JP3838717B2 - Magnesium purification method - Google Patents

Magnesium purification method Download PDF

Info

Publication number
JP3838717B2
JP3838717B2 JP33036896A JP33036896A JP3838717B2 JP 3838717 B2 JP3838717 B2 JP 3838717B2 JP 33036896 A JP33036896 A JP 33036896A JP 33036896 A JP33036896 A JP 33036896A JP 3838717 B2 JP3838717 B2 JP 3838717B2
Authority
JP
Japan
Prior art keywords
magnesium
raw material
purity
crucible
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33036896A
Other languages
Japanese (ja)
Other versions
JPH10158753A (en
Inventor
喜志雄 田山
靖 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP33036896A priority Critical patent/JP3838717B2/en
Publication of JPH10158753A publication Critical patent/JPH10158753A/en
Application granted granted Critical
Publication of JP3838717B2 publication Critical patent/JP3838717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、純度99.9%程度の市販金属マグネシウム等から真空蒸留精製により、純度99.9999%以上の高純度マグネシウムを製造する方法と装置に関する。
【0002】
【従来の技術】
一般に金属マグネシウムは、カーナル石やニガリあるいは海水から製造される塩化マグネシウムを脱水させて得る無水塩化マグネシウムや酸化マグネシウムを塩素化してつくる無水塩化マグネシウムを原料として、溶融塩電解法によって工業的に製造されている。
【0003】
この電解溶融法は、鉄製の槽内にアノードとして黒鉛、カソードとして鉄、電解浴としてMgCl2 ・NaCl・KCl液を用い、660〜750℃の電解温度で、電流密度は両極とも0.5〜1.0A/cm2 で、かつ、浴電圧を6〜8Vの電解条件でマグネシウムはこの浴上に浮かび回収される。
【0004】
上記の電解溶融法の他、ピジョン法と呼ばれるフェロシリコンによる還元法も公知であるが、この方法はレトルト中で真空処理して99.7%の蒸留マグネシウムを回分方式で回収するものである。
【0005】
【発明が解決しようとする課題】
上記の電解溶融法や、フェロシリコンによる還元法によって得られる金属マグネシウムの純度は99.0〜99.9%程度であり不純物として含有されるアルミニウム、ケイ素、塩素、鉄、マンガン、はいずれも10ppm 以上含まれていた。
【0006】
上記の金属をさらにゾーン精製法によって精製する手段もあるが、精製後の切断加工の必要性と汚染の危険があることから、精製時の処理量の制約や精製マグネシウムをインゴットにする場合には鋳造時の不純物の混入による汚染の問題があった。
【0007】
したがって本発明の目的は、従来の電解溶融法ではマグネシウムとの完全分離が困難でったアルミニウム、ケイ素、塩素、鉄、マンガン、等を分離できる新規な精製手段を開発することによって純度99.9999%以上の高純度マグネシウムを直接インゴット状で製造できる製造方法と製造装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究の結果、外筒と内筒からなる二重の石英筒で封体した内部に原料マグネシウムが装入される原料るつぼとこれに連接して設けられる回収鋳型を配置して真空蒸留を行い、蒸発したマグネシウムを石英筒面に凝縮させ、これを回収鋳型に回収するようにすれば、従来よりも簡易な構造でしかも精製から鋳造までを一回の連続工程で処理できる上、汚染が少ないので、含有する不純物が1ppm 未満の純度99.9999%以上の高純度マグネシウムが得られることを見いだし本発明に到達した。
【0009】
すなわち本発明は、マグネシウム原料を真空蒸留してマグネシウムを精製する方法において、原料るつぼに装入された原料マグネシウムを温度600〜800℃、真空度1×10-2〜1×10-3Torrで真空蒸留することにより、蒸発させたマグネシウムを該原料るつぼ上方で凝縮させ該原料るつぼ下方の回収鋳型に回収してインゴットとし、さらに前記凝縮後のガスを該回収鋳型の下方で冷却して固化することを特徴とするマグネシウムの精製方法である。
【0010】
【発明の実施の形態】
本発明の高純度マグネシウムの製造装置は、一例として図1の概略図に示す構造とすることができる。すなわち電気炉1内に設置された石英製外筒3内を真空排気装置2により真空排気を行えるよう、上記外筒3内に原料るつぼ5、回収鋳型6、鋳型中央部に設けた吸入台9、吸入台下の冷却トラップ8、これを冷却する水冷フランジ7を脱着可能に連接し、さらに原料るつぼ上面に石英製内筒4を設けて外筒3と共に二重構造となって封体されている。
【0011】
この場合、原料マグネシウムとして市販金属マグネシウム(純度99.3%程度)を原料るつぼ5に適量入れ、電気炉で600℃以上、好ましくは600〜800℃の温度範囲にすると共に、真空度を1×10-2Torr以下、好ましくは1×10-2〜1×10-3Torrの範囲に制御すると原料るつぼ内の原料マグネシウムが融解・蒸発し、該るつぼ5と上部の内筒4との間に落下して、るつぼ底部に連接する回収鋳型6の中に回収される。
【0012】
原料マグネシウム中に含有される不純物のうち、マグネシウムより蒸気圧の低いアルミニウム、ケイ素、カルシウム、クロム、鉄、ニッケル、マンガン、銅、銀、アンチモンは原料るつぼ5内に残留し、逆に蒸気圧の高い、ナトリウム、塩素、カリウム、砒素は凝縮することなく気体状で真空排気装置2によってるつぼ底部に設けられた吸入孔を通って冷却トラップ8内に吸収され、水冷フランジ7の働きにより冷却されて固化する。
【0013】
本発明においては、予め、回収用の鋳型の形状を精製後の次工程で用いる鋳型の形状にしてあるため、従来法のように精製されたマグネシウムを再度鋳造する必要はなく、このため汚染の少ない高純度マグネシウム製品を精製・鋳造の工程を区別することなく一回の処理で製造できる。
【0014】
このようにして得られた高純度マグネシウムをグロー放電質量分析装置で分析したところ、ケイ素、アルミニウム、塩素、カルシウム、クロム、鉄、ニッケル、マンガン、銅、アンチモンが0.2ppm 以下であり、ナトリウム、カリウム、砒素、銀がそれぞれ0.01ppm 以下で、かつガス成分以外の不純物が1ppm 未満の値を示していた。
【0015】
したがって、本発明においては測定対象元素をNa、Al、Si、Cl、K、Ca、Cr、Fe、Ni、Mn、Cu、As、Ag、Sbとし、グロー放電質量分析装置により定量分析を行い、得られた不純物含有量の総和を100%から差し引いて得られる数値が99.9999%以上の場合をもって純度99.9999%以上の高純度マグネシウムと定義した。
【0016】
以下、実施例により本発明をさらに説明するが、本発明の範囲はこれらに限定されるものではない。
【0017】
【実施例1】
図1の高純度マグネシウム製造装置を参照して以下説明する。先ず、純度99.3%の市販金属マグネシウム100gを原料るつぼ5に入れ、回収鋳型6中央部に設置した吸入台9上に固定した後、図1に示すように電気炉1内に装入した。
【0018】
この場合、原料るつぼ5と回収鋳型6の上面には、石英製の外筒3と内筒4とが設けられ、真空排気装置2によって内筒4内部が真空状態となる構造である。
【0019】
真空排気装置2で排気して内筒4の真空度を1×10-2Torrとすると共に、炉温を650℃一定で1時間精製したところ、原料中のマグネシウムはいったん蒸発した後、原料るつぼ5上の内筒4の面に接触して次第に凝縮し始め、粒状になって原料るつぼ5の底部に設けた回収鋳型6の中に落下した。この粒状マグネシウム80gを回収し、その品位を表1に示した。
【0020】
一方、マグネシウムより蒸気圧の高いものはガス状のまま排気装置で吸引され、吸入台9の上部に設けられた吸入孔を通過して、冷却トラップ8上で固化した。この固化物を分析したところ、その主成分はマグネシウムで、ナトリウム、塩素、カリウム、砒素などいずれも蒸気圧の高い物質が多く含まれていることがわかった。併せて原料るつぼ内に残っている金属を分析したところ、その主成分はマグネシウムで、アルミニウム、ケイ素、カルシウム、クロム、鉄、ニッケル、マンガン、銅、銀、などの蒸気圧の低い物質が原料より多く含まれていることがわかった。
【0021】
【表1】

