JP3836730B2 - 偏波保存フォトニッククリスタルファイバ及びその製造方法 - Google Patents

偏波保存フォトニッククリスタルファイバ及びその製造方法 Download PDF

Info

Publication number
JP3836730B2
JP3836730B2 JP2002019315A JP2002019315A JP3836730B2 JP 3836730 B2 JP3836730 B2 JP 3836730B2 JP 2002019315 A JP2002019315 A JP 2002019315A JP 2002019315 A JP2002019315 A JP 2002019315A JP 3836730 B2 JP3836730 B2 JP 3836730B2
Authority
JP
Japan
Prior art keywords
polarization
photonic crystal
core
fiber
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002019315A
Other languages
English (en)
Other versions
JP2003222752A (ja
Inventor
哲也 山本
正俊 田中
盛行 藤田
悟基 川西
和宣 鈴木
寛和 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002019315A priority Critical patent/JP3836730B2/ja
Publication of JP2003222752A publication Critical patent/JP2003222752A/ja
Application granted granted Critical
Publication of JP3836730B2 publication Critical patent/JP3836730B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、偏波保存フォトニッククリスタルファイバ(以下「偏波保存PFC」という)に関する。
【0002】
【従来の技術】
フォトニッククリスタルファイバは、ファイバ中心をなす中実のコアと、そのコアを被覆するように設けられファイバ横断面に三角格子を形成してファイバ半径方向にフォトニッククリスタル構造を構成するように配設された複数の細孔を有するクラッドとを備えた光ファイバであり、種々の分野での適用が提案されている。
【0003】
その中の一つとして、図18(a)に示すように、コアを楕円形状とすることにより、その長軸方向と短軸方向とで伝搬定数を異ならしめた偏波保存PCFがある。
【0004】
また、Optic letters 2000.9 Vol.25 NO.18には、図18(b)の示すように、クラッドに三角格子を形成するように複数の細孔が配設されており、コアに隣接した6つの細孔のうちコアを挟んで対向した一対を含む直線上に配設された細孔のみを小孔径のものとすることにより、小孔径の細孔が並ぶ方向とそれに直交する方向とで偏波モードの伝搬定数を異ならしめた偏波保存PCFが開示されている。このような偏波保存PCFでは、10-3オーダーのモード複屈折率を実現することが可能であり、これは偏波保存ファイバの代表であるPANDAファイバと比較して一桁近く大きく、偏波保存性能が極めて優れる。
【0005】
さらに、OFC2001.TuM2 2001.3には、図18(c)に示すように、クラッドに三角格子を形成するように複数の細孔が配設されており、コアに隣接した6つの細孔のうちコアを挟んで対向した一対を他の細孔よりも大孔径のものとすることにより両大孔径の細孔を結ぶ方向とそれに直交する方向とで偏波モードの伝搬定数を異ならしめ、また、その大孔径の細孔のみを三角格子を形成する位置よりも細孔ピッチの8割の長さだけファイバ半径方向内向きにずらして配設することにより、モード複屈折率を高めた偏波保存PCFが開示されている(図中のコアに示されているのは光強度の分布である)。この偏波保存PCFでは、モード複屈折率が1.5×10-3と計算されており、大孔径の細孔が対向する方向のモードフィールド径に対するそれに直交する方向のモードフィールド径の比であるアスペクト比が図よりおおよそ2.0以上であると推測できる。
【0006】
【発明が解決しようとする課題】
今日、WDM通信において、偏波保存ファイバは、LD光源(レーザダイオード光源)とLN変調器(リチウムナイオベイト変調器)とを繋ぐピグテールとして使用されており、また、将来、SC光源(スーパーコンチニウム光源)とフィルタとを備えたAWG(アレイ導波路)で分波するような場合、SC光源とAWGとを繋ぐピグテールとして、さらには、AWGとLN変調器とを繋ぐピグテールとして使用されると考えられる。
【0007】
ところで、LN変調器には、導波路としてアスペクト比が1.5であるTi拡散導波路が用いられており、また、AWGには、導波路としてアスペクト比が1.0に近い石英ガラス系導波路が用いられている。
【0008】
従って、上記後者の文献に開示された偏波保存PCFでは、高いモード複屈折率を有するものの、アスペクト比が高いためにLN変調器のTi拡散導波路やAWGの石英ガラス系導波路とモードマッチしないという問題がある。
【0009】
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、LN変調器のTi拡散導波路やAWGの石英ガラス系導波路等とのモードマッチが可能な偏波保存PCF及びその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、2つの偏波モードの方向のうち一方のモードフィールド径に対する他方のモードフィールド径の比であるアスペクト比を1.0に近づくように、細孔を三角格子を形成する位置からオフセットして配設したものである。
【0011】
具体的には、ファイバ中心をなす中実のコアと、該コアを被覆するように設けられファイバ横断面に三角格子を形成してファイバ半径方向にフォトニッククリスタル構造を構成するように配設された複数の細孔を有するクラッドと、を備え、該クラッドにおける該コアに隣接した細孔が、該コアを挟んで対をなして配設された大孔径の細孔と、該コアを挟んで対をなして配設された小孔径の細孔と、からなることにより、光伝搬領域であるモードフィールドがファイバ横断面において相互に直交し且つ伝搬定数が異なる2つの偏波モードを有するように構成された偏波保存PCFを前提とする。そして、上記コアに隣接した大孔径の細孔及び小孔径の細孔のうち少なくともいずれか一方は、上記モードフィールドにおける上記2つの偏波モードの方向のうち一方のモードフィールド径に対する他方のモードフィールド径の比であるアスペクト比が1.0に近づく向きに、上記三角格子を形成する位置からずれて配設されていることを特徴とする。
【0012】
上記の構成によれば、高いモード複屈折率を得ることができるのに加え、大孔径の細孔及び小孔径の細孔のうち少なくともいずれか一方が三角格子を形成する位置からずれて配設され、アスペクト比が1.0に近づくようにされているので、LN変調器のTi拡散導波路やAWGの石英ガラス系導波路等のアスペクト比と近いものとなり、それらとのモードマッチが可能となる。
【0013】
ここで、本出願において、「アスペクト比」とは、2つの偏波モードの方向のうち一方のモードフィールド径と他方のモードフィールド径とが等しい場合を除いて、小さい方を一方のモードフィールド径、大きい方を他方のモードフィールド径とする。従って、アスペクト比は常に1.0以上となる。
【0014】
細孔のずれの大きさは、通常、格子ピッチをΛとすると0.1Λ〜0.9Λの範囲である。
【0015】
偏波保存PCFの場合、通常、10-3以上のモード複屈折率を得ることができ、また、そのため100mでのクロストークが−30dB以下と非常に小さい。
【0016】
本発明の上記アスペクト比は、一般的に存在する導波路とのモードマッチを考慮すれば、1.0以上で且つ2.0よりも小さいことが好ましく、また、アスペクト比は、アスペクト比が1.5であるTi拡散導波路及びアスペクト比が1に近い石英ガラス系導波路を考慮すれば、1.0以上で且つ1.7以下であることがより好ましい。
【0017】
本発明は、上記コアに隣接した大孔径の細孔又は小孔径の細孔のみが上記三角格子を形成する位置からずれて配設されている構成であってもよい。かかる構成によれば、クラッドのフォトニッククリスタル構造が大きく崩れることがない。
【0018】
本発明の具体的な構成としては、上記コアに隣接した大孔径の細孔が上記三角格子を形成する位置からファイバ半径方向外向きにずれて配設されているものや、上記コアに隣接した小孔径の細孔が上記三角格子を形成する位置からファイバ半径方向内向きにずれて配設されているものを挙げることができる。
【0019】
本発明は、ファイバ横断面に、上記コアを挟んで対向するように配設され上記コアに隣接した大孔径の細孔を含む大孔径の細孔群を有する一対の大孔径細孔領域と、上記コアを挟んで対向するように配設され上記コアに隣接した小孔径の細孔を含む小孔径の細孔群を有する一対の小孔径細孔領域と、の4つの領域が形成されており、上記大孔径細孔領域の各細孔及び小孔径細孔領域の各細孔のうち少なくともいずれか一方が上記三角格子を形成する位置からずれて配設されている構成であってもよい。
【0020】
その具体的な構成としては、上記大孔径細孔領域の各細孔が上記三角格子を形成する位置からファイバ半径方向外向きにずれて配設されているものや、上記小孔径領域の各細孔が上記三角格子を形成する位置からファイバ半径方向内向きにずれて配設されているものを挙げることができる。
【0021】
以上のような偏波保存PCFは、
石英製のロッド材にファイバ横断面の孔パタンに対応するようにロッド軸方向に延びる複数の孔を形成して母材を形成する母材形成工程と、
上記母材を線引き加工により細径化する線引き工程と、
を経て製造することができる。
【0022】
この製造方法において、上記母材の複数の孔を封止した状態で線引き加工するようにしてもよい。このようにすれば、線引き加工時の線引き張力によって母材の孔を押し潰す方向に作用する力が孔内の圧力と均衡し、孔が押し潰されることなく線引き加工を行うことができる。ここで、封止とは、母材の複数の孔への外気の進入を阻止する手段全てを意味する。
【0023】
その場合、複数の孔の封止前に、その複数の孔の内壁の不純物を除去する不純物除去処理を施すことが好ましい。このようにすれば、母材の孔内の不純物を除去することができるので、製造される偏波保存PCFは低損失なものとなる。不純物除去処理としては、フッ化水素酸によるエッチング処理や塩素ガスに晒すことにより水酸基を除去する塩素ガス処理等を挙げることができる。
【0024】
また、上記偏波保存PCFであって、クラッドを被覆するように設けられた被覆部を備えたものは、
石英製のロッド材に上記ファイバ横断面の孔パタンに対応するようにロッド軸方向に延びる複数の孔を形成する穿孔工程と、
上記複数の孔を形成したロッド材をロッド軸方向に加熱延伸することにより細径化して母材本体を形成する母材本体形成工程と、
上記母材本体と上記被覆部になる石英製の被覆部形成材とで母材を構成し、該母材を線引き加工により細径化する線引き工程と、
を経て製造することもできる。
【0025】
この場合、上記母材本体を石英製の筒状の被覆部形成材内に配置してそれらで母材を構成し、該母材を線引き加工により該母材本体と該被覆部形成材とを一体化させつつ細径化するようにしても、上記母材本体の外周に石英系材料を堆積一体化させることにより上記被覆部になる被覆部形成材を形成してそれらで母材を構成し、該母材を線引き加工により細径化するようにしてもよい。
【0026】
この製造方法において、上記母材本体の複数の孔を封止した状態で線引き加工するようにしてもよい。このようにすれば、線引き加工時の線引き張力によって母材本体の孔を押し潰す方向に作用する力が孔内の圧力と均衡し、孔が押し潰されることなく線引き加工を行うことができる。ここで、封止とは、母材本体の複数の孔への外気の進入を阻止する手段全てを意味する。
【0027】
その場合、複数の孔の封止前に、その複数の孔の内壁の不純物を除去する不純物除去処理を施すことが好ましい。このようにすれば、母材本体の孔内の不純物を除去することができるので、製造される偏波保存PCFは低損失なものとなる。不純物除去処理としては、フッ化水素酸によるエッチング処理や塩素ガスに晒すことにより水酸基を除去する塩素ガス処理等を挙げることができる。
【0028】
また、いずれの製造方法においても、上記石英製のロッド材を水酸基含有量が1ppm以下の無水合成ガラスで形成されたものとすることが好ましい。このようにすれば、製造される偏波保存PCFに含まれる水酸基の数が少なく低損失なものとなる。
【0029】
【発明の効果】
以上説明したように、本発明によれば、LN変調器のTi拡散導波路やAWGの石英ガラス系導波路等のアスペクト比と近いものとなり、それらとのモードマッチが可能となる。
【0030】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0031】
(実施形態1)
<偏波保存PCFの構成>
図1は、本発明の実施形態1に係る偏波保存PCF20を示す。図2は、その横断面における中心部分を示す。
【0032】
この偏波保存PCF20は、石英(SiO2)で形成されたものであって、ファイバ中心をなす中実のコア21a及びそのコア21aを被覆するように設けられたクラッド21bからなるファイバ本体21と、ファイバ本体21のクラッド21bをさらに被覆するように設けられた被覆部22とで構成されている。
【0033】
クラッド21bには、複数の細孔が配設されており、それらがファイバ横断面において三角格子を形成してファイバ半径方向にフォトニッククリスタル構造を構成している。
【0034】
ファイバ横断面において、コア21aに隣接した6つの細孔のうち、コア21aを挟んで対向するように配設された一対の細孔21c’は他の細孔21cよりも大孔径のものである一方、コア21aを挟んで対向するように配設された他の二対の細孔21cはコア21aに隣接したもの以外の細孔21cと同径の小孔径のものである。これによって、偏波保存PCF20が光伝搬領域であるモードフィールドがファイバ横断面において相互に直交し且つ伝搬定数が異なる2つの偏波モードを有するものとなっている。
【0035】
そして、大孔径の細孔21c’は、図2に仮想線で示す三角格子を形成する位置からファイバ半径方向外向き、すなわち、コア21aから遠ざかる向きにずれて配設されている。この配設位置のずれの向きは、モードフィールドにおける2つの偏波モードの方向のうち一方のモードフィールド径に対する他方のモードフィールド径の比であるアスペクト比が1.0に近づく向きである。このように、三角格子を形成する位置からずれて配設されているのは大孔径の細孔21c’のみである。
【0036】
この偏波保存PCF20は、アスペクト比が1.0以上で且つ2.0より小さい(好ましくは1.0以上で且つ1.7以下)。
【0037】
以上の構成の偏波保存PCF20によれば、高いモード複屈折率を得ることができるのに加え、大孔径の細孔21c’が三角格子を形成する位置からファイバ半径方向外向きにずれて配設されているので、それによってアスペクト比が下げられるので、ファイバLN変調器のTi拡散導波路やAWGの石英ガラス系導波路等のアスペクト比と近いものとなり、それらとのモードマッチが可能となる。
【0038】
また、大孔径の細孔21c’のみが三角格子を形成する位置からずれて配設されているので、クラッド21bのフォトニッククリスタル構造が大きく崩れることがない。
【0039】
<偏波保存PCFの製造方法>
次に、本発明の実施形態1に係る偏波保存PCF20の製造方法を工程の順を追って説明する。
【0040】
−準備工程−
図3に示すように、石英製の円柱のロッド材1を準備する。このロッド材1として、水酸基含有量が1ppm以下の無水合成ガラスで形成されたものを用いる。
【0041】
−穿孔工程−
図3に示すように、準備したロッド材1に対し、中心軸部分をコア形成部1aとして中実のまま残し、そのコア形成部1aを囲うようにロッド軸方向に延びる貫通した孔1cを複数配設することによりクラッド形成部1bを形成する。これらの孔1cは、上記偏波保存PCF20のクラッド21bに構成された細孔パターンが形成されるように配設する。孔の形成は、例えば、ドリルによる穿孔加工、棒状の研磨具による粗仕上げ、中仕上げ、最終仕上げ加工及びブラシと酸化セリウム研磨材とによる最終研磨加工により行う。
【0042】
−母材本体形成工程−
コア形成部1a及びクラッド形成部1bを形成したロッド材1を電気炉延伸器にセットし、図4に示すように、ロッド材1をロッド延伸用ヒータ2で加熱すると共に延伸して細径化した母材本体3を形成する。このとき、ロッド材1が細径化された母材本体3では、ロッド材1のものより孔径及び孔間隔が縮小された複数の孔3cが保持され、これに伴いコア形成部3a及びクラッド形成部3bがロッド材1のものより縮小されたものとなる。
【0043】
−不純物除去処理工程−
母材本体3をフッ化水素酸に浸漬して表面をエッチングし、母材本体3表面に付着した金属等の不純物を除去する。
【0044】
次いで、図5に示すように、母材本体3の両端にそれぞれ補助パイプ4を溶着した後、1000〜1200℃の温度雰囲気下で、一方の補助パイプ4に塩素ガスを送り、それを母材本体3の孔3cに流通させ、他方の補助パイプ4から排出する塩素ガス処理を行うことにより、孔3cの内壁に形成された水酸基を除去する。
【0045】
−封止工程−
塩素ガス処理を行った後、図6に示すように、直ちに両方の補助パイプ4の端を加熱して閉じ、母材本体3の孔3cの両端を封止した状態にする。この際、孔内に塩素ガスが封入されるようにしてもよい。
【0046】
−線引き工程−
図7に示すように、母材本体3を石英製の筒状の被覆部形成材12内に配置してそれらで母材13を構成し、その母材13を線引き用ヒータ11で加熱すると共に延伸する線引き加工により母材本体3と被覆部形成材12とを一体化させつつ細径化して偏波保存PCF20を製造する。この際、母材本体3と被覆部形成材12との間の空隙内を負圧に減圧する。
【0047】
母材本体を被覆部形成材と加熱一体化させて母材を構成した後に線引き加工する場合、その加熱一体化の過程で孔の孔径の変動を生じる虞があるが、以上のような偏波保存PCF20の製造方法によれば、母材本体3と被覆部形成材12とを線引き時に一体化するようにしているので、かかる孔径の変動を防止することができる。
【0048】
また、線引き加工時に、母材本体3と被覆部形成材12との間の空隙内を負圧に減圧し、ファイバ本体21と被覆部22との間への空気の閉じ込めが防がれるので、製造される偏波保存PCF20の伝送損失がかかる空気の閉じ込めにより高くなることを防止することができる。
【0049】
以上のような偏波保存PCF20の製造方法によれば、複数の孔1cを形成したロッド材1を加熱延伸して母材本体3を形成するので、ロッド材1の段階で有する孔径及び孔間隔の誤差が母材本体3の段階で縮小され、高寸法精度の偏波保存PCF20を製造することができる。
【0050】
また、母材本体3の複数の孔3cを封止した状態で線引き加工するようにしているので、線引き加工時の線引き張力によって母材本体3の孔3cを押し潰す方向に作用する力が孔内の圧力と均衡し、孔3cが押し潰されることなく線引き加工を行うことができる。
【0051】
さらに、石英製の円柱のロッド材1として水酸基含有量が1ppm以下の無水合成ガラスで形成されたものを用いており、しかも、母材本体3の複数の孔3cの封止前に、母材本体3表面の金属等を除去するフッ化水素酸によるエッチング処理及び孔3cの内壁の水酸基を除去するための塩素ガス処理を施しているので、低損失の偏波保存PCF20を製造することができる。
【0052】
<実験1>
以下の実施例1及び比較例1の偏波保存PCFを作製し、それぞれのアスペクト比を求めた。
【0053】
−実施例1−
VADにより作成した直径45mmの無水合成石英のロッド材に、図8(a)に示す孔パターンの孔をあけた後、それを直径6mmとなるまで延伸して母材本体を形成した。このとき、小孔径の細孔21cとなるものの孔径D1を1.4mm、大孔径の細孔21c’となるものの孔径D2を3.9mm、小孔径の細孔21cとなるものの孔間のピッチP1を3.9mm、及びロッド中心から大孔径の細孔21c’となるものまでのピッチP2を4.7mmとした。母材本体の孔内部を塩素ガス処理して両端を封止した後、それを外径25mmで内孔径8mmの石英ガラス管の中心に配置し、これを母材としてファイバ径125μmに線引き加工して作製された偏波保存PCF20を実施例1とした。
【0054】
作製された実施例1の偏波保存PCF20の構成は、小孔径の細孔21cの孔径d1が1.0μm、大孔径の細孔21c’の孔径d2が2.7μm、小孔径の細孔21c間の孔ピッチΛ1が2.7μm及びファイバ中心から大孔径の細孔21c’までのピッチΛ2が3.2μm(すなわち、大孔径の細孔21c’が三角格子を形成する位置からファイバ半径方向外向きに0.19Λ1ずらして配設されている。)であった。この偏波保存PCF20について、波長1.55μmで光強度分布を測定してシングルモード伝送を確認し、光強度が中心の最大値の1/e2となる径を測定した(光強度分布がガウシアン分布である場合、光強度が中心の最大値の1/e2となる径がモードフィールド径となる)。この結果、長径が4.4μm、短径が3.5μmであり、従って、アスペクト比が1.26であった。また、モード複屈折率は1.6×10-3であり、高い偏波保存性を示した。以上の特性を表1に示す。
【0055】
【表1】
Figure 0003836730
【0056】
−比較例1−
小孔径の細孔210cとなるものの孔間のピッチP1及びロッド中心から大孔径の細孔210c’となるものまでのピッチP2のいずれをもを3.9mmとし、実施例1の場合と同様にして作製した偏波保存PCF200を比較例1とした。
【0057】
作製された比較例1の偏波保存PCF200の構成は、図8(b)に示すように、小孔径210cの細孔間の孔ピッチΛ1及びファイバ中心から大孔径の細孔210c’までのピッチΛ2のいずれもが2.7μmであることを除いては実施例1と同一であった。波長1.55μmで光強度分布を測定し、シングルモード伝送を確認した。この偏波保存PCF200について、波長1.55μmで光強度分布を測定してシングルモード伝送を確認し、光強度が中心の最大値の1/e2となる径を測定した。この結果、長径が4.4μm、短径が2.9μmであり、従って、アスペクト比が1.52であった。また、モード複屈折率は1.7×10-3であり、実施例1と同等の高い偏波保存性を示した。以上の特性を表2に示す。
【0058】
【表2】
Figure 0003836730
【0059】
−実験結果−
上記のように、アスペクト比は、大孔径の細孔21c’を三角格子を形成する位置からずらして配設した実施例1の方が、大孔径の細孔210c’を三角格子を形成する位置に配設した比較例1よりも小さい。
【0060】
(実施形態2)
<偏波保存PCFの構成>
図9は、本発明の実施形態2に係る偏波保存PCF20を示す。なお、実施形態1と同一部分は同一符号で示す。
【0061】
この偏波保存PCF20では、ファイバ横断面において、コア21aに隣接した6つの細孔のうち、コア21aを挟んで対向するように配設された一対の細孔21c’は他の細孔21cよりも大孔径のものである一方、コア21aを挟んで対向するように配設された他の二対の細孔21cはコア21aに隣接したもの以外の他の細孔21cと同径の小孔径のものである。これによって、偏波保存PCF20が光伝搬領域であるモードフィールドがファイバ横断面において相互に直交し且つ伝搬定数が異なる2つの偏波モードを有するものとなっている。
【0062】
そして、コア21aに隣接した大孔径の細孔21c’は、図9に仮想線で示す三角格子を形成する位置からファイバ半径方向外向き、すなわち、コア21aから遠ざかる向きにずれて配設されている。この配設位置のずれの向きは、モードフィールドにおける2つの偏波モードの方向のうち一方のモードフィールド径に対する他方のモードフィールド径の比であるアスペクト比が1.0に近づく向きである。また、2つの大孔径の細孔21c’を結ぶ線上にある、それらのそれぞれの外側の小孔径の細孔21cもまた、図9に仮想線で示す三角格子を形成する位置からファイバ半径方向外向き、すなわち、コア21aから遠ざかる向きにずれて配設されている。
【0063】
以上の構成の偏波保存PCF20では、大孔径の細孔21c’の孔径が大きい場合等、これを三角格子を形成する位置からずらして配設した際に、大孔径の細孔21c’がその外側にある小孔径の細孔21cと干渉するのが防がれる。
【0064】
その他の構成、作用及び効果、並びに製造方法は実施形態1と同一である。
【0065】
<実験2>
以下の実施例2及び比較例2の偏波保存PCFを作製し、それぞれのアスペクト比を求めた。
【0066】
−実施例2−
VADにより作成した直径45mmの無水合成石英のロッド材に、図10(a)に示す孔パターンの孔をあけた後、それを直径6mmとなるまで延伸して母材本体を形成した。このとき、小孔径の細孔21cとなるものの孔径D1を2.7mm、大孔径の細孔21c’となるものの孔径D2を6.7mm、小孔径の細孔21cとなるものの孔間のピッチP1を5.8mm、及びロッド中心から大孔径の細孔21c’となるものまでのピッチP2を7.0mmとした。母材本体の孔内部を塩素ガス処理して両端を封止した後、それを外径25mmで内孔径8mmの石英ガラス管の中心に配置し、これを母材としてファイバ径125μmに線引き加工して作製された偏波保存PCF20を実施例2とした。
【0067】
作製された実施例2の偏波保存PCF20の構成は、小孔径の細孔21cの孔径d1が1.9μm、大孔径の細孔21c’の孔径d2が4.7μm、小孔径の細孔21c間の孔ピッチΛ1が4.0μm及びファイバ中心から大孔径の細孔21c’までのピッチΛ2が4.8μm(すなわち、大孔径の細孔21c’及びその外側の小孔径の細孔21cが、それぞれ三角格子を形成する位置からファイバ半径方向外向きに0.20Λ1ずらして配設されている。)であった。この偏波保存PCF20について、波長1.55μmで光強度分布を測定してシングルモード伝送を確認し、光強度が中心の最大値の1/e2となる径を測定した。この結果、長径が6.1μm、短径が4.4μmであり、従って、アスペクト比が1.39であった。また、モード複屈折率は1.4×10-3であり、実施例1と比較すると若干低いが、モードフィールド径が大きいので他の光ファイバとの接続性に優れるといえる。以上の特性を表3に示す。
【0068】
【表3】
Figure 0003836730
【0069】
−比較例2−
小孔径の細孔210cとなるものの孔間のピッチP1及びロッド中心から大孔径の細孔210c’となるものまでのピッチP1のいずれをもを5.8mmとし、実施例1の場合と同様にして作製した偏波保存PCF200を比較例2とした。
【0070】
作製された比較例2の偏波保存PCF200の構成は、図10(b)に示すように、小孔径の細孔210c間の孔ピッチΛ1及びファイバ中心から大孔径の細孔210c’までのピッチΛ2のいずれもが4.0μmであることを除いては実施例1と同一であった。この偏波保存PCF200について、波長1.55μmで光強度分布を測定してシングルモード伝送を確認し、光強度が中心の最大値の1/e2となる径を測定した。この結果、長径が6.1μm、短径が3.5μmであり、従って、アスペクト比が1.71であった。また、モード複屈折率は1.5×10-3であり、実施例2と同等の性能を示した。以上の特性を表4に示す。
【0071】
【表4】
Figure 0003836730
【0072】
−実験結果−
上記のように、アスペクト比は、大孔径の細孔21c’及びその外側の小孔径の細孔21cを三角格子を形成する位置からずらして配設した実施例2の方が、大孔径の細孔210c’を三角格子を形成する位置に配設した比較例2よりも小さい。
【0073】
(実施形態3)
<偏波保存PCFの構成>
図11は、本発明の実施形態3に係る偏波保存PCF20を示す。なお、実施形態1と同一部分は同一符号で示す。
【0074】
この偏波保存PCF20では、ファイバ横断面において、コア21aに隣接した6つの細孔のうち、コア21aを挟んで対向するように配設された一対の細孔21cを結ぶ直線上にある細孔は他の細孔よりも小孔径のものである一方、コア21aを挟んで対向するように配設された他の二対の細孔21c’を含むその他の細孔は大孔径のものである。また、ファイバ横断面において、コア21aを挟んで対向するように配設されコア21aに隣接した大孔径の細孔21c’を含む大孔径の細孔群を有する一対の領域が大孔径細孔領域31を構成している一方、コア21aを挟んで対向するように配設されコア21aに隣接した小孔径の細孔21cを含む小孔径の細孔群を有する一対の領域が小孔径細孔領域32を構成している。以上の構成によって、偏波保存PCF20が光伝搬領域であるモードフィールドがファイバ横断面において相互に直交し且つ伝搬定数が異なる2つの偏波モードを有するものとなっている。
【0075】
そして、コア21aに隣接した小孔径の細孔21cは、図11に仮想線で示す三角格子を形成する位置からファイバ半径方向内向き、すなわち、コア21aに近づく向きにずれて配設されている。この配設位置のずれの向きは、モードフィールドにおける2つの偏波モードの方向のうち一方のモードフィールド径に対する他方のモードフィールド径の比であるアスペクト比が1.0に近づく向きである。また、コア21aに隣接した小孔径の細孔21cを結ぶ線上にある、それらの外側の小孔径の細孔21cもまた、図9に仮想線で示す三角格子を形成する位置からファイバ半径方向内向き、すなわち、コア21aに近づく向きにずれて配設されている。つまり、大孔径細孔領域31の各細孔21c’が三角格子を形成する位置に配設されている一方、小孔径細孔領域32の各細孔21cが三角格子を形成する位置からファイバ半径方向外向きにずれて配設されている。
【0076】
以上の構成の偏波保存PCF20は、クラッド21bに構成されたフォトニッククリスタル構造の孔間隔に対する細孔の孔径の比が全体的に大きいためにゼロ分散波長が短波長側にシフトしたものである。
【0077】
その他の構成、作用及び効果、並びに製造方法は実施形態1と同一である。
【0078】
<実験3>
以下の実施例3及び比較例3の偏波保存PCFを作製し、それぞれのアスペクト比を求めた。
【0079】
−実施例3−
VADにより作成した直径45mmの無水合成石英のロッド材に、図12(a)に示す孔パターンの孔をあけた後、それを直径6mmとなるまで延伸して母材本体を形成した。このとき、小孔径の細孔21cとなるものの孔径D1を1.0mm、大孔径の細孔21c’となるものの孔径D2を2.3mm、小孔径の細孔21cとなるものの孔間のピッチP1を3.3mm、及びロッド中心から大孔径の細孔21c’となるものまでのピッチP2を2.8mmとした。母材本体の孔内部を塩素ガス処理して両端を封止した後、それを外径25mmで内孔径8mmの石英ガラス管の中心に配置し、これを母材としてファイバ径125μmに線引き加工して作製された偏波保存PCF20を実施例3とした。
【0080】
作製された実施例3の偏波保存PCF20の構成は、小孔径の細孔21cの孔径d1が0.7μm、大孔径の細孔21c’の孔径d2が1.6μm、小孔径の細孔21c間の孔ピッチΛ1が2.3μm及びファイバ中心から大孔径の細孔21c’までのピッチΛ2が2.0μm(すなわち、小孔径の細孔21cが三角格子を形成する位置からファイバ半径方向内向きに0.13Λ1ずれて配設されている。)であった。そして、アスペクト比は1.10であった。また、モード複屈折率は1.6×10-3であり、高い偏波保存性を示した。以上の特性を表5に示す。
【0081】
【表5】
Figure 0003836730
【0082】
−比較例3−
小孔径の細孔210cとなるものの孔間のピッチP1及びロッド中心から大孔径の細孔210c’となるものまでのピッチP2のいずれをもを3.3mmとし、実施例1の場合と同様にして作製した偏波保存PCF200を比較例3とした。
【0083】
作製された比較例3の偏波保存PCF200の構成は、図12(b)に示すように、小孔径の細孔210c間の孔ピッチΛ1及びファイバ中心から大孔径の細孔210c’までのピッチΛ2のいずれもが2.3μmであることを除いては実施例1と同一であった。そして、アスペクト比は1.30であった。また、モード複屈折率は1.6×10-3であり、実施例3と同等の性能を示した。以上の特性を表6に示す。
【0084】
【表6】
Figure 0003836730
【0085】
−実験結果−
上記のように、アスペクト比は、小孔径の細孔21cを三角格子を形成する位置からずらして配設した実施例3の方が、小孔径の細孔210cを三角格子を形成する位置に配設した比較例3よりも小さい。
【0086】
(実施形態4)
<偏波保存PCFの構成>
図13は、本発明の実施形態4に係る偏波保存PCF20を示す。なお、実施形態1と同一部分は同一符号で示す。
【0087】
この偏波保存PCF20では、ファイバ横断面において、コア21aに隣接した6つの細孔のうち、コア21aを挟んで対向するように配設された一対の細孔21c’を結ぶ直線上にある細孔は他の細孔よりも大孔径のものである一方、コア21aを挟んで対向するように配設された他の二対の細孔21cを含むその他の細孔は小孔径のものである。また、ファイバ横断面において、コア21aを挟んで対向するように配設されコア21aに隣接した大孔径の細孔21c’を含む大孔径の細孔群を有する一対の領域が大孔径細孔領域31を構成している一方、コア21aを挟んで対向するように配設されコア21aに隣接した小孔径の細孔21cを含む小孔径の細孔群を有する一対の領域が小孔径細孔領域32を構成している。以上の構成によって、偏波保存PCF20が光伝搬領域であるモードフィールドがファイバ横断面において相互に直交し且つ伝搬定数が異なる2つの偏波モードを有するものとなっている。
【0088】
そして、コア21aに隣接した大孔径の細孔21c’は、図13に仮想線で示す三角格子を形成する位置からファイバ半径方向内向き、すなわち、コア21aから遠ざかる向きにずれて配設されている。この配設位置のずれの向きは、モードフィールドにおける2つの偏波モードの方向のうち一方のモードフィールド径に対する他方のモードフィールド径の比であるアスペクト比が1.0に近づく向きである。また、コア21aに隣接した大孔径の細孔21c’を結ぶ線上にある、それらの外側の大孔径の細孔21c’もまた、図13に仮想線で示すように三角格子を形成する位置からファイバ半径方向外向き、すなわち、コア21aから遠ざかる向きにずれて配設されている。つまり、小孔径細孔領域32の各細孔21cが三角格子を形成する位置に配設されている一方、大孔径細孔領域31の各細孔21c’が三角格子を形成する位置からファイバ半径方向外向きにずれて配設されている。
【0089】
実施形態1及び2のものでは、コア21aに隣接した大孔径の細孔21c’の外側に小孔径の細孔21cがあるので、長波長の光がその方向に放射してしまい長波長の伝送が遮断される虞があるが、以上の構成の偏波保存PCF20では、コア21aに隣接した大孔径の細孔21c’の外側にさらに大孔径の細孔21c’があるので、かかる不都合が解消される。
【0090】
その他の構成、作用及び効果、並びに製造方法は実施形態1と同一である。
【0091】
(その他の実施形態)
上記実施形態1〜4では、母材本体3を石英製の筒状の被覆部形成材12内に配置してそれらで母材13を構成し、その母材13を線引き用ヒータ11で加熱すると共に延伸する線引き加工により母材本体3と被覆部形成材12とを一体化させつつ細径化して偏波保存PCF20を製造したが、特にこれに限定されるものではなく、図14に示すように、孔3cが封止された母材本体3の外周に、酸水素バーナ5の火炎にSiCl4を供給して生成した石英微粒子を堆積一体化させ石英多孔質層6を形成し、次いで、図15に示すように、石英多孔質層6が外周に一体に堆積した母材本体3をヘリウムと塩素ガスとを流通させた加熱容器7に配置し、外部より焼成用ヒータ8で加熱することにより石英多孔質層6を焼成して透明な被覆部形成材9に変化させて母材10とした後、その母材10を線引き装置にセットし、図16に示すように、線引き用ヒータ11で線引き加工により細径化するようにしてもよい。
【0092】
また、石英製のロッド材にファイバ横断面の孔パターンに対応するようにロッド軸方向に延びる複数の孔を形成して母材を形成する母材形成工程と、母材を線引き加工により細径化する線引き工程と、を経て偏波保存PCFを製造するようにしてもよい。この場合、母材の複数の孔を封止した状態で線引き加工するようにすれば、線引き加工時の線引き張力によって母材の孔を押し潰す方向に作用する力が孔内の圧力と均衡し、孔が押し潰されることなく線引き加工を行うことができる。また、複数の孔の封止前に、その複数の孔の内壁の不純物を除去する不純物除去処理を施すようにすれば、母材の孔内の不純物を除去することができるので、製造される偏波保存PCFは低損失なものとなる。さらに、石英製のロッド材を水酸基含有量が1ppm以下の無水合成ガラスで形成されたものとすれば、製造される偏波保存PCFに含まれる水酸基の数が少なく低損失なものとなる。
【0093】
また、実施形態3では、ファイバ横断面に、コア21aを挟んだ一対の帯状領域でよる小孔径細孔領域32を構成する一方、その他の領域で大孔径細孔領域31を構成し、実施形態4では、ファイバ横断面に、コア21aを挟んだ一対の帯状領域でよる大孔径細孔領域31を構成する一方、その他の領域で小孔径細孔領域32を構成したが、特にこれに限定されるものではなく、図17に示すように、コア21aを中心とした例えば中心角60°や120°の扇形領域で大孔径細孔領域31及び小孔径細孔領域32をそれぞれ構成するようにしてもよい。
【0094】
また、上記実施形態1〜3では、純粋な石英製の偏波保存PCF20としたが、特にこれに限定されるものではなく、主成分が石英のものであれば、他の元素がドープされたものであってもよい。
【図面の簡単な説明】
【図1】 実施形態1に係る偏波保存PCFの斜視図である。
【図2】 実施形態1に係る偏波保存PCFの横断面中心部分の正面図である。
【図3】 実施形態1に係る準備工程及び穿孔工程の説明図である。
【図4】 実施形態1に係る母材本体形成工程の説明図である。
【図5】 実施形態1に係る不純物除去処理工程の塩素ガス処理の説明図である。
【図6】 実施形態1に係る封止工程の説明図である。
【図7】 実施形態1に係る線引き工程の説明図である。
【図8】 実験1の実施例1及び比較例1のそれぞれの偏波保存PCFの横断面中心部分の正面図である。
【図9】 実施形態2に係る偏波保存PCFの横断面中心部分の正面図である。
【図10】 実験2の実施例2及び比較例2のそれぞれの偏波保存PCFの横断面中心部分の正面図である。
【図11】 実施形態3に係る偏波保存PCFの横断面中心部分の正面図である。
【図12】 実験3の実施例3及び比較例3のそれぞれの偏波保存PCFの横断面中心部分の正面図である。
【図13】 実施形態4に係る偏波保存PCFの横断面中心部分の正面図である。
【図14】 その他の実施形態の偏波保存PCFの製造方法に係る被覆部形成材形成工程の石英多孔質層の形成過程を示す説明図である。
【図15】 その他の実施形態の偏波保存PCFの製造方法に係る被覆部形成材形成工程の石英多孔質層の焼成による被覆部形成材の形成過程を示す説明図である。
【図16】 その他の実施形態の偏波保存PCFの製造方法に係る線引き工程を示す説明図である。
【図17】 その他の実施形態に係る偏波保存PCFの横断面中心部分の模式的な正面図である。
【図18】 従来技術に係る偏波保存PCFの横断面中心部分の正面図である。
【符号の説明】
1 ロッド材
1a,3a コア形成部
1b,3b クラッド形成部
1c,3c 孔
2 ロッド延伸用ヒータ
3 母材本体
4 補助パイプ
5 酸水素バーナ
6 石英多孔質層
7 加熱容器
8 焼成用ヒータ
9,12 被覆部形成材
10,13 母材
11 線引き用ヒータ
20,200 偏波保存PCF
21 ファイバ本体
21a,210a コア
21b,210b クラッド
21c,210c 小孔径の細孔
21c’,210c’ 大孔径の細孔
22 被覆部
31 大孔径細孔領域
32 小孔径細孔領域

Claims (16)

  1. ファイバ中心をなす中実のコアと、該コアを被覆するように設けられファイバ横断面に三角格子を形成してファイバ半径方向にフォトニッククリスタル構造を構成するように配設された複数の細孔を有するクラッドと、を備え、該クラッドにおける該コアに隣接した細孔が、該コアを挟んで対をなして配設された大孔径の細孔と、該コアを挟んで対をなして配設された小孔径の細孔と、からなることにより、光伝搬領域であるモードフィールドがファイバ横断面において相互に直交し且つ伝搬定数が異なる2つの偏波モードを有するように構成された偏波保存フォトニッククリスタルファイバであって、
    上記コアに隣接した大孔径の細孔及び小孔径の細孔のうち少なくともいずれか一方は、上記モードフィールドにおける上記2つの偏波モードの方向のうちの一方のモードフィールド径に対する他方のモードフィールド径の比であるアスペクト比が1.0に近づく向きに、上記三角格子を形成する位置からずれて配設されていることを特徴とする偏波保存フォトニッククリスタルファイバ。
  2. 請求項1に記載された偏波保存フォトニッククリスタルファイバにおいて、
    上記アスペクト比が1.0以上で且つ2.0よりも小さいことを特徴とする偏波保存フォトニッククリスタルファイバ。
  3. 請求項2に記載された偏波保存フォトニッククリスタルファイバにおいて、
    上記アスペクト比が1.0以上で且つ1.7以下であることを特徴とする偏波保存フォトニッククリスタルファイバ。
  4. 請求項1に記載された偏波保存フォトニッククリスタルファイバにおいて、
    上記コアに隣接した大孔径の細孔又は小孔径の細孔のみが上記三角格子を形成する位置からずれて配設されていることを特徴とする偏波保存フォトニッククリスタルファイバ。
  5. 請求項1に記載された偏波保存フォトニッククリスタルファイバにおいて、
    上記コアに隣接した大孔径の細孔が上記三角格子を形成する位置からファイバ半径方向外向きにずれて配設されていることを特徴とする偏波保存フォトニッククリスタルファイバ。
  6. 請求項1に記載された偏波保存フォトニッククリスタルファイバにおいて、
    上記コアに隣接した小孔径の細孔が上記三角格子を形成する位置からファイバ半径方向内向きにずれて配設されていることを特徴とする偏波保存フォトニッククリスタルファイバ。
  7. 請求項1に記載された偏波保存フォトニッククリスタルファイバにおいて、
    ファイバ横断面に、上記コアを挟んで対向するように配設され上記コアに隣接した大孔径の細孔を含む大孔径の細孔群を有する一対の大孔径細孔領域と、上記コアを挟んで対向するように配設され上記コアに隣接した小孔径の細孔を含む小孔径の細孔群を有する一対の小孔径細孔領域と、の4つの領域が形成されており、
    上記大孔径細孔領域の各細孔及び小孔径細孔領域の各細孔のうち少なくともいずれか一方が上記三角格子を形成する位置からずれて配設されていることを特徴とする偏波保存フォトニッククリスタルファイバ。
  8. 請求項7に記載された偏波保存フォトニッククリスタルファイバにおいて、
    上記大孔径細孔領域の各細孔が上記三角格子を形成する位置からファイバ半径方向外向きにずれて配設されていることを特徴とする偏波保存フォトニッククリスタルファイバ。
  9. 請求項7に記載された偏波保存フォトニッククリスタルファイバにおいて、
    上記小孔径細孔領域の各細孔が上記三角格子を形成する位置からファイバ半径方向内向きにずれて配設されていることを特徴とする偏波保存フォトニッククリスタルファイバ。
  10. ファイバ中心をなす中実のコアと、該コアを被覆するように設けられファイバ横断面に三角格子を形成してファイバ半径方向にフォトニッククリスタル構造を構成するように配設された複数の細孔を有するクラッドと、を備え、該クラッドにおける該コアに隣接した細孔が、該コアを挟んで対をなして配設された大孔径の細孔と、該コアを挟んで対をなして配設された小孔径の細孔と、からなることにより、光伝搬領域であるモードフィールドがファイバ横断面において相互に直交し且つ伝搬定数が異なる2つの偏波モードを有するように構成され、該モードフィールドにおける該2つの偏波モードの方向のうち一方のモードフィールド径に対する他方のモードフィールド径の比であるアスペクト比が1.0に近づく向きに、該コアに隣接した大孔径の細孔及び小孔径の細孔のうち少なくともいずれか一方が該三角格子を形成する位置からずれて配設された偏波保存フォトニッククリスタルファイバの製造方法であって、
    石英製のロッド材に上記ファイバ横断面の孔パターンに対応するようにロッド軸方向に延びる複数の孔を形成して母材を形成する母材形成工程と、
    上記母材を線引き加工により細径化する線引き工程と、
    を備えたことを特徴とする偏波保存フォトニッククリスタルファイバの製造方法。
  11. 請求項10に記載された偏波保存フォトニッククリスタルファイバの製造方法において、
    上記母材の複数の孔を封止した状態で線引き加工することを特徴とする偏波保存フォトニッククリスタルファイバの製造方法。
  12. 請求項11に記載された偏波保存フォトニッククリスタルファイバの製造方法において、
    上記複数の孔の封止前に、該複数の孔の内壁の不純物を除去する不純物除去処理を施すことを特徴とする偏波保存フォトニッククリスタルファイバの製造方法。
  13. ファイバ中心をなす中実のコアと、該コアを被覆するように設けられファイバ横断面に三角格子を形成してファイバ半径方向にフォトニッククリスタル構造を構成するように配設された複数の細孔を有するクラッドと、該クラッドをさらに被覆するように設けられた被覆部と、を備え、該クラッドにおける該コアに隣接した細孔が、該コアを挟んで対をなして配設された大孔径の細孔と、該コアを挟んで対をなして配設された小孔径の細孔と、からなることにより、光伝搬領域であるモードフィールドがファイバ横断面において相互に直交し且つ伝搬定数が異なる2つの偏波モードを有するように構成され、該モードフィールドにおける該2つの偏波モードの方向のうち一方のモードフィールド径に対する他方のモードフィールド径の比であるアスペクト比が1.0に近づく向きに、該コアに隣接した大孔径の細孔及び小孔径の細孔のうち少なくともいずれか一方が該三角格子を形成する位置からずれて配設された偏波保存フォトニッククリスタルファイバの製造方法であって、
    石英製のロッド材に上記ファイバ横断面の孔パターンに対応するようにロッド軸方向に延びる複数の孔を形成する穿孔工程と、
    上記複数の孔を形成したロッド材をロッド軸方向に加熱延伸することにより細径化して母材本体を形成する母材本体形成工程と、
    上記母材本体と上記被覆部になる石英製の被覆部形成材とで母材を構成し、該母材を線引き加工により細径化する線引き工程と、
    を備えたことを特徴とする偏波保存フォトニッククリスタルファイバの製造方法。
  14. 請求項13に記載された偏波保存フォトニッククリスタルファイバの製造方法において、
    上記母材本体の複数の孔を封止した状態で線引き加工することを特徴とする偏波保存フォトニッククリスタルファイバの製造方法。
  15. 請求項14に記載された偏波保存フォトニッククリスタルファイバの製造方法において、
    上記複数の孔の封止前に、該複数の孔の内壁の不純物を除去する不純物除去処理を施すことを特徴とする偏波保存フォトニッククリスタルファイバの製造方法。
  16. 請求項10又は13に記載された偏波保存フォトニッククリスタルファイバの製造方法において、
    上記石英製のロッド材を水酸基含有量が1ppm以下の無水合成ガラスで形成されたものとすることを特徴とする偏波保存フォトニッククリスタルファイバの製造方法。
JP2002019315A 2002-01-29 2002-01-29 偏波保存フォトニッククリスタルファイバ及びその製造方法 Expired - Fee Related JP3836730B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002019315A JP3836730B2 (ja) 2002-01-29 2002-01-29 偏波保存フォトニッククリスタルファイバ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002019315A JP3836730B2 (ja) 2002-01-29 2002-01-29 偏波保存フォトニッククリスタルファイバ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2003222752A JP2003222752A (ja) 2003-08-08
JP3836730B2 true JP3836730B2 (ja) 2006-10-25

Family

ID=27743221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002019315A Expired - Fee Related JP3836730B2 (ja) 2002-01-29 2002-01-29 偏波保存フォトニッククリスタルファイバ及びその製造方法

Country Status (1)

Country Link
JP (1) JP3836730B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158391B2 (ja) 2002-03-25 2008-10-01 住友電気工業株式会社 光ファイバおよびその製造方法
JP3978071B2 (ja) * 2002-04-17 2007-09-19 正隆 中沢 ホーリーファイバ製造方法
US8133593B2 (en) * 2008-06-26 2012-03-13 Corning Incorporated Pre-form for and methods of forming a hollow-core slotted PBG optical fiber for an environmental sensor
JP4588113B2 (ja) * 2008-11-05 2010-11-24 株式会社フジクラ フォトニックバンドギャップファイバ
CN104765100B (zh) * 2015-03-10 2016-12-14 北京航空航天大学 一种四层结构的细径实芯保偏光子晶体光纤

Also Published As

Publication number Publication date
JP2003222752A (ja) 2003-08-08

Similar Documents

Publication Publication Date Title
US9151889B2 (en) Rare earth doped and large effective area optical fibers for fiber lasers and amplifiers
KR0172600B1 (ko) 단일모드, 단일편광 광섬유
CA2565879C (en) Long wavelength, pure silica core single mode fiber and method of forming the same
JP2007536580A5 (ja)
JP5612654B2 (ja) ファイバ・レーザおよびファイバ増幅器用の希土類がドープされ有効区域が大きい光ファイバ
JP2000039532A (ja) プレ―ナ型導波路構造体を製造する方法および導波路構造体
CN111751925B (zh) 光纤及其制备方法、光纤放大器、光纤激光器
JPS6090848A (ja) 光フアイバの製造方法
KR100963812B1 (ko) 미세구조 광섬유 및 이의 제조방법
JP3836730B2 (ja) 偏波保存フォトニッククリスタルファイバ及びその製造方法
JP3836698B2 (ja) フォトニッククリスタルファイバの製造方法
JP3798984B2 (ja) フォトニッククリスタル光ファイバの製造方法
WO2011001850A1 (ja) フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法
KR20080041428A (ko) 편광 유지 광섬유 및 편광 유지 광섬유용 모재의 제조 방법
EP1327611A2 (en) Method for manufacturing a holey optical fiber using an ultrasonic drill
KR100660148B1 (ko) 공기홀을 갖는 광섬유용 모재의 제조 방법
JP4106038B2 (ja) フォトニッククリスタル光ファイバの製造方法
KR100782475B1 (ko) 광섬유 모재의 제조 방법 및 광섬유 모재
JP2004226541A (ja) 高耐応力光ファイバ
WO2023012946A1 (ja) 光ファイバ
JP2003206148A (ja) フォトニッククリスタル光ファイバの製造方法
JPS59135402A (ja) 単一偏波光フアイバ
JP2005250024A (ja) フォトニッククリスタル光ファイバの製造方法
JP2005022942A (ja) 光ファイバの製造方法
JP2005022943A (ja) 光ファイバの製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees