JP5558887B2 - Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength - Google Patents

Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength Download PDF

Info

Publication number
JP5558887B2
JP5558887B2 JP2010077277A JP2010077277A JP5558887B2 JP 5558887 B2 JP5558887 B2 JP 5558887B2 JP 2010077277 A JP2010077277 A JP 2010077277A JP 2010077277 A JP2010077277 A JP 2010077277A JP 5558887 B2 JP5558887 B2 JP 5558887B2
Authority
JP
Japan
Prior art keywords
strength
carburizing
bending fatigue
notch
low cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010077277A
Other languages
Japanese (ja)
Other versions
JP2011208225A (en
Inventor
典正 常陰
元裕 西川
修司 小澤
学 久保田
修 加田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Nippon Steel Corp
Original Assignee
Sanyo Special Steel Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd, Nippon Steel Corp filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010077277A priority Critical patent/JP5558887B2/en
Publication of JP2011208225A publication Critical patent/JP2011208225A/en
Application granted granted Critical
Publication of JP5558887B2 publication Critical patent/JP5558887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、低サイクル曲げ疲労強度に優れる浸炭部品又は浸炭浸窒部品の製造方法に関するものである。   The present invention relates to a method for manufacturing a carburized part or a carburized / nitrogenized part excellent in low cycle bending fatigue strength.

機械構造用部品、差動歯車、トランスミッション歯車、歯車付き浸炭シャフトなどの歯車や、等速ジョイント部品、CVTプーリーは、車両の急発進、急停車の負荷により、部品の特定部分が低サイクル疲労(数百から数千サイクル域の疲労)で破損することがある。特に、差動歯車やトランスミッション歯車においてはその低サイクル疲労強度の向上がより一層、望まれている。従来、一般に上記した部品には素材にJIS SCr420、SCM420等のCが0.2%前後のはだ焼鋼を用いることで、芯部の靭性を確保し、浸炭焼入れ処理と150℃前後の低温焼戻しを施して、部品表面をCが0.8%前後の焼戻しマルテンサイト組織とさせて高サイクル曲げ疲労強度や耐摩耗性を高めて使用される。   Mechanical parts, differential gears, transmission gears, gears such as geared carburized shafts, constant velocity joint parts, CVT pulleys are subject to low cycle fatigue (several parts) due to sudden start and stop loads of the vehicle. (Fatigue in the range of one hundred to several thousand cycles). In particular, the improvement of the low cycle fatigue strength is further desired for differential gears and transmission gears. Conventionally, in general, the above-described parts are made of case-hardened steel having C of about 0.2% such as JIS SCr420, SCM420, etc., thereby ensuring the toughness of the core, carburizing and quenching treatment, and low temperature around 150 ° C. By tempering, the surface of the part is made to have a tempered martensite structure with C of around 0.8% to increase the high cycle bending fatigue strength and wear resistance.

しかし、近年環境問題への関心の高まりに伴い、自動車の燃費向上ニーズが高まっている。そのため、機械構造用部品の小型軽量化ニーズがさらに高まっており、上記JIS鋼では十分な強度が得られなくなってきている。   However, with increasing interest in environmental issues in recent years, there is an increasing need for improving the fuel efficiency of automobiles. For this reason, there is a growing need for reducing the size and weight of mechanical structural parts, and sufficient strength cannot be obtained with the JIS steel.

従来の低サイクル曲げ疲労強度を向上するための技術としては、Cが0.1〜0.3%で、Bが0.005%以下を含有し、Siは0.3%以下に制限し、Pは0.03%以下に制限し、芯部硬さがHV350以上である浸炭部品が提案されている(例えば、特許文献1参照。)。   As a technique for improving the conventional low cycle bending fatigue strength, C is 0.1 to 0.3%, B is 0.005% or less, Si is limited to 0.3% or less, P is limited to 0.03% or less, and carburized parts having a core hardness of HV350 or more have been proposed (see, for example, Patent Document 1).

さらに、Cが0.15〜0.3%で、Siは0.5%以下に制限し、Pは0.01%以下に制限し、化学成分から計算される塑性変形抵抗及び粒界強度の和を一定値以上にすることによる、低サイクル疲労強度に優れた肌焼鋼が提案されている(例えば、特許文献2参照。)。   Furthermore, when C is 0.15 to 0.3%, Si is limited to 0.5% or less, P is limited to 0.01% or less, and plastic deformation resistance and grain boundary strength calculated from chemical components A case-hardened steel excellent in low cycle fatigue strength by making the sum equal to or greater than a certain value has been proposed (for example, see Patent Document 2).

またCが0.1〜0.3%で、Bが0.001〜0.005%で、Siは0.5%以下に制限し、Pは0.03%以下に制限し、歯元部の芯部硬さがHV300以上である、低サイクル疲労強度に優れた浸炭歯車が提案されている(例えば、特許文献3参照。)。   Further, C is 0.1 to 0.3%, B is 0.001 to 0.005%, Si is limited to 0.5% or less, P is limited to 0.03% or less, and the root portion A carburized gear having a core hardness of HV300 or higher and excellent in low cycle fatigue strength has been proposed (see, for example, Patent Document 3).

また、さらに、Cが0.15〜0.3%で、Bが0.0003〜0.005%で、Siは0.03〜0.25%で、Pは0.02%以下に制限し、化学成分から計算される芯部硬さに関連する値を一定値以上にすることによる低サイクル衝撃疲労特性に優れた浸炭部品が提案されている(例えば、特許文献4参照。)。   Further, C is 0.15 to 0.3%, B is 0.0003 to 0.005%, Si is 0.03 to 0.25%, and P is limited to 0.02% or less. There has been proposed a carburized part having excellent low cycle impact fatigue characteristics by setting a value related to core hardness calculated from chemical components to a certain value or more (see, for example, Patent Document 4).

さらに、浸炭歯車の面圧疲労強度と衝撃強度の向上及び回転曲げ疲労強度の向上を両立させ、低コストで歯車の主要特性を向上させた高強度はだ焼鋼の発明が提案されている(例えば、特許文献5参照。)。これは、面圧疲労強度と衝撃強度の向上及び回転曲げ疲労強度の向上させるため、浸炭異常層の深さを浅くさせている。   Furthermore, the invention of high-strength hardened steel has been proposed in which both the improvement of the surface pressure fatigue strength and impact strength of the carburized gear and the improvement of the rotational bending fatigue strength are achieved, and the main characteristics of the gear are improved at low cost ( For example, see Patent Document 5.) This is to reduce the depth of the carburized abnormal layer in order to improve the surface pressure fatigue strength and impact strength and the rotational bending fatigue strength.

特開平8−92690号公報JP-A-8-92690 特開平10−259450号公報Japanese Patent Laid-Open No. 10-259450 WO2002/044435号公報WO2002 / 044435 特開2004−228702号公報JP 2004-228702 A 特開2009−68064号公報JP 2009-68064 A

本願発明は、粒界強度の向上を図ることを課題としており、上記の先行技術文献と相違するメカニズムで強度改善を図った低サイクル曲げ疲労強度に優れる浸炭部品または浸炭窒素部品の製造方法を提供することである。   The present invention has an object to improve the grain boundary strength, and provides a method of manufacturing a carburized part or a carburized nitrogen part that is excellent in low cycle bending fatigue strength and is improved in strength by a mechanism different from the above prior art document. It is to be.

上記の課題を解決するための本発明の手段は、請求項1の発明では、化学成分が、質量%で、C:0.10〜0.60%、Si:0.01〜1.5%、Mn:0.3〜2.0%、Cr:0.1〜3.0%、Ti:0.02〜0.2%、望ましくは0.05〜0.2%、B:0.0002〜0.005%、P:0.02%以下、S:0.001〜0.15%、N:0.001〜0.03%、Al:0.01〜0.06%、O:0.005%以下を含有し、かつ、C、Si、Mn、Crの含有量が(0.04+0.35C)×(1.00+0.70Si)×(0.70+3.96Mn)×(1.00+2.16Cr)≧1.10からなる式(1)によって得られる焼入れ指数を満足し、残部が実質的にFeと不可避的不純物よりなる鋼を用いて、浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間からなる浸炭処理をした後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法である。 The means of the present invention for solving the above-mentioned problems is that, in the invention of claim 1, the chemical component is mass%, C: 0.10 to 0.60%, Si: 0.01 to 1.5%. , Mn: 0.3 to 2.0%, Cr: 0.1 to 3.0%, Ti: 0.02 to 0.2%, desirably 0.05 to 0.2%, B: 0.0002 ~0.005%, P: 0.02% or less, S: 0.001~0.15%, N: 0.001~0.03%, Al: 0.01 ~0.06%, O: 0 0.005% or less, and the contents of C, Si, Mn, and Cr are (0.04 + 0.35C) × (1.00 + 0.70Si) × (0.70 + 3.96Mn) × (1.00 + 2. 16Cr) satisfying the quenching index obtained by the formula (1) consisting of ≧ 1.10, with the balance being substantially composed of Fe and inevitable impurities, Carburizing treatment was performed after a carburizing treatment in which the carbonization temperature was 880 ° C to 950 ° C, and the sum of the carburizing time and the diffusion time was 2 to 7 hours, and further air-cooled after being kept at 150 ° C to 200 ° C for 1 to 3 hours as a tempering treatment. After giving a notch with a radius of 1.5 mm and a depth of 3 mm to a test piece having a cross section of 13 mm × 13 mm made of this steel material, the distance between the fulcrum on the notch side is 80 mm, opposite the notch A part having a bending fatigue strength of 17 kN or more in 100 cycles and 15 kN or more in 500 cycles in a low cycle four-point bending fatigue test in which a low cycle cyclic bending load is applied with a fulcrum of 20 mm is formed from the steel material. This is a method for producing a high-strength part excellent in low cycle repeated bending fatigue strength.

請求項2の発明では、請求項1の化学成分に加えて、質量%で、Mo:0.1〜1.5%、Cu:0.1〜2.0%、Ni:0.1〜5.0%の1種又は2種以上を含有し、かつ、C、Si、Mn、Cr、Mo、Cu、Niの含有量が、(0.04+0.35C)×(1.00+0.70Si)×(0.70+3.96Mn)×(1.00+2.16Cr)×(1.00+3.00Mo)×(1.00+0.37Cu)×(0.90+0.38Ni)≧1.10からなる式(2)によって得られる焼入れ指数を満足し、残部が実質的にFeと不可避的不純物よりなる鋼を用いて、浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法である。   In the invention of claim 2, in addition to the chemical component of claim 1, in mass%, Mo: 0.1-1.5%, Cu: 0.1-2.0%, Ni: 0.1-5 1% or more of 0.0%, and the content of C, Si, Mn, Cr, Mo, Cu, Ni is (0.04 + 0.35C) × (1.00 + 0.70Si) × (0.70 + 3.96Mn) × (1.00 + 2.16Cr) × (1.00 + 3.00Mo) × (1.00 + 0.37Cu) × (0.90 + 0.38Ni) ≧ 1.10. Oil quenching after carburizing with the carburizing temperature of 880 ° C-950 ° C, the total of carburizing time and diffusion time being 2-7 hours, using steel that satisfies the obtained quenching index and the balance is substantially composed of Fe and inevitable impurities And after holding at 150 ° C. to 200 ° C. for 1 to 3 hours as a tempering treatment After cooling to a steel material and giving a notch with a radius of 1.5 mm and a depth of 3 mm to a square bar test piece of 13 mm × 13 mm in cross section made of the steel material, the notch side fulcrum is 80 mm, The steel material is a part having a bending fatigue strength of 17 kN or more in 100 cycles and 15 kN or more in 500 cycles in a low cycle four-point bending fatigue test in which a low cycle cyclic bending load is applied between the opposite fulcrums of 20 mm. It is a manufacturing method of a high-strength part excellent in low cycle repeated bending fatigue strength characterized by being formed from.

請求項3の発明では、請求項1または2の化学成分に加えて、質量%で、Nb:0超〜0.2%、V:0超〜0.2%の1種又は2種を含有し、かつ、請求項1に上記の化学成分を加えた場合は式(1)によって得られる焼入れ指数を満足し、あるいは請求項2に上記の化学成分を加えた場合は式(2)によって得られる焼入れ指数を満足し、残部が実質的にFeと不可避的不純物よりなる鋼を用いて、浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法である。   In the invention of claim 3, in addition to the chemical component of claim 1 or 2, one or two of Nb: more than 0 to 0.2% and V: more than 0 to 0.2% are contained in mass%. In addition, when the above chemical component is added to claim 1, the quenching index obtained by the formula (1) is satisfied, or when the above chemical component is added to claim 2, the formula (2) is obtained. Using a steel that is substantially composed of Fe and inevitable impurities, with the balance being carburized at a temperature of 880 ° C. to 950 ° C., and carburized for 2 to 7 hours after carburizing. Further, as a tempering treatment, the steel material is cooled by air after being held at 150 ° C. to 200 ° C. for 1 to 3 hours, and is cut into a square bar test piece having a cross section of 13 mm × 13 mm made of the steel material and having a radius of 1.5 mm and a depth of 3 mm. After giving, 80mm between the fulcrum on the notch side, The steel material is a part having a bending fatigue strength of 17 kN or more in 100 cycles and 15 kN or more in 500 cycles in a low cycle four-point bending fatigue test in which a low cycle cyclic bending load is applied between the opposite fulcrums of 20 mm. It is a manufacturing method of a high-strength part excellent in low cycle repeated bending fatigue strength characterized by being formed from.

請求項4の発明では、請求項1〜3のいずれか1項の化学成分に加えて、質量%で、Zr:0.0003〜0.005%、Mg:0.0003〜0.005%、希土類金属:0.0001〜0.005%の1種又は2種以上を含有し、かつ、その化学成分中にMo:0.1〜1.5%、Cu:0.1〜2.0%、Ni:0.1〜5.0%の1種又は2種以上を含有する場合には前記式(2)によって得られる焼入れ指数を満足し、その化学成分中に上記割合でMo、Cu、Niを含まない場合には式(1)によって得られる焼入れ指数を満足するものであって、残部が実質的にFeと不可避的不純物よりなる鋼を用いて、浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法である。 In invention of Claim 4, in addition to the chemical component of any one of Claims 1-3, in mass%, Zr: 0.0003-0.005%, Mg: 0.0003-0.005%, Rare earth metals: 0.0001 to 0.005% of one or more, and in the chemical components Mo: 0.1 to 1.5%, Cu: 0.1 to 2.0% , Ni: When containing one or more of 0.1 to 5.0%, the quenching index obtained by the formula (2) is satisfied, and Mo, Cu, When Ni is not included, the quenching index obtained by the formula (1) is satisfied , and the balance is made of steel substantially composed of Fe and inevitable impurities, and the carburizing temperature is 880 ° C. to 950 ° C. As the tempering treatment, oil quenching is performed after carburizing for a total of 2-7 hours. After holding at 50 ° C. to 200 ° C. for 1 to 3 hours and then air-cooling to make a steel material, after giving a notch with a radius of 1.5 mm and a depth of 3 mm to a test piece of a 13 mm × 13 mm square bar made of the steel material, Low cycle 4-point bending fatigue test with repeated bending load of low cycle with 80mm between fulcrum on the notch side and 20mm between fulcrum on the opposite side of the notch. A method for producing a high-strength part excellent in low cycle repeated bending fatigue strength, characterized in that a part having a bending fatigue strength of 15 kN or more is formed from the steel material.

請求項5の発明では、化学成分として、請求項2に記載の成分に加えて、質量%でCa:0.0002〜0.01%を含有し、又は、請求項2に記載の成分に加えて、質量%でCa:0.0002〜0.01%を含有するとともに、さらにNb:0超〜0.2%、V:0超〜0.2%、Zr:0.0003〜0.005%、Mg:0.0003〜0.005%、希土類金属:0.0001〜0.005%から選択した1種又は2種以上を含有し、かつ、前記式(2)によって得られる焼入れ指数を満足するものであって、さらに、式(2)に加えて、Ti、Ca、Oの含有量が、100×Ti×O/Ca=1〜100からなる式(3)を満足し、残部が実質的にFeと不可避的不純物よりなる鋼を用いて、浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法である。 In invention of Claim 5, in addition to the component of Claim 2, it contains Ca: 0.0002-0.01% by mass% as a chemical component, or in addition to the component of Claim 2. And Ca: 0.0002 to 0.01% by mass%, Nb: more than 0 to 0.2%, V: more than 0 to 0.2%, Zr: 0.0003 to 0.005 %, Mg: 0.0003 to 0.005%, rare earth metal: one or more selected from 0.0001 to 0.005%, and a quenching index obtained by the formula (2) Furthermore, in addition to the formula (2), the content of Ti, Ca, O satisfies the formula (3) consisting of 100 × Ti × O / Ca = 1 to 100, and the balance is Using steel consisting essentially of Fe and inevitable impurities, carburizing temperature 880 ° C-950 ° C, during carburizing After the carburization for 2 to 7 hours between the total time and the diffusion time, oil quenching was performed, and after holding for 1 to 3 hours at 150 ° C. to 200 ° C. as a tempering treatment, air cooling was performed to obtain a steel material having a cross section of 13 mm × 13 mm made of the steel material After applying a notch with a radius of 1.5 mm and a depth of 3 mm to a test piece of a square bar, repeated bending with a low cycle with 80 mm between fulcrums on the notch side and 20 mm between fulcrums on the opposite side of the notch Low-cycle cyclic bending fatigue strength characterized by forming a part having a bending fatigue strength of 17 kN or more in 100 cycles and 15 kN or more in 500 cycles in a low-cycle four-point bending fatigue test under load. It is a manufacturing method of high strength parts excellent in

請求項6の発明では、請求項1〜5のいずれか1項に記載の鋼を用いて、短辺250mm以下の角もしくは丸の鋼片に製造し、該鋼片を浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法である。 In invention of Claim 6, using the steel of any one of Claims 1-5, it manufactures to a square or round steel piece with a short side of 250 mm or less, and this steel piece is carburizing temperature 880 degreeC-950. ℃, carburizing time and diffusion time is 2 to 7 hours after carburizing, oil quenching and further tempering at 150 ℃ to 200 ℃ for 1 to 3 hours, then air-cooled to make steel, 13mm in cross section made of the steel A low cycle with a notch with a radius of 1.5 mm and a depth of 3 mm added to a 13 mm square bar test piece and then 80 mm between fulcrums on the notch side and 20 mm between fulcrums on the opposite side of the notch A low cycle four-point bending fatigue test in which a repeated bending load is applied to form a part having a bending fatigue strength of 17 kN or more in 100 cycles and 15 kN or more in 500 cycles from the steel material. It is a high strength part manufacturing method having excellent repeated bending fatigue strength.

請求項7の発明では、請求項1〜5のいずれか1項に記載の鋼を用いて、短辺250mm以下の角もしくは丸の鋼片に製造し、該鋼片を浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭処理している間に、もしくは、浸炭処理後の800℃〜900℃で保持している間に、NH3ガスを加えて浸炭浸窒処理した後、油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法である。 In invention of Claim 7, using the steel of any one of Claims 1-5, it manufactures into a square or round steel piece with a short side of 250 mm or less, and this steel piece is carburizing temperature 880 degreeC-950. Carburizing carburization by adding NH 3 gas while carburizing for 2 to 7 hours, or while maintaining at 800 ° C to 900 ° C after carburizing. After nitriding, oil quenching and further tempering at 150 ° C. to 200 ° C. for 1 to 3 hours and then air-cooled to obtain a steel material, a test piece having a cross section of 13 mm × 13 mm square bar made of the steel material has a radius of 1. Low cycle 4-point bending fatigue that applies a low cycle repeated bending load with a notch of 5 mm and depth 3 mm, 80 mm between fulcrums on the notch side and 20 mm between fulcrums on the opposite side of the notch In testing, strength is 17 kN or less in 100 cycles A method for producing a high-strength part excellent in low-cycle repeated bending fatigue strength, characterized in that a part having a bending fatigue strength of 15 kN or more in 500 cycles is formed from the steel material.

上記の本発明の手段における方法としたことで、高価な元素の使用をできるだけ抑制しながら、低サイクルの繰返し曲げ疲労強度に優れた浸炭部品あるいは浸炭窒化部品を得ることができる。   By adopting the method according to the above-described means of the present invention, it is possible to obtain a carburized part or carbonitrided part excellent in low cycle repeated bending fatigue strength while suppressing the use of expensive elements as much as possible.

4点曲げ疲労試験片の形状を示す側面図である。It is a side view which shows the shape of a 4-point bending fatigue test piece. 4点曲げ疲労試験方法を示す模式図である。It is a schematic diagram which shows a 4-point bending fatigue test method.

本発明の実施の形態として、低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法について以下に説明する。   As an embodiment of the present invention, a method for manufacturing a high-strength part excellent in low cycle repeated bending fatigue strength will be described below.

先ず、本発明の方法を適用する鋼の化学成分の限定理由について説明する。以下化学成分における%は、質量%を示す。   First, the reasons for limiting the chemical components of steel to which the method of the present invention is applied will be described. Hereinafter,% in the chemical component indicates mass%.

C:0.10〜0.60%
Cは、強度を付与するために必要な元素であるが、0.10%未満であると、浸炭焼入れ処理した部品の芯部が確保できず、低サイクルの繰返し曲げ疲労強度の向上を図ることができない。焼入れ処理後の芯部の組織はマルテンサイトが主体であるが、C量の増大と共に増加する、マルテンサイトの硬さと微細化物の分散強化による降伏比の増加とのバランスからCの上限を0.60%とする。なお、芯部の強度をHV450以上とするためには好ましくは0.20%以上、より好ましくは0.30%以上とし、被削性の点から好ましくは0.40%以下とする。
C: 0.10 to 0.60%
C is an element necessary for imparting strength, but if it is less than 0.10%, the core portion of the carburized and quenched part cannot be secured, and low cycle repeated bending fatigue strength should be improved. I can't. The core structure after quenching treatment is mainly martensite, but the upper limit of C is set to 0. 0 due to the balance between the hardness of martensite and the increase in yield ratio due to dispersion strengthening of refined matter, which increases with an increase in the amount of C. 60%. In order to make the strength of the core part HV450 or more, it is preferably 0.20% or more, more preferably 0.30% or more, and preferably 0.40% or less from the viewpoint of machinability.

Si:0.01〜1.5%
Siは、鋼の脱酸に有効な元素であり、焼戻し軟化抵抗を向上し、焼入れ性の向上により、浸炭焼入れ処理した部品の芯部硬さを付与し、低サイクル繰返し曲げ疲労強度の向上に有効である。Siが0.01%未満ではその効果は十分でなく、1.5%を超えると浸炭性が阻害される。そこでSiは0.01〜1.5%とする。なお、Siの好ましい範囲は0.5〜1.5%である。
Si: 0.01 to 1.5%
Si is an element effective for deoxidizing steel, improves temper softening resistance, improves the hardenability, gives the core hardness of carburized and quenched parts, and improves low cycle repeated bending fatigue strength. It is valid. If Si is less than 0.01%, the effect is not sufficient, and if it exceeds 1.5%, carburization is inhibited. Therefore, Si is set to 0.01 to 1.5%. In addition, the preferable range of Si is 0.5 to 1.5%.

Mn:0.3〜2.0%
Mnは、鋼の脱酸に有効な元素であると共に、焼入れ性の向上により、焼入れ処理した部品の芯部硬さを付与し、低サイクル曲げ疲労強度の向上に有効である。Mnは0.3%未満ではその効果は十分でなく、2.0%を超えるとその効果は飽和する。そこで、Mnは0.3〜2.0%とする。
Mn: 0.3 to 2.0%
Mn is an element effective for deoxidation of steel, and by imparting hardenability, it imparts core hardness of the quenched part, and is effective in improving low cycle bending fatigue strength. If Mn is less than 0.3%, the effect is not sufficient, and if it exceeds 2.0%, the effect is saturated. Therefore, Mn is set to 0.3 to 2.0%.

Cr:0.1〜3.0%、望ましくは1.5〜3.0%
Crは、焼入れ性の向上をはかり浸炭焼入れ処理した部品の芯部硬さを付与し、低サイクル繰返し曲げ疲労強度の向上に有効である。Crは0.1%未満ではその効果は十分でなく、3.0%を超えるとその効果が飽和する。そこでCrは0.1〜3.0%とする。なお、望ましくはCrは1.5〜3.0%とする。
Cr: 0.1 to 3.0%, desirably 1.5 to 3.0%
Cr increases the hardenability and gives the core hardness of the carburized and quenched parts, and is effective in improving low cycle repeated bending fatigue strength. If Cr is less than 0.1%, the effect is not sufficient, and if it exceeds 3.0%, the effect is saturated. Therefore, Cr is made 0.1 to 3.0%. Desirably, Cr is 1.5 to 3.0%.

Ti:0.02〜0.2%
Tiは、TiCとして鋼中に微細に析出し、鋼を分散強化し、疲労き裂の生成および伝播を抑制する元素であるが、0.02%以下では、その効果は小さく、0.2%を超えると加工性を低下する。そこで、Tiは0.02〜0.2%とする。なお、Tiの望ましい範囲は0.05〜0.2%とする。
Ti: 0.02 to 0.2%
Ti is an element that finely precipitates in the steel as TiC, disperses and strengthens the steel, and suppresses the generation and propagation of fatigue cracks. However, at 0.02% or less, the effect is small, 0.2% If it exceeds, workability will be reduced. Therefore, Ti is set to 0.02 to 0.2%. A desirable range of Ti is 0.05 to 0.2%.

B:0.0002〜0.005%
Bは、Pの粒界偏析を抑制すると共に、それ自体の粒界強度と粒界強度の向上および焼入れ性の向上により低サイクル繰返し曲げ疲労強度に有効な元素である。Bは0.0002%未満ではその効果が十分でなく、0.005%を超えるとその効果は飽和する。そこで、Bは0.0002〜0.005%とする。なお、Bの望ましい範囲は0.003〜0.005%である。
B: 0.0002 to 0.005%
B is an element effective for low cycle repeated bending fatigue strength by suppressing grain boundary segregation of P and improving its own grain boundary strength, grain boundary strength and hardenability. If B is less than 0.0002%, the effect is not sufficient, and if it exceeds 0.005%, the effect is saturated. Therefore, B is set to 0.0002 to 0.005%. A desirable range of B is 0.003 to 0.005%.

P:0.02%以下
Pは、粒界に偏析して靱性および疲労強度を低下させ、その結果、衝撃強度および曲げ疲労強度を低下させる。そこで、Pは0.02%以下とする。
P: 0.02% or less P segregates at the grain boundary to lower toughness and fatigue strength, and as a result, lowers impact strength and bending fatigue strength. Therefore, P is set to 0.02% or less.

S:0.001〜0.15%
Sは、鋼中でMnSを形成し、これによる被削性の向上を図るために添加する。しかし、Sは、0.001%未満では、その効果は十分ではなく、一方、0.15%を超えると、その効果は飽和して粒界偏析を起こし、粒界脆化を引き起こす。そこで、Sは0.001〜0.15%とする。
S: 0.001 to 0.15%
S is added to form MnS in steel and to improve machinability due to this. However, if S is less than 0.001%, the effect is not sufficient. On the other hand, if it exceeds 0.15%, the effect is saturated, causing segregation at the grain boundary and causing embrittlement at the grain boundary. Therefore, S is set to 0.001 to 0.15%.

N:0.001〜0.03%
Nは、鋼中でAl、Ti、Nb、Vなどと結合して窒化物または炭窒化物を生成し、結晶粒の粗大化を抑制する。Nは0.001%未満では、その効果は十分でなく、0.03%を超えると、その効果が飽和する。そこで、Nは0.001〜0.03%とする。なお、Nは望ましくは0.003〜0.008%とする。
N: 0.001 to 0.03%
N combines with Al, Ti, Nb, V, etc. in the steel to form nitrides or carbonitrides, and suppresses coarsening of crystal grains. If N is less than 0.001%, the effect is not sufficient, and if it exceeds 0.03%, the effect is saturated. Therefore, N is set to 0.001 to 0.03%. Note that N is desirably 0.003 to 0.008%.

Al:0.001〜0.06%
Alは、鋼の脱酸のために添加する。Alは、0.001%未満ではその効果は十分でなく、0.06%を超えるとその効果は飽和する。そこで、Alは0.001〜0.06%とする。なお、Alは望ましくは0.01〜0.04%とする。
Al: 0.001 to 0.06%
Al is added for deoxidation of steel. If Al is less than 0.001%, the effect is not sufficient, and if it exceeds 0.06%, the effect is saturated. Therefore, Al is made 0.001 to 0.06%. Al is desirably 0.01 to 0.04%.

O:0.005%以下
Oは、粒界偏析を起こして粒界脆化を起こし易くすると共に、鋼中で硬い酸化物系介在物を形成して脆性破壊を起こし易くする。そこで、Oは0.005%以下とする。
O: 0.005% or less O causes grain boundary segregation to easily cause grain boundary embrittlement, and forms hard oxide inclusions in the steel to easily cause brittle fracture. Therefore, O is set to 0.005% or less.

本発明の請求項2の発明では、請求項1の化学成分に加えて、さらに焼入れ性を向上して低サイクル繰返し曲げ疲労強度を向上させるために、Mo、Cu、Niの1種または2種以上を加えると共に、請求項1の発明の式(1)に代えて式(2)の焼入れ指数を用いるものである。   In the invention of claim 2 of the present invention, in addition to the chemical component of claim 1, in order to further improve hardenability and improve low cycle repeated bending fatigue strength, one or two of Mo, Cu and Ni are used. In addition to the above, the quenching index of the formula (2) is used instead of the formula (1) of the invention of claim 1.

Mo:0.1〜1.5%
Moは、焼入れ性を向上して浸炭焼入れした鋼部品の芯部硬さを付与し、低サイクル繰返し曲げ疲労強度を向上する。Moは、0.1%未満ではその効果が十分でなく、1.5%を超えるとその効果は飽和する。そこで、Moは0.1〜1.5%とする。
Mo: 0.1 to 1.5%
Mo improves the hardenability and imparts the core hardness of the carburized and quenched steel parts, and improves the low cycle repeated bending fatigue strength. If Mo is less than 0.1%, the effect is not sufficient, and if it exceeds 1.5%, the effect is saturated. Therefore, Mo is set to 0.1 to 1.5%.

Cu:0.1〜2.0%
Cuは、焼入れ性を向上して浸炭焼入れした鋼部品の芯部硬さを付与し、低サイクル繰返し曲げ疲労強度を向上する。Cuは、0.1%未満ではその効果が十分でなく、2.0%を超えるとその効果は飽和する。そこで、Cuは0.1〜1.5%とする。
Cu: 0.1 to 2.0%
Cu improves the hardenability and imparts the hardness of the core part of the carburized and quenched steel part, and improves the low cycle repeated bending fatigue strength. If Cu is less than 0.1%, the effect is not sufficient, and if it exceeds 2.0%, the effect is saturated. Therefore, Cu is made 0.1 to 1.5%.

Ni:0.1〜5.0%
Niは、焼入れ性を向上して浸炭焼入れした鋼部品の芯部硬さを付与し、低サイクル繰返し曲げ疲労強度を向上する。Niは、0.1%未満ではその効果が十分でなく、5.0%を超えるとその効果は飽和する。そこで、Niは0.1〜5.0%とする。
Ni: 0.1 to 5.0%
Ni improves the hardenability and imparts the hardness of the core part of the carburized and quenched steel part, and improves the low cycle repeated bending fatigue strength. If Ni is less than 0.1%, the effect is not sufficient, and if it exceeds 5.0%, the effect is saturated. Therefore, Ni is set to 0.1 to 5.0%.

本発明の請求項3の発明では、請求項1または請求項2の化学成分に加えて、高温浸炭時の結晶粒の粗大化による低サイクル繰返し曲げ疲労強度の劣化を防止するため、Nb、Vの1種または2種を加えるものである。   In the invention of claim 3 of the present invention, in addition to the chemical component of claim 1 or 2, in order to prevent deterioration of low cycle repeated bending fatigue strength due to coarsening of crystal grains during high temperature carburization, Nb, V 1 type or 2 types are added.

Nb:0超〜0.2%、望ましくは0.03〜0.10%
Nbは、添加によってNb炭窒化物を生成し、浸炭条件や浸炭前の加工工程が変化した場合でも、オーステナイト粒の微細化を安定的に図れ、低サイクル繰返し曲げ疲労強度の劣化が防止できる。しかし、Nbは0.2%を超えると被削性を劣化させる。そこで、Nbは0超〜0.2%とする。なお、望ましくはNbは0.03〜0.10%とする。
Nb: more than 0 to 0.2%, preferably 0.03 to 0.10%
Nb produces Nb carbonitride by addition, and even when carburizing conditions and processing steps before carburizing change, austenite grains can be stably refined and deterioration of low cycle repeated bending fatigue strength can be prevented. However, if Nb exceeds 0.2%, the machinability deteriorates. Therefore, Nb is set to more than 0 to 0.2%. Desirably, Nb is 0.03 to 0.10%.

V:0超〜0.2%、望ましくは0.05〜0.10%
Vは、Nbと同様に、添加によってV炭窒化物を生成し、浸炭条件や浸炭前の加工工程が変化した場合でも、オーステナイト粒の微細化を安定的に図れ、低サイクル繰返し曲げ疲労強度の劣化が防止できる。しかし、Vは0.2%を超えると被削性を劣化させる。そこで、Vは0超〜0.2%とする。なお、望ましくはVは0.05〜0.10%とする。
V: more than 0 to 0.2%, desirably 0.05 to 0.10%
V, like Nb, produces V carbonitride by addition, and even when carburizing conditions and processing steps before carburizing change, austenite grains can be stably refined, and low cycle repeated bending fatigue strength can be achieved. Deterioration can be prevented. However, if V exceeds 0.2%, the machinability deteriorates. Therefore, V is more than 0 to 0.2%. Desirably, V is 0.05 to 0.10%.

次に、本発明の請求項4の発明では、請求項1〜3のいずれか1項の化学成分に加えて、Zr、Mg、希土類元素の1種または2種以上を含有する。ここでいう希土類元素は原子番号57〜71番である。これらのZr、Mg、希土類元素は、各々酸化物を生成し、この酸化物がMnSの生成核となると共に、MnSが(Mn、Zr)Sのように、あるいはMnSが(Mn、Mg)Sのように、組成改質され、熱間圧延時にこれらの延伸性が改善され、粒状MnSが微細分散し、焼入焼戻し後の低サイクル繰返し曲げ疲労強度が向上する。   Next, in invention of Claim 4 of this invention, in addition to the chemical component of any one of Claims 1-3, 1 type, or 2 or more types of Zr, Mg, rare earth elements are contained. Here, the rare earth elements have atomic numbers 57-71. These Zr, Mg, and rare earth elements each generate an oxide, and this oxide becomes a generation nucleus of MnS, and MnS is (Mn, Zr) S or MnS is (Mn, Mg) S. As described above, the composition is modified, the stretchability is improved during hot rolling, the granular MnS is finely dispersed, and the low cycle repeated bending fatigue strength after quenching and tempering is improved.

Zr:0.0003〜0.005%
Zrは、0.0003%未満では、組成改質され微細分散した粒状MnSによる低サイクル繰返し曲げ疲労強度の向上が十分でなく、0.005%を超えると上記の効果は飽和する。そこで、Zrは0.0003〜0.005%とする。
Zr: 0.0003 to 0.005%
If Zr is less than 0.0003%, the improvement in low cycle repeated bending fatigue strength due to finely dispersed granular MnS having a modified composition is not sufficient, and if it exceeds 0.005%, the above effect is saturated. Therefore, Zr is set to 0.0003 to 0.005%.

Mg:0.0003〜0.005%
Mgは、0.0003%未満では、組成改質され微細分散した粒状MnSによる低サイクル繰返し曲げ疲労強度の向上が十分でなく、0.005%を超えると上記の効果は飽和する。そこで、Mgは0.0003〜0.005%とする。
Mg: 0.0003 to 0.005%
If the Mg content is less than 0.0003%, the improvement in low cycle repeated bending fatigue strength due to finely dispersed granular MnS having a modified composition is not sufficient. If the Mg content exceeds 0.005%, the above effect is saturated. Therefore, Mg is made 0.0003 to 0.005%.

希土類元素:0.0001〜0.005%
希土類元素は、0.0001%未満では、組成改質され微細分散した粒状MnSによる低サイクル繰返し曲げ疲労強度の向上が十分でなく、0.005%を超えると上記の効果は飽和する。そこで、希土類元素は0.0001〜0.005%とする。
Rare earth elements: 0.0001 to 0.005%
If the rare earth element is less than 0.0001%, the improvement in low cycle repeated bending fatigue strength due to the compositionally modified finely dispersed granular MnS is not sufficient, and if it exceeds 0.005%, the above effect is saturated. Therefore, the rare earth element is set to 0.0001 to 0.005%.

次に、本発明の請求項5の発明では、請求項1〜4のいずれか1項の化学成分に加えて、Caの1種または2種以上を含有する。このCaは酸化物を低融点化し、切削環境下の温度上昇により軟質化することで、被削性を改善する。   Next, in invention of Claim 5 of this invention, in addition to the chemical component of any one of Claims 1-4, 1 type (s) or 2 or more types of Ca are contained. This Ca improves the machinability by lowering the melting point of the oxide and softening it by increasing the temperature in the cutting environment.

Ca:0.0002〜0.01%
Caは、上記したように酸化物を低融点化し、切削環境下の温度上昇により軟質化することで、被削性を改善する。しかし、Caが0.0002%未満では、その効果は無く、0.01%を超えるとCaSを多量に生成して、被削性を低下する。そこで、Caは0.0002〜0.01%とする。
Ca: 0.0002 to 0.01%
Ca improves the machinability by lowering the melting point of the oxide as described above and softening due to temperature rise in the cutting environment. However, if Ca is less than 0.0002%, there is no effect, and if it exceeds 0.01%, a large amount of CaS is generated, and the machinability is lowered. Therefore, Ca is 0.0002 to 0.01%.

式(1)の限定理由
低サイクルの繰返し曲げ疲労強度に優れた高強度部品を得るためには、上述の化学成分を満足するだけではなく、焼入れ後の硬さ確保も重要となる。式(1)で、1.10未満では表面近傍の浸炭異常層、あるいは部品の芯部で不完全焼入れ相が多くなり十分な硬さ確保ができない。したがって、式(1)は1.10以上とする。
Reason for limitation of formula (1) In order to obtain a high-strength part excellent in low cycle repeated bending fatigue strength, not only the above-mentioned chemical components are satisfied, but also securing of hardness after quenching is important. In the formula (1), if it is less than 1.10, the carburized abnormal layer near the surface or the incompletely quenched phase increases in the core part of the part, and sufficient hardness cannot be secured. Therefore, Formula (1) shall be 1.10 or more.

式(2)の限定理由
低サイクルの繰返し曲げ疲労強度に優れた高強度部品を得るためには、上述の化学成分を満足するだけではなく、焼入れ後の硬さ確保も重要となる。式(2)で、1.10未満では表面近傍の浸炭異常層、あるいは部品の芯部で不完全焼入れ相が多くなり十分な硬さ確保ができない。したがって、式(2)は1.10以上とする。
Reason for limitation of formula (2) In order to obtain a high-strength part excellent in low cycle repeated bending fatigue strength, it is important not only to satisfy the above-mentioned chemical components but also to ensure hardness after quenching. In Formula (2), if it is less than 1.10, the incomplete quenching phase increases in the carburizing abnormal layer near the surface or the core of the part, and sufficient hardness cannot be secured. Therefore, Equation (2) is 1.10 or more.

式(3)の限定理由
上記成分において、Ti、O、Caは鋼中の硫化物と酸化物の特性を変化させるため、含有量のバランスは被削性に大きな影響を及ぼす。100×Ti×O/Caが1未満の場合はCaSを多量に生成して被削性を低下させ、100×Ti×O/Caが100を超えるとCaによる硫化物と酸化物が十分に改質されない。そこで100×Ti×O/Ca=1〜100とする。
Reason for limitation of formula (3) In the above components, Ti, O, and Ca change the characteristics of the sulfide and oxide in the steel, so the balance of the contents greatly affects the machinability. When 100 × Ti × O / Ca is less than 1, a large amount of CaS is generated to reduce machinability. When 100 × Ti × O / Ca exceeds 100, sulfides and oxides from Ca are sufficiently improved. Not quality. Therefore, 100 × Ti × O / Ca = 1 to 100 is set.

次に、本発明の実施の形態について、以下に説明する。表1に示す化学成分を有し、かつ、それぞれの式(1)、式(2)、式(3)の関係を満足する鋼を溶製して短辺220mm角の鋳片とし、この鋳片を常法どおりにφ45mm径の棒鋼材に圧延した。次いで、この棒鋼材を浸炭処理あるいは浸炭浸窒処理した。この場合、一般的には、浸炭方法であるガス浸炭法、真空浸炭法あるいはガス浸炭窒化方法などのいずれの方法で処理してもよい。この実施例では、上記で得られた棒鋼材を、変性式ガス浸炭炉で、表2および表3に示す、浸炭温度、浸炭(または浸炭浸窒)+拡散時間からなる浸炭(+浸窒)処理を行ってオーステナイト領域まで加熱した後、油焼入れし、さらに焼戻し温度および焼戻し時間で焼戻し処理して空冷して部品とした。この場合、本願の実施例としては、変性ガスで浸炭処理し、浸炭浸窒処理は変性ガスによる880〜950℃の浸炭処理中あるいは浸炭処理後の800〜900℃で保持している間にNH3ガスを加えて処理した。 Next, embodiments of the present invention will be described below. A steel having the chemical components shown in Table 1 and satisfying the relationship of the respective formulas (1), (2), and (3) is melted to form a slab having a short side of 220 mm. The piece was rolled into a steel bar having a diameter of 45 mm as usual. Next, this steel bar was subjected to carburizing treatment or carburizing and nitriding treatment. In this case, in general, any of a carburizing method such as a gas carburizing method, a vacuum carburizing method, or a gas carbonitriding method may be used. In this example, the steel bar material obtained above was subjected to carburization (+ nitrocarburization) consisting of carburizing temperature, carburizing (or carburizing / nitrogenizing) + diffusion time shown in Tables 2 and 3 in a modified gas carburizing furnace. After performing the treatment and heating to the austenite region, oil quenching was performed, and tempering was performed at a tempering temperature and a tempering time, followed by air cooling to obtain a part. In this case, as an example of the present application, the carburizing process is performed with the modified gas, and the carburizing and nitriding process is performed during the carburizing process at 880 to 950 ° C. with the modified gas or while being held at 800 to 900 ° C. after the carburizing process. 3 gas was added and processed.

Figure 0005558887
Figure 0005558887

上記の部品の繰返し曲げ疲労強度を見るために、上記のそれぞれの発明例および比較例の化学成分からなるφ45mm径の棒鋼材の中間部から、図1に示すように、断面13mm×17mm(切欠きを付与する面を17mm)で長さ100mmの角棒から試験片1を形成した。次いで、表2および表3に示すように、これらの試験片1に対し、浸炭温度、浸炭(または浸炭浸窒)+拡散時間からなる浸炭(+浸窒)処理を行った後、油焼入れし、さらに表2および表3に示す焼戻し温度および焼戻し時間で焼戻し処理して空冷し、試験片の側面を片側2mm切削して13mm×13mmに仕上げ加工を行なった。すなわち、浸炭(または浸炭浸窒)による硬化層は切欠き面とその反対面に残されている。次いで、図1に示すように、これらの浸炭(または浸炭浸窒)処理した試験片1の長さ方向の端から50mmの中央部の片側面に、アールが半径1.5mmで深さ3mmからなる切欠きであるVノッチ2を形成した。次いで、図2に示すように、この試験片1を、間隔80mm離れた左右の支点3の上に載置した。この場合、試験片1のVノッチ2を有する面を下に向け、この試験片1のVノッチ2を左右の高さ13mmの支点3、3の中央に位置させる。さらに試験片1の上には、高さ13mmの左右の支点4、4をVノッチ2の真上の位置から左右に均等に10mmずつ振り分けて、互いにを20mm離して載置する。さらに高さ13mmの左右の支点4、4の上には当板5を載置し、さらにこの当板5の上のVノッチ2の真上の位置から下方の試験片1に向けて荷重6を掛けて、表2および表3に示す、100サイクルおよび500サイクルの繰返し曲げ試験で試験片が破断するまで行い、4点曲げ疲労試験とした。   In order to see the repeated bending fatigue strength of the above parts, as shown in FIG. 1, a cross section of 13 mm × 17 mm (cut off) is obtained from the middle part of a steel bar with a diameter of 45 mm made of the chemical components of the above inventions and comparative examples. The test piece 1 was formed from a square bar having a length of 17 mm) and a length of 100 mm. Next, as shown in Tables 2 and 3, these test pieces 1 were subjected to carburizing (+ nitrogenizing) treatment consisting of carburizing temperature, carburizing (or carburizing and nitrogening) + diffusion time, and then quenching with oil. Further, tempering was performed at the tempering temperatures and tempering times shown in Tables 2 and 3 and air-cooled, and the side surface of the test piece was cut 2 mm on one side and finished to 13 mm × 13 mm. That is, the hardened layer by carburizing (or carburizing and nitriding) is left on the notch surface and the opposite surface. Next, as shown in FIG. 1, the radius is 1.5 mm and the depth is 3 mm on one side of the central part 50 mm from the end in the longitudinal direction of the test piece 1 subjected to the carburizing (or carburizing and nitriding) treatment. A V-notch 2 that is a notch is formed. Next, as shown in FIG. 2, the test piece 1 was placed on the left and right fulcrums 3 separated by an interval of 80 mm. In this case, the surface of the test piece 1 having the V notch 2 is directed downward, and the V notch 2 of the test piece 1 is positioned at the center of the left and right fulcrums 3 and 3 having a height of 13 mm. Further, the left and right fulcrums 4 and 4 having a height of 13 mm are equally distributed 10 mm to the left and right from the position directly above the V notch 2 on the test piece 1 and are placed 20 mm apart from each other. Further, a contact plate 5 is placed on the left and right fulcrums 4 and 4 having a height of 13 mm, and a load 6 is applied from the position directly above the V notch 2 on the contact plate 5 toward the test piece 1 below. And repeated until 100% and 500 cycles of the bending test shown in Table 2 and Table 3 until the test piece broke, and a four-point bending fatigue test was performed.

Figure 0005558887
Figure 0005558887

本発明例および比較例の上記の4点曲げ疲労試験の結果を表2および表3に示す。この表2および表3において、破面の観察はSEMで行い、そのミクロ組織は破面をナイタールで腐蝕後に光学顕微鏡で観察した。表2に示すように、発明例1〜発明例14は、本願の請求項1の要件を満足するものである。これらは、表2の備考に記載のように、破面およびミクロ組織観察では、全ての発明例が、粒内破面が主体で、ミクロ組織は不完全焼き入れ相などの以上は見られなかった。比較例1〜比較例12では、表1に示すように化学成分、あるいは計算式の式(1)、式(2)、式(3)のいずれかが、本願の請求項の発明の条件を満足していないものであり、表2の備考に示す問題点がある。   Tables 2 and 3 show the results of the above four-point bending fatigue tests of the inventive examples and comparative examples. In Tables 2 and 3, the fracture surface was observed with SEM, and the microstructure was observed with an optical microscope after the fracture surface was corroded with nital. As shown in Table 2, Invention Examples 1 to 14 satisfy the requirements of claim 1 of the present application. As described in the remarks in Table 2, these examples show that the invention is mainly composed of intragranular fracture surfaces in the fracture surface and microstructure observation. It was. In Comparative Example 1 to Comparative Example 12, as shown in Table 1, any of the chemical components or the formulas (1), (2), and (3) of the calculation formula satisfies the conditions of the invention of the claims of the present application. Not satisfied, there are problems shown in the remarks in Table 2.

Figure 0005558887
Figure 0005558887

表3は化学成分が同一である、発明例1、発明例8、発明例14について、浸炭温度、浸炭拡散時間、焼戻し温度、焼戻し時間を種々に代えた場合の100サイクルおよび500サイクルの繰返し曲げ試験の疲労強度を示したものである。この表3から、同一の化学成分の発明例でも、化学成分以外の他の条件が本発明の要件を満足していないときは、例えば発明例1の最上段のイ.のものでは、浸炭温度などのように100サイクル曲げ疲労強度が15.2kNであり、500サイクル曲げ疲労強度が12.5kNであり、これらは目的の疲労強度に達していないことが判り、備考に記載のように、浸炭域のC量が低く、硬さが不十分である。   Table 3 shows 100 cycles and 500 cycles of repeated bending when the carburizing temperature, carburizing diffusion time, tempering temperature, and tempering time were variously changed for Invention Example 1, Invention Example 8, and Invention Example 14 having the same chemical composition. This shows the fatigue strength of the test. From Table 3, even in the invention example of the same chemical component, when conditions other than the chemical component do not satisfy the requirements of the present invention, for example, a. As for carburizing temperature, the 100 cycle bending fatigue strength is 15.2 kN and the 500 cycle bending fatigue strength is 12.5 kN as in the case of the carburizing temperature. As described, the amount of C in the carburized area is low and the hardness is insufficient.

1 試験片
2 Vノッチ
3 支点
4 支点
5 当板
6 荷重
1 Test piece 2 V notch 3 Support point 4 Support point 5 Contact plate 6 Load

Claims (7)

化学成分が、質量%で、C:0.10〜0.60%、Si:0.01〜1.5%、Mn:0.3〜2.0%、Cr:0.1〜3.0%、Ti:0.02〜0.2%、B:0.0002〜0.005%、P:0.02%以下、S:0.001〜0.15%、N:0.001〜0.03%、Al:0.01〜0.06%、O:0.005%以下を含有し、かつ、C、Si、Mn、Crの含有量が(0.04+0.35C)×(1.00+0.70Si)×(0.70+3.96Mn)×(1.00+2.16Cr)≧1.10からなる式(1)によって得られる焼入れ指数を満足し、残部が実質的にFeと不可避的不純物よりなる鋼を用いて、浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間からなる浸炭処理をした後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法。 Chemical component is mass%, C: 0.10-0.60%, Si: 0.01-1.5%, Mn: 0.3-2.0%, Cr: 0.1-3.0 %, Ti: 0.02 to 0.2%, B: 0.0002 to 0.005%, P: 0.02% or less, S: 0.001 to 0.15%, N: 0.001 to 0 0.03%, Al: 0.01 to 0.06%, O: 0.005% or less, and the contents of C, Si, Mn, and Cr are (0.04 + 0.35C) × (1. 00 + 0.70Si) × (0.70 + 3.96Mn) × (1.00 + 2.16Cr) ≧ 1.10. The quenching index obtained by the formula (1) is satisfied, and the balance is substantially composed of Fe and inevitable impurities. After the carburizing treatment using the steel, the carburizing temperature of 880 ° C. to 950 ° C. and the sum of the carburizing time and the diffusion time of 2 to 7 hours In addition, as a tempering treatment, it is kept at 150 ° C. to 200 ° C. for 1 to 3 hours and then air-cooled to obtain a steel material. A square bar test piece having a cross section of 13 mm × 13 mm made of the steel material has a radius of 1.5 mm and a depth of 3 mm After giving a notch, it is a low cycle 4-point bending fatigue test in which a low cycle repeated bending load is applied, with a distance between fulcrums on the notch side of 80 mm and a fulcrum on the opposite side of the notch being 20 mm. A method for producing a high-strength part excellent in low cycle repeated bending fatigue strength, characterized in that a part having a bending fatigue strength of strength 17 kN or more and strength of 15 kN or more at 500 cycles is formed from the steel material. 請求項1の化学成分に加えて、質量%で、Mo:0.1〜1.5%、Cu:0.1〜2.0%、Ni:0.1〜5.0%の1種又は2種以上を含有し、かつ、C、Si、Mn、Cr、Mo、Cu、Niの含有量が、(0.04+0.35C)×(1.00+0.70Si)×(0.70+3.96Mn)×(1.00+2.16Cr)×(1.00+3.00Mo)×(1.00+0.37Cu)×(0.90+0.38Ni)≧1.10からなる式(2)によって得られる焼入れ指数を満足し、残部が実質的にFeと不可避的不純物よりなる鋼を用いて、浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法。   In addition to the chemical component of claim 1, in mass%, Mo: 0.1-1.5%, Cu: 0.1-2.0%, Ni: 0.1-5.0% or 2 or more types, and the content of C, Si, Mn, Cr, Mo, Cu, Ni is (0.04 + 0.35C) × (1.00 + 0.70Si) × (0.70 + 3.96Mn) X (1.00 + 2.16Cr) × (1.00 + 3.00Mo) × (1.00 + 0.37Cu) × (0.90 + 0.38Ni) ≧ 1.10. The quenching index obtained by the formula (2) is satisfied. Then, the steel is composed of Fe and unavoidable impurities in the balance, carburized at 880 ° C. to 950 ° C., carburized for a total of 2 to 7 hours of carburizing time and diffusion time, and then oil-quenched and further tempered as 150 The steel material is air-cooled after holding for 1 to 3 hours at ℃ to 200 ℃, After giving a notch with a radius of 1.5 mm and a depth of 3 mm to a square bar test piece with a cross section of 13 mm × 13 mm made of a material, the distance between the fulcrums on the notch side is 80 mm, and the distance between the fulcrum on the opposite side of the notch is 20 mm. A component having a bending fatigue strength of a strength of 17 kN or more in 100 cycles and a strength of 15 kN or more in 500 cycles in a low cycle four-point bending fatigue test in which a low cycle repeated bending load is applied. A manufacturing method for high strength parts with excellent low cycle repeated bending fatigue strength. 請求項1または2の化学成分に加えて、質量%で、Nb:0超〜0.2%、V:0超〜0.2%の1種又は2種を含有し、かつ、請求項1に上記の化学成分を加えた場合は式(1)によって得られる焼入れ指数を満足し、あるいは請求項2に上記の化学成分を加えた場合は式(2)によって得られる焼入れ指数を満足し、残部が実質的にFeと不可避的不純物よりなる鋼を用いて、浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法。   In addition to the chemical component of claim 1 or 2, it contains one or two of Nb: more than 0 to 0.2% and V: more than 0 to 0.2% in mass%, and When the above chemical component is added, the quenching index obtained by the formula (1) is satisfied, or when the above chemical component is added to the claim 2, the quenching index obtained by the formula (2) is satisfied, Using the steel, the balance of which is substantially composed of Fe and inevitable impurities, carburizing temperature 880 ° C to 950 ° C, and carburizing after carburizing for 2-7 hours in total of carburizing time and diffusion time, and further tempering treatment at 150 ° C After holding at ~ 200 ° C for 1 to 3 hours, air-cooled to obtain a steel material, a notch having a radius of 1.5 mm and a depth of 3 mm was given to a square bar test piece having a cross section of 13 mm x 13 mm made of the steel material. 80 mm between the fulcrums on the side and 2 between the fulcrum on the opposite side of the notch A part having a bending fatigue strength of 17 kN or more in 100 cycles and 15 kN or more in 500 cycles in a low cycle four-point bending fatigue test in which a low cycle repeated bending load is applied is formed from the steel material. A method for producing a high-strength part excellent in low cycle repeated bending fatigue strength. 請求項1〜3のいずれか1項の化学成分に加えて、質量%で、Zr:0.0003〜0.005%、Mg:0.0003〜0.005%、希土類金属:0.0001〜0.005%の1種又は2種以上を含有し、かつ、その化学成分中にMo:0.1〜1.5%、Cu:0.1〜2.0%、Ni:0.1〜5.0%の1種又は2種以上を含有する場合には前記式(2)によって得られる焼入れ指数を満足し、その化学成分中に上記割合でMo、Cu、Niを含まない場合には式(1)によって得られる焼入れ指数を満足するものであって、残部が実質的にFeと不可避的不純物よりなる鋼を用いて、浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法。 In addition to the chemical component according to any one of claims 1 to 3, by mass%, Zr: 0.0003 to 0.005%, Mg: 0.0003 to 0.005%, rare earth metal: 0.0001 to It contains one or more of 0.005%, and in its chemical components, Mo: 0.1-1.5%, Cu: 0.1-2.0%, Ni: 0.1 When containing one or more of 5.0%, the quenching index obtained by the above formula (2) is satisfied, and the chemical component does not contain Mo, Cu, or Ni in the above proportions. The steel satisfies the quenching index obtained by the formula (1), and the balance is made of steel substantially consisting of Fe and unavoidable impurities. The carburizing temperature is 880 ° C. to 950 ° C., and the sum of the carburizing time and the diffusion time is After carburizing for 2 to 7 hours, oil quenching and further tempering at 150 ° C to 200 ° C After holding for 3 hours, air-cooled to make a steel material, and a notch with a radius of 1.5 mm and a depth of 3 mm was given to a square bar test piece having a cross section of 13 mm × 13 mm made of the steel material, and then between the fulcrum on the notch side. Bending fatigue strength with strength of 17 kN or more in 100 cycles and strength of 15 kN or more in 500 cycles in a low cycle 4-point bending fatigue test with 80 mm and 20 mm between the fulcrum on the opposite side of the notch. A method for producing a high-strength part excellent in low-cycle cyclic bending fatigue strength, characterized in that a part having the above is formed from the steel material. 化学成分として、請求項2に記載の成分に加えて、質量%でCa:0.0002〜0.01%を含有し、又は、請求項2に記載の成分に加えて、質量%でCa:0.0002〜0.01%を含有するとともに、さらにNb:0超〜0.2%、V:0超〜0.2%、Zr:0.0003〜0.005%、Mg:0.0003〜0.005%、希土類金属:0.0001〜0.005%から選択した1種又は2種以上を含有し、かつ、前記式(2)によって得られる焼入れ指数を満足するものであって、さらに、式(2)に加えて、Ti、Ca、Oの含有量が、100×Ti×O/Ca=1〜100からなる式(3)を満足し、残部が実質的にFeと不可避的不純物よりなる鋼を用いて、浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法。 As a chemical component, in addition to the component of Claim 2, it contains Ca: 0.0002 to 0.01% by mass%, or, in addition to the component of Claim 2, Ca: In addition to containing 0.0002 to 0.01%, Nb: more than 0 to 0.2%, V: more than 0 to 0.2%, Zr: 0.0003 to 0.005%, Mg: 0.0003 ~ 0.005%, rare earth metal: one or more selected from 0.0001 to 0.005% , and satisfying the quenching index obtained by the formula (2), Furthermore, in addition to the formula (2), the content of Ti, Ca and O satisfies the formula (3) consisting of 100 × Ti × O / Ca = 1 to 100, and the balance is substantially inevitable with Fe. Using steel made of impurities, the carburizing temperature 880 ° C-950 ° C, the total carburizing time and diffusion time is After carburizing for 2 to 7 hours, oil quenching was performed, followed by tempering treatment at 150 ° C. to 200 ° C. for 1 to 3 hours, and then air cooling to obtain a steel material. Low cycle 4 points where repeated bending load of low cycle is applied, with a notch of 1.5mm and 3mm depth, 80mm between fulcrum on the notch side and 20mm between fulcrum on the opposite side of the notch In a bending fatigue test, a high-strength part excellent in low cycle repeated bending fatigue strength is characterized in that a part having a bending fatigue strength of 17 kN or more in 100 cycles and 15 kN or more in 500 cycles is formed from the steel material. Production method. 請求項1〜5のいずれか1項に記載の鋼を用いて、短辺250mm以下の角もしくは丸の鋼片に製造し、該鋼片を浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭後に油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法。 Using the steel according to any one of claims 1 to 5, the steel piece is manufactured into a square or round steel piece having a short side of 250 mm or less, the carburizing temperature is 880 ° C to 950 ° C, carburizing time and diffusion time. After the carburization for 2 to 7 hours, oil quenching was performed, and further tempering treatment was performed at 150 ° C. to 200 ° C. for 1 to 3 hours, and then air-cooled to obtain a steel material, and a square bar having a cross section of 13 mm × 13 mm made of the steel material was tested. After applying a notch with a radius of 1.5 mm and a depth of 3 mm to the piece, 80 mm between the fulcrum on the notch side and 20 mm between the fulcrum on the opposite side of the notch, a low cycle repeated bending load is applied. Low cycle cyclic bending fatigue strength characterized by forming a part having a bending fatigue strength of strength 17 kN or more in 100 cycles and strength 15 kN or more in 500 cycles in a cycle four-point bending fatigue test. Excellent production method of a high strength part. 請求項1〜5のいずれか1項に記載の鋼を用いて、短辺250mm以下の角もしくは丸の鋼片に製造し、該鋼片を浸炭温度880℃〜950℃、浸炭時間と拡散時間の合計が2〜7時間の浸炭処理している間に、もしくは、浸炭処理後の800℃〜900℃で保持している間に、NH3ガスを加えて浸炭浸窒処理した後、油焼入れし、さらに焼戻し処理として150℃〜200℃で1〜3時間保持した後に空冷して鋼材とし、該鋼材からなる断面13mm×13mmの角棒の試験片に半径1.5mm、深さ3mmの切欠きを付与した後、切欠き側の支点間を80mmと、切欠きの反対側の支点間を20mmとする、低サイクルの繰り返し曲げ荷重をかける低サイクル4点曲げ疲労試験で、100サイクルで強度17kN以上かつ500サイクルで強度15kN以上の曲げ疲労強度を有する部品を該鋼材から形成することを特徴とする低サイクルの繰返し曲げ疲労強度に優れた高強度部品の製造方法。 Using the steel according to any one of claims 1 to 5, the steel piece is manufactured into a square or round steel piece having a short side of 250 mm or less, the carburizing temperature is 880 ° C to 950 ° C, carburizing time and diffusion time. While carburizing for 2 to 7 hours, or while maintaining at 800 ° C. to 900 ° C. after carburizing, NH 3 gas is added and carburizing and nitriding is performed, followed by oil quenching Further, as a tempering treatment, the steel is kept at 150 ° C. to 200 ° C. for 1 to 3 hours and then air-cooled to obtain a steel material. After giving a notch, it is a low cycle four-point bending fatigue test that applies a low cycle repeated bending load, with the distance between the fulcrums on the notch side being 80 mm and the distance between the fulcrum opposite the notch being 20 mm. More than 17kN and 500 cycles A method for producing a high-strength part excellent in low cycle repeated bending fatigue strength, characterized in that a part having a bending fatigue strength of 15 kN or more is formed from the steel material.
JP2010077277A 2010-03-30 2010-03-30 Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength Active JP5558887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077277A JP5558887B2 (en) 2010-03-30 2010-03-30 Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077277A JP5558887B2 (en) 2010-03-30 2010-03-30 Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength

Publications (2)

Publication Number Publication Date
JP2011208225A JP2011208225A (en) 2011-10-20
JP5558887B2 true JP5558887B2 (en) 2014-07-23

Family

ID=44939579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077277A Active JP5558887B2 (en) 2010-03-30 2010-03-30 Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength

Country Status (1)

Country Link
JP (1) JP5558887B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217201A (en) * 2017-06-27 2017-09-29 包头钢铁(集团)有限责任公司 A kind of marine drilling platform containing rare earth spud leg 600MPa seamless steel pipes and its production method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541048B2 (en) * 2010-09-29 2014-07-09 新日鐵住金株式会社 Carbonitrided steel parts with excellent pitting resistance
CN103789649B (en) * 2014-02-17 2016-08-17 上海海隆石油管材研究所 The oil drill rocker of a kind of carbon dioxide corrosion-resistant and production method thereof
JP2016186119A (en) * 2015-03-27 2016-10-27 株式会社神戸製鋼所 Steel material for carburizing excellent in low cycle fatigue strength and grain-coarsening resistance, and carburized component
CN106834960B (en) * 2017-01-24 2018-06-01 中天钢铁集团有限公司 A kind of automobile using boracic top grade gear steel and its production technology
US20180372146A1 (en) * 2017-06-26 2018-12-27 GM Global Technology Operations LLC Fine grain steel alloy and automotive components formed thereof
JP7135485B2 (en) * 2018-06-18 2022-09-13 日本製鉄株式会社 Carburizing steel and parts
JP7269467B2 (en) * 2019-01-11 2023-05-09 日本製鉄株式会社 steel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672280B2 (en) * 1985-06-25 1994-09-14 日産自動車株式会社 High toughness carburizing steel
JPH0285342A (en) * 1988-09-20 1990-03-26 Sumitomo Metal Ind Ltd High temperature and short time case hardening steel
JP3623313B2 (en) * 1996-06-04 2005-02-23 大同特殊鋼株式会社 Carburized gear parts
JP4557833B2 (en) * 2005-08-02 2010-10-06 株式会社神戸製鋼所 High-strength mechanical structural steel parts with excellent fatigue properties and manufacturing method thereof
JP4860583B2 (en) * 2007-09-13 2012-01-25 トヨタ自動車株式会社 Pulley for continuously variable transmission and continuously variable transmission
JP5258458B2 (en) * 2008-08-29 2013-08-07 株式会社神戸製鋼所 Gears with excellent surface pressure resistance
JP5262740B2 (en) * 2009-01-16 2013-08-14 新日鐵住金株式会社 Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
TWI412607B (en) * 2009-03-30 2013-10-21 Nippon Steel & Sumitomo Metal Corp Carburized steel part
JP4528363B1 (en) * 2009-04-06 2010-08-18 新日本製鐵株式会社 Case-hardened steel with excellent cold workability, machinability, and fatigue characteristics after carburizing and quenching, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217201A (en) * 2017-06-27 2017-09-29 包头钢铁(集团)有限责任公司 A kind of marine drilling platform containing rare earth spud leg 600MPa seamless steel pipes and its production method

Also Published As

Publication number Publication date
JP2011208225A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
JP5862802B2 (en) Carburizing steel
JP5558887B2 (en) Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
WO2011111269A1 (en) Carburized steel component having excellent low-cycle bending fatigue strength
WO2012073485A1 (en) Carburizing steel having excellent cold forgeability, and production method thereof
JP5669339B2 (en) Manufacturing method of high strength carburized parts
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP2006213951A (en) Steel for carburized component excellent in cold workability, preventing coarsening of crystal grains in carburizing impact resistance and impact fatigue resistance
JP2013112827A (en) Gear excellent in pitching resistance and manufacturing method therefor
WO2019244503A1 (en) Mechanical component
JPWO2019198415A1 (en) Steel for parts to be carburized
JP2019183215A (en) Carburization machine component and manufacturing method therefor
JP2009068065A (en) Case hardening steel excellent in bearing fatigue-strength, impact strength and bending fatigue-strength
WO2017056896A1 (en) Preform for crankshaft, nitride crankshaft, and manufacturing method for same
JP6414385B2 (en) Carburized parts
JP7013833B2 (en) Carburized parts
JP4488228B2 (en) Induction hardening steel
JP5821512B2 (en) NITRIDED COMPONENT AND MANUFACTURING METHOD THEREOF
JP6838508B2 (en) Vacuum carburizing steel and carburized parts
JP3883782B2 (en) Case-hardened steel with excellent pitting resistance
JPH07216497A (en) Steel sheet or steel sheet parts with high fatigue strength and their production
JP2016188422A (en) Carburized component
JP2016102253A (en) Steel component
JP2015127435A (en) Steel material having excellent flexural fatigue properties after carburization, production method thereof and carburization component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R150 Certificate of patent or registration of utility model

Ref document number: 5558887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250