Figure 0003838717
【0022】
【実施例2】
純度99.3%の市販金属マグネシウム100gを原料るつぼ5に入れて、真空度を1×10-3Torr、加熱温度を700℃として実施例1と同様に精製を行い、精製マグネシウム85gを得た。この品位を表1に併せて示した。
【0023】
【比較例1】
比較のため、純度99.3%の市販金属マグネシウムの品位を表1に併せて示した。
【0024】
【発明の効果】
上述のように、本発明の方法に基づく製造装置によれば、原料るつぼに溶解したマグネシウムは蒸発して内筒表面に凝縮し、鋳型に回収されてインゴットを形成するので、従来必要とされていた鋳造や後処理等の複雑な工程に代わって、本発明の簡易な構造の製造装置を用いることにより、精製から鋳造までの一連の工程を汚染の危険が少ない一回の工程で行なえるようになり、従来よりも分離精度が高くしかもコスト低減可能な精製手段を提供できる。
【図面の簡単な説明】
【図1】本発明に係る高純度マグネシウムの製造装置の概要を示す概略断面図である。
【符号の説明】
1 電気炉
2 真空排気装置
3 石英製外筒
4 石英製内筒
5 原料るつぼ
6 回収鋳型
7 水冷フランジ
8 冷却トラップ
9 吸入台[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for producing high-purity magnesium having a purity of 99.9999% or more by vacuum distillation purification from commercially available metal magnesium having a purity of about 99.9%.
[0002]
[Prior art]
In general, magnesium metal is industrially produced by molten salt electrolysis using anhydrous magnesium chloride obtained by dehydrating magnesium chloride produced from carnal stone, bittern or seawater, or anhydrous magnesium chloride produced by chlorination of magnesium oxide. ing.
[0003]
This electrolytic melting method uses graphite as an anode in a steel tank, iron as a cathode, MgCl 2 · NaCl · KCl liquid as an electrolytic bath, an electrolysis temperature of 660 to 750 ° C., and a current density of 0.5 to Magnesium floats on this bath and is recovered under electrolytic conditions of 1.0 A / cm 2 and a bath voltage of 6 to 8V.
[0004]
In addition to the above-described electrolytic melting method, a reduction method using ferrosilicon called a pigeon method is also known, but this method is a vacuum treatment in a retort to recover 99.7% of distilled magnesium in a batch system.
[0005]
[Problems to be solved by the invention]
The purity of metallic magnesium obtained by the above electrolytic melting method or the reduction method using ferrosilicon is about 99.0 to 99.9%, and aluminum, silicon, chlorine, iron and manganese contained as impurities are all 10 ppm. It was included.
[0006]
There is a means to further refine the above metals by zone purification, but there is a need for cutting after purification and the risk of contamination. There was a problem of contamination due to contamination of impurities during casting.
[0007]
Therefore, the object of the present invention is to develop a novel purification means capable of separating aluminum, silicon, chlorine, iron, manganese, etc., which has been difficult to completely separate from magnesium by the conventional electrolytic melting method, thereby purifying 99.9999 in purity. An object of the present invention is to provide a production method and a production apparatus that can produce high-purity magnesium in an amount of at least% directly in an ingot shape.
[0008]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the present inventors have provided a raw material crucible filled with a raw material magnesium inside a double quartz tube made up of an outer tube and an inner tube and connected to this. If the recovered mold is placed and vacuum distilled to condense the evaporated magnesium onto the quartz cylinder surface and collect it in the recovery mold, the structure is simpler than before and the process from refining to casting is performed once. The present invention has been achieved by finding that high-purity magnesium having a purity of 99.9999% or more having an impurity content of less than 1 ppm can be obtained.
[0009]
That is, the present invention relates to a method for purifying magnesium by vacuum distillation of a magnesium raw material, wherein the raw material magnesium charged in the raw material crucible is at a temperature of 600 to 800 ° C. and a vacuum degree of 1 × 10 −2 to 1 × 10 −3 Torr. By vacuum distillation, the evaporated magnesium is condensed above the raw material crucible and collected in a recovery mold below the raw material crucible to form an ingot. Further, the condensed gas is cooled below the recovery template and solidified. This is a method for purifying magnesium.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The high purity magnesium production apparatus of the present invention can have a structure shown in the schematic diagram of FIG. 1 as an example. That is, a raw material crucible 5, a recovery mold 6, and a suction table 9 provided in the center of the mold are provided in the outer cylinder 3 so that the quartz outer cylinder 3 installed in the electric furnace 1 can be evacuated by the evacuation apparatus 2. A cooling trap 8 under the suction table and a water cooling flange 7 for cooling the cooling trap 8 are connected in a detachable manner, and a quartz inner cylinder 4 is provided on the upper surface of the raw material crucible so that it is enclosed in a double structure together with the outer cylinder 3. Yes.
[0011]
In this case, commercially available magnesium metal (purity of about 99.3%) is put in the raw material crucible 5 as the raw material magnesium, and the temperature is set to 600 ° C. or higher, preferably 600 to 800 ° C. in an electric furnace, and the degree of vacuum is 1 ×. When controlled to 10 −2 Torr or less, preferably in the range of 1 × 10 −2 to 1 × 10 −3 Torr, the raw material magnesium in the raw material crucible melts and evaporates, and between the crucible 5 and the upper inner cylinder 4 It falls and is recovered in the recovery mold 6 connected to the bottom of the crucible.
[0012]
