JP3826825B2 - Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate - Google Patents

Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate Download PDF

Info

Publication number
JP3826825B2
JP3826825B2 JP2002103723A JP2002103723A JP3826825B2 JP 3826825 B2 JP3826825 B2 JP 3826825B2 JP 2002103723 A JP2002103723 A JP 2002103723A JP 2002103723 A JP2002103723 A JP 2002103723A JP 3826825 B2 JP3826825 B2 JP 3826825B2
Authority
JP
Japan
Prior art keywords
plane
crystal
oxygen
gallium nitride
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002103723A
Other languages
Japanese (ja)
Other versions
JP2002373864A (en
Inventor
健作 元木
昌紀 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002103723A priority Critical patent/JP3826825B2/en
Publication of JP2002373864A publication Critical patent/JP2002373864A/en
Application granted granted Critical
Publication of JP3826825B2 publication Critical patent/JP3826825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、3−5族窒化物系化合物半導体からなる発光ダイオードや、半導体レ−ザなどの発光デバイスや、電子デバイスに用いられる窒化ガリウム(GaN)単結晶基板結晶の酸素ドーピング方法に関する。基板の上にエピ成長するGaN薄膜成長およびGaNバルク結晶成長における、GaN結晶自体への不純物ドーピングである。窒化物系化合物半導体と一般的に表現するのは、積層される薄膜がGaN薄膜だけでなく、これにIn、P、As、…などの成分を加えた三元混晶膜、四元混晶膜を積層することがあるからである。光を発生する活性層はGaInNである。しかし主体はGaNである。がその他の成分もあるので窒化物系と正確に述べているのである。だから以後の記述において、GaN系デバイスとかGaInN系デバイスとか表現するが同一のものをさしているのである。
【0002】
【従来の技術】
窒化物系半導体を用いた発光デバイスは、青色LEDをはじめ、既に実用化がなされている。従来、窒化物系半導体を用いた発光デバイスは、基板としてサファイヤが用いられていた。単結晶サファイヤ基板の上に、GaN層、GaInN層などをエピタキシャル成長させてエピウエハとする。GaNに対し、n型ドーパントとして利用されているものはSiである。エピウエハの上にウエハプロセスによってGaInN−LEDデバイスを作製する。サファイヤは極めて安定した堅牢な基板である。サファイヤ基板の上にGaN層やさらにその上にGaInN層が良好にエピ成長する。現在でもGaN系の青色LEDはサファイヤ基板の上に作られている。サファイヤ(α−Al)とGaNは格子定数が違う(ミスマッチ)が、それでもサファイヤ基板の上にGaN層はうまく成長するのである。しかもGaN層は多大な転位の存在にも拘らず劣化せず堅牢である。
【0003】
サファイヤは三方晶系の単結晶を作るので、そのC面の上にGaN薄膜を成長させる。サファイヤとGaNは晶系が異なるから3回対称性のあるC面の上にしかGaNをエピタキシャル成長させることができない。だから現在使用され実績のあるGaInN−LEDは何れもC面のサファイヤ基板に、c軸方向に成長した薄膜の集合からなっている。
【0004】
つまりサファイヤ面上のGaNやGaInN薄膜などエピ層はいずれもC面成長している。サファイヤを基板に使う限りC面成長しかできない。他の面方位でエピタキシャル成長することは不可能であった。だから現在製造され利用されているGaInN−LED、GaInN−LDはいずれもC面成長のGaN、GaInN層などのを積み重ねであり、他の面方位の薄膜は存在しない。しかしながら、ELO(エピタキシャルラテラルオーバーグロース)やpendeo−epiについては成長途中段階で端部にC面以外の面が現れ、その限りではない。
【0005】
サファイヤとGaNは格子不整合が大きく欠陥が多いのであるが、GaNはセラミックに近い堅牢さをもっており欠陥が成長しない、欠陥が増大して脆性化するということはない。夥しい欠陥密度であるがGaN−LEDは長寿命であり、すでに厚い実績があり高い評価がなされている。
【0006】
ところがサファイヤ基板にはいくつかの欠点がある。サファイヤ基板は極めて硬くて劈開面がない。そのためにウエハプロセスによってデバイスをウエハ上に形成した後、チップに切り出すときに劈開によって分離することができない。機械的に切断(ダイシング)する他はない。ダイシング工程のためにコスト高になる。
【0007】
LEDの場合はそれでもよいが、LD(半導体レ−ザ)の場合は共振器をなすミラー面が活性層の両側に必要である。が、劈開面がないから自然劈開によってミラー面を形成することができない。RIE(リアクティブイオンエッチング)等の気相エッチングなどで端面を精度良く平坦平滑に加工してミラー面を出す必要がある。これは簡単な作業でない。またチップ毎に加工しなければならず煩雑な作業である。共振器面出しの作業がGaInN系−LDの製造コストを押し上げる原因になっている。
【0008】
さらにサファイヤは絶縁体であるから、底面に電極を形成するということができない。p電極、n電極ともに上面に形成しなければならない。サファイヤ基板の上にn型層を何層か積層する必要がある。電流が横に流れるからn型導電層を厚く形成しなければならない。積層したn型層の上にp型層を積んでpn接合を形成する。上面にあるp型層にp電極を付けるのは当然であるが、外周部のp型層を少し除去してn型層を露呈させて、その部分にn電極をオーミック接合するという煩雑さがある。工程数、工程時間が増えてコスト高になる。また同一面に電極を二箇所形成する必要性から、必要なチップの面積が大きくなる。その点からもコスト増大を招いていた。サファイヤ基板のGaN系のLEDは実績があるが、上記のような欠点を克服できないでいる。
【0009】
このような問題を解決できる理想的な基板はGaN単結晶基板である。GaNやGaInNなどのエピ層を堆積させるのであるから、GaN基板であれば結晶格子のミスマッチの問題は全くない。それにn型GaNを作ることができれば、n型電極をチップの底面からとることが可能になる。上下にp電極、n電極を配分できればデバイス製造もより楽になるし、パッケージへの実装においてワイヤボンディングも容易になる。必要なチップ面積を削減することができる。
【0010】
それに何よりも、GaNには劈開があるから自然の劈開によってウエハをチップに切り出すことができる。但し劈開面は正三角形の辺の方向にあり、矩形上の劈開面でない。だから劈開だけで矩形状のチップを切り出すことができない。その点Si半導体や、GaAs半導体とは違って不利な点である。しかし一部は劈開によってチップ分離できる。だからダイシングによる切り出し加工が軽減される。それに半導体レ−ザ(LD)とする場合に必須の共振器のミラー面を劈開によって作り出すことができるのである。劈開によって平坦平滑のミラー面ができればGaInN系青色LDをより簡単に作ることができるはずである。
【0011】
しかしながら高品質で大面積のGaN単結晶を長い間、育成することができなかった。GaN基板を入手できないから、GaN基板の上にGaInN系のLED、LDを作製するということは不可能であった。だから実用的なGaN基板上のLED、LDを作製することはできなかった。
【0012】
窒素の蒸気圧が高いので、GaN融液を入れたるつぼに種結晶を付けて引き上げるという通常の引き上げ法ではGaN結晶を作る事はできない。超高圧を掛けてGaN単結晶を合成することはできるが小さいものしか製造することができない。とても実用的な大きさのGaN結晶を成長させることは不可能である。また石英管に封入したボートの中に多結晶を入れて加熱溶融し端から固化してゆくボート法でもGaN単結晶を作ることはできない。その他の結晶成長技術によってもGaNの大型の基板を製造することはできなかった。
【0013】
ところが近年になって気相成長法によってGaNの単結晶を成長させるという手法が提案され様々な改良がなされている。大型GaN基板がないので異種材料の基板を使う。その基板の上に薄膜成長と同様の気相合成法によってGaNの単結晶層を堆積してゆく。気相成長法は本来は薄膜の成長のための方法であるが、時間を掛けて成長を持続することによって厚い結晶層が得られる。厚いGaN結晶が成長したら基板をエッチングや研磨によって除去することによってGaNの単体の基板ができる。もちろん単純に気相合成するだけではなかなか良質のGaN結晶を得る事はできない。いくつもの工夫が必要である。
【0014】
気相合成といっても幾つかの異なる方法がある。これらはいずれもサファイヤ基板の上にGaNの薄層を成長させるために開発された手法である。有機金属(例えばトリメチルガリウムTMG)とアンモニアを原料とする有機金属気相成長法(MOCVD)、ガリウム単体をボートに入れてHClガスによって酸化しGaClとするHVPE(ハイドライド気相エピタキシ−)や、有機金属とHClを反応させGaClを作りアンモニアと反応させるMOC法(有機金属塩化物気相成長法)、GaN多結晶を加熱し昇華させて基板へ堆積させる昇華法というのがある。サファイヤ基板の上に成長させて先述のGaInN系LEDを製造するのに用いることができる。それぞれに長所と短所がある。
【0015】
(1)有機金属気相成長法(MOCVD法)
そのうちで最もよく利用されているのはMOCVD法である。コールドウオールの反応炉において、TMGとアンモニアを水素で希釈した原料ガスを加熱したサファイヤ基板に吹き付けることによって基板上で直ちに反応をおこさせてGaNを合成する。これは大量のガスを吹き付けてその一部だけがGaN薄膜形成に寄与するので残りは無駄になる。収率が低い。成長速度も大きくすることはできない。LEDの一部をなすGaN薄層の形成にはよいが、厚いGaN結晶層を積むのには向いていない。それに有機金属に含まれる炭素が不純物として混入するので特性を落とす場合がある。
【0016】
(2)有機金属塩化物成長法(MOC法)
MOC法はホットウオール型反応炉においてTMGとHClを反応させ一旦GaClを作り、これを加熱させた基板の近くでアンモニアと反応させGaNとする。この方法はGaClを経るのでMOCVD法よりも炭素の混入が少ないがそれでも炭素混入があり、電子移動度の低下などを招く場合がある。
【0017】
(3)ハイドライド気相成長法(HVPE法)
HVPE法は、Ga単体を原料とする。図1によって説明する。ホットウオール型反応炉1の周囲にはヒ−タ2が設置されている。反応炉1の上頂部に2種類の原料ガスを導入するためのガス導入管3、4が設けられる。反応炉1の内部上方空間にGaボート5を設ける。Ga融液6をGaボート5に収容しヒ−タ2によって加熱する。反応炉1の上方のガス導入口3はGaボート5に向かって開口している。これはH+HClガスを導入する。もう一方のガス導入管4はGaボート5より下方で開口している。これはH+NHガスを導入する。
【0018】
反応炉1の内部空間の下方にはサセプタ7が回転軸8によって回転昇降自在に支持される。サセプタ7の上にはGaAs基板を載せる。あるいはGaAs基板から出発しGaNを作ることができれば、サセプタ7上にGaN基板を載せることもできる。ヒ−タ2によってサセプタ7や基板9を加熱する。HCl(+H)ガスをガス導入管3から供給しGa融液6に吹き付けるとGaClというガス状の中間生成物ができる。これが炉内を落下して加熱された基板の近傍でアンモニアと接触する。基板9の上でGaClとNHの反応が起こってGaNが合成される。この方法は原料が炭素を含まないからGaN薄膜に炭素が混入せず電気特性を劣化させるということがない、という利点がある。
【0019】
(4)昇華法
GaNは高圧を掛けないと融液にできない。低圧で加熱すると昇華してしまう。この方法は、GaN多結晶を加熱し昇華させて空間中を輸送し、より温度の低い基板に堆積させるものである。
【0020】
さらにサファイヤ基板の上に、GaN薄膜を成長させる手法の改良も提案されている。有力な改良法の一つを述べる。
【0021】
[ラテラルオーバーグロース法(Lateral Overgrowth)]
▲1▼碓井彰「ハイドライドVPEによる厚膜GaN結晶の成長」電子情報通信学会論文誌vol.J81−C−II、No.1、p58〜64(1998年1月)、
【0022】
などにラテラルオーバーグロース法によるGaN成長の詳しい説明がある。サファイヤ基板の上に縞状(或いはストライプ状)の窓のあるマスクを付けその上にGaNを成長させる。窓の中から別個の結晶粒が成長し窓を越えてゆき窓の外のマスクの上で合体する。そのために欠陥密度が減少する。これはサファイヤ基板の上にGaN膜を付ける際において欠陥密度を減らすための工夫である。
【0023】
本発明者は気相合成法の中でもHVPE法を利用したGaN結晶基板の製造方法について改良を進めている。GaN基板を作ろうとするのであるから異種材料を基板にするが、サファイヤを基板とするとサファイヤだけを除く事ができない。化学的にも物理的にも堅牢で、研磨やエッチングでサファイヤだけ除去できないのである。
【0024】
それに対して、基板としてGaAsを用いるという方法がある。3回対称性のあるGaAsの基板の上に、Ga金属と水素ガス希釈HCl、水素ガス希釈NHを原料としてGaNを成長させる。当然にc軸方向に成長し成長面はC面である。そのままでは転位が線状に成長してゆく。転位が消える事なく永久に伸びてゆく。
【0025】
そこでGaAs基板へ直接に或いはある程度GaN層が成長したあと多数の規則正しく配列された穴を有するマスクを載せてマスク穴を通じてGaNの成長を続ける方法などを本発明者は創案している。これはサファイヤ基板でなく、GaAs基板上のGaN成長にラテラルオーバーグロース法(Lateral Overgrowth)を適用したものである。例えば本出願人による
【0026】
▲2▼特願平10−183446号
【0027】
などに説明がある。これはGaAs(111)面を基板としてドット、ストライプ窓のあるマスクによって基板を覆い、その上にGaN膜を気相成長させるものである。孤立した窓から結晶核が独立に成長しマスクの上で合体するから欠陥の数を減らすことができる。転位の延伸を断ち切って欠陥の少ない結晶を成長させることができる。
【0028】
そのような方法によって三回対称性のあるGaAs(111)面の上にGaN層を気相成長させて、GaAs基板をエッチング(王水)、研磨によって除去しGaNのみからなる自立膜を製造することが可能となる。そのようにしてできたGaN結晶は表面がC面(0001)である。つまり(0001)面GaN結晶である。
【0029】
さらに▲2▼には、そのような製造方法で作製した20mm以上の直径、0.07mm以上の厚さをもつGaN自立単結晶基板を提案している。これもC面をもつGaN(0001)結晶である。さらに本発明者の発明にかかる
【0030】
▲3▼特願平10−171276号
【0031】
も、そのような製造方法で作製したGaN自立単結晶基板を提案する。これも(0001)面GaN結晶である。これらの発明においては、GaAs基板にGaNを厚く気相成長させるからどうしても反りができてしまい、反りを減ずるにはどうすればよいのか?ということが問題になっている。また成長面(C面)が平坦な面になる場合とギザギザな粗面になる場合があるがその条件などを求めている。導電型は殆ど問題になっていない。
【0032】
▲4▼Kensaku Motoki, Takuji Okahisa, Naoki Matsumoto, Masato Matsushima, Hiroya Kimura, Hitoshi Kasai, Kikurou Takemoto, Koji Uematsu, Tetsuya Hirano, Masahiro Nakayama, Seiji Nakahata, Masaki Ueno, Daijirou Hara, Yoshinao Kumagai, Akinori Koukitu and Hisashi Seki,"Preparation of Large Freestanding GaN Substrates by Hydride Vapor Phase Epitaxy Using GaAs as a Starting Substrate", Jpn. J. Appl.Phys. Vol.40(2001) pp.L140-143
【0033】
はGaAs(111)結晶を基板としてラテラルオーバーグロース法によってGaN単結晶自立膜を製造している。これも(0001)GaN結晶である。厚みは500μmで直径は2インチの結晶である。n型の導電型であったと述べている。転位密度は2×10cm−2であり、キャリヤ濃度はn=5×1018cm−3で、移動度は170cm/Vs、抵抗率は8.5×10−3Ωcmであると説明している。n型ドーパントについては説明していない。
【0034】
▲5▼特願平11−144151号
【0035】
は、本発明者になるものであるが、n型のドーパントとして酸素が有効であることを初めて見い出している。そして酸素をn型ドーパントとしたn型GaN自立膜を提案している。さらに酸素はGaN中で活性化率が高くて1に近いということも発見している。炭素(C)もGaN中でn型不純物であるから炭素を極力排除する必要があるといっている。そのためにも現在主流であるMOCVD法は好ましくない。HVPE法がよいと主張している。
【0036】
GaNは3回対称性のある六方晶系(Hexagonal symmetry)の結晶であるから、結晶面の表記がGaAs(閃亜鉛鉱型)など立方晶系(cubic symmetry)の場合とは相違する。六方晶系の結晶表記法について簡単に述べる。3つのパラメータによって表現する方法と、4つのパラメータを使う方法がある。ここでは4パラメータを使った表現を用いる。初めの3つの主軸a軸、b軸、d軸とする。これらの主軸は一平面上にあって、120度の中心角を成している。しかもa=b=dである。
【0037】
a、b、dのいずれにも直交する軸がある。これをc軸という。a軸、b軸、d軸に対してc軸は独自のものである。平行な多数の結晶面がある。その結晶面の原点からかぞえて1番目の結晶面がa軸、b軸、d軸、c軸を切る切片が原点から、a/h、b/k、d/m、c/nの距離にあるとする。これらの軸の正の部分を切ることができない場合は反対に延長した−a、−b,−dとの交差点を考える。h,k,m,nは必ず整数である。その場合の面指数を(hkmn)と書くものと約束する。
【0038】
3つの主軸a、b、dに関する指数は幾何学的な制限則h+k+m=0が存在する。c軸との交差点の指数nは自由である。面指数の表現にはカンマを入れない習わしであるから正負の整数4つを括弧の中に入れたものが表記となる。負の数は数字の上に上線を引いて表現するのが鉱物学の決まりである。それができないのでここでは前にマイナス符号を付して表す。
【0039】
(hkmn)によって表現されるのは個別面表現である。{hkmn}によって表現されるものは包括面表現である。その結晶の対称操作によって変換し得る全ての面方位を包含する包括的な表現である。
【0040】
面方位とは別に、線方向を示す表現がある。個別方向は[hkmn]によって表現する。これは個別面方位(hkmn)と直交する方向を意味する。包括方向表示は、<hkmn>である。これは個別方位(hkmn)から結晶が許す対称操作によって到達できる全ての個別方位の集合である。
【0041】
C面が最も代表的な面である。これまでの結晶成長によって作製されたGaNは全てC面成長だといえる。サファイヤやGaAsなど異種単結晶基板を用いる場合、三回対称性面を使うしかないのでその上に成長する面はC面に限定される。C面(0001)以外に重要な面が二つある。
【0042】
一つは{1−100}面である。これは劈開面である。C面に垂直な面であるが、これは6つの個別面の集合である。(1−100)、(10−10)、(01−10)、(−1100)、(−1010)、(0−110)の全てをM面と呼ぶ。劈開面は互いに60度の角度を成しており直交しない。
【0043】
もう一つ重要な面は{11−20}面である。これにも通称があってA面と呼ばれる。A面は劈開面でない。A面も6つの個別面の総称である。(11−20)、(1−210)、(−2110)、(2−1−10)、(−12−10)、(−1−120)の全てをA面と呼ぶ。
【0044】
C面は一義的に決まるが、A面とM面は3つの異なる方向のものがある。あるA面とあるM面とは直交する。だからA面、M面、C面は直交する面の組を構成することができる。本発明者の
【0045】
▲6▼特願平10−147049号は、劈開面(M面)を辺にもつGaNデバイスを提案している。これもC面を表面にするGaN結晶である。劈開面を問題にする発明なのでここに挙げた。貫通転位を減らすための工夫もいろいろと提案されている。本発明者の
【0046】
▲7▼特願平11−273882号はC面を鏡面成長させるのでなく、C面以外のファセット面を保有したままc軸方向に成長させることによってファセットに転位を掃きよせ転位を低減している。これはファセット面を維持しつつというが、平均的にはC面成長である。さらに本発明者の
【0047】
▲8▼特願2000−207783号はGaN中の貫通転位が面と直交して延伸するという性質を発見している。C面成長ならc軸方向に貫通転位が伸びる。そこでこの発明はC面成長させたGaNをA面方向に切り出し、その上にA面成長させるあるいはC面成長させたGaNをM面方向に切り出し、その上にM面成長させるという凝った方法を提案する。その後C面で切り出し、低転位のGaN結晶を得るという巧妙な発明である。
【0048】
この従来技術▲7▼、▲8▼だけがC面以外の面で成長させるということを初めて提唱している。目的は違うが面方位に着眼した初めての発明であるからここに紹介した。
【0049】
【発明が解決しようとする課題】
サファイヤ基板上へのGaN気相成長法は例外なくC面を上面として成長させている。サファイヤ基板(α−Al)の3回対称面の上にGaNを成長させる場合、C面は6回対称性をもち鏡面になり最も成長させ易いのである。だから現在製造され使用されているサファイヤ基板上のGaInN−LEDやGaInN系−LDはC面のGaN層、GaInN層の積み重ねである。
【0050】
それはGaAsを基板とするときも同様でGaAsの3回対称面(111)の上にGaNを成長させるときもC面が表面になるように成長させる。
本発明者はGaNのn型ドーパントとして酸素(O)を使いたい。酸素をドープしようとする場合、成長面(C面)にはなかなか入っていかない、ということを最近本発明者が発見した。
【0051】
これはわかりやすい現象ではない。だから最近まで誰も気付かなかったのである。本発明者はC面成長させたGaN試料の表面の組成をSIMS(Secondary Ion Mass Spectroscopy)によって分析した。これはイオン(一次イオン)を加速して試料に当て試料からたたき出される二次イオンの数を数えることによって試料表面に存在する物質の存在比を求める方法である。初めの頃は分解能が充分でなくイオンビームがかなりの広がりを持っていたので二次イオンが広い範囲から放出されていた。それで酸素の二次イオンも試料面から出ていたのでC面にも酸素がドープされるかのように見えたのである。
【0052】
しかしながらビームを絞ることによってSIMSの分解能を上げると意外な事が分かってきた。粗面化したC面は細かく見ると、C面部分の他に凹凸(ファセット)がたくさんあって傾斜面を保持しながら成長することがある。二次イオンはC面からも凹凸部分からも放出される。C面と凹凸部(ファセット)を区別して酸素二次イオンを測定すると、C面から酸素が殆どでて来ないということがわかった。換算してみると、C面以外の酸素濃度が5×1018cm−3の時でも、同じ結晶表面上のC面での酸素濃度は1×1017cm−3未満であることが分かった。つまり酸素を取り込む能力において50倍もの相違があるという事である。酸素二次イオンはC面から出るのでなく実はファセットから放出されているのである。
【0053】
また、成長条件を変化させ、全面鏡面のC面としたサンプルを作成し、表面よりSIMSにて分析を行うと、やはり、酸素は1×1017cm−3未満であり濃度は低かった。
【0054】
ということはC面には酸素が殆どドープされないということである。C面成長でありC面には酸素が入らないのに酸素が自然に入ってしまうのはC面以外のファセット面があるからである。そういうことが初めて分かってきた。
【0055】
単結晶が成長しているのであるから面内のどの部分も結晶方位は同一である。ファセットの部分も上方がc軸になるような構造をもっている。だからc軸方向に成長しているのである。それはそうなのであるが、表面に露呈した面がC面でないということである。そして原料ガスに含まれる酸素が結晶内に取り込まれるかどうかということはその部位の内部的な結晶構造によるのでなくて、結晶成長時の表面自体の微視的な構造によるのである。表面が傾いておりC面以外の面、たとえばM面やA面が露呈しているのであれば、その面がもつ独自の酸素吸着能力によって酸素を取り込むということになる。
【0056】
GaNの成長においてファセットとなる部分は平均的な成長方向に沿って連続する事が多い。ファセットは頻繁に消滅・発生を繰り返すのでない。例えば、c軸方向に結晶成長する場合、ファセット面が維持されて縦方向にGaNがc軸方向に成長してゆくということである。だからSIMSとエッチングを組み合わせて酸素濃度を結晶の深さ方向にc軸方向に測定すると酸素濃度分布はだいたいどの深さでも同じようなばらつきを示す。だからC面成長においても酸素がドープされるのはC面以外の微視的なファセット面が存在するからである。
【0057】
そのようなことは未だに斯界の専門家にも知られていない。酸素ドープしたGaNがn型になる理由は本発明者等が▲5▼によって初めて明らかにしている。酸素が窒素サイトを置換してn型不純物になるのであろう。しかし酸素をGaN中でn型ドーパントとして利用するというのは未だ主流でない。本発明者が主張しているだけである。GaN中のn型ドーパントとして主流であるのは硅素(Si)である。Siがガリウム(Ga)サイトを置き換えてn型になると考えられている。酸素をn型ドーパントとするという着想は本発明者以外に見当たらないのが現状である。それに酸素ドープには面方位依存性がある事がいまだに知られていない。GaN成長は3回対称性のある異種材料から成長するので必ずC面を表面とする成長しか行われていない。しかし前記の実験からC面には酸素が殆ど入らない。だからC面鏡面成長に固執すると酸素を所望の濃度でドープすることができない。ということは所望の抵抗率のn型GaN基板を作ることができないということである。そのような新発見に基づき本発明は酸素を効率良くドーピングすることのできるGaN結晶成長方法を提案する。
【0058】
【課題を解決するための手段】
成長面を変えて成長させるなど詳細な検討を重ねた結果、酸素の取り込み量は面方位依存性があるということが分かった。酸素ドープ量の面方位依存性があることを発見したのは本発明者の実験の成果である。それに、C面には入らないがどのような面方位にも酸素が入らないということでないということが分かった。C面以外で酸素が入り(ドーピングされ)易い面が存在するのである。酸素ドープしやすい面方位は大きく2つの種類のものがある、ということが分かってきた。
【0059】
それは次のような面方位である。
(1) {kk−2kh} (k,hは整数)
特に、{11−20}面が顕著な効果を示す、ということがわかっている。{11−22}面でも酸素の取り込み効率は大きい。高面指数になるに従い、酸素の取り込み効率は低下してゆく傾向があるようである。
【0060】
(2) {k−k0h} (k,hは整数)
特に、{1−100}面が顕著な効果を示す。{1−101}面でも酸素の取り込み効率は大きい。この面方位も高面指数になるに従い、酸素の取り込み効率が低下してゆく傾向があるようである。
【0061】
つまり面{hkmn}には固有の酸素ドーピング能力というようなものがあり、これをOD{hkmn}という関数によって表現できる。
【0062】
OD{hkmn}の詳細はいまだよくわからないが、C面以外の面{hkmn}についてOD{hkmn}>OD{0001}ということが言える。つまりC面は酸素ドーピングが最も難しい面だということである。
【0063】
A面{11−20}については、OD{11−20}>50OD{0001}である。 A面はC面よりも50倍以上も酸素ドーピングしやすいということである。
【0064】
M面{1−100}についても、OD{1−100}>50OD{0001}である。M面はC面よりも50倍以上も酸素ドーピングしやすいのである。
【0065】
酸素ドーピングを行うには、C面以外の面を上面に持つように結晶成長することによって効率的にドーピングができる。この方法によってドーピングするには、バルク結晶内で、結晶成長の履歴がC面以外の面である領域において、酸素ドーピングがなされる。
【0066】
必ずしも全面がこれらの(C面以外の)結晶面である必要はない。部分的にファセット面という形で存在するだけであってもよい。もちろんC面成長部分が広く存在する場合は、その部分での酸素取り込み効率は低下している。
【0067】
酸素取り込みの面方位依存性はその現象を本発明者らが発見したばかりである。そのメカニズムの詳細は未だ不明である。結晶面の表面に出ている原子の結合の手の状態が異なる事に起因する特定元素の結合の仕方が異なるため、不純物の取り込まれ方が変化するものと考えられる。
【0068】
特にGaN(0001)Ga面が成長面となった場合、酸素がn型キャリヤとして入るべき窒素サイトに、非常に入りにくいメカニズムが働いているものと推測される。これらの現象は当然ながら、サファイア、SiC、GaN等のいかなる下地基板、種結晶を用いた場合においても見られる普遍的な現象である。
【0069】
【発明の実施の形態】
なお酸素のドーピングは、結晶成長中の原料ガスの中に水を含ませるのが最も効果的である。HVPEの場合はアンモニア(NH)、塩化水素ガス(HCl)に水を含ませる。もともとNH、HClには不純物として水が含まれている事が多く、特に水を原料ガスに追加しなくても元々含まれた水分によって酸素ドープされる事もある。しかし安定的に酸素ドーピングを行うためには微量の水を原料ガスに定量的に加えるのが望ましい。
【0070】
本発明の思想に従って、効率的に酸素ドーピングする方法には多く分けて二つの手法がある。一つはC軸以外の方向に成長させる(非C軸成長)させることであり、もうひとつはC軸方向にファセット成長させることである。つまり非C軸成長とファセットC軸成長である。
【0071】
(甲)[非C軸成長]C面以外の面{hkmn}を表面(上面)にもつ種結晶を用いて、C面以外の面で結晶成長させ、その面方位にのびた単結晶インゴットを製造する方法。
甲の方法は、種結晶の結晶面{hkmn}をそのまま維持して結晶成長した場合、全面において、効率的に酸素ドーピングがなされる。
【0072】
例えば、種結晶全面において、{1−100}面(M面)、或いは一般的に{k−k0h}面(k,hは整数)である場合に効率的な酸素ドーピングが行われる。
【0073】
また{11−20}(A面)或いは一般的に{kk−2kh}面(k,hは整数)においても同様である。この場合の酸素ドープ効率は単純に
【0074】
OD=OD{hkmn}
【0075】
によって象徴的に表現される。この方法は原理は単純であるが実行するには幾つかの問題がある。C面以外の表面を持つGaN単結晶は天然に存在しないし、異種基板から気相成長によって製造することもできない。現在LEDやLDに使われている、サファイヤの3回対称面の上に成長させたGaN、GaInN薄膜はC面結晶である。先述のようにサファイヤ基板上に成長させた場合はサファイヤを除去できずGaN結晶単体を得ることはできない。
【0076】
GaAs(111)面の上に気相成長させた場合、C面をもつGaN結晶が成長する。GaAs基板を王水で除去できるからGaNの単体単結晶が得られる。しかしその結晶も表面はC面である。厚いGaNの結晶を作り、例えばA面方向に切断してA面を表面に持つ単結晶を作り、これを種結晶とする。このようにC面以外の面をもつ種結晶を作るという前工程が必要になる。
【0077】
(乙)[ファセットC軸成長]C面を上面とする結晶を成長させるが、ミクロに見ればC面以外のファセット面を持つように成長させる方法。
【0078】
乙の方法は種結晶表面の平均的な結晶面がC面であっても、ミクロにC面以外のファセット面を持って成長した場合、ファセット面を通して酸素をドーピングする効果が得られるのである。
【0079】
具体的なファセット面としては、{1−101}面などの{k−k0h}面(k,hは整数)がある。これらはM面を傾斜させた面である。M面自体はC面と垂直であるからファセット面とはならない。
【0080】
或いは{11−22}面などの{kk−2kh}面などがある。これらはA面を傾斜させた面である。A面自体はC面と垂直であるからC面成長でのファセット面とはならない。これは単一のファセット面をC面内に含む場合である。
【0081】
単一といってもGaN結晶はc軸まわりに6回対称性があるからこれらの面は6つの個別面の集合である。単一の面であっても6角錘状の穴(ピット)や6角錘状の突起をC面上に形成することができる。全部の面が出現しないこともあるがそれでも3角錐状穴、突起とか異形の5角錘状の穴、突起を形成する。
【0082】
これは単一のファセット面を含む場合であるが、複数のファセット面を含むようなC面成長をさせることによって酸素ドープを有効にすることができる。例えば、{kk−2kh}面、{k−k0h}面からなる複数のファセット面を含んで結晶成長させる事によって酸素ドーピングさせることができる。例えば{11−21}面が6つと{1−101}面が6つで正12角錐を形成することができる。二つの面の組み合わせによってそのような穴または突起を形成できる。3以上の面が集まればより複雑な形状の角錐の穴や突起を作り出すことができる。
【0083】
{kk−2kh}面、{k−k0h}面(k,hは整数)の集合からなる逆六角錐(六角錐穴)、逆十二角錐(十二角錐穴)形状のピット状ファセット面を保有しながらC面成長させる場合、このピット状ファセット面において酸素ドープすることができる。この方法は複合的であり、{hkmn}面のC面内での存在確率をρ{hkmn}と書くと、酸素ドープ効率は
【0084】
OD=Σρ{hkmn}OD{hkmn}
というように象徴的に表現することができる。
【0085】
GaNの成長方法は従来のサファイヤ基板上の成長方法として有効なHVPE法、MOC法、MOCVD法、昇華法など全てを利用することができる。
【0086】
【実施例】
[実施例1(M面(1−100)を上面とする結晶成長;図2)]
GaN単結晶のインゴットから切り出した表面がM面(1−100)からなるGaN種結晶を準備した(図2(a))。GaN単結晶は、GaAs基板の上にラテラルオーバーグロース法によってGaNをC面成長させGaAs基板を王水で溶解除去したものである。M面だからこの結晶の成長方向に平行な一つの面で切っていることになる。
【0087】
このM面種結晶は表面研磨してあり、表面に加工変質層は除去されて全く存在しない。
【0088】
この種結晶の上に、HVPE法によって、GaN結晶を成長させた(図2(b))。その成長条件は、以下の通りである。なお窒素分の原料ガスであるNHについては、2ppmほどの水を含んだ原料ガスを使用した。水は酸素源として含ませているのである。
【0089】
・成長温度 1020℃
・NH分圧 0.2atm (2×10Pa)
・HCl分圧 1×10−2atm(10Pa)
・成長時間 6時間
【0090】
成長膜厚さが約500μmとなった。その後、下地の種結晶部を研削除去した(図2(c))。さらに表面を研磨した(図2(d))。種結晶を除いて成長部だけにした結晶層の厚みは約400μmであった。
【0091】
この試料の電気的特性をホール(Hall)測定によって求めると、4点での平均が、
・キャリヤ濃度 = 6×1018cm−3
・キャリヤ移動度= 160Vs/cm
の程度であり結晶内でほぼ均一であった。
【0092】
さらに同一サンプルの表面付近のSIMS(Secondary Ion Mass Spectroscopy)分析を行った。その測定の結果次のようなことが分かった。
【0093】
水素(H) 2×1017cm−3
炭素(C) 3×1016cm−3
酸素(O) 8×1018cm−3
珪素(Si) 3×1017cm−3
【0094】
キャリヤ濃度が6×1018cm−3であり、酸素濃度が8×1018cm−3である。GaNの中でn型不純物になる可能性のある炭素(1016cm−3のオーダー)、珪素(1017cm−3のオーダー)はキャリヤ濃度(1018cm−3のオーダー)よいもずっと低い。ということはこれらのキャリヤ(電子)は、酸素に由来するということである。酸素がn型不純物として働いており、その活性化率がかなり高いということを示唆する。
【0095】
抵抗率を測定したところ、7×10−3Ωcm程度でかなり高い導電性をもっている。n型導電性のGaN基板として利用できる。つまりサファイヤのように上面にn電極をとらなければならないということはなくn型GaN基板の底面からn電極をとることが可能となる。
この実施例によって製造された試料は、表面が平坦な、厚さ400μmの単体のGaN基板である。GaN基板の上に、その後、エピタキシャル成長を行ってデバイスを作製することができるような形状となっている。
【0096】
[比較例1(C面(0001)を上面とする結晶成長;図3)]
GaN単結晶のインゴットから切り出した、表面がC面(0001)面からなるGaN種結晶を準備した(図3(a))。表面の極性はGa面である。このC面種結晶は表面研磨してあり、表面に加工変質層が全く存在しない。
【0097】
この種結晶の上にHVPE法によってGaNを成長させた。その成長条件は、以下の通りである。実施例1と同様に窒素分の原料ガスであるNHについては、2ppmほどの水を含んだ原料ガスを使用した。
【0098】
・成長温度 1050℃
・NH分圧 0.15atm (1.5×10Pa)
・HCl分圧 5×10−3atm(5×10Pa)
・成長時間 10時間
【0099】
成長膜厚さが約500μmとなった(図3(b))。表面は(0001)面からなる平坦な鏡面状態であった。成長後の表面もC面を維持している事が分かる。その後、下地の種結晶部を研削除去した(図3(c))。表面を研磨し種結晶を除いて成長部だけにした結晶層の厚みは約400μmであった(図3(d))。
【0100】
この試料の電気的特性をホール(Hall)測定によって求めようとしたが測定不能であった。その原因は、GaN結晶が高抵抗の膜となっており極めて電気伝導度が低くて現在保有している測定機器では測定できないからである。基板面内どの点においても測定不能であった。つまり自由に動き得る電子が乏しくキャリヤ濃度が低すぎて充分な電流が流れず測定できないということである。
【0101】
さらにこの試料の表面付近のSIMS(Secondary Ion Mass Spectroscopy)分析を行った。その測定の結果次のようなことが分かった。
【0102】
水素(H) 1×1018cm−3
炭素(C) 7×1016cm−3
酸素(O) 1×1017cm−3
珪素(Si) 2×1016cm−3以下
【0103】
このように酸素濃度が実施例1よりずっと低い。約1/100程度に低下していることが分かる。これは面方位(C面とM面)の違いだけに起因する。つまり酸素の取り込みについて著しい面方位依存性があるということである。Siについても約1/10に減少しており、Siについても面方位依存性が見られる。炭素や水素はむしろC面成長の方が結晶中へより多く入るようである。が、依存性は少ない。もっとも顕著な面方位依存を示すのは酸素である。
【0104】
この比較例ではn型不純物としての酸素の取り込み量が少ないからn型キャリヤ(電子)が放出されず絶縁体になるのであろうと考えられる。このような高抵抗の基板は底面からn電極を取り出せないのでGaNデバイスの導電性基板としては使用不能である。
【0105】
[実施例2(C面(0001)を上面としピット状ファセット面を維持する結晶成長;図4)]
GaN単結晶のインゴットから切り出した、表面がC面(0001)からなるGaN種結晶を準備した(図4(a))。この表面の極性はGa面である。このC面種結晶は表面研磨してあり、表面の加工変質層は除去されて全く存在しない。
【0106】
この種結晶の上に、HVPE法によって、GaNを成長させた。その成長条件は、以下の通りである。窒素分の原料ガスであるNHについては、2ppmほどの水を含んだ原料ガスを使用した。
【0107】
・成長温度 1030℃
・NH分圧 0.2atm (2×10Pa)
・HCl分圧 1×10−2atm(10Pa)
・成長時間 5時間
【0108】
成長膜厚さが約500μmとなった(4(b))。表面状態は、比較例1のように平坦なC面の鏡面ではなかった。成長後の結晶の表面は、C面以外の小面からなる多数のファセット面を有する。ファセット面がキラキラと光を反射し光って見える。特に逆六角錐状、逆十二角錐状のファセット面からなるピット状形態が見られる。つまり角錐のピットの集合である。これらの錘面がファセット面である。このサンプルにおいては、C面はほとんど見られない。
【0109】
様々な面方位のものが混在している。多いのは{1−101}面、{11−22}面、{1−102}面、{11−24}面である。これらを纏めて{k−k0h}(k,hは整数)、{kk−2kh}面(k,hは整数)というように表現することができる。
【0110】
その後、下地の種結晶部を研削除去した(図4(c))。種結晶を除いて成長部だけにした結晶層の厚みは約400μmであった。この基板はファセット面のため表面が平坦でない。そこで両面を研磨して厚さ350μmの基板とした(図4(d))。
【0111】
この試料の電気的特性をホール(Hall)測定によって求めると、4点での平均が、
・キャリヤ濃度 = 5×1018cm−3
・キャリヤ移動度= 170Vs/cm
【0112】
の程度であり結晶内でほぼ均一であった。
さらに同じ試料の表面付近のSIMS(Secondary Ion Mass Spectroscopy)分析を行った。その測定の結果次のようなことが分かった。
【0113】
水素(H) 2×1017cm−3
炭素(C) 3×1016cm−3
酸素(O) 5×1018cm−3
珪素(Si) 4×1016cm−3 以下
【0114】
キャリヤ濃度が5×1018cm−3であり、酸素濃度が5×1018cm−3である。GaNの中でn型不純物になる可能性のある炭素(1016cm−3のオーダー)、珪素(1016cm−3のオーダー)はキャリヤ濃度(1018cm−3のオーダー)よいもずっと低い。ということはこれらのキャリヤ(電子)は、酸素に由来するということである。酸素濃度とキャリヤ濃度が同程度だということは、酸素がn型不純物として働いており、その活性化率がかなり高いということを示唆する。
【0115】
抵抗率を測定したところ、6×10−3Ωcm程度でかなり高い導電性をもっている。n型導電性のGaN基板として利用できる。つまりサファイヤのように上面にn電極をとらなければならないということはなくn型GaN基板の底面からn電極をとることが可能となる。この実施例はc軸方向の成長でもC面以外のファセット面を維持しつつ成長させるとファセット面から酸素が入り込み低抵抗のn型GaN結晶を製造できるということを意味している。
この実施例にかかる試料片は、表面が平坦な、厚さ350μmの単体のn型GaN基板であった。その後に、GaN基板表面上にさらにエピタキシャル成長を行い、デバイス作製が可能な形状であった。
【0116】
【発明の効果】
これまで行われてきたGaNのC面鏡面成長では酸素ドーピングが殆ど不可能であった。本発明は、C面以外の面が上面になるように成長させるか、ファセットを維持しながらC面成長させることによって、C面以外の面を露呈させつつGaN成長を行うようにする。本発明によって、GaN結晶中へ効果的に酸素を取り込むようにすることができる。面方位を決めることによって酸素のドーピング量を正確に制御することができる。酸素がn型ドーパントとして有効に機能することができる。極めて効率的な酸素ドーピング方法である。
【図面の簡単な説明】
【図1】HVPE法によるGaN結晶の成長装置の概略断面図。
【図2】M面(1−100)を持つGaN種結晶の上に、GaN層を気相成長法によって成長させる実施例1の工程を示すGaN結晶の断面図。(a)はM面(1−100)を持つGaN種結晶断面図、(b)はGaN種結晶の上に、(1−100)結晶を成長させた状態のGaN結晶断面図。(c)は種結晶を除去した成長部分だけのGaN結晶断面図。(d)はさらに研磨した状態のM面GaN結晶の断面図。
【図3】C面(0001)を持つGaN種結晶の上に、GaN層を気相成長法によって成長させる比較例1の工程を示すGaN結晶の断面図。(a)はC面(0001)を持つGaN種結晶断面図、(b)はGaN種結晶の上に、(0001)結晶を成長させた状態のGaN結晶断面図。(c)は種結晶を除去した成長部分だけのGaN結晶断面図。(d)はさらに研磨した状態のC面GaN結晶の断面図。
【図4】C面(0001)を持つGaN種結晶の上に、ファセット面を維持しながらGaN層を気相成長法によって成長させる実施例2の工程を示すGaN結晶の断面図。(a)はC面(0001)を持つGaN種結晶断面図、(b)はGaN種結晶の上に、ファセットを多数有する(0001)結晶を成長させた状態のGaN結晶断面図。(c)は種結晶を除去した成長部分だけのGaN結晶断面図。(d)はさらに研磨した状態のC面GaN結晶の断面図。
【符号の説明】
1 HVPE反応炉
2 ヒ−タ
3 原料ガス導入管
4 原料ガス導入管
5 Ga溜(Gaボート)
6 Ga融液
7 サセプタ
8 回転軸
9 基板
10 ガス排出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting diode made of a Group 3-5 nitride compound semiconductor, a light emitting device such as a semiconductor laser, and an oxygen doping method of a gallium nitride (GaN) single crystal substrate crystal used for an electronic device. Impurity doping of the GaN crystal itself in the growth of GaN thin films and GaN bulk crystals grown epitaxially on the substrate. In general, the term “nitride-based compound semiconductor” refers to not only a GaN thin film but also a ternary mixed crystal film or a quaternary mixed crystal in which components such as In, P, As,. This is because films may be stacked. The active layer that generates light is GaInN. However, the main body is GaN. However, since there are other components, it is accurately described as a nitride system. Therefore, in the following description, it will be expressed as a GaN-based device or a GaInN-based device, but the same thing.
[0002]
[Prior art]
Light emitting devices using nitride-based semiconductors have already been put into practical use, including blue LEDs. Conventionally, a sapphire has been used as a substrate in a light emitting device using a nitride-based semiconductor. A GaN layer, a GaInN layer, or the like is epitaxially grown on the single crystal sapphire substrate to obtain an epi wafer. For GaN, Si is used as an n-type dopant. A GaInN-LED device is fabricated on the epi-wafer by a wafer process. Sapphire is an extremely stable and robust substrate. A GaN layer on the sapphire substrate and a GaInN layer on the GaN layer are further epitaxially grown. Even now, GaN-based blue LEDs are made on sapphire substrates. Sapphire (α-Al2O3) And GaN have different lattice constants (mismatch), but the GaN layer still grows well on the sapphire substrate. Moreover, the GaN layer is robust without deterioration despite the presence of a large amount of dislocations.
[0003]
Since sapphire produces a trigonal single crystal, a GaN thin film is grown on the C plane. Since sapphire and GaN have different crystal systems, GaN can be epitaxially grown only on a C-plane having three-fold symmetry. Therefore, all the GaInN-LEDs that have been used and have a proven record are made up of a collection of thin films grown in the c-axis direction on a C-plane sapphire substrate.
[0004]
That is, the epilayers such as GaN and GaInN thin films on the sapphire surface all grow on the C plane. As long as sapphire is used for the substrate, only C-plane growth is possible. It was impossible to epitaxially grow in other plane orientations. Therefore, the GaInN-LED and GaInN-LD that are currently manufactured and used are stacked with C-plane grown GaN, GaInN layers, etc., and there are no thin films with other plane orientations. However, with respect to ELO (epitaxial lateral overgrowth) and pendeo-epi, a plane other than the C plane appears at the end during the growth stage, and this is not the case.
[0005]
Sapphire and GaN have large lattice mismatch and many defects. However, GaN has a robustness close to that of ceramics, and does not grow, and does not increase and become brittle. Although it has a high defect density, the GaN-LED has a long lifetime, and has already been proven to be highly evaluated.
[0006]
However, sapphire substrates have several drawbacks. Sapphire substrates are extremely hard and have no cleavage plane. Therefore, after a device is formed on a wafer by a wafer process, it cannot be separated by cleavage when it is cut into chips. There is nothing but mechanical cutting (dicing). High cost due to dicing process.
[0007]
In the case of an LED, this may be sufficient, but in the case of an LD (semiconductor laser), mirror surfaces forming a resonator are required on both sides of the active layer. However, since there is no cleavage surface, the mirror surface cannot be formed by natural cleavage. It is necessary to obtain a mirror surface by processing the end face with high accuracy and smoothness by vapor phase etching such as RIE (reactive ion etching). This is not an easy task. Moreover, it must be processed for each chip, which is a complicated operation. Resonator surface formation is a cause of increasing the manufacturing cost of GaInN-LD.
[0008]
Furthermore, since sapphire is an insulator, it cannot be said that an electrode is formed on the bottom surface. Both the p electrode and the n electrode must be formed on the upper surface. It is necessary to stack several n-type layers on the sapphire substrate. Since the current flows laterally, the n-type conductive layer must be formed thick. A p-type layer is stacked on the stacked n-type layer to form a pn junction. It is natural to attach the p-electrode to the p-type layer on the upper surface, but the trouble of removing the p-type layer in the outer peripheral portion a little to expose the n-type layer and ohmic joining the n-electrode to that portion. is there. The number of processes and process time increase, resulting in high costs. Further, the necessity of forming two electrodes on the same surface increases the necessary chip area. In that respect, the cost was increased. Although GaN-based LEDs with sapphire substrates have a track record, they cannot overcome the above drawbacks.
[0009]
An ideal substrate that can solve such a problem is a GaN single crystal substrate. Since an epi layer such as GaN or GaInN is deposited, there is no crystal lattice mismatch problem with a GaN substrate. In addition, if n-type GaN can be made, an n-type electrode can be taken from the bottom surface of the chip. If the p-electrode and n-electrode can be distributed on the top and bottom, device manufacturing becomes easier, and wire bonding becomes easier in mounting on the package. The required chip area can be reduced.
[0010]
Above all, since GaN has cleavage, the wafer can be cut into chips by natural cleavage. However, the cleavage plane is in the direction of the side of the equilateral triangle and is not a cleavage plane on the rectangle. Therefore, it is impossible to cut out a rectangular chip only by cleavage. This is a disadvantage, unlike Si semiconductors and GaAs semiconductors. However, some chips can be separated by cleavage. Therefore, the cutting process by dicing is reduced. In addition, the mirror surface of the resonator, which is essential for a semiconductor laser (LD), can be produced by cleavage. If a flat and smooth mirror surface can be obtained by cleavage, a GaInN-based blue LD should be able to be made more easily.
[0011]
However, high quality and large area GaN single crystals could not be grown for a long time. Since a GaN substrate is not available, it was impossible to fabricate GaInN-based LEDs and LDs on the GaN substrate. Therefore, practical LEDs and LDs on a GaN substrate could not be produced.
[0012]
Since the vapor pressure of nitrogen is high, a GaN crystal cannot be formed by a normal pulling method in which a seed crystal is attached to a crucible containing a GaN melt and then pulled up. A GaN single crystal can be synthesized by applying ultra-high pressure, but only small ones can be produced. It is impossible to grow GaN crystals of very practical size. In addition, a GaN single crystal cannot be formed even by a boat method in which a polycrystal is placed in a boat enclosed in a quartz tube, heated and melted, and solidified from the end. Other crystal growth techniques could not produce a large GaN substrate.
[0013]
However, in recent years, a method of growing a GaN single crystal by a vapor deposition method has been proposed and various improvements have been made. Since there is no large GaN substrate, a substrate of a different material is used. A single crystal layer of GaN is deposited on the substrate by vapor phase synthesis similar to thin film growth. The vapor phase growth method is originally a method for growing a thin film, but a thick crystal layer can be obtained by maintaining the growth over time. When a thick GaN crystal is grown, the substrate can be removed by etching or polishing to form a single substrate of GaN. Of course, it is difficult to obtain a good quality GaN crystal simply by vapor phase synthesis. Several ideas are necessary.
[0014]
There are several different methods for gas phase synthesis. These are all methods developed to grow a thin layer of GaN on a sapphire substrate. Metalorganic vapor phase epitaxy (MOCVD) using organic metal (for example, trimethylgallium TMG) and ammonia as raw materials, HVPE (hydride vapor phase epitaxy) in which gallium alone is put into a boat and oxidized with HCl gas to GaCl, organic There are a MOC method (organic metal chloride vapor phase growth method) in which metal and HCl are reacted to form GaCl and react with ammonia, and a sublimation method in which a GaN polycrystal is heated and sublimated to be deposited on a substrate. It can be grown on a sapphire substrate and used to manufacture the aforementioned GaInN-based LED. Each has advantages and disadvantages.
[0015]
(1) Metalorganic vapor phase epitaxy (MOCVD method)
Of these, the MOCVD method is most frequently used. In a cold wall reactor, a source gas obtained by diluting TMG and ammonia with hydrogen is sprayed onto a heated sapphire substrate to immediately react on the substrate to synthesize GaN. This is because a large amount of gas is blown and only a part of the gas contributes to the formation of the GaN thin film, and the rest is wasted. Yield is low. The growth rate cannot be increased. Although it is good for forming a GaN thin layer that forms a part of the LED, it is not suitable for stacking a thick GaN crystal layer. In addition, carbon contained in the organic metal is mixed as an impurity, which may deteriorate the characteristics.
[0016]
(2) Organometallic chloride growth method (MOC method)
In the MOC method, TMG and HCl are reacted to form GaCl once in a hot wall type reactor, and this is reacted with ammonia near a heated substrate to form GaN. Since this method passes through GaCl, carbon contamination is less than that of the MOCVD method, but carbon contamination is still present, which may lead to a decrease in electron mobility.
[0017]
(3) Hydride vapor phase epitaxy (HVPE method)
The HVPE method uses Ga as a raw material. This will be described with reference to FIG. A heater 2 is installed around the hot wall reactor 1. Gas introduction pipes 3 and 4 for introducing two kinds of source gases are provided at the top of the reaction furnace 1. A Ga boat 5 is provided in the upper space inside the reactor 1. The Ga melt 6 is accommodated in the Ga boat 5 and heated by the heater 2. The gas inlet 3 above the reaction furnace 1 opens toward the Ga boat 5. This is H2Introduce + HCl gas. The other gas introduction pipe 4 opens below the Ga boat 5. This is H2+ NH3Introduce gas.
[0018]
A susceptor 7 is supported below the internal space of the reaction furnace 1 by a rotary shaft 8 so as to be rotatable up and down. A GaAs substrate is placed on the susceptor 7. Alternatively, if GaN can be produced starting from a GaAs substrate, the GaN substrate can be mounted on the susceptor 7. The susceptor 7 and the substrate 9 are heated by the heater 2. HCl (+ H2) When a gas is supplied from the gas introduction pipe 3 and sprayed onto the Ga melt 6, a gaseous intermediate product called GaCl is formed. This falls in the furnace and comes into contact with ammonia in the vicinity of the heated substrate. GaCl and NH on the substrate 93This reaction occurs to synthesize GaN. This method has an advantage that since the raw material does not contain carbon, carbon is not mixed into the GaN thin film and the electrical characteristics are not deteriorated.
[0019]
(4) Sublimation method
GaN cannot be melted unless high pressure is applied. Sublimation occurs when heated at low pressure. In this method, a GaN polycrystal is heated and sublimated to be transported in a space and deposited on a lower temperature substrate.
[0020]
Further, an improvement of a method for growing a GaN thin film on a sapphire substrate has been proposed. One of the powerful improvements is described.
[0021]
[Lateral Overgrowth Method]
(1) Akira Sakurai “Growth of thick GaN crystals by hydride VPE”, IEICE Transactions vol. J81-C-II, no. 1, p58-64 (January 1998),
[0022]
There is a detailed explanation of GaN growth by the lateral overgrowth method. A mask having a striped (or striped) window is formed on the sapphire substrate, and GaN is grown thereon. Separate crystal grains grow out of the window, cross over the window and coalesce on the mask outside the window. This reduces the defect density. This is a device for reducing the defect density when a GaN film is formed on a sapphire substrate.
[0023]
The present inventor has been improving the method for producing a GaN crystal substrate using the HVPE method among the vapor phase synthesis methods. Since a GaN substrate is to be made, a dissimilar material is used as the substrate, but if sapphire is used as a substrate, it is impossible to remove only sapphire. It is both chemically and physically robust, and only sapphire cannot be removed by polishing or etching.
[0024]
On the other hand, there is a method of using GaAs as a substrate. On a GaAs substrate with three-fold symmetry, Ga metal and hydrogen gas diluted HCl, hydrogen gas diluted NH3GaN is grown using as a raw material. Naturally, it grows in the c-axis direction and the growth plane is the C plane. As it is, dislocations grow linearly. The dislocation grows forever without disappearing.
[0025]
In view of this, the present inventor has devised a method in which a GaN layer is directly grown on a GaAs substrate or a mask having a number of regularly arranged holes is placed on the GaAs substrate to continue the growth of GaN through the mask holes. In this method, a lateral overgrowth method is applied to GaN growth on a GaAs substrate, not a sapphire substrate. For example, by the applicant
[0026]
(2) Japanese Patent Application No. 10-183446
[0027]
There are explanations. In this method, the GaAs (111) surface is used as a substrate, the substrate is covered with a mask having dots and stripe windows, and a GaN film is vapor-grown thereon. Since the crystal nuclei grow independently from the isolated window and coalesce on the mask, the number of defects can be reduced. A crystal with few defects can be grown by breaking the dislocation stretching.
[0028]
By such a method, a GaN layer is vapor-phase grown on a GaAs (111) surface having a three-fold symmetry, and the GaAs substrate is etched (aqua regia) and removed by polishing to produce a free-standing film made only of GaN. It becomes possible. The surface of the GaN crystal thus formed has a C plane (0001). That is, it is a (0001) plane GaN crystal.
[0029]
Further, in (2), a GaN free-standing single crystal substrate having a diameter of 20 mm or more and a thickness of 0.07 mm or more produced by such a manufacturing method is proposed. This is also a GaN (0001) crystal having a C plane. Furthermore, it depends on the invention of the present inventor
[0030]
(3) Japanese Patent Application No. 10-171276
[0031]
In addition, a GaN free-standing single crystal substrate manufactured by such a manufacturing method is proposed. This is also a (0001) plane GaN crystal. In these inventions, GaN is thickly vapor-grown on a GaAs substrate, so that warpage is inevitably generated, and what should be done to reduce warpage? That is a problem. In addition, the growth surface (C surface) may be a flat surface or a rough rough surface, and the conditions are required. The conductivity type is hardly a problem.
[0032]
▲ 4 ▼ Kensaku Motoki, Takuji Okahisa, Naoki Matsumoto, Masato Matsushima, Hiroya Kimura, Hitoshi Kasai, Kikurou Takemoto, Koji Uematsu, Tetsuya Hirano, Masahiro Nakayama, Seiji Nakahata, Masaki Ueno, Daijirou Hara, Yoshinao Kumagai, Akinori Koukitu and Hisashi Seki , "Preparation of Large Freestanding GaN Substrates by Hydride Vapor Phase Epitaxy Using GaAs as a Starting Substrate", Jpn. J. Appl. Phys. Vol. 40 (2001) pp.L140-143
[0033]
Manufactures a GaN single crystal free-standing film by a lateral overgrowth method using a GaAs (111) crystal as a substrate. This is also a (0001) GaN crystal. A crystal having a thickness of 500 μm and a diameter of 2 inches. It is said that it was an n-type conductivity type. Dislocation density is 2 × 105cm-2And the carrier concentration is n = 5 × 1018cm-3And mobility is 170cm2/ Vs, resistivity is 8.5 × 10-3It explains that it is Ωcm. The n-type dopant is not described.
[0034]
(5) Japanese Patent Application No. 11-144151
[0035]
Has become the present inventor, but has found for the first time that oxygen is effective as an n-type dopant. An n-type GaN free-standing film using oxygen as an n-type dopant is proposed. It has also been discovered that oxygen has a high activation rate in GaN and is close to 1. Since carbon (C) is also an n-type impurity in GaN, it is said that it is necessary to eliminate carbon as much as possible. Therefore, the MOCVD method which is currently mainstream is not preferable. He claims that the HVPE method is good.
[0036]
Since GaN is a hexagonal symmetry crystal having three-fold symmetry, the crystal plane is different from the cubic symmetry such as GaAs (zincblende). The hexagonal crystal notation is briefly described. There are a method of expressing with three parameters and a method of using four parameters. Here, an expression using four parameters is used. The first three main axes are the a-axis, b-axis, and d-axis. These main axes lie on one plane and form a central angle of 120 degrees. Moreover, a = b = d.
[0037]
All of a, b, and d have orthogonal axes. This is called the c-axis. The c-axis is unique to the a-axis, b-axis, and d-axis. There are many parallel crystal planes. The section where the first crystal plane cuts the a-axis, b-axis, d-axis and c-axis from the origin is a / h, b / k, d / m, c / n away from the origin. Suppose there is. If the positive part of these axes cannot be cut, consider the intersections of -a, -b, and -d which are extended in the opposite direction. h, k, m, and n are always integers. We promise to write the face index in that case as (hkmn).
[0038]
The exponents for the three principal axes a, b, d have a geometrical constraint h + k + m = 0. The index n at the intersection with the c-axis is free. The expression of the face index is a practice that does not include a comma, so the expression in which four positive and negative integers are enclosed in parentheses is the notation. It is a rule of mineralogy to express negative numbers by overlining the numbers. Since this is not possible, a minus sign is added in front here.
[0039]
What is represented by (hkmn) is an individual plane representation. What is represented by {hkmn} is a comprehensive plane representation. It is a comprehensive expression that encompasses all plane orientations that can be transformed by the symmetry operation of the crystal.
[0040]
Apart from the plane orientation, there is an expression indicating the line direction. The individual direction is expressed by [hkmn]. This means a direction orthogonal to the individual plane orientation (hkmn). The inclusive direction display is <hkmn>. This is the set of all the individual orientations that can be reached from the individual orientation (hkmn) by the symmetry operations that the crystal allows.
[0041]
The C surface is the most representative surface. It can be said that all the GaN produced by the conventional crystal growth is C-plane growth. When using different types of single crystal substrates such as sapphire and GaAs, the surface to be grown on is limited to the C-plane because there is no choice but to use a three-fold symmetry plane. There are two important aspects other than the C-plane (0001).
[0042]
One is the {1-100} plane. This is a cleavage plane. A plane perpendicular to the C plane, which is a set of six individual planes. All of (1-100), (10-10), (01-10), (-1100), (-1010), and (0-110) are referred to as the M plane. The cleavage planes form an angle of 60 degrees with each other and are not orthogonal.
[0043]
Another important surface is the {11-20} surface. This is also known as the A side. Side A is not a cleavage plane. Surface A is also a generic name for six individual surfaces. All of (11-20), (1-210), (-2110), (2-1-10), (-12-10), and (-1-120) are referred to as the A plane.
[0044]
The C plane is uniquely determined, but the A plane and the M plane are in three different directions. A certain A surface and a certain M surface are orthogonal. Therefore, the A plane, the M plane, and the C plane can form a set of orthogonal planes. The inventor's
[0045]
(6) Japanese Patent Application No. 10-147049 proposes a GaN device having a cleavage plane (M-plane) as a side. This is also a GaN crystal with the C plane as the surface. They are listed here because they are inventions that cleave. Various ideas for reducing threading dislocations have been proposed. The inventor's
[0046]
(7) In Japanese Patent Application No. 11-273882, the C-plane is not mirror-grown, but it is grown in the c-axis direction while retaining facets other than the C-plane, so that the dislocations are reduced by sweeping dislocations to the facets. . This is said to maintain the facet plane, but on average it is C-plane growth. Furthermore, the inventor's
[0047]
(8) Japanese Patent Application No. 2000-207783 has found the property that threading dislocations in GaN extend perpendicular to the plane. In the case of C-plane growth, threading dislocations extend in the c-axis direction. Therefore, the present invention is an elaborate method in which C-plane grown GaN is cut out in the A-plane direction, and A-plane growth or C-plane grown GaN is cut out in the M-plane direction, and M-plane growth is performed thereon. suggest. After that, it is a clever invention to cut out on the C plane to obtain a low dislocation GaN crystal.
[0048]
For the first time, it is proposed that only the conventional techniques (7) and (8) are allowed to grow on a plane other than the C plane. It was introduced here because it is the first invention that focuses on the plane orientation, although the purpose is different.
[0049]
[Problems to be solved by the invention]
The GaN vapor phase growth method on the sapphire substrate is grown with the C-plane as the upper surface without exception. Sapphire substrate (α-Al2O3When the GaN is grown on the three-fold symmetry plane, the C-plane has a six-fold symmetry and becomes a mirror surface and is most easily grown. Therefore, GaInN-LEDs and GaInN-based LDs on sapphire substrates that are currently manufactured and used are stacks of C-plane GaN layers and GaInN layers.
[0050]
The same applies to the case where GaAs is used as the substrate, and when GaN is grown on the three-fold symmetry plane (111) of GaAs, the C plane is grown to be the surface.
The inventor wants to use oxygen (O) as the n-type dopant of GaN. The present inventor recently discovered that when trying to dope oxygen, it does not readily enter the growth surface (C surface).
[0051]
This is not a straightforward phenomenon. So until recently nobody noticed. The present inventor analyzed the composition of the surface of the GaN sample grown on the C-plane by SIMS (Secondary Ion Mass Spectroscopy). This is a method for obtaining the abundance ratio of substances existing on the sample surface by accelerating ions (primary ions) and counting the number of secondary ions hit from the sample by the sample. At the beginning, the resolution was not sufficient and the ion beam was quite wide, so secondary ions were emitted from a wide range. Therefore, since secondary oxygen ions were also emitted from the sample surface, it appeared as if the C surface was also doped with oxygen.
[0052]
However, it has been found surprising to increase the SIMS resolution by narrowing the beam. When the roughened C-plane is viewed in detail, there are many irregularities (facets) in addition to the C-plane portion, and the C-plane may grow while holding the inclined surface. Secondary ions are emitted from both the C-plane and the uneven portion. When oxygen secondary ions were measured by distinguishing between the C surface and the concavo-convex portion (facet), it was found that almost no oxygen came from the C surface. In terms of conversion, the oxygen concentration other than the C plane is 5 × 10.18cm-3Even at this time, the oxygen concentration at the C-plane on the same crystal surface is 1 × 1017cm-3Was found to be less than. In other words, there is a 50-fold difference in the ability to take up oxygen. The oxygen secondary ions are not emitted from the C-plane, but are actually emitted from the facets.
[0053]
Moreover, when the growth conditions were changed and a sample having a C-plane with a full mirror surface was prepared and analyzed by SIMS from the surface, oxygen was still 1 × 1017cm-3And the concentration was low.
[0054]
This means that the C plane is hardly doped with oxygen. The reason why oxygen naturally enters the C plane while oxygen does not enter is because there is a facet plane other than the C plane. That's the first time I understand that.
[0055]
Since the single crystal is growing, the crystal orientation is the same in every part in the plane. The facet portion also has a structure in which the upper side is the c-axis. Therefore, it grows in the c-axis direction. That is the case, but the surface exposed on the surface is not the C surface. Whether or not oxygen contained in the source gas is taken into the crystal depends on the microscopic structure of the surface itself during crystal growth, not on the internal crystal structure of the portion. If the surface is inclined and a surface other than the C surface, such as the M surface or the A surface, is exposed, oxygen is taken in by the unique oxygen adsorption ability of the surface.
[0056]
In many cases, facets in GaN growth are continuous along the average growth direction. Facets do not frequently disappear and reoccur. For example, when the crystal grows in the c-axis direction, the facet plane is maintained and GaN grows in the c-axis direction in the vertical direction. Therefore, when the oxygen concentration is measured in the c-axis direction in the crystal depth direction by combining SIMS and etching, the oxygen concentration distribution shows the same variation at almost any depth. Therefore, oxygen is doped also in the C-plane growth because there are microscopic facet planes other than the C-plane.
[0057]
Such a thing is not yet known to experts in the field. The reason for the oxygen-doped GaN becoming n-type is first clarified by (5). Oxygen will replace the nitrogen site and become an n-type impurity. However, the use of oxygen as an n-type dopant in GaN is not yet mainstream. It is only claimed by the inventor. Silicon (Si) is the mainstream n-type dopant in GaN. It is believed that Si replaces the gallium (Ga) site and becomes n-type. At present, the idea of using oxygen as an n-type dopant is not found by anyone other than the present inventors. In addition, it is not yet known that oxygen doping has a plane orientation dependency. Since GaN is grown from a heterogeneous material having a three-fold symmetry, only the growth with the C plane as the surface is always performed. However, from the above experiment, almost no oxygen enters the C plane. Therefore, oxygen cannot be doped at a desired concentration if it adheres to C-plane mirror growth. This means that an n-type GaN substrate having a desired resistivity cannot be produced. Based on such a new discovery, the present invention proposes a GaN crystal growth method capable of efficiently doping oxygen.
[0058]
[Means for Solving the Problems]
As a result of repeated detailed studies such as growing by changing the growth surface, it was found that the amount of oxygen uptake depends on the plane orientation. It was the result of the inventor's experiment that the amount of oxygen doping was found to be dependent on the plane orientation. It was also found that oxygen does not enter any plane orientation, although it does not enter the C plane. There is a surface where oxygen can easily enter (dope) other than the C surface. It has been found that there are two types of plane orientation that are easy to dope oxygen.
[0059]
It has the following plane orientation.
(1) {kk-2kh} (k and h are integers)
In particular, it has been found that the {11-20} plane shows a significant effect. Even in the {11-22} plane, the oxygen uptake efficiency is high. It seems that the oxygen uptake efficiency tends to decrease as the surface index increases.
[0060]
(2) {k−k0h} (k and h are integers)
In particular, the {1-100} plane shows a remarkable effect. Even in the {1-101} plane, the oxygen uptake efficiency is large. This plane orientation also tends to decrease the oxygen uptake efficiency as the plane index increases.
[0061]
In other words, the surface {hkmn} has an intrinsic oxygen doping ability, which can be expressed by a function OD {hkmn}.
[0062]
Although the details of OD {hkmn} are still unknown, it can be said that OD {hkmn}> OD {0001} for the surface {hkmn} other than the C-plane. In other words, the C plane is the most difficult plane for oxygen doping.
[0063]
For the A plane {11-20}, OD {11-20}> 50OD {0001}. The A plane is 50 times more oxygen-doped than the C plane.
[0064]
For the M-plane {1-100}, OD {1-100}> 50OD {0001}. The M plane is 50 times more oxygen-doped than the C plane.
[0065]
In order to perform oxygen doping, it is possible to efficiently perform doping by crystal growth so that the upper surface has a surface other than the C-plane. To dope by this method, oxygen doping is performed in a region where the history of crystal growth is a plane other than the C plane in the bulk crystal.
[0066]
The entire surface does not necessarily have to be a crystal plane (other than the C plane). It may only exist partially in the form of a faceted surface. Of course, when a C-plane growth portion exists widely, the oxygen uptake efficiency in that portion is reduced.
[0067]
The inventors have just discovered the phenomenon of the dependence of oxygen uptake on the plane orientation. The details of the mechanism are still unknown. It is considered that the way in which impurities are incorporated changes because the bonding method of specific elements due to the difference in the state of the bonding hands of atoms appearing on the surface of the crystal plane is different.
[0068]
In particular, when the GaN (0001) Ga surface is a growth surface, it is presumed that a mechanism that makes it difficult for oxygen to enter the nitrogen site where n-type carriers are to enter. Naturally, these phenomena are universal phenomena that can be seen when any base substrate or seed crystal such as sapphire, SiC, or GaN is used.
[0069]
DETAILED DESCRIPTION OF THE INVENTION
For oxygen doping, it is most effective to include water in the source gas during crystal growth. In the case of HVPE, ammonia (NH3), Water is added to hydrogen chloride gas (HCl). Originally NH3HCl often contains water as an impurity, and may be oxygen-doped by the water originally contained without adding water to the source gas. However, in order to perform oxygen doping stably, it is desirable to add a small amount of water quantitatively to the source gas.
[0070]
According to the idea of the present invention, there are two methods for efficiently performing oxygen doping. One is to grow in a direction other than the C axis (non-C axis growth), and the other is to perform facet growth in the C axis direction. That is, non-C axis growth and facet C axis growth.
[0071]
(A) [Non-C-axis growth] Using a seed crystal having a surface other than the C-plane {hkmn} on the surface (upper surface), the crystal is grown on a surface other than the C-plane, and a single crystal ingot extending in the plane orientation is produced. how to.
According to the method A, when crystal growth is performed while maintaining the crystal plane {hkmn} of the seed crystal as it is, oxygen doping is efficiently performed on the entire surface.
[0072]
For example, efficient oxygen doping is performed when the entire surface of the seed crystal is a {1-100} plane (M plane) or generally a {k-k0h} plane (k and h are integers).
[0073]
The same applies to the {11-20} (A plane) or generally the {kk-2kh} plane (k and h are integers). The oxygen doping efficiency in this case is simply
[0074]
OD = OD {hkmn}
[0075]
Is symbolically expressed by Although this method is simple in principle, it has several problems to implement. A GaN single crystal having a surface other than the C-plane does not exist in nature, and cannot be produced from a heterogeneous substrate by vapor phase growth. The GaN and GaInN thin films grown on the three-fold symmetry plane of sapphire currently used for LEDs and LDs are C-plane crystals. As described above, when grown on a sapphire substrate, the sapphire cannot be removed and a single GaN crystal cannot be obtained.
[0076]
When vapor phase growth is performed on a GaAs (111) plane, a GaN crystal having a C plane grows. Since the GaAs substrate can be removed with aqua regia, a single crystal of GaN can be obtained. However, the crystal also has a C-plane surface. A thick GaN crystal is formed, for example, cut in the A plane direction to form a single crystal having the A plane on the surface, and this is used as a seed crystal. Thus, a pre-process of making a seed crystal having a plane other than the C plane is necessary.
[0077]
(B) [Faceted C-axis growth] A method of growing a crystal having a C-plane as an upper surface, but having a facet plane other than the C-plane when viewed microscopically.
[0078]
Even if the average crystal plane of the seed crystal surface is the C plane, the method of B can obtain the effect of doping oxygen through the facet plane when grown with a facet plane other than the C plane microscopically.
[0079]
Specific facet planes include {k-k0h} planes (k, h are integers) such as {1-101} planes. These are surfaces in which the M plane is inclined. Since the M plane itself is perpendicular to the C plane, it is not a facet plane.
[0080]
Alternatively, there are {kk-2kh} planes such as {11-22} planes. These are surfaces in which the A surface is inclined. Since the A plane itself is perpendicular to the C plane, it is not a facet plane in the C plane growth. This is the case when a single facet plane is included in the C plane.
[0081]
Even if single, a GaN crystal has 6-fold symmetry around the c-axis, so these planes are a set of 6 individual planes. Even with a single surface, hexagonal pyramidal holes (pits) and hexagonal pyramidal projections can be formed on the C surface. Although not all surfaces may appear, a pyramidal hole, a protrusion, or a pentagonal hole or protrusion having an irregular shape is formed.
[0082]
This is a case where a single facet plane is included, but oxygen doping can be made effective by performing C-plane growth including a plurality of facet planes. For example, oxygen doping can be performed by crystal growth including a plurality of facet planes composed of {kk-2kh} planes and {k-k0h} planes. For example, a regular 12-pyramid can be formed with six {11-21} planes and six {1-101} planes. Such a hole or protrusion can be formed by a combination of two surfaces. If three or more surfaces are gathered, a more complex shaped pyramid hole or protrusion can be created.
[0083]
A pit-shaped facet surface having an inverted hexagonal pyramid (hexagonal pyramid hole) shape or an inverted dodecagonal pyramid (12th pyramidal hole) shape composed of a set of {kk-2kh} planes, {k−k0h} planes (k and h are integers). When the C-plane growth is performed while holding, oxygen can be doped in the pit-like facet plane. This method is complex. When the existence probability in the C plane of the {hkmn} plane is written as ρ {hkmn}, the oxygen doping efficiency is
[0084]
OD = Σρ {hkmn} OD {hkmn}
It can be expressed symbolically.
[0085]
As the growth method of GaN, all the HVPE method, MOC method, MOCVD method, sublimation method and the like that are effective as conventional growth methods on a sapphire substrate can be used.
[0086]
【Example】
[Example 1 (crystal growth with M-plane (1-100) as the upper surface; FIG. 2)]
A GaN seed crystal whose surface cut out from a GaN single crystal ingot was M-plane (1-100) was prepared (FIG. 2A). A GaN single crystal is obtained by growing GaN on the C surface of a GaAs substrate by a lateral overgrowth method and dissolving and removing the GaAs substrate with aqua regia. Since it is an M plane, it is cut by one plane parallel to the crystal growth direction.
[0087]
This M-plane seed crystal is surface-polished, and the work-affected layer is removed on the surface so that there is no presence.
[0088]
On this seed crystal, a GaN crystal was grown by the HVPE method (FIG. 2B). The growth conditions are as follows. NH, which is a nitrogen source gas3As for, a raw material gas containing about 2 ppm of water was used. Water is included as an oxygen source.
[0089]
・ Growth temperature 1020 ℃
・ NH3Partial pressure 0.2atm (2 × 104Pa)
・ HCl partial pressure 1 × 10-2atm (103Pa)
Growth time 6 hours
[0090]
The grown film thickness was about 500 μm. Thereafter, the seed crystal portion of the base was removed by grinding (FIG. 2C). Further, the surface was polished (FIG. 2 (d)). The thickness of the crystal layer formed only in the growth part excluding the seed crystal was about 400 μm.
[0091]
When the electrical characteristics of this sample are determined by Hall measurement, the average of the four points is
・ Carrier concentration = 6 × 1018cm-3
Carrier mobility = 160 Vs / cm2
And almost uniform within the crystal.
[0092]
Further, SIMS (Secondary Ion Mass Spectroscopy) analysis near the surface of the same sample was performed. As a result of the measurement, the following was found.
[0093]
Hydrogen (H) 2 × 1017cm-3
Carbon (C) 3 × 1016cm-3
Oxygen (O) 8 × 1018cm-3
Silicon (Si) 3 × 1017cm-3
[0094]
Carrier concentration is 6 × 1018cm-3And the oxygen concentration is 8 × 1018cm-3It is. Carbon that can become an n-type impurity in GaN (1016cm-3), Silicon (1017cm-3Is the carrier concentration (1018cm-3The order is good but much lower. This means that these carriers (electrons) are derived from oxygen. Oxygen works as an n-type impurity, suggesting that its activation rate is quite high.
[0095]
When the resistivity was measured, 7 × 10-3It has a fairly high conductivity at about Ωcm. It can be used as an n-type conductive GaN substrate. That is, it is not necessary to take the n electrode on the top surface like sapphire, and it is possible to take the n electrode from the bottom surface of the n-type GaN substrate.
The sample manufactured according to this example is a single GaN substrate having a flat surface and a thickness of 400 μm. On the GaN substrate, the device can be fabricated by epitaxial growth thereafter.
[0096]
[Comparative Example 1 (Crystal Growth with C-plane (0001) as Top Surface; FIG. 3)]
A GaN seed crystal having a C-plane (0001) surface cut out from a GaN single crystal ingot was prepared (FIG. 3A). The polarity of the surface is the Ga plane. This C-plane seed crystal is surface-polished, and there is no work-affected layer on the surface.
[0097]
GaN was grown on the seed crystal by the HVPE method. The growth conditions are as follows. NH which is a raw material gas of nitrogen as in Example 13As for, a raw material gas containing about 2 ppm of water was used.
[0098]
・ Growth temperature 1050 ℃
・ NH3Partial pressure 0.15 atm (1.5 × 104Pa)
・ HCl partial pressure 5 × 10-3atm (5 × 102Pa)
Growth time 10 hours
[0099]
The grown film thickness was about 500 μm (FIG. 3B). The surface was a flat mirror surface consisting of (0001) plane. It can be seen that the surface after growth also maintains the C-plane. Thereafter, the seed crystal part of the base was removed by grinding (FIG. 3C). The thickness of the crystal layer polished on the surface and excluding the seed crystal to form only the growth portion was about 400 μm (FIG. 3D).
[0100]
An attempt was made to determine the electrical characteristics of this sample by Hall measurement, but measurement was impossible. The reason is that the GaN crystal is a high-resistance film, and its electrical conductivity is extremely low, so that it cannot be measured with the currently owned measuring instrument. Measurement was impossible at any point on the substrate surface. In other words, there are few electrons that can move freely, the carrier concentration is too low, and a sufficient current does not flow to measure.
[0101]
Further, SIMS (Secondary Ion Mass Spectroscopy) analysis near the surface of the sample was performed. As a result of the measurement, the following was found.
[0102]
Hydrogen (H) 1 × 1018cm-3
Carbon (C) 7 × 1016cm-3
Oxygen (O) 1 × 1017cm-3
Silicon (Si) 2 × 1016cm-3Less than
[0103]
Thus, the oxygen concentration is much lower than in Example 1. It turns out that it has fallen to about 1/100 grade. This is due only to the difference in plane orientation (C plane and M plane). In other words, oxygen uptake has a significant plane orientation dependency. Also about Si, it is reducing to about 1/10, and also plane orientation dependence is seen also about Si. Rather, carbon and hydrogen seem to enter more into the crystal by C-plane growth. However, there is little dependency. It is oxygen that shows the most remarkable orientation dependence.
[0104]
In this comparative example, since the amount of oxygen incorporated as an n-type impurity is small, it is considered that n-type carriers (electrons) are not emitted and become an insulator. Such a high-resistance substrate cannot be used as a conductive substrate for a GaN device because the n-electrode cannot be taken out from the bottom surface.
[0105]
Example 2 (Crystal Growth Maintaining Pit Faceted Surface with C-plane (0001) as Upper Surface; FIG. 4)]
A GaN seed crystal having a C-plane (0001) surface cut out from a GaN single crystal ingot was prepared (FIG. 4A). The polarity of this surface is the Ga plane. This C-plane seed crystal is surface-polished, and the work-affected layer on the surface is removed and does not exist at all.
[0106]
On this seed crystal, GaN was grown by the HVPE method. The growth conditions are as follows. NH, the raw material gas for nitrogen3As for, a raw material gas containing about 2 ppm of water was used.
[0107]
・ Growth temperature 1030 ℃
・ NH3Partial pressure 0.2atm (2 × 104Pa)
・ HCl partial pressure 1 × 10-2atm (103Pa)
・ Growth time 5 hours
[0108]
The grown film thickness was about 500 μm (4 (b)). The surface state was not a flat C-plane mirror surface as in Comparative Example 1. The surface of the crystal after growth has a number of facet planes composed of small faces other than the C-plane. The facet surface shines brightly with reflections. In particular, a pit-like form composed of facets having an inverted hexagonal pyramid shape and an inverted dodecagonal pyramid shape is observed. In other words, it is a collection of pyramid pits. These weight surfaces are facet surfaces. In this sample, the C-plane is hardly seen.
[0109]
Various surface orientations are mixed. Most of them are {1-101} plane, {11-22} plane, {1-102} plane, and {11-24} plane. These can be collectively expressed as {k−k0h} (k and h are integers) and {kk−2kh} plane (k and h are integers).
[0110]
Thereafter, the seed crystal portion of the base was removed by grinding (FIG. 4C). The thickness of the crystal layer formed only in the growth part excluding the seed crystal was about 400 μm. The surface of this substrate is not flat because of the facet surface. Therefore, both sides were polished to form a substrate having a thickness of 350 μm (FIG. 4D).
[0111]
When the electrical characteristics of this sample are determined by Hall measurement, the average of the four points is
・ Carrier concentration = 5 × 1018cm-3
Carrier mobility = 170 Vs / cm2
[0112]
And almost uniform within the crystal.
Further, SIMS (Secondary Ion Mass Spectroscopy) analysis near the surface of the same sample was performed. As a result of the measurement, the following was found.
[0113]
Hydrogen (H) 2 × 1017cm-3
Carbon (C) 3 × 1016cm-3
Oxygen (O) 5 × 1018cm-3
Silicon (Si) 4 × 1016cm-3 Less than
[0114]
Carrier concentration is 5 × 1018cm-3And the oxygen concentration is 5 × 1018cm-3It is. Carbon that can become an n-type impurity in GaN (1016cm-3), Silicon (1016cm-3Is the carrier concentration (1018cm-3Order is good but much lower. This means that these carriers (electrons) are derived from oxygen. The fact that the oxygen concentration and the carrier concentration are comparable suggests that oxygen works as an n-type impurity and its activation rate is quite high.
[0115]
When the resistivity was measured, 6 × 10-3It has a fairly high conductivity at about Ωcm. It can be used as an n-type conductive GaN substrate. That is, it is not necessary to take the n electrode on the top surface like sapphire, and it is possible to take the n electrode from the bottom surface of the n-type GaN substrate. This example means that, even when growing in the c-axis direction, while maintaining a facet other than the C-plane, oxygen enters from the facet and a low-resistance n-type GaN crystal can be manufactured.
The sample piece according to this example was a single n-type GaN substrate having a flat surface and a thickness of 350 μm. After that, epitaxial growth was further performed on the surface of the GaN substrate, and the device could be manufactured.
[0116]
【The invention's effect】
Oxygen doping was almost impossible in the GaN C-plane mirror growth performed so far. According to the present invention, GaN is grown while exposing a surface other than the C-plane by growing the surface other than the C-plane to be the upper surface or by growing the C-plane while maintaining the facet. According to the present invention, oxygen can be effectively taken into the GaN crystal. By determining the plane orientation, the amount of oxygen doping can be accurately controlled. Oxygen can function effectively as an n-type dopant. It is a very efficient oxygen doping method.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an apparatus for growing a GaN crystal by an HVPE method.
FIG. 2 is a cross-sectional view of a GaN crystal showing a process of Example 1 in which a GaN layer is grown on a GaN seed crystal having an M plane (1-100) by vapor deposition. (A) is a GaN seed crystal sectional view having an M plane (1-100), and (b) is a GaN crystal sectional view in a state in which a (1-100) crystal is grown on the GaN seed crystal. (C) is a GaN crystal cross-sectional view of only the growth part from which the seed crystal has been removed. (D) is a cross-sectional view of an M-plane GaN crystal in a further polished state.
FIG. 3 is a cross-sectional view of a GaN crystal showing a process of Comparative Example 1 in which a GaN layer is grown on a GaN seed crystal having a C-plane (0001) by vapor deposition. (A) is a GaN seed crystal sectional view having a C plane (0001), (b) is a GaN crystal sectional view in a state in which a (0001) crystal is grown on the GaN seed crystal. (C) is a GaN crystal cross-sectional view of only the growth part from which the seed crystal has been removed. (D) is sectional drawing of the C surface GaN crystal of the state further polished.
FIG. 4 is a cross-sectional view of a GaN crystal showing a process of Example 2 in which a GaN layer is grown by vapor phase growth while maintaining a facet plane on a GaN seed crystal having a C plane (0001). (A) GaN seed crystal cross section with C-plane (0001), (b) GaN crystal cross section with (0001) crystal having many facets grown on GaN seed crystal. (C) is a GaN crystal cross-sectional view of only the growth part from which the seed crystal has been removed. (D) is sectional drawing of the C surface GaN crystal of the state further polished.
[Explanation of symbols]
1 HVPE reactor
2 Heater
3 Raw material gas introduction pipe
4 Raw material gas introduction pipe
5 Ga reservoir (Ga boat)
6 Ga melt
7 Susceptor
8 Rotating shaft
9 Board
10 Gas outlet

Claims (16)

サファイヤ(0001)面基板、GaAs(111)基板、或いは(0001)GaN基板の上に、c軸方向に窒化ガリウムを結晶成長させる場合において、Si化合物を含まずガリウム原料と窒素原料とドーピングすべき酸素を含む原料ガスを供給しつつ、C面以外のファセット面を発生させファセット面を保ちつつ窒化ガリウム結晶をc軸方向に気相成長させることにより、当該ファセット面を通して結晶中に酸素ドーピングを行うことを特徴とする窒化ガリウム結晶への酸素ドーピング方法。 When gallium nitride is crystal-grown in the c-axis direction on a sapphire (0001) substrate, GaAs (111) substrate, or (0001) GaN substrate, it should be doped with gallium source and nitrogen source without containing Si compound While supplying a source gas containing oxygen, a facet surface other than the C-plane is generated, and a gallium nitride crystal is vapor-phase grown in the c-axis direction while maintaining the facet surface, whereby oxygen doping is performed in the crystal through the facet surface. A method for doping oxygen into a gallium nitride crystal. {kk−2kh}(k,hは整数)で表現されるファセット面を発生させ、{kk−2kh}ファセット面を保ちつつ窒化ガリウム結晶をc軸方向に気相成長させることにより、{kk−2kh}ファセット面を通して結晶中に酸素ドーピングを行うことを特徴とする請求項に記載の窒化ガリウム結晶への酸素ドーピング方法。{Kk-2kh} (k and h are integers) are generated, and a gallium nitride crystal is vapor-grown in the c-axis direction while maintaining the {kk-2kh} facet plane, thereby {kk− 2Kh} oxygen doping method to a gallium nitride crystal according to claim 1, characterized in that the oxygen doping during the crystal through facets. {11−22}面からなるファセット面を有して結晶成長させることにより、当該ファセット面より酸素ドーピングを行うことを特徴とする請求項に記載の窒化ガリウム結晶への酸素ドーピング方法。 3. The method of doping oxygen into a gallium nitride crystal according to claim 2 , wherein oxygen doping is performed from the facet plane by growing the crystal with a facet plane composed of a {11-22} plane. {k−k0h}(k,hは整数)で表現されるファセット面を発生させ、{k−k0h}ファセット面を保ちつつ窒化ガリウム結晶をc軸方向に気相成長させることにより、{k−k0h}ファセット面を通して結晶中に酸素ドーピングを行うことを特徴とする請求項に記載の窒化ガリウム結晶への酸素ドーピング方法。{K−k0h} (k and h are integers) are generated, and a gallium nitride crystal is vapor-phase grown in the c-axis direction while maintaining the {k−k0h} facet surface, whereby {k− k0h} oxygen doping method to a gallium nitride crystal according to claim 1, characterized in that the oxygen doping during the crystal through facets. {1−101}面からなるファセット面を有して結晶成長させることにより、当該ファセット面より酸素ドーピングを行うことを特徴とする請求項に記載の窒化ガリウム結晶への酸素ドーピング方法。5. The method of oxygen doping into a gallium nitride crystal according to claim 4 , wherein oxygen doping is performed from the facet plane by growing the crystal with a facet plane composed of a {1-101} plane. {kk−2kh}(k,hは整数)と{k−k0h}(k、hは整数)で表現される面方位の異なる2種類以上のファセット面を発生させ、{kk−2kh}と{k−k0h}のファセット面を保ちつつ窒化ガリウム結晶をc軸方向に気相成長させることにより、{kk−2kh}と{k−k0h}ファセット面を通して結晶中に酸素ドーピングを行うことを特徴とする請求項に記載の窒化ガリウム結晶への酸素ドーピング方法。{Kk-2kh} (k and h are integers) and {k−k0h} (k and h are integers) are generated, and two or more types of facet surfaces are generated, and {kk−2kh} and { The gallium nitride crystal is vapor-phase grown in the c-axis direction while maintaining the facet plane of k-k0h}, and oxygen doping is performed in the crystal through the {kk-2kh} and {k-k0h} facets. The method for doping oxygen into a gallium nitride crystal according to claim 1 . C面以外の面(非C面)をもつ窒化ガリウム単結晶基板の上に、Si化合物を含まずガリウム原料と窒素原料と酸素あるいは酸素化合物を含む原料ガスを供給しつつ、C面以外の一定方位の表面(非C面)を保ちつつ窒化ガリウム結晶を非C軸方向に気相成長させることにより、当該C面以外の非C面を通して結晶中に酸素ドーピングを行い、非C面窒化ガリウム基板を除去しあるいは除去しないでえられた酸素をn型不純物として含む非C面n型である酸素ドープされたn型窒化ガリウム単結晶基板。  On a gallium nitride single crystal substrate having a plane other than the C plane (non-C plane), while supplying a source gas containing a gallium source, a nitrogen source, oxygen, or an oxygen compound without containing a Si compound, a constant portion other than the C plane The gallium nitride crystal is vapor-phase grown in the non-C-axis direction while maintaining the azimuth surface (non-C plane), thereby performing oxygen doping in the crystal through the non-C plane other than the C plane, and a non-C plane gallium nitride substrate A non-C-plane n-type oxygen-doped n-type gallium nitride single crystal substrate containing oxygen obtained with or without removal as an n-type impurity. {kk−2kh}面(k,hは整数)をもつ窒化ガリウム単結晶基板の上に、{kk−2kh}面を保ちつつ窒化ガリウム結晶を成長させることにより、{kk−2kh}面を通して結晶中に酸素ドーピングを行うことによってえられたn型で{kk−2kh}面をもつことを特徴とする請求項に記載の酸素ドープされたn型窒化ガリウム単結晶結晶基板。By growing a gallium nitride crystal on a gallium nitride single crystal substrate having a {kk-2kh} plane (k and h are integers) while maintaining the {kk-2kh} plane, a crystal is obtained through the {kk-2kh} plane. 8. The oxygen-doped n-type gallium nitride single crystal substrate according to claim 7, which has an n-type {kk-2kh} plane obtained by oxygen doping therein. {k−k0h}面(k,hは整数)をもつ窒化ガリウム単結晶基板の上に、{k−k0h}面を保ちつつ窒化ガリウム結晶を成長させることにより、{k−k0h}面を通して結晶中に酸素ドーピングを行うことによって得られたn型で{k−k0h}面をもつことを特徴とする請求項に記載の酸素ドープされたn型窒化ガリウム単結晶基板。A gallium nitride crystal is grown on a gallium nitride single crystal substrate having a {k−k0h} plane (k and h are integers) while maintaining the {k−k0h} plane, whereby a crystal is obtained through the {k−k0h} plane. 8. The oxygen-doped n-type gallium nitride single crystal substrate according to claim 7, which has an n-type {k-k0h} plane obtained by oxygen doping therein. {11−20}面(A面)をもつ窒化ガリウム基板の上に、{11−20}面(A面)を保ちつつ窒化ガリウム結晶を成長させることにより、{11−20}面を通して結晶中に酸素ドーピングを行うことによって得られたn型で{11−20}面(A面)をもつことを特徴とする請求項に記載の酸素ドープされたn型窒化ガリウム単結晶基板。A gallium nitride crystal is grown on a gallium nitride substrate having a {11-20} plane (A plane) while maintaining the {11-20} plane (A plane), thereby allowing the crystal to pass through the {11-20} plane. 9. The oxygen-doped n-type gallium nitride single crystal substrate according to claim 8 , wherein the substrate has an n-type {11-20} plane (A plane) obtained by oxygen doping. {1−100}面(M面)をもつ窒化ガリウム単結晶基板の上に、{1−100}面(M面)を保ちつつ窒化ガリウム結晶を成長させることにより、{1−100}面を通して結晶中に酸素ドーピングを行うことによって得られたn型で{1−100}面(M面)を有することを特徴とする請求項に記載の酸素ドープされたn型窒化ガリウム単結晶基板。By growing a gallium nitride crystal on a gallium nitride single crystal substrate having a {1-100} plane (M plane) while maintaining the {1-100} plane (M plane), the {1-100} plane passes through 10. The oxygen-doped n-type gallium nitride single crystal substrate according to claim 9 , which has an n-type {1-100} plane (M-plane) obtained by oxygen doping in the crystal. 窒化ガリウム以外の材料の基板あるいはC面窒化ガリウム基板の上にガリウム原料と窒素原料と酸素又は酸素化合物を含みSi化合物を含まない原料ガスを供給しつつ、C面以外のファセット面を発生させ非C面ファセット面を保ちつつ窒化ガリウム結晶をc軸方向に気相成長させることにより、当該非C面ファセット面を通して結晶中に酸素ドーピングを行うことによってえられた結晶からファセット面を研磨によって除去し、窒化ガリウム以外の基板を用いた場合は基板を除去し、C面窒化ガリウム基板を用いた場合は基板を除去しあるいは基板を除去しないでえられる酸素をn型不純物として含むC面n型である酸素ドープされたn型窒化ガリウム単結晶基板。  While supplying a raw material gas containing a gallium source material, a nitrogen source material, oxygen or an oxygen compound and not containing an Si compound on a substrate made of a material other than gallium nitride or a C-plane gallium nitride substrate, a facet surface other than the C surface is generated and non-surfaced. By growing the gallium nitride crystal in the c-axis direction while maintaining the C-plane facet plane, the facet plane is removed by polishing from the crystal obtained by oxygen doping into the crystal through the non-C-plane facet plane. When a substrate other than gallium nitride is used, the substrate is removed. When a C-plane gallium nitride substrate is used, the substrate is removed or the C-plane n-type containing oxygen as an n-type impurity without removing the substrate is used. An oxygen-doped n-type gallium nitride single crystal substrate. {kk−2kh}(k,hは整数)で表現されるファセット面を発生させ、{kk−2kh}ファセット面を保ちつつ窒化ガリウム結晶をc軸方向に気相成長させることにより、{kk−2kh}ファセット面を通して結晶中に酸素ドーピングを行い{kk−2kh}ファセット面を研磨によって除去したことによってえられた酸素をn型不純物として含むC面n型である請求項12に記載の酸素ドープされたn型窒化ガリウム単結晶基板。{Kk-2kh} (k and h are integers) are generated, and a gallium nitride crystal is vapor-grown in the c-axis direction while maintaining the {kk-2kh} facet plane, thereby {kk− The oxygen doping according to claim 12 , which is a C-plane n-type containing oxygen as an n-type impurity obtained by performing oxygen doping into a crystal through a 2kh} facet surface and removing the {kk-2kh} facet surface by polishing. N-type gallium nitride single crystal substrate. {11−22}面からなるファセット面を有して結晶成長させることにより、当該{11−22}ファセット面より酸素ドーピングを行い{11−22}を研磨によって除去したことによって得られた酸素をn型不純物として含むC面n型であることを特徴とする請求項13に記載の酸素ドープされたn型窒化ガリウム単結晶基板。Oxygen obtained by performing oxygen doping from the {11-22} facet surface and removing {11-22} by polishing by growing a crystal having a facet surface consisting of {11-22} plane. The oxygen-doped n-type gallium nitride single crystal substrate according to claim 13 , which is a C-plane n-type containing n-type impurities. {k−k0h}(k,hは整数)で表現されるファセット面を発生させ、{k−k0h}ファセット面を保ちつつ窒化ガリウム結晶をc軸方向に気相成長させることにより、{k−k0h}ファセット面を通して結晶中に酸素ドーピングを行い{k−k0h}ファセット面を研磨によって除去したことによって得られた酸素をn型不純物として含むC面n型であることを特徴とする請求項12に記載の酸素ドープされたn型窒化ガリウム単結晶基板。{K−k0h} (k and h are integers) are generated, and a gallium nitride crystal is vapor-phase grown in the c-axis direction while maintaining the {k−k0h} facet surface, whereby {k− claim, characterized in that the oxygen obtained by the k0h} perform oxygen doping during the crystal through facets {k-k0h} facets were removed by polishing is a C-plane n-type comprising a n-type impurity 12 An oxygen-doped n-type gallium nitride single crystal substrate as described in 1. {1−101}面からなるファセット面を有して結晶成長させることにより、当該ファセット面より酸素ドーピングを行い{1−101}面を除去することによって得られた酸素をn型不純物として含むC面n型であることを特徴とする請求項15に記載の酸素ドープされたn型窒化ガリウム単結晶基板。C containing oxygen as an n-type impurity obtained by crystal growth with a facet plane consisting of {1-101} plane, oxygen doping from the facet plane and removal of the {1-101} plane The oxygen-doped n-type gallium nitride single crystal substrate according to claim 15 , wherein the substrate is n-plane.
JP2002103723A 2001-04-12 2002-04-05 Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate Expired - Fee Related JP3826825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002103723A JP3826825B2 (en) 2001-04-12 2002-04-05 Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-113872 2001-04-12
JP2001113872 2001-04-12
JP2002103723A JP3826825B2 (en) 2001-04-12 2002-04-05 Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006130914A Division JP4562000B2 (en) 2001-04-12 2006-05-10 Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate
JP2006137194A Division JP4562001B2 (en) 2001-04-12 2006-05-17 Gallium nitride single crystal substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002373864A JP2002373864A (en) 2002-12-26
JP3826825B2 true JP3826825B2 (en) 2006-09-27

Family

ID=26613492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002103723A Expired - Fee Related JP3826825B2 (en) 2001-04-12 2002-04-05 Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate

Country Status (1)

Country Link
JP (1) JP3826825B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2055811A2 (en) 2007-10-24 2009-05-06 Sumitomo Electric Industries, Ltd. Nitride semiconductor substrate and method of manufacturing the same and field-effect transistor
US8110484B1 (en) 2010-11-19 2012-02-07 Sumitomo Electric Industries, Ltd. Conductive nitride semiconductor substrate and method for producing the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952357B2 (en) * 2001-02-28 2007-08-01 信越半導体株式会社 Method for manufacturing light emitting device
WO2005006506A1 (en) 2003-07-10 2005-01-20 Nichia Corporation Nitride semiconductor laser element
CN100453712C (en) * 2003-08-28 2009-01-21 日立电线株式会社 III-V nitride semiconductor substrate and its production method
JP2005101475A (en) * 2003-08-28 2005-04-14 Hitachi Cable Ltd Iii-v group nitride semiconductor substrate and method for manufacturing the same
JP4359770B2 (en) * 2003-12-26 2009-11-04 日立電線株式会社 III-V nitride semiconductor substrate and production lot thereof
JP4420128B2 (en) * 2003-12-26 2010-02-24 日立電線株式会社 III-V nitride semiconductor device and method for manufacturing the same
EP1962340A3 (en) * 2004-11-09 2009-12-23 S.O.I. TEC Silicon Method for manufacturing compound material wafers
JP2006210660A (en) * 2005-01-28 2006-08-10 Hitachi Cable Ltd Manufacturing method of semiconductor substrate
EP1758171A4 (en) 2005-03-04 2009-04-29 Sumitomo Electric Industries Vertical gallium nitride semiconductor device and epitaxial substrate
JP4386031B2 (en) * 2005-12-26 2009-12-16 住友電気工業株式会社 Manufacturing method of semiconductor device and identification method of gallium nitride crystal substrate
JP2012134548A (en) * 2005-12-28 2012-07-12 Sumitomo Electric Ind Ltd Manufacturing method of group iii nitride crystal
JP5307975B2 (en) * 2006-04-21 2013-10-02 日立電線株式会社 Nitride-based semiconductor free-standing substrate and nitride-based semiconductor light-emitting device epitaxial substrate
JP4924225B2 (en) * 2007-06-13 2012-04-25 住友電気工業株式会社 GaN crystal growth method
JP2009167066A (en) 2008-01-18 2009-07-30 Sumitomo Electric Ind Ltd Method for growing gallium nitride crystal and method for producing gallium nitride substrate
JP5295871B2 (en) * 2008-07-03 2013-09-18 古河機械金属株式会社 Method for manufacturing group III nitride semiconductor substrate
JP4375497B1 (en) * 2009-03-11 2009-12-02 住友電気工業株式会社 Group III nitride semiconductor device, epitaxial substrate, and method of manufacturing group III nitride semiconductor device
JP5326787B2 (en) 2009-05-11 2013-10-30 住友電気工業株式会社 Group III nitride semiconductor laser diode and method for fabricating group III nitride semiconductor laser diode
JP2011042542A (en) * 2009-08-24 2011-03-03 Furukawa Co Ltd Method for producing group iii nitride substrate, and group iii nitride substrate
JP6031733B2 (en) 2010-09-27 2016-11-24 住友電気工業株式会社 GaN crystal manufacturing method
JP5879225B2 (en) * 2011-08-22 2016-03-08 住友化学株式会社 Nitride semiconductor template and light emitting diode
JP2013230971A (en) * 2013-05-22 2013-11-14 Hitachi Cable Ltd Group iii nitride semiconductor substrate for ld and group iii nitride semiconductor epitaxial substrate for ld using the same
WO2016136547A1 (en) * 2015-02-23 2016-09-01 三菱化学株式会社 C-plane gan substrate
WO2016136552A1 (en) 2015-02-23 2016-09-01 三菱化学株式会社 C-PLANE GaN SUBSTRATE
JP6485382B2 (en) * 2016-02-23 2019-03-20 株式会社デンソー Method of manufacturing compound semiconductor device and compound semiconductor device
JP6785455B2 (en) 2018-05-11 2020-11-18 パナソニックIpマネジメント株式会社 Light emitting diode element and manufacturing method of light emitting diode element
JP7312772B2 (en) * 2018-06-14 2023-07-21 ナノシス, インコーポレイテッド Epitaxial gallium nitride-based light-emitting diode and method of making same
JP7117732B2 (en) * 2018-07-11 2022-08-15 国立大学法人大阪大学 Group III nitride substrate and method for producing group III nitride crystal
JP2021012900A (en) * 2019-07-03 2021-02-04 パナソニックIpマネジメント株式会社 Group III nitride semiconductor laser device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3119200B2 (en) * 1997-06-09 2000-12-18 日本電気株式会社 Crystal growth method for nitride-based compound semiconductor and gallium nitride-based light emitting device
JP3408413B2 (en) * 1998-03-06 2003-05-19 松下電器産業株式会社 Semiconductor manufacturing method and semiconductor device
JP3788104B2 (en) * 1998-05-28 2006-06-21 住友電気工業株式会社 Gallium nitride single crystal substrate and manufacturing method thereof
JP2000299496A (en) * 1999-04-14 2000-10-24 Sharp Corp Manufacture of gallium nitride compound semiconductor layer and semiconductor device manufactured thereby
JP2002026464A (en) * 2000-07-13 2002-01-25 Sanyo Electric Co Ltd Nitride semiconductor element
JP3639789B2 (en) * 2001-01-31 2005-04-20 シャープ株式会社 Nitride semiconductor light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2055811A2 (en) 2007-10-24 2009-05-06 Sumitomo Electric Industries, Ltd. Nitride semiconductor substrate and method of manufacturing the same and field-effect transistor
US8110484B1 (en) 2010-11-19 2012-02-07 Sumitomo Electric Industries, Ltd. Conductive nitride semiconductor substrate and method for producing the same

Also Published As

Publication number Publication date
JP2002373864A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP5141985B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD, LIGHT EMITTING DEVICE, GaN SUBSTRATE MANUFACTURING METHOD, AND GaN SUBSTRATE
JP3826825B2 (en) Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate
JP3788104B2 (en) Gallium nitride single crystal substrate and manufacturing method thereof
JP3968968B2 (en) Manufacturing method of single crystal GaN substrate
JP3864870B2 (en) Single crystal gallium nitride substrate, growth method thereof, and manufacturing method thereof
US8310030B2 (en) III-nitride crystal substrate and III-nitride semiconductor device
JP2010132556A (en) n-TYPE GALLIUM NITRIDE SINGLE CRYSTAL SUBSTRATE
US9305776B2 (en) Oxygen-doped gallium nitride crystal substrate
KR20060043770A (en) Method of manufacturing single-crystal gan substrate, and single-crystal gan substrate
JP2007084435A (en) PROCESS OF PRODUCING SINGLE CRYSTAL GaN SUBSTRATE AND SINGLE CRYSTAL GaN SUBSTRATE
JP2006290697A (en) Nitride semiconductor substrate and its manufacturing method
JP4562000B2 (en) Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate
JP4562001B2 (en) Gallium nitride single crystal substrate and manufacturing method thereof
JP4573049B2 (en) Gallium nitride crystal, gallium nitride substrate and semiconductor laser device
JP2006193422A (en) Gallium nitride single crystal substrate and its manufacturing method
JP2010254576A (en) SINGLE CRYSTAL GaN SUBSTRATE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060302

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3826825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees