JP3841238B2 - Method for manufacturing positive thermistor material - Google Patents

Method for manufacturing positive thermistor material Download PDF

Info

Publication number
JP3841238B2
JP3841238B2 JP18525197A JP18525197A JP3841238B2 JP 3841238 B2 JP3841238 B2 JP 3841238B2 JP 18525197 A JP18525197 A JP 18525197A JP 18525197 A JP18525197 A JP 18525197A JP 3841238 B2 JP3841238 B2 JP 3841238B2
Authority
JP
Japan
Prior art keywords
specific resistance
temperature coefficient
positive temperature
thermistor material
thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18525197A
Other languages
Japanese (ja)
Other versions
JPH1129358A (en
Inventor
寿輝 上野
隆 徳田
昇 一ノ瀬
Original Assignee
北辰工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北辰工業株式会社 filed Critical 北辰工業株式会社
Priority to JP18525197A priority Critical patent/JP3841238B2/en
Publication of JPH1129358A publication Critical patent/JPH1129358A/en
Application granted granted Critical
Publication of JP3841238B2 publication Critical patent/JP3841238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明により製造される正特性サーミスタ材料は、電子、電気製品の加熱防止、安全素子に適用される新規な正特性サーミスタ(PTCサーミスタ)に関し、ヒータ、モータ等の起動用素子、TVの消磁回路等などの一般的な正特性サーミスタに用いて好適なものである。
【0002】
【従来の技術】
サーミスタには、その温度係数により、負特性サーミスタ(NTCサーミスタ)と正特性サーミスタ(PTCサーミスタ)とがある。負特性サーミスタは負の温度係数を有し、温度上昇と共に比抵抗が減少する材料であり、一方、正特性サーミスタは正の温度係数を有し、特定温度で比抵抗が急激に上昇する材料である。
【0003】
正特性サーミスタの代表的な材料としては、BaTiO3系セラミックスがある。これは、BaTiO3などの導電性を有しない酸化物に、イットリウム、ランタンなどの希土類遷移元素あるいはニオブ、タンタルなどの5価の遷移金属元素などを、上記酸化物を半導体化させるドープ材として添加し、焼成したものである。また、導電性フィラーとポリマーとのコンポジットなども知られている。
【0004】
さらに、Bi4Ti312で示される組成の一部のTiをNbで置換したビスマス層状構造酸化物からなるもの(特開平6−163204号公報)、また、酸化ビスマスと酸化チタンとを含む所定の酸化物の一部を酸化ニオブ、酸化タンタル及び酸化アンチモンの少なくとも一種で置換したもの(特開平6−283308号公報)などが知られている。
【0005】
【発明が解決しようとする課題】
従来より上述したような各種正特性サーミスタが知られているが、これらの正特性サーミスタは、温度上昇と共に比抵抗が上昇するが、その比抵抗の上昇幅は、導電領域から半導体領域、又は半導体領域から絶縁領域などの相変化で得られる。
【0006】
ここで、常態で導電領域にあるものは、比抵抗の上昇幅が狭いという問題がある。一方、常態で半導体領域にあるものは比抵抗の上昇幅が広いが、常態での比抵抗が10-1〜102Ω・cm程度であり、大電流を流すことができないという問題がある。この場合、大電流を扱うのが困難であり、大容量ヒータ等の用途などの使用には限界がある。
【0007】
本発明は、このような事情に鑑み、常態で10 0 〜10 -4 Ω・cmの比抵抗を有し、温度上昇時の比抵抗の上昇幅が比較的広い、新規な正特性サーミスタ材料の製造方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
前記課題を解決する本発明は、放電プラズマ焼結を用いて、BiとTa 2 5 との混合物を複合化してコンポジットとすることを特徴とする正特性サーミスタ材料の製造方法にある。
【0009】
本発明は、Biが、融点に加熱されると比抵抗が急上昇する性質を有することを利用し、これを絶縁体である所定のセラミックスに複合化することにより、新規の正特性サーミスタとしたものである。
【0010】
本発明により製造されるコンポジットの導電性は、コンポジット中にBiによる導電パスが形成されていることにより確立されている。従って、常態での比抵抗が10-3〜10-2Ω・cmと小さい。
【0011】
一方、本発明により製造されるコンポジットがBiの融点近くまで加熱されると、導電パスの比抵抗が急上昇することにより、コンポジット全体の抵抗が上昇し、さらに加熱されると、導電パスの切断が発生し始め、コンポジットの抵抗が一段と上昇する。これにより、サーミスタとしての正特性を示すが、このときの上昇幅が、比較的大きく、好適には、105〜107程度と大きい。
【0012】
かかる本発明により製造されるコンポジットは、BiとTa 2 5 との比率により、電気抵抗を制御できる。
【0013】
本発明により製造される正特性サーミスタ材料は、BiとTa 2 5 とを所定の割合で混合し、この混合物を焼結して複合化することにより製造することができる。このようなコンポジットは高密度の方が有利であるので、特に、放電プラズマ焼結(パルス通電加圧焼結)により焼結する
【0014】
【発明の実施の形態】
以下本発明により製造される正特性サーミスタ材料を実施例に基づいて説明する。
【0015】
(実施例1〜) xBi−(1−x)Ta 2 5 コンポジットの製造
BiとTa25とを、下記表1に示すように、xが0.20、0.30、0.40、0.50、0.70、0.80としたモル比で秤量し、それぞれをめのう乳鉢にて30分間混合した。各混合物を、外径40mm、内径20mm、高さ40mmのカーボンダイスに封入し、両側を外径20mmのパンチ棒で保持して400kg/cm2の加圧を行った。この状態で、オン/オフ=12/2のパルス通電を行い、10-2Torrの減圧下で、100℃/minで900℃まで、さらに、50℃/minで950℃まで加熱し、その後、3min保持後、通電および加圧を解き、冷却し、実施例1〜のコンポジットを製造した。
【0016】
(比抵抗温度特性測定試験)
実施例1〜の各コンポジットからなる試料の比抵抗温度特性を直流2端子法を用いて以下の通り測定した。
【0017】
まず、各試料の両面に金蒸着により両電極を形成し、これら電極上に白金線を密着させた状態でアルミナ板で挟持した。その後、大気中で、昇温及び降温を行いながら、5mV/cmの電界を印加し、各試料を流れる電流値を測定して比抵抗ρを求め、比抵抗変化幅Δを求めた。なお、測定装置としては、ジェネレーター(アドンテスト R6142)およびデジタルマルチメーター(アドバンテスト R6452E)を用いた。
【0018】
但し、比抵抗ρおよび比抵抗幅Δは、下記式から求めた。
【0019】
【数1】
ρ=(E/I)×(S/h)
E:印加電荷
I:試料を流れる電流
S:試料の断面積
h:試料の厚さ
【0020】
【数2】
Δ=log(ρMAX/ρMIN
ρMAX:昇温過程における最大比抵抗
ρMIN:昇温過程における最小比抵抗
【0021】
【表1】

Figure 0003841238
【0022】
(試験結果)
Bi及びTa25の実施例1〜6では、表1及び図1,図2に示すように、常態での比抵抗が100〜10-4Ω・cmと小さく、また、比抵抗変化幅も4〜6と大きかった。特に、xが0.3〜0.5の実施例2〜4は、理想的な正特性サーミスタの特性を示した。
【0023】
【発明の効果】
以上説明したように、本発明により製造される正特性サーミスタ材料は、常態での比抵抗が10 0 〜10 -4 Ω・cmと小さく、温度上昇時の比抵抗の上昇幅が比較的広いものであり、大電流用途に使用できる優れたものである。
【0024】
【図面の簡単な説明】
【図1】 実施例1〜4のコンポジットにおける温度と比抵抗の関係を示す図である。
【図2】 実施例5及び6のコンポジットにおける温度と比抵抗の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The positive temperature coefficient thermistor material manufactured according to the present invention relates to a novel positive temperature coefficient thermistor (PTC thermistor) applied to electronic devices and electrical products to prevent heating and safety elements. It is suitable for use in general positive temperature coefficient thermistors such as.
[0002]
[Prior art]
The thermistor includes a negative characteristic thermistor (NTC thermistor) and a positive characteristic thermistor (PTC thermistor) depending on its temperature coefficient. A negative temperature coefficient thermistor is a material that has a negative temperature coefficient and the specific resistance decreases as the temperature rises. On the other hand, a positive temperature coefficient thermistor is a material that has a positive temperature coefficient and the specific resistance rapidly increases at a specific temperature. is there.
[0003]
As a typical material of the positive temperature coefficient thermistor, there is a BaTiO 3 ceramic. This is because a rare earth transition element such as yttrium or lanthanum or a pentavalent transition metal element such as niobium or tantalum is added to a non-conductive oxide such as BaTiO 3 as a dopant for making the oxide semiconductor. And fired. Also known are composites of conductive fillers and polymers.
[0004]
Further, it is composed of a bismuth layered structure oxide in which part of Ti having a composition represented by Bi 4 Ti 3 O 12 is substituted with Nb (Japanese Patent Laid-Open No. 6-163204), and also includes bismuth oxide and titanium oxide. Known is one in which a part of a predetermined oxide is substituted with at least one of niobium oxide, tantalum oxide, and antimony oxide (Japanese Patent Laid-Open No. Hei 6-283308).
[0005]
[Problems to be solved by the invention]
Conventionally, various positive temperature coefficient thermistors as described above are known, and these positive temperature coefficient thermistors increase in specific resistance as the temperature rises. The range of increase in specific resistance varies from a conductive region to a semiconductor region or a semiconductor region. Obtained by phase change from region to insulating region.
[0006]
Here, in the normal state, the conductive region has a problem that the increase in specific resistance is narrow. On the other hand, those in the semiconductor region in the normal state have a wide increase in specific resistance, but the specific resistance in the normal state is about 10 −1 to 10 2 Ω · cm, and there is a problem that a large current cannot flow. In this case, it is difficult to handle a large current, and there is a limit to use such as a large capacity heater.
[0007]
In view of such circumstances, the present invention is a novel positive temperature coefficient thermistor material that has a specific resistance of 10 0 to 10 −4 Ω · cm in a normal state and has a relatively wide increase in specific resistance when the temperature rises . It is an object to provide a manufacturing method .
[0008]
[Means for Solving the Problems]
The present invention that solves the above-described problems lies in a method for producing a positive temperature coefficient thermistor material characterized in that a mixture of Bi and Ta 2 O 5 is combined into a composite by using discharge plasma sintering .
[0009]
The present invention utilizes the fact that Bi has the property that the specific resistance increases rapidly when heated to the melting point, and composites it with a predetermined ceramic as an insulator to provide a novel positive temperature coefficient thermistor. It is.
[0010]
The conductivity of the composite produced according to the present invention is established by the formation of a Bi conductive path in the composite. Accordingly, the specific resistance in the normal state is as small as 10 −3 to 10 −2 Ω · cm.
[0011]
On the other hand, when the composite manufactured according to the present invention is heated to near the melting point of Bi , the specific resistance of the conductive path increases rapidly, thereby increasing the overall resistance of the composite. It begins to occur, and the resistance of the composite increases further. Thus, the positive characteristic as a thermistor is shown, but the rising width at this time is relatively large, preferably about 10 5 to 10 7 .
[0012]
Composites produced by such present invention, the ratio between Bi and Ta 2 O 5, Ru can control the electric resistance.
[0013]
The positive temperature coefficient thermistor material manufactured according to the present invention can be manufactured by mixing Bi and Ta 2 O 5 at a predetermined ratio, and sintering and mixing this mixture. Since such composites are advantageous for high-density, in particular, sintered by spark plasma sintering (pulse current pressure sintering).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the positive temperature coefficient thermistor material manufactured according to the present invention will be described based on examples.
[0015]
And (EXAMPLE 1~ 6) xBi- (1-x ) Ta 2 O 5 produced Bi and of Ta 2 O 5 which has a composite, as shown in the following Table 1, x is 0.20,0.30,0. They were weighed at a molar ratio of 40 , 0.50 , 0.70, and 0.80, and mixed in an agate mortar for 30 minutes. Each mixture was sealed in a carbon die having an outer diameter of 40 mm, an inner diameter of 20 mm, and a height of 40 mm, and both sides were held with a punch rod having an outer diameter of 20 mm and pressurized at 400 kg / cm 2 . In this state, pulse energization of ON / OFF = 12/2 is performed, and heating is performed to 900 ° C. at 100 ° C./min and further to 950 ° C. at 50 ° C./min under a reduced pressure of 10 −2 Torr. After holding for 3 min, the energization and pressurization were released and the mixture was cooled to produce the composites of Examples 1-6 .
[0016]
(Specific resistance temperature characteristics measurement test)
The specific resistance temperature characteristics of the samples made of the composites of Examples 1 to 6 were measured as follows using a DC two-terminal method.
[0017]
First, both electrodes were formed on both surfaces of each sample by gold vapor deposition, and sandwiched with alumina plates in a state where platinum wires were in close contact with these electrodes. Thereafter, an electric field of 5 mV / cm was applied while raising and lowering the temperature in the atmosphere, the value of current flowing through each sample was measured, the specific resistance ρ was obtained, and the specific resistance change width Δ was obtained. As was used for measurement generator (address bus Ntesuto R6142) and a digital multimeter (ADVANTEST R6452E).
[0018]
However, the specific resistance ρ and the specific resistance width Δ were obtained from the following equations.
[0019]
[Expression 1]
ρ = (E / I) × (S / h)
E: Applied charge
I: Current flowing through the sample
S: Cross section of sample
h: Sample thickness [0020]
[Expression 2]
Δ = log (ρ MAX / ρ MIN )
ρ MAX : Maximum specific resistance during the heating process
ρ MIN : Minimum specific resistance in the temperature rising process
[Table 1]
Figure 0003841238
[0022]
(Test results)
In Examples 1 to 6 of Bi and Ta 2 O 5 , as shown in Table 1 and FIGS. 1 and 2 , the specific resistance in a normal state is as small as 10 0 to 10 −4 Ω · cm, and the specific resistance change The width was as large as 4-6. In particular, Examples 2 to 4 where x is 0.3 to 0.5 showed the characteristics of an ideal positive temperature coefficient thermistor.
[0023]
【The invention's effect】
As described above, the positive temperature coefficient thermistor material manufactured according to the present invention has a small specific resistance of 10 0 to 10 −4 Ω · cm in a normal state and a relatively wide increase in specific resistance when the temperature rises. It is an excellent one that can be used for large current applications.
[0024]
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between temperature and specific resistance in composites of Examples 1 to 4. FIG.
FIG. 2 is a graph showing the relationship between temperature and specific resistance in the composites of Examples 5 and 6 .

Claims (1)

放電プラズマ焼結を用いて、BiとTaUsing spark plasma sintering, Bi and Ta 22 O 5Five との混合物を複合化してコンポジットとすることを特徴とする正特性サーミスタ材料の製造方法。A method for producing a positive temperature coefficient thermistor material comprising a composite of
JP18525197A 1997-07-10 1997-07-10 Method for manufacturing positive thermistor material Expired - Fee Related JP3841238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18525197A JP3841238B2 (en) 1997-07-10 1997-07-10 Method for manufacturing positive thermistor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18525197A JP3841238B2 (en) 1997-07-10 1997-07-10 Method for manufacturing positive thermistor material

Publications (2)

Publication Number Publication Date
JPH1129358A JPH1129358A (en) 1999-02-02
JP3841238B2 true JP3841238B2 (en) 2006-11-01

Family

ID=16167550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18525197A Expired - Fee Related JP3841238B2 (en) 1997-07-10 1997-07-10 Method for manufacturing positive thermistor material

Country Status (1)

Country Link
JP (1) JP3841238B2 (en)

Also Published As

Publication number Publication date
JPH1129358A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
US6144286A (en) PTCR-resistor
KR20140089334A (en) Semiconductor porcelain composition, positive temperature coefficient element, and heat-generating module
JPH0948874A (en) Electrically and thermally conductive synthetic substance and use of this substance
WO1998011568A1 (en) Ptc thermistor material
WO2003092330A1 (en) Ceramic heater and glow plug having the same
JPH097802A (en) Ptc resistance
JP3841238B2 (en) Method for manufacturing positive thermistor material
JP5765611B2 (en) PTC element and heating module
TWI654624B (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and manufacturing method of positive temperature coefficient resistor
JP2012046372A (en) Ptc element and heat generating module
JP2014099431A (en) Composite ptc thermistor member
CN2760723Y (en) High voltage resistant overcurrent protecting device
JP2534847B2 (en) Ceramic Heater
JP3131071B2 (en) Ceramic heating element
JP4374433B2 (en) Spark plasma sintered body and manufacturing method thereof
JP3178083B2 (en) Barium titanate-based ceramic semiconductor and method for producing the same
JP2971689B2 (en) Grain boundary type semiconductor porcelain capacitor
JPH11106261A (en) Ceramic heater element
WO2015002197A1 (en) Ptc element and heat-generating module
EP0749132A1 (en) Positive temperature coefficient thermistor and thermistor device using it
JPH07105719A (en) Conductive paste and resistor element
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
KR0147970B1 (en) A ceramic composite for a ptc thermister
KR0147969B1 (en) A ceramic composite for ptc thermister
JPH08109063A (en) Ceramic heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees