JP3835546B2 - Scattered smoke detector - Google Patents

Scattered smoke detector Download PDF

Info

Publication number
JP3835546B2
JP3835546B2 JP2003004228A JP2003004228A JP3835546B2 JP 3835546 B2 JP3835546 B2 JP 3835546B2 JP 2003004228 A JP2003004228 A JP 2003004228A JP 2003004228 A JP2003004228 A JP 2003004228A JP 3835546 B2 JP3835546 B2 JP 3835546B2
Authority
JP
Japan
Prior art keywords
light
smoke
trap
light emitting
smoke detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003004228A
Other languages
Japanese (ja)
Other versions
JP2004220155A (en
Inventor
学 土肥
昭雄 横嶋
隼人 津留見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2003004228A priority Critical patent/JP3835546B2/en
Publication of JP2004220155A publication Critical patent/JP2004220155A/en
Application granted granted Critical
Publication of JP3835546B2 publication Critical patent/JP3835546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、外部から流入した検煙空間内の煙粒子による光の散乱光を受光して火災を検出する散乱光式煙感知器に関する。
【0002】
【従来の技術】
従来、この種の散乱光式煙感知器としては例えば図12のものがある(特許文献1)。図12(A)において、感知器本体100の下部にカバー102が装着され、その内部に煙が流入する検煙空間103を形成している。検煙空間103内の感知器本体100側にはホルダー104が装着され、ホルダー104には開口110,112を介して発光部106と受光部108が収納される。
【0003】
この構造にあっては、図12(B)に示すように、発光部106は光軸114の方向に光を出し、流入した煙に光が当たることによる散乱光を光軸116の方向から受光部108で受光している。
【0004】
ここで発光部106と受光部108は、感知器における仮想的な水平面上で光軸114,116が斜めに交差するように配置し、光軸交点118の散乱角θを所定の角度に設定している。ここで、散乱角θに対する補角となる光軸の交差角δを構成角と呼び、θ=180°−δの関係にある。
【0005】
更に間に二枚の遮光板120,122を配置し、遮光板120で受光部108に向かう直接光を遮り、次の遮光板122で手前の遮光板120の先端に当たった光の反射光を遮るための光トラップを形成している。
【0006】
尚、この従来構造にあっては、図12(A)のように、発光部106と受光部108の光軸を3°〜5°程度下向きにして光軸交点が検煙空間103の上部面に近づきすぎないように調整している。
【0007】
しかしながら、このような従来の散乱光式煙感知器の構造にあっては、感知器内部の煙が流入する検煙空間103に発光部106、受光部108、遮光板120,122等が突出しており、外部からの煙の流入に方向性を持つ可能性が高いという不具合がある。
【0008】
そこで検煙空間103への煙流入に方向性を持たないようにするため、例えば図13のような散乱光式煙感知器が知られている(特許文献2)。
【0009】
図13において、感知器本体200の下部にカバー202が装着され、その内部に煙が流入する検煙空間203を形成している。検煙空間203内の感知器本体200側にはホルダー204が装着され、ホルダー204には開口210,212を介して発光部206と受光部208が埋め込まれ、検煙空間203に飛び出すことのない構造となっており、煙の流入特性に方向性が無い構造をとっている。
【0010】
発光部206は光軸214の方向に光を出し、流入した煙に光が当たることによる散乱光を光軸216の方向に設置された受光部208で受光する。このため感知器内の仮想的な鉛直面に、発光部206と受光部208を対向しないように光軸214,216を斜め下向きに配置し、光軸交点218の散乱角θを所定の角度に設定している。なお、構成角δは、θ=180°−δの関係にある。
【0011】
一方で、火災による煙の種類は燃焼する材料等により、煙の粒子径は比較的大きなものから小さなものまで様々である。このため、様々な粒子径の煙に対し、極力感度に差のないようにすることがひとつの課題とされている。
【0012】
煙粒子径に対し、感度差の少ない散乱角θは60〜90°程度(構成角δでは90〜120°)であることが知られている(特許文献3)。
【0013】
しかし、図13の従来構造にあっては、煙粒子径に対する感度差を少なくするために散乱角θを例えば60°というように大きくすると、ホルダー204の設置面に対し光軸交点218'のように下にさがり、その分、感知器の高さを大きくしなければならず、さらに天井面からの反射光の影響を避けるため感知器(検煙部)を薄型化できないために、鉛直面上で散乱角θを60〜90°といった適切な角度範囲とすることができない。
【0014】
この場合、散乱角を60〜90°とするために発光部206と受光部208の間隔を狭くすれば、薄型化が可能であるが、受光部に対する電気的な誘導や直接の漏れ光の影響の問題が発生する。すなわち発光部と受光部は極力遠ざけて配置する必要があるため、検煙空間の高さを変えずに散乱角を60°〜90°にしようとすると、検煙部を薄型にすることができない。
【0015】
そこで本願出願人にあっては、検煙部を更に薄型に構成し、かつ散乱角を自在に設定可能とし、検煙空間への煙流入に方向性が無く、更に発光部と受光部を極力遠ざけて配置できる光電式煙感知器を提案している(特願2002−4221)。
【0016】
この散乱光式煙感知器は、検煙部の取付側に発光部および受光部を、検煙空間内に突出することなく発光側開口部と受光側開口部を開けて埋設し、検煙空間に向かう発光部からの光軸と検煙空間内の煙粒子によって散乱されて受光部に向かう散乱光の光軸が、水平方向に所定の角度で交差し且つ鉛直方向に所定の角度で交差するように、発光部と受光部をホルダーに固定している。
【0017】
ところで、このようなホルダーに発光部と受光部を組込んだ構造の散乱光式煙感知器にあっては、発光部に対向する検煙空間の面に光トラップを設け、発光部からの光が直接あたっても受光させないようにしている。
【0018】
図14は光トラップを備えた従来の煙感知器であり(特許文献3)、支持枠313に発光素子311と受光素子312が組込まれ、垂直方向に所定の角度を持つように配置している。支持枠313に相対する蓋体305の内面には光トラップ300が形成され、発光素子311からの光を光トラップ300で受けて減衰拡散させ、反射光を受光素子312に直接入射させないようにしている。
【0019】
【特許文献1】
実公昭59−10606号公報
【特許文献2】
特開昭60−10393号
【特許文献3】
特開平7−72073号
【特許文献4】
実開昭55−141895号公報
【特許文献5】
実開昭63−103190号公報
【0020】
【発明が解決しようとする課題】
しかしながら、このよう発光部と受光部を検煙空間に対するホルダー側に埋め込んで少なくとも垂直方向の所定の角度を持つように配置した散乱光式煙感知器にあっては、発光部からの光は対向する位置に形成した光トラップにより減衰拡散され、受光部に反射光が入射しないようにしているが、光トラップにより拡散された光が更に他の部分で多重反射して受光部に入射し、受光部のS/N比を悪化させる要因となっている。
【0021】
即ち、光トラップは断面三角形状の突条を連続配置した構造であり、理論的には頂点エッジが点であることから、頂点エッジに光が当たっても乱反射は起きないが、実際の光トラップは合成樹脂の成型品として作られており、頂点エッジが点とならずにアールが付き、頂点アール部分に当たった光の乱反射による光が受光部に入射し、受光部のS/Nを低下させている。
【0022】
このような反射の問題は、検煙空間の周囲に配置されたラビリンス部材についても同様であり、発光部からの光がラビリンス部材の内面に当たって反射した後に、他の部分で多重反射して受光部に入射し、これも受光部のS/N比を悪化させる要因となっている。
【0023】
本発明は、発光部からの光の反射光による受光部への影響を最小限に抑えてS/N比を改善する散乱光式煙感知器を提供することを目的とする。
【0024】
【課題を解決するための手段】
この目的を達成するため本発明は次のように構成する。本発明は、検煙空間に向けて光を発する発光部と、検煙空間内の煙粒子による発光部からの光の散乱光を受光する受光部と、外部からの煙を流入すると共に外部からの光を遮断するラビリンス部材を周囲に配置すると共に上下に部材を配置することで内部に検煙空間を形成し、発光部および受光部を一方の部材に設け、他方の部材の内面に光トラップを設けた検煙部とを備えた散乱光式煙感知器であって、光トラップは、三角突条と水平底部で構成されると共に水平底部は、三角突条の頂点を通る発光部からの光が到達する深さ以上の深い位置に形成されたことを特徴とする。
【0025】
このような本発明の検煙部内に設けた光トラップによれば、三角突条と水平底部とが交互に繰り返す構造であるため、従来の三角突条が連続的に繰り返す光トラップに比べ、検煙部内面に占める光トラップの合成樹脂成型でアールが付いた頂点エッジの割合が少なくなり、アール付きの頂点エッジに当たった光の乱反射がその分低下し、受光部に入射する内部反射による光量を低減し、S/N比を改善する。
【0026】
ここで光トラップは、例えば所定間隔で形成した三角突条を1つおきに間引きし水平底部とし、三角突条と水平底部とを交互に複数形成している。
【0027】
トラップは深いほど光の減衰能力が高くなる。しかし、光トラップを深くすると感知器の高さ方向の寸法が大きくなり、薄型化を損なう。
【0028】
光トラップを深くすると、当然に隣り合う三角突条の頂点エッジの間隔がひろがる。このため本発明の三角突条と水平底部とが交互に繰り返す光トラップは、頂点エッジの間隔を広げたことになり、実質的に光トラップを深くしたことに相当する。
【0029】
この場合、光トラップの深さは、頂点エッジを通過した発光部からの光が、その先の三角突条のトラップ面に当たれば光トラップとして機能することから、それより深い部分はトラップ面は必要ない。そこで本発明は、トラップ面として必要がなくなる位置を水平底部とし、高さ方向の寸法の拡大を防止している。
【0030】
光トラップの三角突条は、発光部の反対側に位置するトラップ面が水平底部から垂直に起立した垂直面であり、発光部側に位置するトラップ面が所定の頂点鋭角を与える傾斜面である。これによって傾斜トラップ面に当たって反射した発光部からの光を垂直トラップ面で受けてトラップ内にとじこめるように反射させる。
【0031】
本発明の別の形態は、検煙空間に向けて光を発する発光部と、検煙空間内の煙粒子による発光部からの光の散乱光を受光する受光部と、外部からの煙を流入すると共に外部からの光を遮断するラビリンス部材を周囲に配置すると共に上下の部材によって内部に検煙空間を形成し、発光部および受光部を一方の部材に設け、煙の発生を検出する検煙部とを備えた散乱光式煙感知器であって、検煙部は、発光部および受光部を検煙空間内に突出することなく開口部を設けて埋設すると共に、検煙空間に向かう発光部からの光軸と検煙空間内の煙粒子によって散乱されて受光部に向かう散乱光の光軸が、水平方向に所定の角度で交差し且つ鉛直方向に所定の角度で交差するように、発光部と受光部を配置し、更に、発光部に対向した位置のラビリンス部材内面に三角突条を複数形成した光トラップを設けたことを特徴とする。これによってラビリンス部材内面に直接当たった発光部からの光を減衰散乱させ、受光部への入射を防いで受光出力のS/N比を改善する。
【0032】
更に、ラビリンス部材の内面に三角突条を複数形成した光トラップは、発光部に対向した位置のラビリンス部材のみならず、その周囲或いは全てのラビリンス部材に設けたことを特徴とする。
【0033】
また、このように発光部と受光部を水平方向及び垂直方向の両方に所定の角度を持つように埋め込み配置したことで、取付面に対する光軸交点の飛び出し高さを低くし、検煙空間全体として更に薄型にできる。
【0034】
【発明の実施の形態】
図1は本発明による散乱光式煙検知器の実施形態を示した断面図である。図1において、散乱光式煙感知器は、感知器本体1とカバー2で構成される。感知器本体1は、検煙部本体5の下部に取り付けられた検煙部カバー6と検煙部本体5の上部に取り付けられた端子盤13で構成されている。
【0035】
検煙部本体5の下部に配置された検煙部カバー6内には、検煙空間4が形成されている。検煙空間4の周囲には検煙部カバー6と一体にラビリンス部材14が形成され、外部からの煙を容易に流入させる経路をつくると同時に、外部からの光の入射を遮っている。
【0036】
このラビリンス部材14の周囲に位置するカバー2の部分には煙流入口3が開口されている。更に検煙部本体5に相対した検煙部カバー6の内面には光トラップ11が形成されている。
【0037】
検煙部本体5はその裏側となる上部に回路基板12を配置すると共に、検煙空間4側に発光部7と受光部8を設けており、それぞれのリード線を回路基板12に接続し、発光駆動及び受光処理を行うようにしている。
【0038】
発光部7は発光側開口部9を介して検煙空間4に光を照射し、検煙空間4に煙が流入した際の煙粒子に光があたった時に生ずる散乱光を、受光側開口部10を介して受光部8に入射するようにしている。
【0039】
ここで本発明にあっては、検煙空間4に向かう発光部7からの光軸と、検煙区間内の煙粒子によって散乱されて受光部8に向かう散乱光の光軸が水平方向に所定の角度αで交差し、且つ鉛直方向に所定角度βで交差するように検煙部本体5に発光部7と受光部8を配置している。
【0040】
図2は図1の散乱光式煙感知器の組立分解図である。図2において、感知器本体1は、端子盤13に対し下側より検煙部本体5を組み付け、更に検煙部本体5に対し下側から検煙部カバー6を組み付けている。組立の済んだ感知器本体1はカバー2に収納され、図1のような組立状態を得ることができる。
【0041】
図3は本発明における検煙部本体5を検煙空間側から見た斜視図である。検煙部本体5の検煙空間側の面には発光側開口部9と受光側開口部10が形成されている。
【0042】
図4は本発明における検煙部本体5と検煙部カバー6を組み合わせた検煙部アッセンブリの断面図であり、図1,図2に対し上下を逆にして示している。図4において、検煙部本体5に対し発光部7及び受光部8は検煙空間4に向かう発光部7からの発光光軸25と、検煙空間4内の煙粒子によって散乱された受光部8に向かう散乱光の受光光軸26が、後の説明で明らかにするように、水平方向に所定の角度αで交差し、且つ鉛直方向に角度βで交差するように配置している。
【0043】
また発光部7の収納部に続いては円筒孔15が形成され、この円筒孔15に続いて開口凹部16が形成され、円筒孔15は開口凹部16の内壁面に開口している。同様に受光部8側についても受光孔18と開口凹部19が形成され、開口凹部19に受光孔18が開口している。
【0044】
図5(A)は図3の検煙部本体5に設けている発光部7と受光部8の設置位置に対応した光学的な位置関係を3次元座標空間で模式的に表している。
【0045】
図5(A)において、発光部7による発光点Pからの発光光軸25をベクトルで示し、光軸交点Oからの散乱光が入射する受光光軸26を受光部8の受光点Qに対するベクトルで示している。
【0046】
この発光点P、光軸交点O及び受光点Qを結ぶ三角形が本発明の煙感知器構造における散乱光式煙検知のための仮想的な光学面であり、三角形POQを形成する面はxy平面となる水平面及びzx平面となる鉛直面のそれぞれに対し、ある角度を持って配置されている。
【0047】
説明を簡単にするため発光点Pのx軸上への投影を投影点Aとなるように配置しており、従って発光光軸25の鉛直方向の傾斜角φは、この場合x軸に対する角度となる。
【0048】
ここで発光光軸25と受光光軸26をxy平面となる水平面から見ると図5(B)のように、投影点Aが発光点Pに対応し、投影点Bが受光点Qに対応する。すなわち発光光軸25と受光光軸26は、水平方向において、所定の角度αをもって交差している。一方、発光光軸25と受光光軸26を面ABQPに投影すると、発光光軸と受光光軸が鉛直方向において、所定の角度βをもって交差する。
【0049】
例えば垂直方向の傾斜角φ=30°に設定し、水平面でのみかけ上の構成角α=120°とすると、構成角δ=97°となる。また水平面でのみかけ上の構成角αをα=120°、傾斜角φをφ=9.8°に設定していると、構成角δはδ=117°となる。
【0050】
これをまとめると、みかけ上の構成角α=120°を一定に保った場合の傾斜角φ=9.8°,30°に対し、実際の構成角δ=117°,97°となり、発光点Pと受光点Qの水平方向での位置を変化させない場合、垂直方向の傾斜角φを大きくすれば、逆に実際の構成角δを小さくする関係が得られる。もちろん垂直方向の傾斜角φを小さくすれば光軸交点Oの高さが低くなることから、より薄型化することになる。
【0051】
図5のような発光から受光までの光軸の3次元関係に基づき、本発明の実施形態では、発光光軸25と受光光軸26の構成角δを略110°としている。もちろんこの構成角δ=110°に対応する散乱角θはθ=180°−δ=70°である。
【0052】
このように本発明にあっては、発光部7の光軸25と受光部8の光軸26を構成角δ=110°に設定した状態で水平面におけるみかけ上の構成角α及び垂直面における傾斜角φをもつように検煙部本体5内に埋め込み配置することで、煙粒子の大きさに対する感度の影響の少ない最適な角度配置を行っても、煙に対する光軸交点の飛び出し量を低く抑え、感知器の薄型構造を実現できる。
【0053】
図6は本発明における検煙部を光トラップ形成側から透視して示した平面図である。
【0054】
図6において、煙検知器本体5と検煙部カバー6の間に形成される検煙空間4は複数のラビリンス部材14を周囲に配置しており、この実施形態においてラビリンス部材14は平面から見て、V字型の形状をもっており、外部からの煙が流入すると共に外部からの光を遮断する。また検煙部本体5に相対した検煙部カバー6(図2参照)の検煙空間4に対する面には、光トラップ11が設けられている。
【0055】
図7は本発明の検煙部に設けた光トラップの説明図であり、図7(A)に検煙部本体5と検煙部カバー6で構成される検煙部の概略構造を示し、図7(B)に検煙部カバー6側に形成された光トラップ11を取り出して拡大している。
【0056】
図7(A)において、発光部7及び受光部8を埋め込み状態で組み込んだ検煙部本体5に検煙空間4を介して相対する検煙部カバー6の内面には光トラップ11が形成されている。この光トラップ11は、図7(B)に拡大して示すように、三角突条11aを間に水平底部11bを設けて交互に繰り返し配置した構造を持ち、この実施形態にあっては三角突条11aにおける頂点エッジ11cの頂角γをγ=30°とした場合を例にとっている。
【0057】
ここで頂点エッジ11cは設計上は三角頂点を持つものであるが、実際には検煙部カバー6が合成樹脂の型成型により製造され、この際に頂点エッジは図示のようにアールのついた頂点エッジ11cとなる。
【0058】
光トラップ11における三角突条11aは水平底部11bから垂直に起立したトラップ面11dと、トラップ面11dとの交差で頂角γ=30°を与えるように水平底部11bから斜めに立ちあがった傾斜面となるトラップ面11eで形成されている。
【0059】
この三角突条11aにおけるトラップ面11d,11eのうち、傾斜面となるトラップ面11eが図7(A)のように発光部7側に位置し、トラップ面11dが発光部7からみて裏側に位置する。
【0060】
また光トラップ11における三角突条11aの底部間隔をL1、水平底部11bの間隔をL2とすると、L1=L2となるように設けられている。この事は間隔L1で連続して形成していた三角突条11aを1つおきに間引きして水平底部11bとした構造に相当する。
【0061】
図8は本発明の光トラップ11における深さを決める水平底部11bの位置設定の条件を示した説明図である。図8において、三角突条11aを持つ光トラップ11は、隣合う三角突条11aの間に想像線で示すトラップ溝27を本来持っている。このトラップ溝27は、隣合う三角突条11aの間隔Lが広くなるほど溝の深さDが深くなり、光トラップとしての減衰能力が高くなる。
【0062】
しかしながら、光トラップ溝27を深くすると検煙部カバー6における高さ方向の寸法が増大し、感知器の薄型化を損なう。
【0063】
一方、発光部7からの光トラップに対する光軸が例えば光軸28であったとすると、光軸28は手前の三角突条11aの頂点を通って次の三角突条11aのトラップ面11eにあたる。この光軸28がトラップ面11eに当たる点をP点とすると、本発明における光トラップの水平底部11bは少なくともこのP点より溝が浅くならない位置に、位置させる必要がある。
【0064】
もし水平底部11bがP点を超えて溝が浅くなる方向に配置されたとすると、光軸28による発光部からの光は直接、水平底部11bに当たって受光部8側に反射され、受光部8に入射する可能性が高くなる。
【0065】
これに対しP点より深い位置に水平底部11bが配置されていれば、光軸28からの光は必ずトラップ面11eにあたって向かいあうトラップ面11d側に反射されることになり、水平底部11bに直接当たって受光部側へ反射してしまうことを回避できる。
【0066】
このような理由から本発明の光トラップ11における水平底部11bの位置は、発光部7からの光が直接水平底部11bに当たらないような深さとなるように設定されている。
【0067】
実際には図7(A)のように発光部7からの光は光トラップ11における領域6aの部分で直接当たっており、この領域6aの部分の光トラップ11について図8のような条件を満たす位置に水平底部11bが設定されていればよい。
【0068】
また図7(A)における発光部7からの光の下側の部分は検煙空間4の周囲に配置されたラビリンス部材14の内面にあたった後に、光トラップ11側に反射しており、このラビリンス部材14からの反射光に対しても光トラップ11が効果的に光を減衰して受光部8側への反射を抑えている。
【0069】
図9は頂角γを45°とした光トラップを用いた本発明による検煙部の説明図である。図9(A)は検煙部本体5と検煙部カバー6で形成される検煙部の概略構成であり、図9(B)に光トラップの一部を取り出して拡大して示している。
【0070】
図9(A)の検煙部カバー6の内面に形成された光トラップ31は、図9(B)に取り出して示すように、三角突条31aと水平底部31bを交互に複数形成しており、両者の間隔L1,L2は図7の場合と同様L1=L2としている。
【0071】
ここで三角突条31aの頂点エッジ31cを形成する頂角γはγ=45°に設定されている。このように頂角γ=45°とすることで水平底部31bに対する三角突条31aの高さを小さくすることができ、その分、検煙部を薄型化することができる。
【0072】
また三角突条31aは水平底部31bから垂直に立ち上がったトラップ面31dとトラップ面31dに交差して頂角γ=45°なるように水平底部31bから斜めに立ち上がった傾斜面となるトラップ面31eを備えている。
【0073】
この頂角γ=45°とした場合の三角突条31aと水平底部31bの関係も図8に示したと同様、発光部7からの三角突条31aの頂点を通る光軸の光がトラップ面31eにあたった点をP点とし、このP点以下の深さに水平底部31bを設ける。
【0074】
また図10は本発明によるラビリンス部材に光トラップを設けた実施形態の説明図である。図10において、ラビリンス部材14は図6に示した検煙部における検煙部本体5側に設けている発光側開口部9からの発光光軸25が内側にあたるラビリンス部材であり、この発光部に対した位置のラビリンス部材14の内面に光トラップ32を形成している。
【0075】
光トラップ32は頂点が所定の鋭角、例えば30°もしくは45°といった頂角を持った二等辺三角形の形状を持った三角突条を縦方向に複数形成している。
【0076】
この光トラップ32を内側に形成したラビリンス部材14は、例えば図7(A)のように、発光部7からの光を直接受ける領域14aの部分を持っており、この領域14aの部分には光トラップ32が形成されているため光トラップ32が形成されていない場合に比べ、発光部7からのラビリンス部材14の内側にあたった光を減衰拡散し、検煙空間4の天井面となる光トラップ11側への反射光を十分に抑制し、受光部8側の光の入射を最小限に抑えることができる。
【0077】
図11は本発明によるラビリンス部材に光トラップを設けた他の実施形態の説明図であり、この実施形態にあっては、図10の発光部からの光が直接あたるラビリンス部材のみならず、その周囲のラビリンス部材或いは全てのラビリンス部材の内面に光トラップ32を設けるようにしたことを特徴とする。
【0078】
このようにラビリンス部材の内面の全てに光トラップ32が形成されることで、更に受光部に対する光の入射を最小限に抑えることができる。
【0079】
尚、上記の実施形態にあっては検煙空間4を介して相対する検煙部カバー6の内面に光トラップ31を設け、且つ発光部7からの光軸があたるラビリンス部材14の内側に光トラップ32を形成しているが、検煙部カバー6の内面の光トラップ31のみの構成としても良いし、ラビリンス部材14の内側に光トラップ32のみを形成した構造としても良い。
【0080】
更に光トラップ11,31の三角突条として頂角γを30°又は45°とした場合を例にとるものであったが、この頂角γも必要に応じて適宜の鋭角角度としても良い。
【0081】
また上記の実施形態は検煙空間の発光部に対する天井面側の光トラップ11,31は三角突条として断面形状が直角三角形としたものを例にとって、またラビリンス部材14の内側の光トラップ32については三角突条を二等辺三角形とした場合を例にとっているが、三角突条の断面三角形状としては適宜の三角形状としても良い。
【0082】
また本発明はその目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
【0083】
【発明の効果】
以上説明してきたように本発明によれば、検煙空間の一方の発光部及び受光部が埋め込まれた部材に相対した反対側の対向面に形成した光トラップとして三角突条と水平底部とが交互に繰り返す構造としたことで、三角突条が連続的に繰り返す従来の光トラップに比べ、発光部からの光また反射光があたったときに散乱光を生ずる三角突条のアール付頂点エッジの光トラップに占める割合を少なくでき、頂点エッジの割合が少なくできた分、アール付頂点エッジにあたった光の散乱によって受光部に入射する光量を低減し、受光部からの出力のS/N比を改善することができる。
【0084】
更に本発明にあっては少なくとも発光部からの光が直接あたる位置のラビリンス部材の内面に光トラップを設けたことで、発光部から直接ラビリンス部材の内面にあたった光反射量を抑え、受光部への入射を防いで受光出力のS/N比を改善することができる。
【図面の簡単な説明】
【図1】本発明による散乱光式煙感知器の実施形態を示した断面図
【図2】図1の散乱光式煙感知器の組立分解図
【図3】本発明における検煙部本体の検煙空間側から見た斜視図
【図4】本発明における検煙部本体と検煙部カバーを組み合わせた検煙部アッセンブリの断面図
【図5】本発明における発光部と受光部の位置関係の説明図
【図6】本発明における検煙部を光トラップ形成側から透視して示した平面図
【図7】頂角γを30°とした光トラップを用いた本発明による検煙部の説明図
【図8】本発明の光トラップに必要な深さの説明図
【図9】頂角γを45°とした光トラップを用いた本発明による検煙部の説明図
【図10】本発明によるラビリンス部材に設けた光トラップの実施形態の説明図
【図11】本発明によるラビリンス部材に設けた光トラップの他の実施形態の説明図
【図12】従来の感知器構造の説明図
【図13】検煙空間に発光部、受光部等を突出させない従来構造の説明図
【図14】光トラップを設けた従来の煙感知器の説明図
【符号の説明】
1:感知器本体
2:カバー
3:煙流入口
4:検煙空間
5:検煙部本体
6:検煙部カバー
7:発光部
8:受光部
9:発光側開口部
10:受光側開口部
11,31,32:光トラップ
11a,31a:三角突条
11b,31b:水平底部
11c,31c:頂点エッジ
11d,11e,31e,31d:トラップ面
12:回路基板
13:端子盤
14:ラビリンス部材
15:円筒孔
16,19:開口凹部
25:発光光軸
26:受光光軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scattered light type smoke detector that detects a fire by receiving scattered light of light from smoke particles in a smoke detection space that flows in from the outside.
[0002]
[Prior art]
Conventionally, as this kind of scattered light type smoke detector, for example, there is one shown in FIG. 12 (Patent Document 1). In FIG. 12A, a cover 102 is attached to the lower part of the sensor body 100, and a smoke detection space 103 into which smoke flows is formed. A holder 104 is mounted on the sensor body 100 side in the smoke detection space 103, and the light emitting unit 106 and the light receiving unit 108 are accommodated in the holder 104 through openings 110 and 112.
[0003]
In this structure, as shown in FIG. 12B, the light emitting unit 106 emits light in the direction of the optical axis 114, and receives scattered light from the direction of the optical axis 116 due to the light hitting the smoke that has flowed in. The unit 108 receives light.
[0004]
Here, the light emitting unit 106 and the light receiving unit 108 are arranged so that the optical axes 114 and 116 obliquely intersect on a virtual horizontal plane in the sensor, and the scattering angle θ of the optical axis intersection 118 is set to a predetermined angle. ing. Here, the crossing angle δ of the optical axis which is a complementary angle with respect to the scattering angle θ is referred to as a component angle, and has a relationship of θ = 180 ° −δ.
[0005]
Further, two light shielding plates 120 and 122 are arranged between them, the light shielding plate 120 blocks direct light directed to the light receiving unit 108, and the next light shielding plate 122 reflects the light reflected on the front end of the light shielding plate 120 on the front side. An optical trap for blocking is formed.
[0006]
In this conventional structure, as shown in FIG. 12A, the optical axes of the light emitting unit 106 and the light receiving unit 108 are directed downward by about 3 ° to 5 °, and the optical axis intersection is the upper surface of the smoke detection space 103. It is adjusted so that it is not too close to.
[0007]
However, in the structure of such a conventional scattered light type smoke detector, the light emitting unit 106, the light receiving unit 108, the light shielding plates 120, 122 and the like protrude into the smoke detection space 103 into which the smoke inside the detector flows. In addition, there is a problem that there is a high possibility of having directionality in the inflow of smoke from the outside.
[0008]
Therefore, for example, a scattered light type smoke detector as shown in FIG. 13 is known in order to prevent the direction of smoke inflow into the smoke detection space 103 (Patent Document 2).
[0009]
In FIG. 13, a cover 202 is attached to the lower part of the sensor body 200, and a smoke detection space 203 into which smoke flows is formed. A holder 204 is attached to the side of the detector body 200 in the smoke detection space 203, and a light emitting unit 206 and a light receiving unit 208 are embedded in the holder 204 through the openings 210 and 212, so that they do not jump out into the smoke detection space 203. It has a structure that does not have directionality in smoke inflow characteristics.
[0010]
The light emitting unit 206 emits light in the direction of the optical axis 214, and the scattered light caused by the light hitting the smoke that has flowed in is received by the light receiving unit 208 installed in the direction of the optical axis 216. Therefore, the optical axes 214 and 216 are disposed obliquely downward on a virtual vertical plane in the sensor so that the light emitting unit 206 and the light receiving unit 208 do not face each other, and the scattering angle θ of the optical axis intersection point 218 is set to a predetermined angle. It is set. The configuration angle δ is in a relationship of θ = 180 ° −δ.
[0011]
On the other hand, the type of smoke caused by a fire varies depending on the burning material and the like, and the particle size of the smoke varies from relatively large to small. For this reason, it is considered as one problem to make the sensitivity as small as possible with respect to smoke of various particle sizes.
[0012]
It is known that the scattering angle θ with a small sensitivity difference with respect to the smoke particle diameter is about 60 to 90 ° (the configuration angle δ is 90 to 120 °) (Patent Document 3).
[0013]
However, in the conventional structure of FIG. 13, when the scattering angle θ is increased to 60 °, for example, in order to reduce the sensitivity difference with respect to the smoke particle diameter, the optical axis intersection 218 ′ with respect to the installation surface of the holder 204 is obtained. The height of the sensor must be increased accordingly, and the sensor (smoke detector) cannot be thinned to avoid the effect of reflected light from the ceiling surface. Thus, the scattering angle θ cannot be set to an appropriate angle range of 60 to 90 °.
[0014]
In this case, if the distance between the light emitting unit 206 and the light receiving unit 208 is reduced in order to set the scattering angle to 60 to 90 °, the thickness can be reduced. However, the influence of electrical guidance on the light receiving unit and direct leakage light is possible. Problems occur. That is, since it is necessary to arrange the light emitting unit and the light receiving unit as far as possible, if the scattering angle is set to 60 ° to 90 ° without changing the height of the smoke detection space, the smoke detection unit cannot be thinned. .
[0015]
Therefore, the applicant of the present application has a thinner smoke detector and a scattering angle that can be freely set, has no directivity in the flow of smoke into the smoke detector space, and further has a light emitting part and a light receiving part as much as possible. A photoelectric smoke detector that can be placed at a distance is proposed (Japanese Patent Application No. 2002-4221).
[0016]
This scattered light type smoke detector has a light emitting part and a light receiving part on the mounting side of the smoke detecting part, and the light emitting side opening part and the light receiving side opening part are embedded without protruding into the smoke detecting space, and the smoke detecting space is embedded. The optical axis from the light emitting unit toward the light beam and the optical axis of the scattered light scattered by the smoke particles in the smoke detection space and toward the light receiving unit intersect at a predetermined angle in the horizontal direction and at a predetermined angle in the vertical direction. Thus, the light emitting part and the light receiving part are fixed to the holder.
[0017]
By the way, in a scattered light type smoke detector having a structure in which a light emitting part and a light receiving part are incorporated in such a holder, a light trap is provided on the surface of the smoke detection space facing the light emitting part, and light from the light emitting part is provided. Even if it hits directly, it is made not to receive light.
[0018]
FIG. 14 shows a conventional smoke detector equipped with an optical trap (Patent Document 3), in which a light emitting element 311 and a light receiving element 312 are incorporated in a support frame 313 and arranged so as to have a predetermined angle in the vertical direction. . An optical trap 300 is formed on the inner surface of the lid 305 facing the support frame 313 so that the light from the light emitting element 311 is attenuated and diffused by the optical trap 300 so that the reflected light does not enter the light receiving element 312 directly. Yes.
[0019]
[Patent Document 1]
Japanese Utility Model Publication No.59-10606
[Patent Document 2]
JP 60-10393
[Patent Document 3]
JP-A-7-72073
[Patent Document 4]
Japanese Utility Model Publication No. 55-141895
[Patent Document 5]
Japanese Utility Model Publication No. 63-103190
[0020]
[Problems to be solved by the invention]
However, in such a scattered light type smoke detector in which the light emitting unit and the light receiving unit are embedded on the holder side with respect to the smoke detection space and arranged so as to have at least a predetermined angle in the vertical direction, the light from the light emitting unit is opposed to It is attenuated and diffused by the light trap formed at the position where the light is reflected, so that the reflected light does not enter the light receiving part, but the light diffused by the light trap is further reflected by another part and incident on the light receiving part. This is a factor of deteriorating the S / N ratio of the part.
[0021]
In other words, the light trap has a structure in which ridges with a triangular cross-section are continuously arranged. Theoretically, the vertex edge is a point, so no irregular reflection occurs even if light hits the vertex edge. Is made as a molded product of synthetic resin. The apex edge does not become a point but is rounded, and light due to irregular reflection of light hitting the apex round part enters the light receiving part, lowering the S / N of the light receiving part I am letting.
[0022]
The problem of such reflection also applies to the labyrinth member arranged around the smoke detection space. After the light from the light emitting unit hits the inner surface of the labyrinth member and reflects, the light is received by multiple reflection at other parts. This is also a factor that deteriorates the S / N ratio of the light receiving portion.
[0023]
An object of the present invention is to provide a scattered light smoke detector that improves the S / N ratio while minimizing the influence of reflected light of the light from the light emitting unit on the light receiving unit.
[0024]
[Means for Solving the Problems]
  In order to achieve this object, the present invention is configured as follows. The present invention includes a light emitting unit that emits light toward the smoke detection space, a light receiving unit that receives scattered light from the light emitting unit due to smoke particles in the smoke detection space, and a flow of smoke from outside and from the outside. A labyrinth member that blocks light is placed around and a smoke detection space is formed inside by arranging members above and below, and a light emitting part and a light receiving part are provided in one member, and a light trap is provided on the inner surface of the other member A smoke detector with a smoke detector, and a light trap with a triangular protrusion and a horizontal bottomComposed ofIn addition, the horizontal bottom portion is formed at a deeper position than a depth at which light from the light emitting portion passing through the apex of the triangular protrusion reaches.
[0025]
According to such an optical trap provided in the smoke detecting section of the present invention, since the triangular protrusion and the horizontal bottom portion are alternately repeated, the detection is compared with the conventional optical trap in which the triangular protrusion is continuously repeated. The ratio of the apex edge with the radius is reduced by the synthetic resin molding of the light trap on the inner surface of the smoke part, and the irregular reflection of the light hitting the apex edge with the radius is reduced correspondingly, and the light quantity due to the internal reflection incident on the light receiving part And improve the S / N ratio.
[0026]
Here, for example, every three triangular ridges formed at predetermined intervals are thinned out to form a horizontal bottom, and a plurality of triangular ridges and horizontal bottoms are alternately formed in the optical trap.
[0027]
  lightThe deeper the trap, the higher the light attenuation capability. However, if the light trap is deepened, the height dimension of the sensor increases, and the reduction in thickness is impaired.
[0028]
When the light trap is deepened, the interval between the apex edges of the adjacent triangular protrusions is naturally increased. For this reason, the optical trap in which the triangular protrusions and the horizontal bottom portion of the present invention are alternately repeated means that the interval between the vertex edges is widened, which is substantially equivalent to deepening the optical trap.
[0029]
In this case, the depth of the light trap functions as a light trap if the light from the light emitting part that has passed through the apex edge hits the trap surface of the triangular protrusion ahead of it, so that the trap surface is deeper than that. unnecessary. Therefore, in the present invention, the position where it is not necessary as a trap surface is set as a horizontal bottom, and the expansion of the dimension in the height direction is prevented.
[0030]
The triangular ridge of the optical trap is a vertical surface in which the trap surface located on the opposite side of the light emitting portion stands vertically from the horizontal bottom, and the trap surface located on the light emitting portion side is an inclined surface that gives a predetermined apex acute angle. . As a result, the light from the light emitting part reflected by the inclined trap surface is received by the vertical trap surface and reflected so as to be trapped in the trap.
[0031]
  Another embodiment of the present invention includes a light emitting unit that emits light toward the smoke detection space, a light receiving unit that receives light scattered from the light emitting unit due to smoke particles in the smoke detection space, and inflowing smoke from the outside. In addition, a labyrinth member that blocks light from the outside is arranged around, and a smoke detection space is formed inside by the upper and lower members, and a light emitting portion and a light receiving portion are provided in one member to detect smoke generation A scattered light type smoke detector comprising:The smoke detector embeds the light emitter and the light receiver in the smoke detector space without opening them, and scatters the light axis from the light emitter toward the smoke detector space and the smoke particles in the smoke detector space. The light emitting unit and the light receiving unit are arranged so that the optical axis of the scattered light toward the light receiving unit intersects the horizontal direction at a predetermined angle and intersects the vertical direction at a predetermined angle, and further faces the light emitting unit. At the positionLabyrinth materialofAn optical trap having a plurality of triangular protrusions formed on the inner surface is provided. This attenuates and scatters the light from the light emitting portion that directly hits the inner surface of the labyrinth member, prevents the light from entering the light receiving portion, and improves the S / N ratio of the light receiving output.
[0032]
  Furthermore, the light trap in which a plurality of triangular protrusions are formed on the inner surface of the labyrinth member is provided not only in the labyrinth member at a position facing the light emitting portion but also in the periphery or all of the labyrinth members.
[0033]
  Also,In this way, the light emitting unit and the light receiving unit are embedded and arranged so as to have a predetermined angle in both the horizontal direction and the vertical direction, so that the protruding height of the optical axis intersection with respect to the mounting surface is reduced, and the smoke detection space as a whole is further improved. Can be thin.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view showing an embodiment of a scattered light smoke detector according to the present invention. In FIG. 1, the scattered light smoke detector includes a detector body 1 and a cover 2. The sensor body 1 is composed of a smoke detector cover 6 attached to the lower portion of the smoke detector body 5 and a terminal board 13 attached to the upper portion of the smoke detector body 5.
[0035]
A smoke detection space 4 is formed in the smoke detection unit cover 6 disposed at the lower part of the smoke detection unit main body 5. A labyrinth member 14 is formed integrally with the smoke detection unit cover 6 around the smoke detection space 4 so as to create a path through which smoke from the outside easily flows, and at the same time, the incidence of light from the outside is blocked.
[0036]
A smoke inlet 3 is opened in a portion of the cover 2 located around the labyrinth member 14. Further, an optical trap 11 is formed on the inner surface of the smoke detector cover 6 that faces the smoke detector body 5.
[0037]
The smoke detection unit body 5 has a circuit board 12 disposed on the back side thereof, and a light emitting unit 7 and a light receiving unit 8 are provided on the smoke detection space 4 side, and each lead wire is connected to the circuit board 12, Light emission drive and light reception processing are performed.
[0038]
The light emitting unit 7 irradiates the smoke detecting space 4 with light through the light emitting side opening 9, and the scattered light generated when the smoke particles are struck when the smoke flows into the smoke detecting space 4 The light is incident on the light receiving unit 8 through 10.
[0039]
Here, in the present invention, the optical axis from the light emitting unit 7 toward the smoke detecting space 4 and the optical axis of the scattered light that is scattered by the smoke particles in the smoke detecting section and toward the light receiving unit 8 are predetermined in the horizontal direction. The light emitting unit 7 and the light receiving unit 8 are arranged in the smoke detecting unit main body 5 so as to intersect with each other at an angle α and intersect with the vertical direction at a predetermined angle β.
[0040]
FIG. 2 is an exploded view of the scattered light smoke sensor of FIG. In FIG. 2, the sensor body 1 has a smoke detector body 5 assembled to the terminal board 13 from below, and further a smoke detector cover 6 assembled to the smoke detector body 5 from below. The assembled sensor body 1 is housed in a cover 2 and an assembled state as shown in FIG. 1 can be obtained.
[0041]
FIG. 3 is a perspective view of the smoke detector body 5 according to the present invention as seen from the smoke detection space side. A light emitting side opening 9 and a light receiving side opening 10 are formed on the surface of the smoke detecting unit body 5 on the side of the smoke detecting space.
[0042]
FIG. 4 is a cross-sectional view of a smoke detector assembly in which the smoke detector main body 5 and the smoke detector cover 6 according to the present invention are combined, and is shown upside down with respect to FIGS. In FIG. 4, the light emitting unit 7 and the light receiving unit 8 with respect to the smoke detecting unit main body 5 are the light emitting optical axis 25 from the light emitting unit 7 toward the smoke detecting space 4 and the light receiving unit scattered by the smoke particles in the smoke detecting space 4. The light receiving optical axis 26 of the scattered light directed to 8 is arranged so as to intersect the horizontal direction at a predetermined angle α and intersect the vertical direction at an angle β, as will be clarified later.
[0043]
Further, a cylindrical hole 15 is formed following the storage portion of the light emitting unit 7, and an opening concave portion 16 is formed following the cylindrical hole 15, and the cylindrical hole 15 opens on the inner wall surface of the opening concave portion 16. Similarly, a light receiving hole 18 and an opening concave portion 19 are formed on the light receiving portion 8 side, and the light receiving hole 18 opens in the opening concave portion 19.
[0044]
FIG. 5A schematically shows an optical positional relationship corresponding to the installation positions of the light emitting unit 7 and the light receiving unit 8 provided in the smoke detector main body 5 of FIG. 3 in a three-dimensional coordinate space.
[0045]
In FIG. 5A, the light emission optical axis 25 from the light emission point P by the light emitting unit 7 is indicated by a vector, and the light reception optical axis 26 on which the scattered light from the optical axis intersection point O enters is a vector with respect to the light reception point Q of the light receiving unit 8. Is shown.
[0046]
A triangle connecting the light emitting point P, the optical axis intersection point O, and the light receiving point Q is a virtual optical surface for detecting scattered light smoke in the smoke detector structure of the present invention, and a surface forming the triangle POQ is an xy plane. Are arranged with an angle with respect to each of the horizontal plane and the vertical plane which is the zx plane.
[0047]
In order to simplify the explanation, the projection of the light emitting point P on the x axis is arranged so as to be the projection point A. Therefore, the vertical inclination angle φ of the light emitting optical axis 25 is, in this case, the angle with respect to the x axis. Become.
[0048]
Here, when the light emitting optical axis 25 and the light receiving optical axis 26 are viewed from the horizontal plane that is the xy plane, the projection point A corresponds to the light emitting point P and the projection point B corresponds to the light receiving point Q as shown in FIG. . That is, the light emitting optical axis 25 and the light receiving optical axis 26 intersect at a predetermined angle α in the horizontal direction. On the other hand, when the light emitting optical axis 25 and the light receiving optical axis 26 are projected onto the surface ABQP, the light emitting optical axis and the light receiving optical axis intersect at a predetermined angle β in the vertical direction.
[0049]
For example, when the vertical inclination angle φ is set to 30 ° and the apparent configuration angle α is 120 ° on the horizontal plane, the configuration angle δ is 97 °. If the apparent configuration angle α is set to α = 120 ° and the tilt angle φ is set to φ = 9.8 ° on the horizontal plane, the configuration angle δ is δ = 117 °.
[0050]
In summary, the actual component angle δ = 117 ° and 97 ° is obtained with respect to the inclination angle φ = 9.8 ° and 30 ° when the apparent component angle α = 120 ° is kept constant, and the light emitting point. If the position of P and the light receiving point Q in the horizontal direction is not changed, if the vertical inclination angle φ is increased, the actual configuration angle δ can be reduced. Of course, if the inclination angle φ in the vertical direction is reduced, the height of the optical axis intersection point O becomes lower, so that the thickness is further reduced.
[0051]
Based on the three-dimensional relationship of the optical axes from light emission to light reception as shown in FIG. 5, in the embodiment of the present invention, the configuration angle δ of the light emission optical axis 25 and the light reception optical axis 26 is approximately 110 °. Of course, the scattering angle θ corresponding to this component angle δ = 110 ° is θ = 180 ° −δ = 70 °.
[0052]
Thus, in the present invention, the apparent configuration angle α in the horizontal plane and the inclination in the vertical plane in a state where the optical axis 25 of the light emitting unit 7 and the optical axis 26 of the light receiving unit 8 are set to the configuration angle δ = 110 °. By embedding and arranging in the smoke detector body 5 so as to have an angle φ, the amount of projection of the optical axis intersection with respect to smoke is kept low even when the optimum angle arrangement with little influence of sensitivity to the size of smoke particles is performed. The thin structure of the sensor can be realized.
[0053]
FIG. 6 is a plan view showing the smoke detector in the present invention as seen through from the optical trap forming side.
[0054]
In FIG. 6, the smoke detection space 4 formed between the smoke detector main body 5 and the smoke detector cover 6 has a plurality of labyrinth members 14 arranged around it. In this embodiment, the labyrinth member 14 is viewed from a plane. Thus, it has a V-shaped shape, and smoke from outside flows in and blocks light from outside. Further, a light trap 11 is provided on the surface of the smoke detector cover 6 (see FIG. 2) relative to the smoke detector space 5 with respect to the smoke detector space 4.
[0055]
FIG. 7 is an explanatory view of an optical trap provided in the smoke detecting section of the present invention, and FIG. 7 (A) shows a schematic structure of the smoke detecting section composed of the smoke detecting section main body 5 and the smoke detecting section cover 6. In FIG. 7B, the optical trap 11 formed on the smoke detector cover 6 side is taken out and enlarged.
[0056]
In FIG. 7A, a light trap 11 is formed on the inner surface of the smoke detecting section cover 6 facing the smoke detecting section main body 5 in which the light emitting section 7 and the light receiving section 8 are embedded in the embedded state via the smoke detecting space 4. ing. As shown in an enlarged view in FIG. 7B, the optical trap 11 has a structure in which triangular protrusions 11a are alternately arranged with horizontal bottom portions 11b interposed therebetween. In this embodiment, the triangular protrusions are arranged. The case where the vertex angle γ of the vertex edge 11c in the strip 11a is γ = 30 ° is taken as an example.
[0057]
Here, the apex edge 11c has a triangular apex by design, but in actuality, the smoke detector cover 6 is manufactured by molding a synthetic resin, and the apex edge is rounded as shown in the figure. It becomes the vertex edge 11c.
[0058]
The triangular protrusion 11a in the optical trap 11 has a trap surface 11d standing upright from the horizontal bottom portion 11b and an inclined surface rising obliquely from the horizontal bottom portion 11b so as to give an apex angle γ = 30 ° at the intersection of the trap surface 11d. The trap surface 11e is formed.
[0059]
Of the trap surfaces 11d and 11e in the triangular protrusion 11a, the trap surface 11e which is an inclined surface is located on the light emitting portion 7 side as shown in FIG. 7A, and the trap surface 11d is located on the back side as viewed from the light emitting portion 7. To do.
[0060]
Further, when the distance between the bottoms of the triangular protrusions 11a in the optical trap 11 is L1, and the distance between the horizontal bottoms 11b is L2, L1 = L2. This corresponds to a structure in which every third triangular protrusion 11a formed continuously at the interval L1 is thinned out to form a horizontal bottom 11b.
[0061]
FIG. 8 is an explanatory diagram showing conditions for setting the position of the horizontal bottom 11b that determines the depth in the optical trap 11 of the present invention. In FIG. 8, the optical trap 11 having a triangular protrusion 11a originally has a trap groove 27 indicated by an imaginary line between adjacent triangular protrusions 11a. In this trap groove 27, the depth D of the groove becomes deeper as the distance L between adjacent triangular protrusions 11a becomes wider, and the attenuation capability as an optical trap becomes higher.
[0062]
However, if the light trap groove 27 is deepened, the height dimension of the smoke detector cover 6 increases, and the thinning of the sensor is impaired.
[0063]
On the other hand, if the optical axis for the optical trap from the light emitting unit 7 is, for example, the optical axis 28, the optical axis 28 passes through the apex of the front triangular protrusion 11a and hits the trap surface 11e of the next triangular protrusion 11a. Assuming that the point where the optical axis 28 hits the trap surface 11e is a point P, the horizontal bottom 11b of the optical trap in the present invention needs to be positioned at least at a position where the groove is not shallower than the point P.
[0064]
If the horizontal bottom portion 11b is disposed in the direction in which the groove becomes shallower beyond the point P, the light from the light emitting portion by the optical axis 28 directly strikes the horizontal bottom portion 11b and is reflected to the light receiving portion 8 side and is incident on the light receiving portion 8. Is more likely to do.
[0065]
On the other hand, if the horizontal bottom 11b is disposed at a position deeper than the point P, the light from the optical axis 28 is always reflected toward the trap surface 11d facing the trap surface 11e, and directly hits the horizontal bottom 11b. Thus, it is possible to avoid reflection to the light receiving unit side.
[0066]
For this reason, the position of the horizontal bottom portion 11b in the optical trap 11 of the present invention is set so that the light from the light emitting portion 7 does not directly hit the horizontal bottom portion 11b.
[0067]
Actually, as shown in FIG. 7A, the light from the light emitting portion 7 directly hits the region 6a in the optical trap 11, and the optical trap 11 in the region 6a satisfies the conditions as shown in FIG. The horizontal bottom part 11b should just be set to the position.
[0068]
In addition, the lower part of the light from the light emitting unit 7 in FIG. 7A is reflected on the light trap 11 side after hitting the inner surface of the labyrinth member 14 arranged around the smoke detecting space 4. The light trap 11 also effectively attenuates the light reflected from the labyrinth member 14 to suppress reflection to the light receiving unit 8 side.
[0069]
FIG. 9 is an explanatory diagram of a smoke detector according to the present invention using an optical trap with an apex angle γ of 45 °. FIG. 9A is a schematic configuration of the smoke detecting section formed by the smoke detecting section main body 5 and the smoke detecting section cover 6, and a part of the optical trap is taken out and enlarged in FIG. 9B. .
[0070]
The light trap 31 formed on the inner surface of the smoke detector cover 6 in FIG. 9A has a plurality of triangular protrusions 31a and horizontal bottom portions 31b alternately formed as shown in FIG. 9B. The distances L1 and L2 between them are set to L1 = L2 as in the case of FIG.
[0071]
Here, the apex angle γ forming the apex edge 31c of the triangular protrusion 31a is set to γ = 45 °. Thus, by setting the apex angle γ = 45 °, the height of the triangular protrusion 31a with respect to the horizontal bottom portion 31b can be reduced, and the smoke detecting portion can be made thinner accordingly.
[0072]
Further, the triangular protrusion 31a has a trap surface 31d rising vertically from the horizontal bottom portion 31b and a trap surface 31e which is an inclined surface rising obliquely from the horizontal bottom portion 31b so as to intersect the trap surface 31d and have an apex angle γ = 45 °. I have.
[0073]
Similarly to the relationship between the triangular protrusion 31a and the horizontal bottom 31b when the apex angle γ = 45 °, the light of the optical axis passing through the apex of the triangular protrusion 31a from the light emitting section 7 is trapped surface 31e. A point corresponding to the point P is a point P, and a horizontal bottom 31b is provided at a depth equal to or less than the point P.
[0074]
  FIG. 10 is an explanatory view of an embodiment in which an optical trap is provided on the labyrinth member according to the present invention. 10, the labyrinth member 14 is a labyrinth member in which the light emission optical axis 25 from the light emission side opening 9 provided on the smoke detection unit main body 5 side in the smoke detection unit shown in FIG. versusForAn optical trap 32 is formed on the inner surface of the labyrinth member 14 at the position.
[0075]
  The light trap 32 has a triangular protrusion in the vertical direction having an isosceles triangular shape with a vertex having a predetermined acute angle, for example, an apex angle of 30 ° or 45 °.MultipleForming.
[0076]
The labyrinth member 14 in which the light trap 32 is formed inside has, for example, a region 14a that directly receives light from the light emitting portion 7, as shown in FIG. Compared to the case where the light trap 32 is not formed because the trap 32 is formed, the light trap that attenuates and diffuses the light that hits the inside of the labyrinth member 14 from the light emitting portion 7 and becomes the ceiling surface of the smoke detection space 4 The reflected light to the 11 side can be sufficiently suppressed, and the incidence of light on the light receiving unit 8 side can be minimized.
[0077]
FIG. 11 is an explanatory view of another embodiment in which a light trap is provided on the labyrinth member according to the present invention. In this embodiment, not only the labyrinth member directly irradiated with light from the light emitting portion of FIG. The light trap 32 is provided on the inner surface of the surrounding labyrinth member or all the labyrinth members.
[0078]
In this way, the light trap 32 is formed on the entire inner surface of the labyrinth member, so that the incidence of light on the light receiving portion can be further minimized.
[0079]
In the above-described embodiment, the light trap 31 is provided on the inner surface of the smoke detection unit cover 6 that is opposed to the smoke detection space 4, and the light is incident on the inner side of the labyrinth member 14 to which the optical axis from the light emission unit 7 hits. Although the trap 32 is formed, only the optical trap 31 on the inner surface of the smoke detector cover 6 may be configured, or only the optical trap 32 may be formed inside the labyrinth member 14.
[0080]
Furthermore, although the case where the apex angle γ is 30 ° or 45 ° as a triangular protrusion of the optical traps 11 and 31 is taken as an example, the apex angle γ may be an appropriate acute angle if necessary.
[0081]
In the above embodiment, the light traps 11 and 31 on the ceiling surface side with respect to the light emitting part of the smoke detection space are triangular ridges and the cross-sectional shape is a right triangle, and the light trap 32 inside the labyrinth member 14 is taken as an example. Is an example in which the triangular protrusion is an isosceles triangle, but the triangular protrusion may have an appropriate triangular shape as a cross-sectional triangular shape.
[0082]
The present invention includes appropriate modifications that do not impair the objects and advantages thereof, and is not limited by the numerical values shown in the above embodiments.
[0083]
【The invention's effect】
As described above, according to the present invention, the triangular protrusion and the horizontal bottom are formed as an optical trap formed on the opposite surface opposite to the member in which one light emitting portion and the light receiving portion of the smoke detection space are embedded. By adopting a structure that repeats alternately, compared to conventional light traps in which triangular ridges are continuously repeated, the triangular edge of the triangular ridge with a rounded ridge that generates scattered light when exposed to light or reflected light from the light emitting part The proportion of light traps can be reduced, and the proportion of vertex edges can be reduced, so that the amount of light incident on the light receiving portion is reduced by the scattering of light hitting the vertex edges with R, and the S / N ratio of the output from the light receiving portion is reduced. Can be improved.
[0084]
  Furthermore, in the present invention, at least light from the light emitting part is directly irradiated.PositionBy providing a light trap on the inner surface of the labyrinth member, light directly hits the inner surface of the labyrinth member from the light emitting part.ofThe S / N ratio of the received light output can be improved by suppressing the reflection amount and preventing the light from entering the light receiving unit.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a scattered light smoke detector according to the present invention.
FIG. 2 is an exploded view of the scattered light smoke detector of FIG.
FIG. 3 is a perspective view of the smoke detection unit main body according to the present invention viewed from the smoke detection space side.
FIG. 4 is a cross-sectional view of a smoke detector assembly in which a smoke detector body and a smoke detector cover are combined in the present invention.
FIG. 5 is an explanatory diagram of a positional relationship between a light emitting unit and a light receiving unit in the present invention.
FIG. 6 is a plan view showing the smoke detecting section according to the present invention seen through from the optical trap forming side.
FIG. 7 is an explanatory diagram of a smoke detector according to the present invention using an optical trap with an apex angle γ of 30 °.
FIG. 8 is an explanatory diagram of the depth required for the optical trap of the present invention.
FIG. 9 is an explanatory diagram of a smoke detector according to the present invention using an optical trap with an apex angle γ of 45 °.
FIG. 10 is an explanatory view of an embodiment of an optical trap provided on a labyrinth member according to the present invention.
FIG. 11 is an explanatory view of another embodiment of the optical trap provided on the labyrinth member according to the present invention.
FIG. 12 is an explanatory diagram of a conventional sensor structure.
FIG. 13 is an explanatory diagram of a conventional structure in which a light emitting part, a light receiving part, etc. do not protrude into a smoke detection space
FIG. 14 is an explanatory diagram of a conventional smoke detector provided with an optical trap.
[Explanation of symbols]
1: Sensor body
2: Cover
3: Smoke inlet
4: Smoke detection space
5: smoke detector body
6: Smoke detection cover
7: Light emitting part
8: Light receiver
9: Light emitting side opening
10: Light-receiving side opening
11, 31, 32: Optical trap
11a, 31a: Triangular ridge
11b, 31b: horizontal bottom
11c, 31c: vertex edges
11d, 11e, 31e, 31d: trap surface
12: Circuit board
13: Terminal board
14: Labyrinth member
15: Cylindrical hole
16, 19: Opening recess
25: Light emission optical axis
26: Light receiving optical axis

Claims (3)

検煙空間に向けて光を発する発光部と、
前記検煙空間内の煙粒子による前記発光部からの光の散乱光を受光する受光部と、
外部からの煙を流入すると共に外部からの光を遮断するラビリンス部材を周囲に配置すると共に上下に部材を配置することで内部に前記検煙空間を形成し、前記発光部および受光部を前記一方の部材に設け、前記他方の部材の内面に光トラップを設けた検煙部と、
を備えた散乱光式煙感知器に於いて、
前記光トラップは、三角突条と水平底部で構成されると共に前記水平底部は、前記三角突条の頂点を通る発光部からの光が到達する深さ以上の深い位置に形成されたことを特徴とする散乱光式煙感知器。
A light emitting unit that emits light toward the smoke detection space;
A light receiving unit that receives light scattered from the light emitting unit by smoke particles in the smoke detection space;
A labyrinth member that flows in smoke from the outside and blocks light from the outside is arranged around and the members are arranged above and below to form the smoke detection space, and the light emitting unit and the light receiving unit are arranged on the one side. A smoke detector provided with a light trap on the inner surface of the other member;
Scattered light smoke detector with
The light trap is composed of a triangular ridge and a horizontal bottom, and the horizontal bottom is formed at a position deeper than a depth at which light from a light emitting portion passing through the apex of the triangular ridge reaches. Scattered light smoke detector.
請求項1記載の散乱光式煙感知器において、前記光トラップは、所定間隔で形成した三角突条を1つおきに間引きして水平底部とし、前記三角突条と前記水平低部とを交互に複数形成したことを特徴とする散乱光式煙感知器。  2. The scattered light type smoke detector according to claim 1, wherein the light trap thins out every third triangular protrusion formed at a predetermined interval to form a horizontal bottom, and alternately alternates between the triangular protrusion and the horizontal low part. Scattered light type smoke detectors characterized in that a plurality of them are formed. 請求項1記載の散乱光式煙感知器において、前記光トラップの三角突条は、発光部の反対側に位置するトラップ面が水平底部から垂直に起立した垂直面であり、発光部側に位置するトラップ面が所定の頂点鋭角を与える傾斜面であることを特徴とする散乱光式煙感知器。  2. The scattered light smoke detector according to claim 1, wherein the triangular protrusion of the light trap is a vertical surface in which a trap surface located on the opposite side of the light emitting portion stands vertically from a horizontal bottom, and is located on the light emitting portion side. A scattered light type smoke detector, wherein the trapping surface is an inclined surface giving a predetermined apex acute angle.
JP2003004228A 2003-01-10 2003-01-10 Scattered smoke detector Expired - Fee Related JP3835546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004228A JP3835546B2 (en) 2003-01-10 2003-01-10 Scattered smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004228A JP3835546B2 (en) 2003-01-10 2003-01-10 Scattered smoke detector

Publications (2)

Publication Number Publication Date
JP2004220155A JP2004220155A (en) 2004-08-05
JP3835546B2 true JP3835546B2 (en) 2006-10-18

Family

ID=32895264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004228A Expired - Fee Related JP3835546B2 (en) 2003-01-10 2003-01-10 Scattered smoke detector

Country Status (1)

Country Link
JP (1) JP3835546B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9297753B2 (en) 2011-08-29 2016-03-29 Fenwal Controls Of Japan, Ltd. Photoelectric smoke sensor
CN103098107B (en) 2011-09-02 2016-05-25 日本芬翁股份有限公司 Air suction type smoke detection system
US9140646B2 (en) 2012-04-29 2015-09-22 Valor Fire Safety, Llc Smoke detector with external sampling volume using two different wavelengths and ambient light detection for measurement correction
US8907802B2 (en) 2012-04-29 2014-12-09 Valor Fire Safety, Llc Smoke detector with external sampling volume and ambient light rejection
US8947244B2 (en) 2012-04-29 2015-02-03 Valor Fire Safety, Llc Smoke detector utilizing broadband light, external sampling volume, and internally reflected light
AU2014342621B2 (en) 2013-10-30 2019-07-18 Valor Fire Safety, Llc Smoke detector with external sampling volume and ambient light rejection
JP6957273B2 (en) * 2017-08-31 2021-11-02 ホーチキ株式会社 Scattered light detector

Also Published As

Publication number Publication date
JP2004220155A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US7248173B2 (en) Smoke detector
JP3934423B2 (en) Scattered smoke detector
US5430307A (en) Light scattering smoke detector with smoke-entrance ladyrinth designed to prevent false signals due to reflection
US9297753B2 (en) Photoelectric smoke sensor
JP4157212B2 (en) Light scattering particle detection sensor
JP3835546B2 (en) Scattered smoke detector
US20230384218A1 (en) Fire detection device
JP2022186842A (en) Smoke detector
GB2281619A (en) Light scattering type smoke sensor
JP5133597B2 (en) Scattered light smoke detector with condensing means
JP3842739B2 (en) Scattered smoke detector
TWI725400B (en) Smoke detector
JP3938780B2 (en) Scattered smoke detector
TWI722368B (en) Smoke detector
JPH09231485A (en) Photoelectric smoke sensor
JP2581838B2 (en) Light scattering particle detection sensor
JP2016115062A (en) Photoelectric smoke detector
JP6470558B2 (en) Photoelectric smoke detector
TWI753237B (en) Smoke detector
JP2009003510A (en) Smoke sensor
JPH03296897A (en) Scattered light type smoke sensor
JP2721788B2 (en) Scattered light smoke detector
JP3015634B2 (en) Scattered light smoke detector
US20240078895A1 (en) Optical filter, and test assembly and method for smoke detector
JP3389227B2 (en) Scattered light smoke detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3835546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees