JP3826578B2 - Surface inspection device - Google Patents

Surface inspection device Download PDF

Info

Publication number
JP3826578B2
JP3826578B2 JP23873998A JP23873998A JP3826578B2 JP 3826578 B2 JP3826578 B2 JP 3826578B2 JP 23873998 A JP23873998 A JP 23873998A JP 23873998 A JP23873998 A JP 23873998A JP 3826578 B2 JP3826578 B2 JP 3826578B2
Authority
JP
Japan
Prior art keywords
light
value
light intensity
angle
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23873998A
Other languages
Japanese (ja)
Other versions
JP2000065756A (en
Inventor
有治 的場
努 河村
寛幸 杉浦
満昭 上杉
省二 吉川
雅一 猪股
善郎 山田
貴彦 大重
一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP23873998A priority Critical patent/JP3826578B2/en
Publication of JP2000065756A publication Critical patent/JP2000065756A/en
Application granted granted Critical
Publication of JP3826578B2 publication Critical patent/JP3826578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば薄鋼板表面等の非検査面に光を照射して被検査面の表面疵を光学的に検出する表面疵検査装置に関する。
【0002】
【従来の技術】
薄鋼板表面等の被検査面に光を照射してこの被検査面からの反射光を解析することによって、被検査面に存在する表面疵を光学的に検出する表面疵検査は従来からの種々の手法が提唱され実施されている。
【0003】
例えば、被検体表面に対して光を入射し、被検体表面からの正反射光及び拡散反射光をカメラで検出する金属物体の表面探傷方法が特開昭58−204353号公報に提案されている。この表面探傷方法においては、被検体表面に対し35度〜75度の角度で光を入射し、被検体表面からの反射光を、正反射方向と入射方向又は正反射方向から20度以内の角度方向に設置した2台のカメラで受光する。この2台のカメラの受光信号を比較し、例えば両者の論理和を取る。そして、2台のカメラが同時に異常値を検出した場合のみ該当異常値を傷とみなすことにより、ノイズに影響されない表面探傷方法を実現している。
【0004】
また、被検体からの後方散乱光を受光することによる被検体表面の疵検査方法が特開昭60−228943号公報に提案されている。この疵検査方法においては、ステンレス鋼板に対して大きな入射角で光を入射し、入射側へ戻る反射光すなわち後方散乱光を検出することにより、ステンレス鋼板表面のヘゲ疵を検出している。
【0005】
さらに、複数の後方散乱反射光を検出することによる平鋼熱間探傷装置が特開平8−178867号公報に提案されている。この平鋼熱間探傷装置は熱間圧延された平鋼上の掻疵を検出する。この探傷装置においては、掻疵の疵斜面角度は10度〜40度であり、この範囲の疵斜面からの正反射光を全てカバーできるように後方拡散反射方向に複数台のカメラが配設されている。
【0006】
また、偏光を利用した表面の測定装置が特開昭57−166533号公報及び特開平9−166552号公報に提案されている。特開昭57−166533号公報に提案された測定装置においては、測定対象に45度方向の偏向を入射し偏光カメラで反射光を受光している。偏光カメラにおいては、反射光をカメラ内部のビームスプリッタを用いて3つに分岐し、それぞれ異なる方位角の偏光フィルタを通して受光する。そして、偏光カメラから3本の信号をカラーTVシステムと同様の信号処理によりモニタに表示し、偏光状態を可視化する技術が開示している。この技術はエリプソメトリの技術を利用しており、光源は平行光であることが望ましく、例えばレーザ光が用いられている。