Among the impurities contained in the raw material magnesium, aluminum, silicon, calcium, chromium, iron, nickel, manganese, copper, silver, and antimony whose vapor pressure is lower than magnesium remain in the raw material crucible 5, and conversely, the vapor pressure is low. High sodium, chlorine, potassium, and arsenic are in a gaseous state without being condensed, and are absorbed into the cooling trap 8 through the suction hole provided at the bottom of the crucible by the vacuum evacuation device 2 and cooled by the action of the water cooling flange 7. Solidify.
[0013]
In the present invention, since the shape of the recovery mold is previously set to the shape of the mold to be used in the next step after purification, there is no need to re-cast refined magnesium as in the conventional method. A small amount of high-purity magnesium product can be manufactured in a single process without distinguishing the purification and casting processes.
[0014]
The high-purity magnesium thus obtained was analyzed with a glow discharge mass spectrometer. Silicon, aluminum, chlorine, calcium, chromium, iron, nickel, manganese, copper, and antimony were 0.2 ppm or less, sodium, Potassium, arsenic, and silver each had a value of 0.01 ppm or less, and impurities other than gas components showed values of less than 1 ppm.
[0015]
Therefore, in the present invention, the element to be measured is Na, Al, Si, Cl, K, Ca, Cr, Fe, Ni, Mn, Cu, As, Ag, Sb, and quantitative analysis is performed with a glow discharge mass spectrometer. The value obtained by subtracting the total impurity content obtained from 100% was defined as high purity magnesium having a purity of 99.9999% or more when the value obtained was 99.9999% or more.
[0016]
EXAMPLES Hereinafter, although an Example demonstrates this invention further, the scope of the present invention is not limited to these.
[0017]
[Example 1]
This will be described below with reference to the high-purity magnesium production apparatus in FIG. First, 100 g of commercially available metal magnesium having a purity of 99.3% was placed in the raw material crucible 5 and fixed on the suction table 9 installed at the center of the recovery mold 6 and then charged into the electric furnace 1 as shown in FIG. .
[0018]
In this case, a quartz outer cylinder 3 and an inner cylinder 4 are provided on the upper surfaces of the raw material crucible 5 and the recovery mold 6, and the inside of the inner cylinder 4 is evacuated by the vacuum exhaust device 2.
[0019]
When the vacuum of the inner cylinder 4 is evacuated by the vacuum evacuation apparatus 2 to 1 × 10 −2 Torr and the furnace temperature is refined at a constant temperature of 650 ° C. for 1 hour, the magnesium in the raw material is once evaporated and then the raw material crucible. 5 began to condense gradually in contact with the surface of the inner cylinder 4 on the upper surface 5, and became granular and dropped into the recovery mold 6 provided at the bottom of the raw material crucible 5. 80 g of this granular magnesium was recovered and the quality is shown in Table 1.
[0020]
On the other hand, a material having a higher vapor pressure than magnesium was sucked by the exhaust device in a gaseous state, passed through a suction hole provided in the upper part of the suction table 9, and solidified on the cooling trap 8. When this solidified product was analyzed, it was found that the main component was magnesium, and that sodium, chlorine, potassium, arsenic and the like contained many substances with high vapor pressure. In addition, when the metal remaining in the raw material crucible was analyzed, the main component was magnesium, and substances with lower vapor pressure such as aluminum, silicon, calcium, chromium, iron, nickel, manganese, copper, silver, etc. It was found that many were included.
[0021]
[Table 1]
Figure 0003838717
[0022]
[Example 2]
100 g of commercially available metal magnesium having a purity of 99.3% was put into the raw material crucible 5 and purified in the same manner as in Example 1 with a vacuum of 1 × 10 −3 Torr and a heating temperature of 700 ° C. to obtain 85 g of purified magnesium. . This quality is also shown in Table 1.
[0023]
[Comparative Example 1]
For comparison, the quality of commercially available magnesium metal having a purity of 99.3% is also shown in Table 1.
[0024]
【The invention's effect】
As described above, according to the manufacturing apparatus based on the method of the present invention, magnesium dissolved in the raw material crucible evaporates and condenses on the surface of the inner cylinder, and is collected in the mold to form an ingot. Instead of complicated processes such as casting and post-processing, the manufacturing apparatus of the simple structure of the present invention can be used to perform a series of processes from refining to casting in a single process with little risk of contamination. Thus, it is possible to provide a purification means that has higher separation accuracy than conventional ones and can reduce costs.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an outline of an apparatus for producing high-purity magnesium according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric furnace 2 Vacuum exhaust apparatus 3 Quartz outer cylinder 4 Quartz inner cylinder 5 Raw material crucible 6 Recovery mold 7 Water cooling flange 8 Cooling trap 9 Suction stand

Claims (1)

マグネシウム原料を真空蒸留してマグネシウムを精製する方法において、原料るつぼに装入された原料マグネシウムを温度600〜800℃、真空度1×10-2〜1×10-3Torrで真空蒸留することにより、蒸発させたマグネシウムを該原料るつぼ上方で凝縮させ該原料るつぼ下方の回収鋳型に回収してインゴットとし、さらに前記凝縮後のガスを該回収鋳型の下方で冷却して固化することを特徴とするマグネシウムの精製方法。In the method of purifying magnesium by vacuum distillation of magnesium raw material, the raw material magnesium charged in the raw material crucible is vacuum distilled at a temperature of 600 to 800 ° C. and a vacuum degree of 1 × 10 −2 to 1 × 10 −3 Torr. The evaporated magnesium is condensed above the raw material crucible and collected in a recovery mold below the raw material crucible to form an ingot, and the condensed gas is cooled below the recovery template and solidified. Magnesium purification method.
JP33036896A 1996-11-26 1996-11-26 Magnesium purification method Expired - Fee Related JP3838717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33036896A JP3838717B2 (en) 1996-11-26 1996-11-26 Magnesium purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33036896A JP3838717B2 (en) 1996-11-26 1996-11-26 Magnesium purification method

Publications (2)

Publication Number Publication Date
JPH10158753A JPH10158753A (en) 1998-06-16
JP3838717B2 true JP3838717B2 (en) 2006-10-25

Family

ID=18231830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33036896A Expired - Fee Related JP3838717B2 (en) 1996-11-26 1996-11-26 Magnesium purification method

Country Status (1)

Country Link
JP (1) JP3838717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677151B2 (en) 2012-01-19 2017-06-13 Eth Zuerich Process and apparatus for vacuum distillation of high-purity magnesium

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627149B1 (en) 1996-06-21 2003-09-30 Dowa Mining Co., Ltd. High-purity silver wires for use in recording, acoustic or image transmission applications
JP3725621B2 (en) * 1996-06-21 2005-12-14 同和鉱業株式会社 High-purity silver wire for recording or sound or image transmission
KR100526039B1 (en) * 2002-09-10 2005-11-09 인하대학교 산학협력단 Method for purifying magnesium scrap with vacuum distillation
CN102766769B (en) * 2012-07-12 2014-08-06 东莞宜安科技股份有限公司 Method for high-vacuum low-temperature purification of high-purity magnesium and purification device
JP5992244B2 (en) * 2012-08-02 2016-09-14 Jx金属株式会社 Method for producing high purity magnesium and high purity magnesium
CN104674016B (en) * 2015-02-09 2017-04-19 牛强 Method and device for condensing magnesium vapor generated by evaporation and heat absorption of magnesium liquid and coproducing refined magnesium
JP6392274B2 (en) * 2016-07-12 2018-09-19 Jx金属株式会社 Method for producing high purity magnesium and high purity magnesium
EP3388539A1 (en) * 2017-04-11 2018-10-17 Biotronik AG Device and method for the production of purified, in particular high purity, magnesium
CN110791665B (en) * 2019-11-27 2021-11-05 国科镁业科技(河南)有限公司 Application of pure iron filter material in gas-phase magnesium purification and production system comprising same
CN110863118B (en) * 2019-11-27 2021-11-05 国科镁业科技(河南)有限公司 Application of nickel-based filter material in gas-phase magnesium purification and production system comprising same
CN111850329B (en) * 2020-07-23 2023-09-29 西格马(河南)高温科技集团有限公司 Production line equipment and process for preparing high-purity magnesium alloy by continuous vacuum melting
CN115807168B (en) * 2022-11-11 2024-04-09 中国航空工业集团公司西安飞行自动控制研究所 High purity 87 Rb metal recycling device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677151B2 (en) 2012-01-19 2017-06-13 Eth Zuerich Process and apparatus for vacuum distillation of high-purity magnesium
US10551124B2 (en) 2012-01-19 2020-02-04 Eth Zuerich Process and apparatus for vacuum distillation of high-purity magnesium

Also Published As

Publication number Publication date
JPH10158753A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
JP3838717B2 (en) Magnesium purification method
US8157885B2 (en) Continuous production of metallic titanium and titanium-based alloys
JP3838716B2 (en) Purification method of bismuth
JP4538663B2 (en) High-purity metal purification method and purification apparatus
JP3842851B2 (en) Indium purification method
JP2562985B2 (en) Method for obtaining uranium from oxides using the chloride method
JP2006283192A (en) High-purity indium
KR20140037277A (en) Method for producing calcium of high purity
JP3646234B2 (en) Method and apparatus for producing high purity silver
JP3838712B2 (en) Antimony purification method
JP3768332B2 (en) High purity tellurium manufacturing method and manufacturing apparatus thereof
US6932852B2 (en) Method and apparatus for enhanced purification of high-purity metals
US3397056A (en) Separation of aluminum from impure aluminum sources
JP5925384B2 (en) Method for producing high purity manganese and high purity manganese
JP3838743B2 (en) Method for producing high purity cadmium
US2470306A (en) Process for the production and refining of metals
JP3838713B2 (en) Zinc purification method
JP3838744B2 (en) Method for producing high purity selenium
WO2022103295A1 (en) Method for producing high-purity metallic scandium
JPH0213032B2 (en)
RU2370558C1 (en) Method of production of high purity cobalt for sputtering targets
RU2583574C1 (en) Method of producing high-purity gallium
RU2281979C2 (en) Method of cleaning bismuth
NO772964L (en) PROCEDURE AND APPLIANCE FOR CLEANING ALUMINUM ALLOYS
JP6392274B2 (en) Method for producing high purity magnesium and high purity magnesium

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees