JP3827140B2 - Work-induced martensitic steel for power transmission belts with high hardness and high fatigue strength, and strip steel using the same - Google Patents

Work-induced martensitic steel for power transmission belts with high hardness and high fatigue strength, and strip steel using the same Download PDF

Info

Publication number
JP3827140B2
JP3827140B2 JP2000295102A JP2000295102A JP3827140B2 JP 3827140 B2 JP3827140 B2 JP 3827140B2 JP 2000295102 A JP2000295102 A JP 2000295102A JP 2000295102 A JP2000295102 A JP 2000295102A JP 3827140 B2 JP3827140 B2 JP 3827140B2
Authority
JP
Japan
Prior art keywords
less
steel
power transmission
fatigue strength
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000295102A
Other languages
Japanese (ja)
Other versions
JP2001172746A (en
JP2001172746A5 (en
Inventor
利弘 上原
義博 三奈木
悦夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000295102A priority Critical patent/JP3827140B2/en
Publication of JP2001172746A publication Critical patent/JP2001172746A/en
Publication of JP2001172746A5 publication Critical patent/JP2001172746A5/ja
Application granted granted Critical
Publication of JP3827140B2 publication Critical patent/JP3827140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用無段変速機等に使用される動力伝達用ベルトに使用される高硬度、高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼及び該高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼からなる動力伝達用ベルト用鋼帯に関するものである。
【0002】
【従来の技術】
従来、高強度が要求される部材、例えば、ロケット用部品、遠心分離機部品、航空機部品、自動車エンジンの無段変速機用部品、金型等種々の用途に主として2000Mpa前後の非常に高い引張強さを持つマルエージング鋼が使用され、その代表的な組成としては、18%Ni-8%Co-5%Mo-0.4%Ti-0.1%Al-bal.Feが挙げられる。このマルエージング鋼は強化元素として高価な元素であるCoやMoを多量に含み、素材価格が非常に高価であるため、上記のような特殊な限定された用途に使われている。
【0003】
【発明が解決しようとする課題】
一般に、高強度を必要とされる用途に使用される高強度鋼には、高い硬さや引張強さだけでなく、高い疲労強度や靭性もあわせて要求される。引張強さが約1200MPa以下の場合、疲労強度は硬さ、引張強さに比例して上昇する傾向があるが、硬さが約400Hv以上、引張強さが約1200MPa以上の高強度鋼では、硬さ、引張強さが上昇しても疲労強度は上昇しなくなる。このことは、上記のマルエージング鋼も例外ではなく、高い引張強度をもつ割には疲労強度は高くない。そこで、
高い疲労強度を有し、かつ従来のマルエージング鋼に代わる安価で新規な高強度鋼が望まれていた。
【0004】
そこで、本発明者等は、上述のマルエージング鋼に代わる新規な高強度鋼として種々の高強度鋼について鋭意検討を行った。
先ず、比較的安価な高硬度材として、主にCを0.5%前後含む13%Cr系の焼入れマルテンサイト系ステンレス鋼がある。このタイプのステンレス鋼は、焼鈍で軟化させた状態で冷間加工を加えて所定の寸法にした後、焼入れ焼戻しという熱処理を行うことで製造される。この熱処理によってCを含む硬いマルテンサイト相が得られるため、非常に高い硬さを得ることができる。
しかし、高硬度を得るために焼入れ焼戻しという熱処理を必要とするため、所望の物品を得るには素材の工程が多く、製造工程が複雑であり、また、高温からの焼入れによる熱処理変形が大きいという問題があった。また、Cを比較的多く含むため、溶接性が必ずしも容易ではなかった。
【0005】
次に、冷間加工によってマルテンサイト変態させるタイプのステンレス鋼として、JIS SUS631がよく知られている。
SUS631は、固溶化処理後、冷間加工し、さらに時効処理を行うと、約490HVの硬さを得ることができる。
しかし、SUS631は、硬さ等の特性が組成や熱処理条件に非常に敏感であり、特性がばらつきやすいという問題があった。
そして、JIS SUS304やSUS201のようなオーステナイト系ステンレス鋼を冷間加工することによっても高硬度が得られる。
しかし、これらオーステナイト系ステンレス鋼は、オーステナイト相が安定であるため、強加工してもオーステナイト相の一部が加工誘起マルテンサイト変態する程度であり、多くは加工硬化したオーステナイト相であることから、十分な高硬度が得られないという問題があった。
本発明の目的は、高硬度、高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼及び該動力伝達用ベルト用加工誘起型マルテンサイト系鋼でなる動力伝達用ベルト用鋼帯を提供することである。
【0006】
【課題を解決するための手段】
一般に、高強度鋼では、例えば日本機械学会論文集A64巻2536〜2541頁に開示されるように、低サイクル域で疲労破壊する場合には、疲労破壊は表面を起点とした亀裂発生、伝播によって起こることが知られている。また、従来、疲労限と考えられていた10の7乗回を越える超高サイクル域においては、疲労破壊は表面を起点とせず、内部の介在物を起点としていることが知られている。
従来のマルエージング鋼においては、内部起点の疲労破壊起点に存在する介在物はTiN(またはTi(C、N))であることが知られている。そこで、TiN(またはTi(C、N))の介在物をなくすことが疲労強度向上に有効であり、Tiを含まない高強度鋼が高い疲労強度を有するものと考えられる。
【0007】
そこで本発明者等は、析出強化元素であるTiを用いずに、高硬度を得ることができる加工誘起マルテンサイト系ステンレス鋼に着目した。しかしながら、この加工誘起マルテンサイト系ステンレス鋼は、上述のJIS SUS631のように特性がばらつき易く、特にこのSUS631ではAlを1mass%含有していることに起因した溶接性の悪さという欠点を有する一方で、加工誘起マルテンサイト系ステンレス鋼は、マルエージング鋼のように高価なCoを添加することなく高硬度を得ることができるため、更に価格を大きく改善できるという利点がある。さらに、高硬度と仕上げ形状を得るための手段が冷間塑性加工であるため、焼入れマルテンサイト鋼のような仕上げ形状での高温からの焼入れが必要なく、熱処理変形がないという利点を併せ持つものである。
【0008】
そこで、本発明者等は、上述の利点を最大限引き出しながら、欠点を解消できるように種々の合金元素とその最適な添加量を鋭意検討した結果、Crが10%未満の加工誘起型マルテンサイト系鋼の領域と、10%以上の加工誘起型マルテンサイト系ステンレス鋼の領域を包含する成分範囲の鋼(以下、加工誘起型マルテンサイト系ステンレス鋼の領域と加工誘起型マルテンサイト系鋼の領域との総称として、加工誘起型マルテンサイト系鋼と記す)において、特定の合金元素を適正添加し、特に、この加工誘起型マルテンサイト系鋼にMo、Cu等の時効硬化元素を添加することにより、冷間塑性加工後に時効処理を行うと、さらに高い強度が得られることを見出した。
そして本発明者等は、加工誘起型マルテンサイト系鋼を、例えば自動車用無段変速機に使用される動力伝達用ベルトにも対応可能な強度、高硬度、高疲労強度の付与を目的として、鋭意検討を行い本発明に到達した。
【0009】
すなわち、本発明の第1発明は質量%で、C:0.01〜0.08%、Si:3.0%以下、Mn:5.0%を越え10.0%以下、Ni:1.0〜12.0%、Cr:4〜18%、MoまたはWの1種または2種が、Mo+1/2Wで0.1〜4.0%、Cu:5.0%以下(0%を含む)、N:0.15%以下(0%を含む)、Al:0.10%以下、O:0.005%以下、残部Feおよび不可避的不純物からなり、かつ(1)式で示されるA値が13〜27%であって、冷間加工後にオーステナイトから生成したマルテンサイト相を体積%で30%以上を含み、ビッカース硬さが455以上である高硬度高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼である。
A=Ni+0.65Cr+0.98Mo+0.49W+1.05Mn+0.35Si+Cu+12.6(C+N)・・・(1)
(ただし、選択元素のうち無添加の元素はゼロとして計算)
【0010】
また第2発明は、質量%で、C:0.01〜0.08%、Si:3.0%以下、Mn:5.0%を越え7.0%以下、Ni:3.0〜11.0%、Cr:4〜16%、MoまたはWの1種または2種が、Mo+1/2Wで0.5〜3.0%、Cu:4.0%以下(0%を含む)、N:0.15%以下(0%を含む)、Al:0.05%以下、O:0.003以下、残部Feおよび不可避的不純物からなり、かつ(1)式で示されるA値が19〜25%であって、冷間加工後にオーステナイトから生成したマルテンサイト相を体積%で30%以上を含み、ビッカース硬さが455以上である高硬度高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼である。
【0011】
また第3発明は、質量%で、C:0.01〜0.08%、Si:1.0未満、Mn:5.0%を越え7.0%以下、Ni:3.0〜11.0%、Cr:4〜16%、MoまたはWの1種または2種が、Mo+1/2Wで0.5〜3.0%、Cu:4.0%以下(0%を含む)、N:0.15%以下(0%を含む)、Al:0.05%以下、O:0.005%以下、残部Feおよび不可避的不純物からなり、かつ(1)式で示されるA値が19〜24%であって、冷間加工後にオーステナイトから生成したマルテンサイト相を体積%で30%以上を含み、ビッカース硬さが455以上である高硬度高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼である。
本発明の第4発明は、第1発明乃至第3発明の何れかに記載の鋼組成に、V、Ti、Nbのうち1種または2種以上を合計で0.2%以下を含む高硬度高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼である。
本発明の第5発明は、第1発明乃至第4発明の何れかに記載の鋼組成に、B、Mg、Ca、のうち1種または2種以上を合計で0.10%以下含む高硬度高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼である。
【0012】
本発明の第6発明は、第1発明乃至第5発明の何れかに記載の高硬度高疲労強度を有する動力伝達用ベルト用加工誘起マ型マルテンサイト系鋼の表面に窒化層が形成され、表面に圧縮残留応力を付与した動力伝達用ベルト用加工誘起型マルテンサイト系鋼帯である
【0013】
【発明の実施の形態】
本発明は、加工誘起マルテンサイト変態のしやすさと、高硬度を得るための元素であるNi、Cr、Mo、W、Mn、Si、Cu、C、Nの添加量の最適化を図る必要がある。
そして、Ni、Cr、Mo、W、Mn、Si、Cu、C、Nの元素は、個々の成分範囲を満足するだけでなく、高硬度を得るためには、本発明鋼において規定した(1)式を満足する必要がある。
(1)式に示すA値は、本発明のNi当量を示しており、この式のA値の大小が加工誘起マルテンサイト相の生成し易さを左右する重要な指標である。A値は、加工誘起マルテンサイトへの変態のし易さに影響する各元素の質量%に各元素の効果に応じてそれぞれ係数を付した値を足したものである。
本発明鋼では、このA値が13より小さいと固溶化処理後の冷却によりマルテンサイト組織が多く生成し、加工誘起変態により生成するマルテンサイトが減少するため、十分な高硬度が得られにくくなる。一方、27を越えるとオーステナイト相が安定化しすぎるため、冷間塑性加工により加工誘起マルテンサイトが生成しにくくなり、十分な高硬度を得られなくなりことから、(1)式で示すA値を13〜27%とした。望ましくは、19〜25%がよく、さらに望ましくは、19〜24%がよい。
【0014】
以下に本発明鋼の各元素の作用について述べる。
Cは、オーステナイト生成元素であり、固溶化処理後にオーステナイト組織を得るために有効である。また冷間加工によって加工誘起変態したマルテンサイト組織を強化し、硬度を高めるために有効であるが、0.10%を越えて添加すると基地に固溶してオーステナイト相が安定になりすぎ、加工誘起変態が起こりにくくなる上、加工硬化が大きくなるため、冷間加工し難くなる。一方、0.01%より少ないと、冷間加工後に十分な硬さが得られなくなるだけでなく、デルタフェライトが生成して硬さや熱間加工性を低下させることから、Cの含有量を0.01%〜0.10%とした。
【0015】
Siは、脱酸のために少量添加するが、3.0%を越えて添加しても、より一層の向上効果が見られず、3.0%以下とした。望ましくは1.0%未満がよい。
Mnは、オーステナイト生成元素であり、固溶処理後にオーステナイト組織を得るために有効であり、また、A値で規定したNi当量の制御においてはNiの一部をMnに置換してMnを多くできることから、Niと比べると原料が安価なMnを多く添加することで、コストを安くできるという利点もある。
また、オーステナイト相中へのN固溶度を増加させ、Nの添加を容易にする。換言すれば、N添加を安定して行なう(つまりNによる鋳造欠陥をつくらない)ために非常に有効である。N含有鋼においてはMnを高くする必要があるが10.0%を越えて添加すると冷間加工性が劣化する一方、5.0%以下では十分な効果が得られないことから、5.0%を越え10.0%以下とした。望ましくは5.0%を越え7.0%以下がよい。
【0016】
Niは、Mnと同じくオーステナイト生成元素であり、固溶化処理後にオーステナイト組織を得るために有効である。1.0%より少ないと十分な効果が得られず、一方、12.0%を越えて添加するとオーステナイト相が安定になりすぎ、加工誘起マルテンサイト変態が起こりにくくなるため、十分な高硬度が得にくくなることから、1.0〜12.0%とした。望ましくは、3.0〜11.0%がよい。
Crは、加工誘起マルテンサイトを得る重要な元素で、4.0%より少ないとオーステナイト相が安定になりすぎ、一方、18.0%を越えて添加するとデルタフェライトを生成し易くなり、熱間加工性を劣化させるので、4.0〜18.0%とした。望ましくは、4.0〜16.0%がよい。
【0017】
Moは、加工誘起マルテンサイトの強度を増加させるのに有効な元素であり、また、冷間加工後の時効硬化にも効果があり、Moは必須添加とするのが望ましい。
WもMoと同様、強度を高めるのに有効であるが、W単独ではその効果は小さく、Wを添加する場合は、Moの一部を当量のW(1/2Wが当量のMoに相当)で置換する形で添加する。Mo+1/2Wが0.1%未満であれば、強度を高める効果が望めず、Mo+1/2Wを4.0%を越えて添加するとデルタフェライトが生成しやすくなり、熱間加工性や冷間加工性を劣化させるので、0.1〜4.0%とした。望ましくは、0.5〜3.0%がよい。
【0018】
Cuは、オーステナイト相の加工効果指数を小さくして冷間加工性を向上させる効果がある。また、冷間加工後の時効処理により時効析出することで強度を上昇させる効果がある。5.0%を越えて添加してもより一層の向上効果はみられず、熱間加工性が劣化してくることから、Cuは5.0%以下とした。望ましくは4.0%以下がよい。但し、冷間加工のみで硬化させる場合には、Cuはむしろ無い方が高い硬さが得られるので、Cuは無添加(0%)でもよい。
Nは、オーステナイト相およびマルテンサイト相中に固溶して硬さを高めるとともに、加工硬化指数を大きくして冷間加工による硬化を大きし、また、時効処理時に歪時効による硬化を大きくするのに有効な元素である。しかし、0.15%を越えて添加すると、鋼塊の健全性を害して製造性を劣化させることから、0.15%以下とした。また、溶接して使用される場合にはNの多量添加は溶接性を阻害するので、Nは低めの方が望ましく、無添加(0%)でもよい。
【0019】
Alは、脱酸のために少量添加されるが、0.10%より多いとAl2O3介在物を多く形成して疲労強度を低下させるので、Alは0.10%以下とした。望ましくは0.05%以下がよい。
Oは、酸化物系介在物を形成して靭性、疲労強度を低下させる不純物元素であるので、0.005%以下とした。望ましくは0.003%以下がよい。
【0020】
V、Ti、Nbは必ずしも添加する必要はないが、一次炭化物を形成することで結晶粒を微細化して硬さおよび延性を向上させるのに有効な元素であり、1種または2種以上を必要に応じて添加する。これらのうち、1種または2種以上が合計で、0.2%を越えて添加すると窒化物系介在物を形成し、疲労強度を低下させたり、粗大な一次炭化物を形成し、冷間加工性を害することから1種または2種以上を合計で0.2%以下とした。
【0021】
B、Mg、Caも、必ずしも添加する必要はないが、酸化物、硫化物を形成することで、結晶粒界に偏析するS、Oを低減し、熱間加工性を向上させるのに有効であるり、1種または2種以上を必要に応じて添加する。B、Mg、Caのうちの1種または2種以上が合計で0.10%を越えて添加してもより一層の向上効果は得られず、逆に清浄度を低下させて熱間加工性、冷間加工性を害するので、B、Mg、Caのうち1種または2種以上を合計で、0.10%以下とするのがよい。
また、不純物元素であるP、Sについては、通常の溶解レベルで混入するれべるなら問題無いので特に規定しないが、耐食性や熱間加工性の点からは低い方が望ましく、Pは0.04%以下、Sは0.02%以下であればよい。
【0022】
本発明鋼は上記の成分範囲を満足しただけでは、所望の高硬度と高疲労強度が得られず、冷間圧延、冷間引抜、冷間鍛造等の冷間加工を加えることによって、加工誘起マルテンサイト相を生成させる必要がある。この冷間加工後のマルテンサイト相が体積率で30%より少ないと、十分な高硬度、高疲労強度が得られないことから、冷間加工後のマルテンサイト相の体積率は30%以上とした。
【0023】
次に上述の本発明鋼を用いて鋼帯にする場合は、冷間加工を加えることによって高硬度、高疲労強度を得ることができる、適正な冷間加工後にマルテンサイト量を所望の量に調整することで、ビッカース硬さを455以上とすることができる。
また、上述の本発明鋼を用いた鋼帯は、硬さを低下させずに延性、バネ特性等の向上のために、必要に応じて、冷間加工後に400〜600℃で時効処理を行なうことができる。
【0024】
更に、本発明鋼は、硬さを低下させずに窒化を行なうことができる。上述の本発明鋼を、例えば自動車エンジンの無段変速機用部品として使用される動力伝達用ベルトに適用できるように、帯状に形成し、適当な条件で窒化処理を行なうと、窒化物をほとんど形成することなく表面に20〜40μm程度の窒化層を形成でき、表面に大きな圧縮残留応力を付与でき、更に高い疲労強度を得ることができる。
なお、表面の圧縮残留応力は高い方が好ましいが、そのコントロールは窒化層の厚みおよび窒化層の硬さを適宜調整することで可能である。
【0025】
【実施例】
以下、実施例に基づいて本発明を説明する。先ず、真空溶解によって溶解し、10kgの鋼塊を得た。化学組成を表1に示す。
ここで鋼No.1〜15は組成、A値および冷間加工後のマルテンサイト相量が何れも本発明の限定範囲にある本発明鋼であり、No.31〜36は組成、A値および冷間加工後のマルテンサイト相量の何れか、また幾つかが本発明の限定範囲から外れた比較鋼、No.37は従来の焼入れ焼戻し鋼のJIS SUS420J2である。
No.1〜37の鋼を熱間鍛造、熱間圧延によって厚さ2mmの板材にし、1050℃に加熱後、空冷の固溶化処理を行なった。その後50〜70%の圧下率で冷間圧延して鋼帯とし、さらに450℃で時効処理を行った。
No.36の鋼は950℃から焼入れた後、300℃で焼戻しを行なった。
【0026】
上記のマルテンサイト相量はエックス線回折法によって測定した。硬さについては、冷間圧延した板の縦断面でビッカース硬さを測定することによって求めた。
また、疲労強度は、厚さ0.2mm、幅10mmの板状試験片を用い、曲げ角度±25°でスパン長さを種々変えて、1000cpmの繰り返し曲げ速度で繰り返し曲げ疲労試験を行い、1×10の7乗回における疲労強度を求めた。
【0027】
【表1】

Figure 0003827140
【0028】
【表2】
Figure 0003827140
【0029】
表2からわかるように、本発明鋼No.1〜15は何れも冷間加工後のビッカース硬さが455以上の高硬度を示している。また、本発明鋼は繰り返し曲げ疲労試験の結果より、800MPa以上の高い疲労強度を示している。
これに対して、組成、A値、冷間加工後のマルテンサイト相量の何れか一つ以上が本発明に規定した範囲から外れる比較鋼No.31〜36および従来鋼No.37は硬さ、繰り返し曲げ疲労試験での疲労強度の何れかの特性が本発明鋼に比べて悪いことが判る。
特にA値およびマルテンサイト相量が規定した範囲から外れる比較鋼No.32〜35は硬さが低く、高硬度が得られない。
【0030】
また、本発明鋼は固溶化処理状態のビッカース硬さを測定した所、硬さが350以下と低く、冷間加工性が良好であり、冷間成形も容易であった。
さらに、本発明鋼に時効処理後に時効処理温度より低温で窒化処理を行なうか、あるいは、時効処理と兼ねて窒化処理を行うと、約20〜40μmの深さの窒化層を形成させることができ、窒化による表面圧縮残留応力の効果により、さらに疲労強度を300MPa程度上昇させることができる。
【0031】
以上説明したように、本発明の動力伝達用ベルト用加工誘起型マルテンサイト系鋼は、高硬度でかつ疲労強度に優れることから、高い硬さと疲労強度がともに要求される自動車エンジンの無段変速機用部品として使用される動力伝達用ベルトとすれば、特に好適な特性を有しており、工業上顕著な効果を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention, high hardness that is used in belts for power transmission for use in automotive continuously variable transmission or the like, a strain-induced type martensitic steel and the high fatigue strength for power transmission belt having a high fatigue strength it relates power transmission belt strip formed of a power transmission belt for strain-induced type martensitic steel having.
[0002]
[Prior art]
Conventionally, parts with high strength, such as rocket parts, centrifuge parts, aircraft parts, parts for continuously variable transmissions of automobile engines, molds, etc. A maraging steel having a thickness is used, and a typical composition is 18% Ni-8% Co-5% Mo-0.4% Ti-0.1% Al-bal.Fe. This maraging steel contains a large amount of expensive elements such as Co and Mo as strengthening elements, and the material price is very expensive. Therefore, the maraging steel is used for special limited applications as described above.
[0003]
[Problems to be solved by the invention]
Generally, high strength steel used for applications requiring high strength is required not only for high hardness and tensile strength but also high fatigue strength and toughness. When the tensile strength is about 1200 MPa or less, the fatigue strength tends to increase in proportion to the hardness and tensile strength, but for high-strength steel with a hardness of about 400 Hv or more and a tensile strength of about 1200 MPa or more, Even if the hardness and tensile strength increase, the fatigue strength does not increase. This is no exception for the above-mentioned maraging steel, and the fatigue strength is not high although it has a high tensile strength. Therefore,
A low-cost new high-strength steel having high fatigue strength and replacing the conventional maraging steel has been desired.
[0004]
Therefore, the present inventors diligently studied various high-strength steels as new high-strength steels that replace the maraging steel described above.
First, as a relatively inexpensive high-hardness material, there is a 13% Cr hardened martensitic stainless steel mainly containing about 0.5% of C. This type of stainless steel is manufactured by performing a heat treatment called quenching and tempering after applying cold working to a predetermined size in a state of being annealed and softened. Since a hard martensite phase containing C is obtained by this heat treatment, a very high hardness can be obtained.
However, in order to obtain high hardness, heat treatment called quenching and tempering is required, so that there are many raw material processes to obtain a desired article, the manufacturing process is complicated, and heat treatment deformation due to quenching from high temperatures is large. There was a problem. Further, since a relatively large amount of C is contained, the weldability is not always easy.
[0005]
Next, JIS SUS631 is well known as a type of stainless steel that undergoes martensitic transformation by cold working.
SUS631 can have a hardness of about 490 HV by cold working after solution treatment and further aging treatment.
However, SUS631 has a problem that characteristics such as hardness are very sensitive to the composition and heat treatment conditions, and the characteristics tend to vary.
And high hardness is acquired also by cold-working austenitic stainless steel like JIS SUS304 or SUS201.
However, since these austenitic stainless steels have a stable austenite phase, a part of the austenite phase undergoes work-induced martensitic transformation even when hard-worked, and many are work-hardened austenite phases. There was a problem that sufficient high hardness could not be obtained.
An object of the present invention, high hardness, a steel strip for power transmission belts made of power transmission belts for strain-induced martensitic steel and the power transmission belt strain-induced type martensitic steel having high fatigue strength Is to provide.
[0006]
[Means for Solving the Problems]
Generally, in high-strength steel, as disclosed in, for example, the Japan Society of Mechanical Engineers, A64, Volumes 2536 to 2541, when fatigue failure occurs in a low cycle range, fatigue failure is caused by crack initiation and propagation starting from the surface. It is known to happen. Further, it is known that fatigue fracture does not originate from the surface but originates from internal inclusions in an ultra-high cycle region exceeding 10 7 times, which was conventionally considered as the fatigue limit.
In conventional maraging steel, it is known that the inclusion existing at the fatigue fracture starting point of the internal origin is TiN (or Ti (C, N)). Therefore, eliminating inclusions of TiN (or Ti (C, N)) is effective in improving fatigue strength, and high strength steel containing no Ti is considered to have high fatigue strength.
[0007]
Therefore, the present inventors paid attention to a work-induced martensitic stainless steel that can obtain high hardness without using Ti as a precipitation strengthening element. However, this work-induced martensitic stainless steel tends to vary in characteristics like the above-mentioned JIS SUS631, and in particular, this SUS631 has the disadvantage of poor weldability due to containing 1 mass% of Al. The work-induced martensitic stainless steel has an advantage that the price can be greatly improved because high hardness can be obtained without adding expensive Co like maraging steel. Furthermore, since the means for obtaining high hardness and finished shape is cold plastic working, it has the advantage that there is no need for quenching from a high temperature in a finished shape like quenched martensitic steel, and no heat treatment deformation. is there.
[0008]
Accordingly, the present inventors have intensively studied various alloy elements and their optimum addition amounts so as to solve the disadvantages while maximizing the above-mentioned advantages. As a result, the processing-induced martensite having a Cr content of less than 10%. Steel of the composition range including the region of the steel and the region of the work-induced martensitic stainless steel of 10% or more (hereinafter, the region of the work-induced martensitic stainless steel and the region of the work-induced martensitic steel) In particular, by adding a specific alloying element in the work-induced martensitic steel), in particular by adding an age hardening element such as Mo or Cu to the work-induced martensitic steel. It was found that higher strength can be obtained when aging treatment is performed after cold plastic working.
And the present inventors, for the purpose of imparting strength, high hardness, high fatigue strength, which can be applied to a power transmission belt used in , for example, a continuously variable transmission for automobiles, the processing-induced martensitic steel, The present invention was reached through intensive studies.
[0009]
That is, the first invention of the present invention is mass%, C: 0.01 to 0.08%, Si: 3.0% or less, Mn: more than 5.0% and 10.0% or less, Ni: 1. 0 to 12.0%, Cr: 4 to 18%, one or two of Mo or W are Mo + 1 / 2W, 0.1 to 4.0%, Cu: 5.0% or less (including 0%) ), N: 0.15% or less (including 0%), Al: 0.10% or less, O: 0.005% or less, the balance Fe and inevitable impurities , and A represented by the formula (1) A belt for power transmission having a high hardness and high fatigue strength of 13 to 27%, including a martensite phase produced from austenite after cold working and containing 30% or more by volume and a Vickers hardness of 455 or more. This is a machining-induced martensitic steel for industrial use.
A = Ni + 0.65Cr + 0.98Mo + 0.49W + 1.05Mn + 0.35Si + Cu + 12.6 (C + N) ... (1)
(However, calculation is made assuming that no additive element is selected among the selected elements)
[0010]
Moreover, 2nd invention is the mass%, C: 0.01-0.08%, Si: 3.0% or less, Mn: 5.0% over 7.0%, Ni: 3.0-11 0.0%, Cr: 4-16%, one or two of Mo or W is Mo + 1 / 2W, 0.5-3.0%, Cu: 4.0% or less (including 0%), N : 0.15% or less (including 0%), Al: 0.05% or less, O: 0.003 or less, remaining Fe and inevitable impurities , and the A value represented by the formula (1) is 19 to Work induction type for power transmission belts having a high hardness and high fatigue strength of 25%, including 30% or more by volume of martensite phase generated from austenite after cold working and having a Vickers hardness of 455 or more Martensitic steel.
[0011]
Moreover, 3rd invention is the mass%, C: 0.01-0.08%, Si: less than 1.0, Mn: more than 5.0% and 7.0% or less, Ni: 3.0-11. 0%, Cr: 4 to 16%, one or two of Mo or W is Mo + 1 / 2W, 0.5 to 3.0%, Cu: 4.0% or less (including 0%), N: 0.15% or less (including 0%), Al: 0.05% or less, O: 0.005% or less, balance Fe and inevitable impurities , and the A value represented by the formula (1) is 19 to Work induction type for power transmission belts having high hardness and high fatigue strength of 24%, including martensite phase produced from austenite after cold working and containing 30% or more by volume and Vickers hardness of 455 or more Martensitic steel.
The fourth invention of the present invention is a high hardness containing not less than 0.2% in total of one or more of V, Ti and Nb in the steel composition according to any of the first to third inventions. It is a work-induced martensitic steel for power transmission belts with high fatigue strength.
The fifth invention of the present invention is a high hardness containing one or more of B, Mg and Ca in the steel composition according to any of the first to fourth inventions in a total amount of 0.10% or less. It is a work-induced martensitic steel for power transmission belts with high fatigue strength.
[0012]
According to a sixth aspect of the present invention, a nitrided layer is formed on the surface of the work-induced martensitic steel for a power transmission belt having high hardness and high fatigue strength according to any one of the first to fifth aspects, This is a work-induced martensitic steel strip for power transmission belt with compressive residual stress applied to the surface .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, it is necessary to optimize the ease of processing-induced martensite transformation and the addition amount of Ni, Cr, Mo, W, Mn, Si, Cu, C, and N, which are elements for obtaining high hardness. is there.
And the elements of Ni, Cr, Mo, W, Mn, Si, Cu, C, N not only satisfy the individual component ranges, but also specified in the steel of the present invention to obtain high hardness (1 ) Must be satisfied.
The A value shown in the formula (1) represents the Ni equivalent of the present invention, and the magnitude of the A value in this formula is an important index that affects the ease of forming the work-induced martensite phase. The A value is obtained by adding a value obtained by adding a coefficient according to the effect of each element to the mass% of each element that affects the ease of transformation to work-induced martensite.
In the steel of the present invention, if this A value is smaller than 13, a lot of martensite structure is generated by cooling after the solution treatment, and martensite generated by processing-induced transformation decreases, so that it is difficult to obtain a sufficiently high hardness. . On the other hand, if it exceeds 27, since the austenite phase is too stabilized, it becomes difficult to produce work-induced martensite by cold plastic working, and sufficient high hardness cannot be obtained. ~ 27%. Desirably, it is 19 to 25%, and more desirably 19 to 24%.
[0014]
The action of each element of the steel of the present invention will be described below.
C is an austenite-forming element and is effective for obtaining an austenite structure after the solution treatment. In addition, it is effective to strengthen the martensite structure that has undergone work-induced transformation by cold working and increase hardness, but if added over 0.10%, the austenite phase becomes too stable due to solid solution in the base, and work-induced transformation Is less likely to occur, and work hardening increases, which makes cold working difficult. On the other hand, if it is less than 0.01%, not only the hardness after cold working can not be obtained, but also delta ferrite is generated and decreases the hardness and hot workability, so the content of C is 0.01% ~ 0.10%.
[0015]
Si is added in a small amount for deoxidation, but even if added in excess of 3.0%, a further improvement effect was not seen, and it was made 3.0% or less. Desirably, it is less than 1.0%.
Mn is an austenite-generating element and is effective for obtaining an austenite structure after solid solution treatment. In addition, in the control of the Ni equivalent defined by the A value, Mn can be increased by substituting part of Ni for Mn. Therefore, there is an advantage that the cost can be reduced by adding much Mn, which is cheaper than Ni.
It also increases the N solid solubility in the austenite phase and facilitates the addition of N. In other words, it is very effective for stably adding N (that is, not producing casting defects due to N). In N-containing steels, it is necessary to increase Mn, but if it exceeds 10.0%, cold workability deteriorates, but sufficient effects cannot be obtained at 5.0% or less, so it exceeds 5.0% and is 10.0% or less. It was. Desirably, it is more than 5.0% and less than 7.0%.
[0016]
Ni is an austenite-forming element like Mn, and is effective for obtaining an austenite structure after solution treatment. If less than 1.0%, sufficient effect cannot be obtained, while if added over 12.0%, the austenite phase becomes too stable and processing-induced martensite transformation does not easily occur, so it is difficult to obtain sufficient high hardness. From 1.0 to 12.0%. Desirably, 3.0 to 11.0% is good.
Cr is an important element for obtaining work-induced martensite. If it is less than 4.0%, the austenite phase becomes too stable. On the other hand, if it exceeds 18.0%, delta ferrite is likely to be formed, and hot workability deteriorates. Therefore, it was made 4.0 to 18.0%. Desirably, 4.0 to 16.0% is good.
[0017]
Mo is an element effective for increasing the strength of work-induced martensite, and also has an effect on age hardening after cold working. It is desirable that Mo be an essential addition.
W is also effective for increasing the strength, just like Mo, but the effect of W alone is small. When W is added, a part of Mo is equivalent to W (1 / 2W is equivalent to equivalent Mo) Add in the form of replacement. If Mo + 1 / 2W is less than 0.1%, the effect of increasing the strength cannot be expected, and if Mo + 1 / 2W is added over 4.0%, delta ferrite is likely to be formed, and hot workability and cold work Since it deteriorates the property, it was made 0.1 to 4.0%. Desirably, 0.5 to 3.0% is good.
[0018]
Cu has the effect of reducing the work effect index of the austenite phase and improving cold workability. Moreover, there exists an effect which raises an intensity | strength by carrying out aging precipitation by the aging treatment after cold working. Even if added over 5.0%, a further improvement effect is not seen, and hot workability deteriorates, so Cu was made 5.0% or less. Desirably, it is 4.0% or less. However, in the case of curing only by cold working, Cu is not added (0%) because Cu is rather hard because higher hardness is obtained.
N increases the hardness by solid solution in the austenite phase and martensite phase, increases the work hardening index to increase the hardening by cold working, and increases the hardening by strain aging during the aging treatment. Is an effective element. However, if added over 0.15%, the soundness of the steel ingot is impaired and the manufacturability is deteriorated, so the content was made 0.15% or less. In addition, when used in welding, a large amount of N inhibits weldability. Therefore, it is desirable that N be low, and no addition (0%) may be used.
[0019]
Al is added in a small amount for deoxidation, but if it exceeds 0.10%, more Al 2 O 3 inclusions are formed and the fatigue strength is lowered, so Al was made 0.10% or less. Preferably it is 0.05% or less.
O is an impurity element that forms oxide inclusions and lowers toughness and fatigue strength, so it was set to 0.005% or less. 0.003% or less is desirable.
[0020]
V, Ti and Nb do not necessarily need to be added, but are effective elements to refine the crystal grains and improve the hardness and ductility by forming primary carbides, and one or more are required Add as appropriate. If one or more of these are added in total exceeding 0.2%, nitride inclusions are formed, fatigue strength is reduced, coarse primary carbides are formed, and cold workability is improved. In order to harm, 1 type or 2 types or more were made into 0.2% or less in total.
[0021]
B, Mg, and Ca are not necessarily added, but they are effective in reducing S and O segregating at the grain boundaries and improving hot workability by forming oxides and sulfides. Add one or more as needed. Even if one or more of B, Mg, and Ca are added in excess of 0.10% in total, no further improvement effect can be obtained. Since interworkability is impaired, one or more of B, Mg, and Ca should be 0.10% or less in total.
In addition, the impurity elements P and S are not particularly specified as long as they can be mixed at the normal dissolution level, so they are not particularly specified, but are preferably lower in terms of corrosion resistance and hot workability, and P is 0.04% Hereinafter, S may be 0.02% or less.
[0022]
The steel of the present invention cannot achieve the desired high hardness and high fatigue strength only by satisfying the above-mentioned component ranges, and is induced by cold working such as cold rolling, cold drawing, and cold forging. It is necessary to generate a martensite phase. If the martensite phase after cold working is less than 30% by volume, sufficient high hardness and high fatigue strength cannot be obtained, so the volume fraction of martensite phase after cold working is 30% or more. did.
[0023]
Next, when using the above-described steel of the present invention to form a steel strip, it is possible to obtain high hardness and high fatigue strength by adding cold working, and to the desired amount of martensite after proper cold working. By adjusting, the Vickers hardness can be made 455 or more.
In addition, the steel strip using the above-described steel of the present invention is subjected to aging treatment at 400 to 600 ° C. after cold working as necessary in order to improve ductility, spring characteristics, etc. without reducing the hardness. be able to.
[0024]
Furthermore, the steel of the present invention can be nitrided without reducing the hardness. When the above-described steel of the present invention is formed into a strip shape and subjected to nitriding treatment under appropriate conditions so that it can be applied to, for example, a power transmission belt used as a continuously variable transmission part of an automobile engine, most of the nitride is formed. A nitride layer having a thickness of about 20 to 40 μm can be formed on the surface without forming it, a large compressive residual stress can be applied to the surface, and a higher fatigue strength can be obtained.
In addition, although the one where the surface compressive residual stress is higher is preferable, the control is possible by adjusting the thickness of a nitride layer and the hardness of a nitride layer suitably.
[0025]
【Example】
Hereinafter, the present invention will be described based on examples. First, it was melted by vacuum melting to obtain a 10 kg steel ingot. The chemical composition is shown in Table 1.
Here, steel Nos. 1 to 15 are the steels of the present invention in which the composition, the A value and the martensite phase amount after cold working are all within the limited range of the present invention, and Nos. 31 to 36 are the composition, A value and Comparative steel No. 37, which is any of the martensite phase amounts after cold working and some of them are outside the limited range of the present invention, is JIS SUS420J2 which is a conventional tempered steel.
Steels No. 1 to 37 were hot forged and hot rolled into a plate material having a thickness of 2 mm, heated to 1050 ° C., and then subjected to air cooling solution treatment. Thereafter, it was cold-rolled to a steel strip at a reduction rate of 50 to 70%, and further subjected to aging treatment at 450 ° C.
The No. 36 steel was quenched from 950 ° C and then tempered at 300 ° C.
[0026]
The amount of the martensite phase was measured by an X-ray diffraction method. About hardness, it calculated | required by measuring Vickers hardness in the longitudinal cross-section of the cold-rolled board.
Fatigue strength is 1 x 1 mm, using a plate-shaped test piece with a thickness of 0.2 mm and a width of 10 mm, repeatedly changing the span length at a bending angle of ± 25 °, and performing a repeated bending fatigue test at a repeated bending speed of 1000 cpm. The fatigue strength at 10 7 times was determined.
[0027]
[Table 1]
Figure 0003827140
[0028]
[Table 2]
Figure 0003827140
[0029]
As can be seen from Table 2, steels Nos. 1 to 15 of the present invention all have a high hardness of 455 or higher after cold working. Further, the steel of the present invention shows a high fatigue strength of 800 MPa or more from the results of repeated bending fatigue tests.
On the other hand, comparative steel No. 31-36 and conventional steel No. 37 in which any one or more of the composition, the A value, and the martensite phase amount after cold working deviate from the range defined in the present invention are hard. It can be seen that any characteristic of fatigue strength in the repeated bending fatigue test is worse than that of the steel of the present invention.
In particular, Comparative Steel Nos. 32 to 35, which deviate from the ranges in which the A value and the martensite phase amount are defined, have low hardness, and high hardness cannot be obtained.
[0030]
Further, the steel according to the present invention was measured for Vickers hardness in the solution treatment state. As a result, the hardness was as low as 350 or less, the cold workability was good, and cold forming was easy.
Furthermore, when the steel according to the present invention is subjected to nitriding at a temperature lower than the aging treatment temperature after aging treatment, or nitriding treatment in combination with the aging treatment, a nitride layer having a depth of about 20 to 40 μm can be formed. The fatigue strength can be further increased by about 300 MPa due to the effect of surface compressive residual stress by nitriding.
[0031]
As described above, power transmission belts for strain-induced type martensitic steel of the present invention is excellent in high hardness at and fatigue strength, stepless of automobile engine high hardness and fatigue strength that are both required A power transmission belt used as a transmission component has particularly suitable characteristics, and has a remarkable industrial effect.

Claims (6)

質量%で、C:0.01〜0.08%、Si:3.0%以下、Mn:5.0%を越え10.0%以下、Ni:1.0〜12.0%、Cr:4〜18%、MoまたはWの1種または2種が、Mo+1/2Wで0.1〜4.0%、Cu:5.0%以下(0%を含む)、N:0.15%以下(0%を含む)、Al:0.10%以下、O:0.005%以下、残部Feおよび不可避的不純物からなり、かつ(1)式で示されるA値が13〜27%であって、冷間加工後にオーステナイトから生成したマルテンサイト相を体積%で30%以上を含み、ビッカース硬さが455以上であることを特徴とする高硬度高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼。
A=Ni+0.65Cr+0.98Mo+0.49W+1.05Mn+0.35Si+Cu+12.6(C+N)・・・(1)
(ただし、選択元素のうち無添加の元素はゼロとして計算)
In mass%, C: 0.01 to 0.08%, Si: 3.0% or less, Mn: more than 5.0% to 10.0% or less, Ni: 1.0 to 12.0%, Cr: 4 to 18%, one or two of Mo or W is Mo + 1 / 2W, 0.1 to 4.0%, Cu: 5.0% or less (including 0%), N: 0.15% or less (Including 0%), Al: 0.10% or less, O: 0.005% or less, balance Fe and inevitable impurities , and the A value represented by the formula (1) is 13-27% A work induction type for power transmission belts having high hardness and high fatigue strength, characterized by containing 30% or more by volume of martensite phase generated from austenite after cold working and having a Vickers hardness of 455 or more Martensitic steel.
A = Ni + 0.65Cr + 0.98Mo + 0.49W + 1.05Mn + 0.35Si + Cu + 12.6 (C + N) ... (1)
(However, calculation is made assuming that no additive element is selected among the selected elements)
質量%で、Mn:5.0%を越え7.0%以下、Ni:3.0〜11.0%、Cr:4〜16%、MoまたはWの1種または2種が、Mo+1/2Wで0.5〜3.0%、Cu:4.0%以下(0%を含む)、Al:0.05%以下を含み、かつ(1)式で示されるA値が19〜25%であることを特徴とする請求項1に記載の高硬度高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼。  In mass%, Mn: more than 5.0% and 7.0% or less, Ni: 3.0 to 11.0%, Cr: 4 to 16%, one or two of Mo or W is Mo + 1 / 2W 0.5 to 3.0%, Cu: 4.0% or less (including 0%), Al: 0.05% or less, and the A value represented by the formula (1) is 19 to 25% The work-induced martensitic steel for power transmission belts having high hardness and high fatigue strength according to claim 1. 質量%で、Si:1.0未満、Mn:5.0%を越え7.0%以下、Ni:3.0〜11.0%、Cr:4〜16%、MoまたはWの1種または2種が、Mo+1/2Wで0.5〜3.0%、Cu:4.0%以下(0%を含む)、Al:0.05%以下を含み、かつ(1)式で示されるA値が19〜24%であることを特徴とする請求項1に記載の高硬度高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼。  In mass%, Si: less than 1.0, Mn: more than 5.0% and 7.0% or less, Ni: 3.0 to 11.0%, Cr: 4 to 16%, one of Mo or W or 2 types include 0.5 to 3.0% in Mo + 1 / 2W, Cu: 4.0% or less (including 0%), Al: 0.05% or less, and A represented by the formula (1) 2. The work-induced martensitic steel for power transmission belts having high hardness and high fatigue strength according to claim 1, wherein the value is 19 to 24%. 質量%で、V、Ti、Nbのうち1種または2種以上を合計で0.2%以下を含むことを特徴とする請求項1乃至3のいずれかに記載の高硬度高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼。  It has a high hardness and high fatigue strength according to any one of claims 1 to 3, characterized by containing 0.2% or less in total of one or more of V, Ti, and Nb in mass%. Process-induced martensitic steel for power transmission belts. 質量%で、B、Mg、Ca、のうち1種または2種以上を合計で0.10%以下含むことを特徴とする請求項1乃至4の何れかに記載の高硬度高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼。  It has a high hardness and high fatigue strength according to any one of claims 1 to 4, characterized by containing one or more of B, Mg, and Ca in a mass% of 0.10% or less in total. Process-induced martensitic steel for power transmission belts. 請求項1乃至5の何れかに記載の高硬度高疲労強度を有する動力伝達用ベルト用加工誘起型マルテンサイト系鋼からなる鋼帯であって、該鋼帯の表面に窒化層が形成され、該鋼帯表面に圧縮残留応力を付与したことを特徴とする動力伝達用ベルト用加工誘起型マルテンサイト系鋼帯。  A steel strip made of work-induced martensitic steel for a power transmission belt having high hardness and high fatigue strength according to any one of claims 1 to 5, wherein a nitrided layer is formed on the surface of the steel strip, A work-induced martensitic steel strip for a power transmission belt, wherein compressive residual stress is applied to the surface of the steel strip.
JP2000295102A 1999-10-04 2000-09-27 Work-induced martensitic steel for power transmission belts with high hardness and high fatigue strength, and strip steel using the same Expired - Fee Related JP3827140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295102A JP3827140B2 (en) 1999-10-04 2000-09-27 Work-induced martensitic steel for power transmission belts with high hardness and high fatigue strength, and strip steel using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-282516 1999-10-04
JP28251699 1999-10-04
JP2000295102A JP3827140B2 (en) 1999-10-04 2000-09-27 Work-induced martensitic steel for power transmission belts with high hardness and high fatigue strength, and strip steel using the same

Publications (3)

Publication Number Publication Date
JP2001172746A JP2001172746A (en) 2001-06-26
JP2001172746A5 JP2001172746A5 (en) 2005-03-03
JP3827140B2 true JP3827140B2 (en) 2006-09-27

Family

ID=26554638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295102A Expired - Fee Related JP3827140B2 (en) 1999-10-04 2000-09-27 Work-induced martensitic steel for power transmission belts with high hardness and high fatigue strength, and strip steel using the same

Country Status (1)

Country Link
JP (1) JP3827140B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606113B2 (en) * 2004-10-15 2011-01-05 日新製鋼株式会社 Austenitic stainless steel with high proportional limit stress and manufacturing method
JP4784217B2 (en) * 2005-09-07 2011-10-05 住友金属工業株式会社 Continuously variable transmission belt, stainless steel plate for the belt, and manufacturing method thereof
JP5055547B2 (en) * 2006-03-07 2012-10-24 国立大学法人九州大学 High strength stainless steel and method for producing high strength stainless steel
JP6223124B2 (en) * 2013-10-28 2017-11-01 日新製鋼株式会社 High-strength duplex stainless steel sheet and its manufacturing method
WO2024111595A1 (en) * 2022-11-24 2024-05-30 日本製鉄株式会社 Steel material, solid wire, and steel sheath

Also Published As

Publication number Publication date
JP2001172746A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
KR100336339B1 (en) Steel wire for high-strength springs and method of producing the same
KR101631521B1 (en) Carburizing steel having excellent cold forgeability and method of manufacturing the same
US6562153B1 (en) Strain-induced type martensitic steel having high hardness and having high fatigue strength
EP0838533B1 (en) Heat resisting alloy for exhaust valve and method for producing the exhaust valve
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP5558887B2 (en) Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength
KR102165228B1 (en) Case hardening steel, method of producing case hardening steel, and method of producing gear part
JP3827140B2 (en) Work-induced martensitic steel for power transmission belts with high hardness and high fatigue strength, and strip steel using the same
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP4846916B2 (en) Hot rolled steel with extremely high elastic limits and mechanical strength, especially useful for manufacturing automotive vehicle parts
JP4507149B2 (en) Maraging steel for power transmission belt with high fatigue strength and maraging steel strip for power transmission belt using the same
RU2709071C1 (en) Method for production of thick-rolled steel with increased deformation capacity (versions)
JP6825605B2 (en) Carburizing member
JP4178490B2 (en) Maraging steel with high fatigue strength and maraging steel strip using it
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JP2007231411A (en) Method of manufacturing machine structure component
JP2005120479A (en) High strength spring and production method therefor
JP2004197213A (en) Steel sheet to be hot-formed superior in hardenability after high-temperature forming
JP6822548B2 (en) Nitriding parts and their manufacturing methods
JP2001234284A (en) Steel excellent in crystal grain size characteristic and its producing method
KR0147719B1 (en) Method for manufacturing high-strength ni-cr-v steel material for conveyor chain
JP3587271B2 (en) Semi-austenite precipitation hardened stainless steel with excellent cold workability
JP2954216B2 (en) Steel for high strength parts
EP2980242B1 (en) Case hardening steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees