding die 31a molds the area of the dynamic pressure groove 3e on the bearing surface 3c, and the concave second molding part 31a2 molds the area 3f other than the dynamic pressure groove 3e. . The level difference between the first molding part 31a1 and the second molding part 31a2 in the molding die 31a is 2 to 4 μm, which is the same as the depth of the dynamic pressure groove 3e in the bearing surface 3b.
[0031]
The slit 31b provided at the distal end portion of the shaft member 31 is formed in the axial direction, and is formed from the distal end of the shaft member 31 including the formation positions of the two molding dies 31a. The shaft member 31 has a slit 31b so that it can be elastically expanded and contracted even with a weak force. The shaft member 31 of this embodiment has two slits 31b formed in the circumferential direction. It has been done. The shaft member 31 is held at a constant diameter by the core member 32 inserted in the inner peripheral portion thereof.
[0032]
The core member 32 is inserted into the inner peripheral portion of the shaft member 31, and the core rod (31, 32) is inserted into the inner peripheral surface 3b 'of the soft metal material 3' while the shaft member 31 is held at a constant diameter. After the alignment, the upper primary punch 33 and the core rods (31, 32) are lowered, and the soft metal material 3 ′ is pressed into the die 30 and further pressed against the lower primary punch. Thereafter, the upper and lower secondary punches (35, 36) are press-fitted to press the soft metal material 3 ′ from the outer peripheral side. As a result, as in the first manufacturing method, the shape of the molding die 31a is transferred to the bearing surface forming region of the inner peripheral surface 3b ′ of the soft metal material 3 ′, and the bearing surface 2c is molded into the shape shown in FIG. The
[0033]
After the formation of the bearing surface 3c is completed, the upper and lower secondary punches (35, 36) are pulled out, the upper primary punch 33 is raised, and the core rod (31, 32) is still inserted into the soft metal material 3 ′. Then, the lower primary punch 34 and the core rods (31, 32) are raised in conjunction with each other, and the soft metal material 3 ′ is removed from the die 30. Thereafter, the core member 32 is extracted from the shaft member 31, and the soft metal material 3 ′ is extracted from the shaft member 31. At this time, since the shaft member 31 is elastically deformed and reduced in diameter with a weak force, the forming die 31a of the shaft member 31 can be extracted from the inner peripheral surface 3b of the soft metal material 3 ′ without breaking the dynamic pressure groove 3e. it can.
[0034]
The above-described two manufacturing methods include, as means for releasing the molding dies 21a and 31a from the bearing surface 3c after molding the bearing surface 3c on the soft metal material 3 ', respectively, Although the elastic deformation of the core rod (shaft member 31) is used, it is sufficient that the mold can be released without breaking the shape of the bearing surface 3c, and it is not particularly limited to the means exemplified above.
[0035]
In any of the manufacturing methods described above, if the mold formed on the core rod is finished with high accuracy, the accuracy of the bearing surface is improved. It is not so difficult to finish the core rod to the required accuracy, for example, roundness within 1 μm, cylindricity within 2 μm. Before forming the bearing surface, the inner peripheral surface of the soft metal material is subjected to rotational sizing (processing for sizing the inner peripheral surface while rotating a polygonal sizing pin), etc., and the inner peripheral surface is made uniform in advance. It is desirable to make it.
[0036]
In the spindle motor A, the thrust receiver 4, the stator coil 6, and the motor board 10 are attached to the bearing 3 having the bearing surface 3c formed as described above, and then the turntable 8, the rotor case 9, and the rotor 5 are attached. The rotation shaft 1 is completed by inserting it into the bearing surface 3 c of the bearing 3.
[0037]
In the spindle motor A, as the rotary shaft 1 rotates, the lubricating oil or the lubricating grease that intervenes in the bearing gap c of the bearing 3 or the air that intervenes in the bearing gap c flows into the bearing gap c by the dynamic pressure groove 3e. It is pulled toward the axial center region. A dynamic pressure film (dynamic pressure oil film or dynamic pressure air film) is formed in the bearing gap c by the dynamic pressure action of the dynamic pressure groove 3e, and the dynamic pressure film causes unstable vibration of the rotating shaft 1 such as a whirl. Without being supported, the bearing surface 3b is levitated (non-contact supported). The spindle motor A has good cylindricity of the bearing surface 3c of the bearing 3 and shape accuracy of the dynamic pressure groove, and a stable dynamic pressure film is formed in the bearing gap c. Therefore, the rotation performance of the rotary shaft 1 is good.
[0038]
Since the spindle motor A in this embodiment is a configuration for a CD-ROM, the shape of the bearing 3, the shape of other components, the structure of the motor, etc. shown above are those suitable for a CD-ROM. Although shown, the spindle motor of the present invention is used by changing these according to the application.
[0039]
【The invention's effect】
The dynamic pressure type bearing manufactured by the manufacturing method of the present invention has a bearing surface in which a dynamic pressure groove forming region and other regions are simultaneously formed on the inner peripheral surface of a bearing body made of a soft metal. Excellent surface shape accuracy, stable dynamic pressure effect, high rotation shaft support performance.
[0040]
Also, in the bearing surface forming process, post-processing (flash removal processing) of the bearing surface as in the conventional method is unnecessary, so the number of processing steps can be reduced compared to the conventional method, the working time can be shortened, and the processing cost can be reduced. Reduction can be achieved. In addition, since it is not necessary to chuck the bearing after molding the bearing surface, it is possible to improve the accuracy such as the cylindricity of the bearing surface. In addition, since a constant pressure is uniformly applied to the bearing surface at the time of molding, the dynamic pressure grooves are accurately formed at a constant depth.
[0041]
Since the spindle motor of the information equipment having the dynamic pressure type bearing as described above has no unstable vibration or rotation unevenness of the rotating shaft and has high rotation accuracy, it contributes to improvement of performance and durability of the information equipment.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a spindle motor for CD-ROM according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of a bearing of a spindle motor for CD-ROM according to an embodiment of the present invention.
FIG. 3 is a longitudinal sectional view of a soft metal material used in the bearing manufacturing process of the bearing of the present invention.
FIG. 4 is a schematic cross-sectional view of a bearing forming apparatus in the first manufacturing method of the present invention.
FIG. 5 is a schematic view of a molding surface of a core rod in the first manufacturing method of the present invention.
FIG. 6 is a schematic cross-sectional view of a bearing forming apparatus in the second manufacturing method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating shaft 3 Bearing 3b Inner peripheral surface 3c Bearing surface 3d Outer peripheral surface 3d1 Collar 3e Dynamic pressure groove 3f Region other than dynamic pressure groove on bearing surface 4 Thrust receiver 5 Rotor 6 Stator coil 8 Turntable 9 Rotor case 10 Motor substrate

Claims (3)

内周面に支持すべき回転軸の外周面と軸受隙間を介して対向し、かつ、傾斜状の動圧溝を有する軸受面を備え、外周面につば部が形成された軟質金属からなる動圧型軸受の製造方法において、
軟質金属からなり、外周面につば部が形成された円筒状の軸受素材を作製し、
上記軸受素材の内周面に、上記軸受面に対応した形状を有する成形型を設けたコアロッドを挿入し
上記軸受素材を上記コアロッドと伴にダイに収容すると共に、上記軸受素材の両端面を上下の1次パンチで上下方向から押さえた状態で、上記軸受素材の外周面とダイとの間に上下の2次パンチを上記つば部を挟んで上下方向から圧入し、それによって、上記軸受素材を外周側から圧迫し、上記軸受素材の内周部を上記コアロッドの成形型に加圧して、上記軸受素材の内周面に上記軸受面の動圧溝の形成領域とそれ以外の領域とを同時成形することを特徴とする動圧型軸受の製造方法。
A movement made of a soft metal having a bearing surface that is opposed to the outer peripheral surface of the rotary shaft to be supported on the inner peripheral surface through a bearing gap and has an inclined dynamic pressure groove, and having a flange portion formed on the outer peripheral surface. In the manufacturing method of the pressure type bearing,
Ri Do from soft metal, a cylindrical bearing material flange portion is formed on an outer peripheral surface manufactured,
A core rod provided with a molding die having a shape corresponding to the bearing surface is inserted into the inner peripheral surface of the bearing material ,
The bearing material is accommodated in the die together with the core rod, and the upper and lower surfaces of the bearing material are vertically moved between the outer peripheral surface of the bearing material and the die in a state where both end surfaces of the bearing material are pressed from the upper and lower directions by upper and lower primary punches. A secondary punch is press-fitted in the vertical direction with the collar portion interposed therebetween, whereby the bearing material is pressed from the outer peripheral side, and the inner peripheral portion of the bearing material is pressed against the molding die of the core rod, and the bearing material A method of manufacturing a hydrodynamic bearing, comprising simultaneously forming a hydrodynamic groove forming region of the bearing surface and other regions on the inner peripheral surface of the bearing.
成形の後、上記圧迫力を除去することによる上記軸受素材のスプリングバックを利用して、上記コアロッドを軸受素材の内周面から離型することを特徴とする請求項1に記載の動圧型軸受の製造方法。 2. The hydrodynamic bearing according to claim 1, wherein after the molding, the core rod is released from the inner peripheral surface of the bearing material by using a springback of the bearing material by removing the compression force. Manufacturing method. 上記コアロッドが、弾性的に縮拡径可能な中空状で、その外周面に上記軸受面に対応した形状を有する成形型を備えた軸部材と、該軸部材の内周部に挿入され、該軸部材を一定径に保持するコア部材とで構成され、成形の後、上記コア部材を軸部材の内周部から抜いて軸部材を縮径可能な状態にしてから、上記軸部材を軸受素材の内周面から離型することを特徴とする請求項1に記載の動圧型軸受の製造方法。 The core rod is a hollow member that can be elastically contracted and expanded in diameter, and has a shaft member provided with a molding die having a shape corresponding to the bearing surface on the outer peripheral surface thereof, and is inserted into the inner peripheral portion of the shaft member, configured the shaft member in the core member for holding a constant diameter, after molding, from the shaft member to diametrically contractible condition by far the core member from the inner periphery of the shaft member, bearing material and the shaft member The method for manufacturing a hydrodynamic bearing according to claim 1, wherein the mold is released from the inner peripheral surface of the bearing.
JP01721998A 1998-01-29 1998-01-29 Manufacturing method of hydrodynamic bearing Expired - Lifetime JP3625637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01721998A JP3625637B2 (en) 1998-01-29 1998-01-29 Manufacturing method of hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01721998A JP3625637B2 (en) 1998-01-29 1998-01-29 Manufacturing method of hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JPH11218123A JPH11218123A (en) 1999-08-10
JP3625637B2 true JP3625637B2 (en) 2005-03-02

Family

ID=11937843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01721998A Expired - Lifetime JP3625637B2 (en) 1998-01-29 1998-01-29 Manufacturing method of hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JP3625637B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636181B2 (en) * 2009-09-14 2014-12-03 サムスン電機ジャパンアドバンスドテクノロジー株式会社 Disk drive

Also Published As

Publication number Publication date
JPH11218123A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
KR100619164B1 (en) Hydrodynamic type bearing and hydrodynamic type bearing unit
JP3987745B2 (en) Thrust plate manufacturing method, dynamic pressure bearing shaft manufacturing method, dynamic pressure bearing, spindle motor, and recording disk drive device
JPH1137156A (en) Manufacture of dynamic type oil-containing porous bearing
WO2005121574A1 (en) Dynamic pressure bearing
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP3625637B2 (en) Manufacturing method of hydrodynamic bearing
JP2011047005A (en) Method of manufacturing bearing sleeve and fluid dynamic bearing device
US7789565B2 (en) Fluid dynamic bearing apparatus
JP5110903B2 (en) Sleeve manufacturing method, hydrodynamic bearing device, and sleeve manufacturing device
JP4172944B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2000087953A (en) Dynamic pressure type sintered oil-retaining bearing unit
JP2009030780A (en) Method of manufacturing bearing part and hydraulic dynamic-pressure bearing mechanism, hydraulic dynamic-pressure bearing mechanism, and motor
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP3602320B2 (en) Manufacturing method of hydrodynamic sintered oil-impregnated bearing
JP3782900B2 (en) Hydrodynamic bearing and hydrodynamic bearing unit
JP2004340385A (en) Dynamic pressure type bearing unit
JP3773721B2 (en) Hydrodynamic bearing
JP4738831B2 (en) Hydrodynamic bearing device
JP3602330B2 (en) Dynamic pressure type sliding bearing and method of manufacturing the same
JP4509922B2 (en) Hydrodynamic sintered oil-impregnated bearing for information equipment spindle motor
JP2005180707A (en) Dynamic pressure type sintered oil-impregnated bearing unit
JP2004316924A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JPH11195267A (en) Spindle motor for information equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term