【0007】
また、特開平9−166552号公報に提案された表面検査装置においては、特開昭57−166533号公報に記載の技術と同様に、エリプソメトリを利用して鋼板表面の疵を検査している。
【0008】
【発明が解決しようとする課題】
しかしながら、上述した各公開公報に提案された各測定技術は、いずれも顕著な凹凸性を持つ疵を検出するか、又は酸化膜等異物が存在する疵を検出することを目的としたものであり、顕著な凹凸性を持たない模様状ヘゲ欠陥等に対しては全ての疵を確実に捕捉することが困難であった。
【0009】
例えば、特開昭58−204353号公報に記載の探傷方法においては、正反射光と散乱反射光を受光する2台のカメラを有しているが、その目的は2つのカメラにおける検出信号の論理和によるノイズの影響除去である。したがって、顕著な凹凸性を有する疵、すなわち表面に割れや抉れやめくれ上がりを生じているような疵に対しては両方のカメラで疵の信号が捉えられるので適用可能である。しかし、いずれか一方のカメラでしか疵の信号を捕らえられないような顕著な凹凸性を持たない模様状ヘゲ欠陥のような疵の場合は、その疵を全て検出することはできない。
【0010】
また、特開昭60−228943号公報の表面状態検査方法は、表面粗さの小さいステンレス鋼板状に顕在化した持ち上がったヘゲ疵を対象としている。したがって、顕在化していない持ち上がった部分のない疵や、疵の存在しない部分も入射側へ戻る光を反射するような表面の粗い鋼板に適用することはできない。
【0011】
特開平8−178867号公報の平鋼熱間探傷装置は、掻き疵を対象にしており、疵斜面での正反射光を捉えることに基づいているため、顕著な凹凸性を持たない模様状ヘゲのような疵の場合には後方散乱反射光では捉えられないものも存在し、検出もれを生ずる問題点があった。また、一度カメラを設置し、どの角度の反射成分を受光するかが決定されると、容易にカメラ位置を変更できない問題もあった。
【0012】
さらに、特開昭57−166533号公報の測定装置や特開平9−166552号公報の表面検査装置は、エリプソメトリの技術を用いており、薄い透明な層の厚さ及び屈折率や物性値のむらを検出することはできる。しかしながら、例えば表面処理鋼板のように、もともと疵部が母材部と異なる物性値を有していたとしても、その上から同一の物性値を有するものに覆われたような対象に対しては、有効性が低下してしまう問題があった。
【0013】
また、エリプソメトリでは同一点からの反射光を各CCDの対応する画素で受光し、画素毎にエリプソパラメータを計算する必要がある。そのため特開昭57−166533号公報においては反射光をビームスプリッタにより3分岐して3つのCCDにより検出しており、光量が低下したり、CCD間の画素合わせが困難であるという問題があった。
【0014】
また、特開平7−28633号公報では、3台のカメラを鋼板進行方向に並べたり、縦または横に並べたり、3台のカメラの傾きを変えたりして、同一領域を見るようにしている。しかし、鋼板の速度が変化したときの処理が複雑である問題があった。また、各カメラの角度が異なるため光学条件が同一にならない。そのため、画素合わせが困難である問題があった。
【0015】
さらに、特開昭58−204353号公報や特開平8−178867号公報では複数台のカメラの光軸が共通ではなく出射角が異なるため、得られる2つの画像の対応する画素の視野サイズが異なるほか、被検査面のバタツキや対象の厚さ変動による距離変化があると視野に位置ずれを生じるという問題があった。特に特開昭58−204353号公報では2つのカメラで同じ視野に対する論理和をとることが要求されるため問題は大きかった。
【0016】
製品の品質検査ラインに組み込まれる表面検査装置においては、製造製品に対する品質保証の観点から、疵の検出もれがないことが絶対条件である。しかしながら、表面処理鋼板等まで検査対象とした表面疵検査装置は実用化されていなかった。
【0017】
この発明は、このような事情に鑑みてなされたものであり、被検査面からの反射光に含まれる鏡面反射成分と鏡面拡散反射成分とを区別して検出することによって被検査面における表面の割れや捩れやめくれ上がりのような顕著な凹凸性を持たない模様状ヘゲ欠陥を確実に検出でき、高い欠陥検出精度を発揮でき、製品の品質検査ラインにも十分組み込むことができる表面検査装置を提供することを目的とするものである。
【0018】
【課題を解決するための手段】
この発明に係る表面検査装置は、投光部と受光部と信号処理部とを有し、投光部は被検査面に偏光を入射し、受光部は少なくとも3方向の異なる角度の偏光を受光する複数の受光光学系を有し、被検査面で反射した反射光を検出して画像信号に変換し、信号処理部は各受光光学系から出力された光強度分布を被検査面の地肌正常部の光強度があらかじめ定めた基準値となるように規格化し、光強度変化量から疵を抽出し、疵領域における規格化した複数の光強度の変化極性と閾値を上回る光強度変化量の積分値とをあらかじめ定めたパターンと比較し疵種を判定し、各受光光学系から出力された光強度分布から、疵部において閾値を上回る光強度変化量の積分値を各受光光学系毎に算出し、各受光光学系毎に算出された積分値のなかから最大値を選択し、選択した値と判定した疵種により疵の等級を判定することを特徴とする。
【0019】
第2の発明に係る表面検査装置は、投光部と受光部と信号処理部とを有し、投光部は被検査面に偏光を入射し、受光部は少なくとも3方向の異なる角度の偏光を受光する複数の受光光学系を有し、被検査面で反射した反射光を検出して画像信号に変換し、信号処理部は各受光光学系から出力された光強度分布を被検査面の地肌正常部の光強度があらかじめ定めた基準値となるように規格化し、光強度変化量から疵を抽出し、疵領域における規格化した複数の光強度の変化極性と閾値を上回る光強度変化量の積分値とをあらかじめ定めたパターンと比較し疵種を判定し、各受光光学系から出力された光強度分布から、前記光強度変化量の前記基準値を0としたときの光強度変化のピーク値の絶対値と、閾値を上回る光強度変化量の積分値とを各受光光学系毎に算出し、各受光光学系毎に算出されたピーク値と積分値のなかから最大値をそれぞれ選択し、選択した値と判定した疵種により疵の等級を判定することを特徴とする。
【0020】
【発明の実施の形態】
まず、本発明の表面疵検査装置が検査対象とする鋼板表面の光学的反射の形態を鋼板表面のミクロな凹凸形状と関連づけて説明する。例えば、検査対象が合金化亜鉛メッキ鋼板の場合においては、図1(a)に示すように、下地の冷延鋼板は溶融亜鉛メッキされたのち合金化炉を通過する。この間に下地鋼板1の鉄元素がメッキ層2の亜鉛中に拡散し、通常、図1(c)に示すように合金の柱状結晶3を形成する。このメッキされた鋼板4は次にロール5a,5bで調質圧延される。すると、図1(d)に示すように、柱状結晶3における特に突出した箇所がロール5a,5bで平坦につぶされ、それ以外の箇所は元の柱結晶3の形状を維持したままとなる。この調質圧延のロール5a,5bにて平坦につぶされた部分をテンパ部6と呼び、それ以外の調質圧延のロール5a,5bが当接しない元の凹凸形状を残した部分を非テンパ部7と称する。
【0021】
図2は、このようなテンパ部6と非テンパ部7とを有する鋼板4の表面でどのような光学的反射が生じるかをモデル化した断面模式図である。この鋼板4の表面(被検査面)はミクロ的に見ると種々の方向を向いた無数の微小面素13で構成されている。調質圧延のロール5a,5bによりつぶされたテンパ部6に入射した入射光8は、鋼板4の正反射方向に鏡面的に反射して鏡面反射光9となる。一方、調質圧延ロール5a,5bが当接しない元の柱状結晶3の構造を残す非テンパ部7に入射した入射光8は、ミクロに見れば柱状結晶3の各表面の微小面素一つ一つにより鏡面的に反射されるが、反射の方向は鋼板4の正反射方向とは必ずしも一致しない鏡面拡散反射光10となる。したがって、鋼板4の表面におけるテンパ部6及び非テンパ部7の各反射光の角度分布は、マクロに見ればそれぞれ図3(a),図3(b)のようになる。すなわち、テンパ部6では鋼板正反射方向に鋭い鏡面性の反射が発生し、非テンパ部7では柱状結晶3の表面の微小面素の角度分布に対応した広がりを持った反射光となる。前述したように、テンパ部6の反射光を鏡面反射光9と称し、非テンパ部7の反射光を鏡面拡散反射光10と称する。そして、テンパ部6と非テンパ部7はマクロ的には混在しているので、カメラ等の光学測定器で観察される反射光の角度分布は、図3(c)に示すように、鏡面反射光9及び鏡面拡散反射光10の角度分布をテンパ部6と非テンパ部7とのそれぞれの面積率に応じて加算したものとなる。
【0022】
以上、テンパ部6と非テンパ部7とを合金化亜鉛メッキ鋼板を例にして説明したが、調質圧延により平坦部が生じる他の鋼板にも一般に成り立つ。
【0023】
次に、本発明の検出対象となる顕著な凹凸性を持たない模様状ヘゲ欠陥と呼ばれる欠陥の光学反射特性について説明する。図4に示すように、合金化溶融亜鉛メッキ鋼板に見られるヘゲ欠陥(ヘゲ部)11は、メッキ加工前の冷延鋼板原板にヘゲ欠陥が存在し、その上にメッキ層2が乗り、さらに下地鋼板1の鉄元素の拡散によりるヘゲ欠陥の合金化が進行したものである。
【0024】
一般に、ヘゲ部11は鋼板4の正常部分を示す母材12と比較して、例えばメッキ厚に違いが生じたり、合金化の程度に違いが生じる。その結果、例えば、ヘゲ部11のメッキ厚が厚く母材12に対し凸の場合には、調質圧延が印加されることによりテンパ部6の面積が非テンパ部7に比べて多くなる。逆に、ヘゲ部11のメッキ厚が薄く母材12に比べ凹の場合には、ヘゲ部11は調質圧延のロール5a,5bが当接せず、非テンパ部7が大半を占める。また、ヘゲ部11の合金化が浅い場合には微小面素の角度分布は鋼板方線方向に強く、拡散性は小さくなる。
【0025】
次に、このようなヘゲ部11と母材部12の表面性状の相違により、模様状ヘゲ欠陥がどのように見えるかを説明する。上述したモデルに基づきヘゲ部11と母材部12の違いについて分類すると一般に次の3種類に分けられる。
【0026】
(a)ヘゲ部11におけるテンパ部6の面積率及び非テンパ部7の微小面素の角度分布が、母材部12におけるテンパ部6の面積率及び非テンパ部7の微小面素の角度分布と異なる(図6(a)、図5(a))。
【0027】
(b)ヘゲ部11におけるテンパ部6の面積率は母材部12におけるテンパ部6の面積率と異なるが、ヘゲ部11の非テンパ部7の微小面素の角度分布は母材部12における非テンパ部7の微小面素の角度分布と変わらない(図6(b)、図5(b))。
【0028】
(c)ヘゲ部11における非テンパ部7の微小面素の角度分布は母材部12の非テンパ部7の微小面素の角度分布と異なるが、ヘゲ部11におけるテンパ部6の面積率は母材部12におけるテンパ部6の面積率と変わらない(図6(c)、図5(c))。
【0029】
図7に示すように、入射光8が当接する微小面素13の法線方向の鋼板4の鋼板法線方向に対する傾斜角度を微小面素13の法線角度ξとし、この法線角度ξとテンパ部6の面積率S(ξ)との関係を、上述した(a),(b),(c)の3つの場合について、図6(a),(b),(c)に示す。
【0030】
このテンパ部6の面積率S(ξ)及び微小面素13の角度分布の違いが、図5(a),(b),(c)に示すような反射光量の角度分布の違いとして観察される。図中実線で示す角度分布がヘゲ部11に対応するヘゲ部角度分布11aであり、点線で示す角度分布が母材部12に対応する母材部角度分布12aである。
【0031】
すなわち、図5(a)はヘゲ部角度分布11aと母材部角度分布12aとの間において、鏡面反射成分と鏡面拡散反射成分とが共に差が存在する場合を示し、図5(b)は鏡面反射成分のみに差が存在する場合を示し、図5(c)は鏡面拡散反射成分のみに差が存在する場合を示す。そして、ヘゲ部角度分布11aと母材部角度分布12aとでテンパ部6の面積率S(ξ)に相違がある場合には、図5(a),(b)に示すように、その差は正反射方向から観察される。具体的には、正反射方向からヘゲ部11の反射光を測定した場合と母材部12の反射光を測定した場合に、ヘゲ部11のテンパ部6の面積率S(ξ)が母材部12のテンパ部6の面積率S(ξ)より大きい場合にはヘゲ部11は母材部12に比較して相対的に明るく見える。逆に、ヘゲ部11のテンパ率6が母材部12より小さいときにはヘゲ部11は母材部12に比較して相対的に暗く観察される。
【0032】
ヘゲ部角度分布11aと母材部角度分布12aでテンパ部6の面積率S(ξ)に違いがない場合には図5(c)に示すように、正反射方向からの単なる受光強度の差を観察するのみではヘゲ部11の存在を観察できない。しかし、鏡面拡散反射成分の拡散性(角度分布)に違いがあるときには図5(c)に示すように正反射方向以外の拡散方向から欠陥が観察される。
【0033】
例えば、ヘゲ部11の鏡面拡散反射成分の拡散性(角度分布)が小さいときには、一般に正反射方向に比較的近い拡散方向からヘゲ部11は明るく観察され、正反射方向から離れるに従い明るさは小さくなり、ある角度で観察不能となる。さらに正反射方向から遠ざかると今度はヘゲ部11は暗く観察される。
【0034】
このようなヘゲ部11を母材部12と確実に区別して検出するためには、図6において、どういう角度(法線角度ξ)の微小面素13からの反射光を抽出するのかを検討することが必要である。例えば、図5(a),(b)の例のように、正反射方向でヘゲ部11と母材部12の違いを検出するということは、図6で示される微小面素13の角度分布のうち微小面素13の法線角度ξ=0について抽出し、ヘゲ部11と母材部12との違いを検出していることになる。
【0035】
ここで、微小面素13の法線角度ξ=0の反射光を抽出するということを数学的に表現すると、図6の特性(面積率S(ξ))それぞれに、図8(a)に示すデルタ関数δ(ξ)で表される抽出特性を示す関数(以後、この関数を重み関数Ι(ξ)と呼ぶ)を乗じて積分することに相当する。
【0036】
また、例えば、入射角60度において、正反射方向から20度ずれた40度の角度位置で反射光を測定することは、図8(b)のようなデルタ関数δ(ξ+10)なる重み関数Ι(ξ)を用いて計算することに相当する。
【0037】
なお、図7に示すように、反射角度θ度と微小面素13の法線角度ξと入射光8の入射角度θとの関係は簡単な幾何学的考察によって(1)式で求まる。
θ度=−θ+2ξ (1)
すなわち、どういう角度(法線角度ξ)の微小面素13からの反射光を抽出するかということは、どのような重み関数Ι(ξ)を設計するかということに相当することが理解できる。
【0038】
このような観点から、図6(a),(b),(c)で表されるような各ヘゲ部11を母材部12と弁別して検出するための重み関数I(ξ)を考えると、図8(a),(b)に示すデルタ関数δ(ξ),δ(ξ+10)も有効な重み関数I(ξ)の一つである。なお、重み関数Ι(ξ)は、必ずしも図8に示した特定の法線角度のみを抽出する幅が無限小のデルタ関数δ(ξ)である必要はなく、ある程度の信号幅を有することも可能である。
【0039】
しかしながら、このような弁別手法においては、2つの光学系の視野を同一にすることはできない。また、拡散反射光を測定するために一旦カメラを設置すると、その重み関数Ι(ξ)を変更することは、カメラの設置位置を変更することが必要であるから容易ではない。
【0040】
前者の課題に対しては同一光軸上の測定が必要ある。すなわち、拡散反射光を捉えるのでなく、鋼板4の正反射方向からの測定のみで鏡面反射成分と鏡面拡散反射成分との両成分を捉えることが望ましい。そして、後者の課題に対しては、重み関数Ι(ξ)をある程度自由度を持って設定できることが望ましい。
【0041】
そこで、本発明においては、まず光源として、レーザのような平行光源ではなく拡散特性を持つ線状の光源、すなわち線状拡散光源を用いている。また、鋼板4の正反射方向から鏡面反射成分と鏡面拡散反射成分とを分離して抽出する必要があるので偏光を用いている。この線状拡散光源の効果を説明するために、図9(a),(b)に示すように線状拡散光源14を鋼板4の表面に平行に配置し、光源に垂直な面内にあり、入射角が出射角と一致する方向である鋼板正反射方向から鋼板4上の一点を観察したときの反射特性を考える。
【0042】
図9(a)に示すように、線状拡散光源14の中央部から照射された入射光8の場合、テンパ部6に入射した入射光8は鏡面的に反射されて、鋼板正反射方向で全て捉えられる。一方、非テンパ部7に入射した光は鏡面拡散的に反射され、たまたま鋼板法線方向と同一方向を向いている微小面素13により反射された分のみが捉えられる。このような方向を向いている微小面素13は非常に少ないので、鋼板正反射方向に配設された受光カメラで捉えられる反射光のうちではテンパ部6からの鏡面反射光が支配的である。
【0043】
これに対し、図9(b)に示すように、線状拡散光源14の中央部位外の位置から照射された入射光8の場合には、テンパ部6に入射した光は鏡面反射して鋼板正反射方向とは異なる方向へ反射する。そのため、鏡面反射した光は鋼板正反射方向では捉えることができない。一方、非テンパ部7に入射した光は鏡面拡散的に反射され、そのうち鋼板正反射方向に反射された分が受光カメラで捉えられる。したがって、鋼板正反射方向に配設された受光カメラで捉えられる反射光は全て非テンパ部7で反射した鏡面拡散反射光である。
【0044】
以上2つの場合を併せると、線上拡散光源14の長尺方向全体から照射される全ての入射光8のうち鋼板正反射方向からの観察で捉えられるのは、テンパ部6からの鏡面反射光と非テンパ部7からの鏡面拡散反射光との和である。
【0045】
次に、鋼板4の正反射方向から線状拡散光源14を使用して観察した場合に、偏光特性がどう変化するかについて説明する。一般に、鏡面状の金属表面での反射においては、電界の方向が入射面に平行な光(p偏光)あるいは入射面に直角な光(s偏光)においては、反射によっても偏光特性は保存される。すなわち、p偏光のまま又はs偏光のまま出射する。また、p偏光成分とs偏光成分とを同時に持つ任意の偏光角を有した直線偏光が反射されると、p、s偏光の反射率非tanΨ及び位相差△に応じた楕円偏光となって出射する。
【0046】
合金化亜鉛メッキ鋼板に線状拡散光源14から光が照射される場合を図10(a),(b)を用いて説明する。図10(a)に示すように、線状拡散光源14の中央部から出射した光は鋼板4のテンパ部6で鏡面反射して鋼板正反射方向で観察される。これに関しては上記一般の鏡面状の金属表面での反射がそのまま成立する。
【0047】
一方、図10(b)に示すように、線状拡散光源14の中央部位外の位置から出射した光は、鋼板4の非テンパ部7の結晶表面の傾いた微小面素13で鏡面反射して鋼板正反射方向で観察される。この場合、鋼板4の入射面に平行なp偏光の光を入射したとしても実際に反射する傾いた微小面素13に対して考えた場合には入射面は微小面素13に対して平行ではなく、p,s両偏光成分を持つ直線偏光であるため、楕円偏光となって出射する。線状拡散光源14からs偏光を入射した場合も同様である。
【0048】
また、線状拡散光源14からp,s両偏光成分を持つ任意の偏光角αの直線偏光が鋼板4に入射した場合、線状拡散光源14の中央部以外の位置から傾いた微小面素13に入射した光は偏光角αが傾いて作用するため、鋼板正反射方向に出射する楕円偏光の形状は、線上拡散光源14の中央部から入射してテンパ部6で鏡面反射した光とは異なる。
【0049】
以下、p,s両性分を持つ直線偏光を線状拡散光源14から鋼板4に入射する場合について詳細に検証する。まず、図11に示すように、線状拡散光源14からの入射光8を方位角(偏光角)αを有する偏光板15で直線偏光にした後、水平に配置された鋼板4に入射させ、その正反射光を受光カメラ16で受光する、前述したように、線状拡散光源14上のC点から出射された入射光8については、鋼板4におけるテンパ部6により鏡面反射された成分、及び、非テンパ部7におけるたまたま法線が鋼板4の鉛直方向を向いた法線角度ξ=0の微小面素13から鏡面拡散反射された成分が鋼板4上の0点から受光カメラ16方向へ反射する光に寄与している。
【0050】
一方、図12に示すように、線状拡散光源14上の鋼板4のO点から見て角度φだけずれた点Aからの入射光8については、鏡面反射成分は受光カメラ16方向とは異なる方向に反射されるため、前述した法線角度ξの微小面素13による鏡面拡散反射成分のみが寄与する。
【0051】
ここで、入射光8の入射方向を示す角度φと微小面素13の法線角度ξとの関係は、入射光8の鋼板4に対する入射角度θを用いて、間簡単な幾何学的考察により、(2)式で与えられる。
【0052】
【数1】

Figure 0003826578
【0053】
次に、このようにして反射された光の偏光状態について考える。C点から出射された入射光8が、方位角(偏光角)αの偏光板15を通り、鋼板4上のO点にて鏡面反射された後の偏光状態Ecは、偏光光学で一般に用いられるジョーンズ行列を用いて、
Ec=T・Ein (3)
と表される。但し、Einは偏光板15の方位角(偏光角)αの直角偏光ベクトルを示し、Tは鋼板4の反射特性行列を示す。そして、直線偏光ベクトルEinと反射特性行列Tは、p,s偏光の振幅反射率比をtanΨ、p,s偏光の反射率の位相差を△、s偏光の振幅反射率をrsとすると、それぞれ(4),(5)式で与えられる。
【0054】
【数2】
Figure 0003826578
【0055】
同様に、線状拡散光源14上のA点から出射した入射光8が法線角度ξの微小画素13で受光器16の方向に反射された光の偏光状態Eaは入射面が偏光板15及び受光カメラ16の検光子と直交しているとすると(6)式で与えられる。(6)式においてRは回転行列であり、(7)式で与えられる。
【0056】
【数3】
Figure 0003826578
【0057】
(3)式は、(6)式において微小面素13の法線角度ξ=0とした特別の場合であり、鏡面反射成分についても鏡面拡散反射成分についても(6)式を用いて統一的に考えることができる。(6)式を計算し、法線角度ξの微小面素13からの反射光の楕円偏光状態を図示すると、図13に示すようになる。ここで入射偏光の方位角(偏光角)αは45度、入射角θは60度、鋼板4の反射特性としてp,s偏光の振幅反射率比の逆正接Ψ=28度、p,s偏光の反射率の位相差△=120度とした、図13より、法線角度ξ=0すなわち鏡面反射の場合の楕円に対して法線角度ξの値が変化するに従って、楕円が傾いていくのが理解できる。したがって、例えば受光カメラ16の前に検光子17を挿入し、その検光角βを設定することによって、どの法線角度ξの微小面素13からの反射光をより多く抽出するかを選択することができる。
【0058】
このことを定量化するために、図12に示すように、(3)式で表される偏光状態Eaの反射光に対して検光角βの検光子17を挿入した後における偏光状態Eoを求めると(8)式となる。
【0059】
【数4】
Figure 0003826578
【0060】
(8)式においてAは検光子17を表す行列であり、(9)式で表される。
【0061】
【数5】
Figure 0003826578
【0062】
次に、この(8)式から受光カメラ16で検出する法線角度ξの微小面素13からの反射光の光強度を求める。前述したように、該当微小面素13の面積率をS(ξ)とすると、下記(10)式が成立する。
【0063】
【数6】
Figure 0003826578
【0064】
上式におけるΙ(ξ,β)は、前述したように、法線角度ξの微小面素13からの反射光をどの程度抽出できるかを示す重み関数であり、光学系及び被検体の偏光特性に依存する。そして、それに鋼板4の反射率rs2 と入射光光量Ep2 と面積率S(ξ)を乗じたものが検出される光強度になる。
【0065】
表面処理鋼板などのように、鋼板表面の材質が均一な対象を考える場合は反射率rs2 の値は一定と考えられる。また、入射光光量Ep2 は入射光量が光源の位置によらず均一ならば同じく一定の値としてよい。したがって受光カメラ16が検出する光強度を求めるには、法線角度ξの微小面素13の面積率S(ξ)と重み関数Ι(ξ,β)とを考えればよい。
【0066】
ここで、重み関数Ι(ξ,β)について考える。法線角度ξの微小面素13からの寄与が最も大きくなるような検光子17の検光角βoを選定しようとした場合、その候補は次の(11)式をβについて解くことによって与えられる。
【0067】
【数7】
Figure 0003826578
【0068】
(11)式により、法線角度ξ=0、すなわち鏡面反射成分の寄与が最も大きくなるような検光角βを求めると、検光角βは約−45度である。但し、ここでも、鋼板4の反射特性として前述した反射率比の逆正接Ψ=28度、位相差△=120度を採用し、線状拡散光源14からの入射光8に対する偏光板15の方位角(偏光角)α=45度を採用した。
【0069】
図14に、検光子17の検光角βが−45度の場合における微小面素13の法線角度ξと重み関数Ι(ξ,−45)との関係を示す。但し、見やすさのために重み関数Ι(ξ,−45)の最大値を[1]に規格化してある。図14の特性から、法線角度ξ=0度、すなわち鏡面反射成分が最も支配的で、逆に法線角度ξ=±35度付近の微小面素13からの鏡面拡散反射光が最も抽出されないことが理解できる。
【0070】
また、に法線角度ξ=±35°の反射光を最もよく抽出するような検光子17の検光角βを(10)式と(11)式より求めると、およそβ=45度である。検光子17の検光角β=45度に対する微小面素13の法線角度ξと重み関数Ι(ξ,45)の関係を図15に示す。ここで、図15の重み関数Ι(ξ,β)の特性が左右対称でないのは、入射面(微小面素13に対する入射光8と反射光により張られる平面)を基準に考えると、微小面素13の法線角度ξが正の場合、見かけ上入射光8の偏光の方位角(偏光角)αが小さくなる(p偏光に近づく)ことと、鋼板4のp偏光反射率がs偏光反射率より小さいことによる。
【0071】
また、検光子17の検光角β=−45度と45度の中間の特性となるβ=0度及び90度についても計算した重み関数Ι(ξ,0),Ι(ξ,β)も図15に示した。Ι(ξ,0)は−50度付近にピークがあるが、測定対象の面積率によりξ=15度付近の影響が最も大きい場合が多い。(10)式で示したように、法線角度ξの微小面素13からの反射光強度は、重み関数Ι(ξ,β)と面積率S(ξ)の積により与えられるから、最終的に受光カメラ16で受光する光強度は[S(ξ)・Ι(ξ,β)]を法線角度ξについて積分したものになる。例えば、図16に示すような反射特性を有する鋼板4からの反射光を、検光角βが−45度の検光子17を通して受光した場合、図16で示される面積率S(ξ)を図14に示す重み関数Ι(ξ,β)で示される重みをつけて積分したものが実際に受光した光強度となる。
【0072】
そこで、鋼板4の表面に、図5(a),(b),(c)に示されるような特性のヘゲ部11が存在した場合を考える。その場合の各面積率S(ξ)は、それぞれ図6(a),(b),(c)のようになっている。
【0073】
まず図5(b),図6(b)のように鏡面反射成分のみに違いがある場合を考える。このような疵を検光角β=−45度の検光子17を通して受光したときの光強度は、図6(b)に示す面積率S(ξ)に図14で表される重み関数I(ξ,β)をかけて積分したものに相当するから、母材部12とヘゲ部11との反射光量の違いを検出することができる。
【0074】
また同一疵を検光角β=45度の検光子17を通して受光したときの光強度については、図6(b)に示すように、鏡面拡散反射成分に違いがないため、図15の検光角β=45度の重み関数Ι(ξ,β)をかけて積分することを考えると明らかなように、母材部12とヘゲ部11との違いを検出することができない。
【0075】
また、図5(c),図6(c)のように鏡面拡散反射成分のみに違いがある場合には、逆に検光角β=−45度の検光子17を通したのでは検出できず、検光角β=45度の度検光子17を通したときに検出できる。但し、母材部12とヘゲ部11の鏡面拡散反射成分の違いがなくなっている法線角度ξは、図6(c)では法線角度ξ=±20度付近であったが、もし、その角度がたまたま±30数度付近となる疵があると、検光角β=45度の検光子17を通しても検出できなくなる。その場合は、別の重み関数例えばΙ(ξ,90)となるような検光角β(例えば90°)の検光子17をもう一つ別に用意し、3番目の受光カメラ16で受光するようにすればよい。
【0076】
一般に、鋼板4の表面の母材部12及びヘゲ部11の反射特性は図5(a),(b),(c)のいずれかであるので、ヘゲ部11の見落しをなくすためには、3つの異なる検光角βの検光子17を用い、対応する3つの法線角度ξの微小面素13からの反射光を抽出して受光するようにすることが必要である。また、図5(a),図6(a)のように鏡面反射成分、鏡面拡散反射成分ともの違いがある場合には、基本的には、例えば−45度と+45度のいずれの検光子17を通した反射光でも母材部12とヘゲ部11との違いを検出できる。したがって、本発明では線状拡散光源14を用い、第1の受光手段で被検査面からの正反射光に含まれる鏡面反射成分と鏡面拡散反射成分のうち、鏡面拡散反射成分に比較して鏡面反射成分をより多く抽出し受光し、第2の受光手段で被検査面からの正反射光に含まれる鏡面反射成分と鏡面拡散反射成分のうち、鏡面反射成分に比較して鏡面拡散反射成分をより多く抽出している。
【0077】
そこで、例えば被検査面からの正反射光のみを受光する第1、第2の受光手段にてでも、図5(a),(b),(c)に示す鋼板4の表面の各反射特性におけるヘゲ部11の存在を母材部12との比較において確実に検出できる。
【0078】
このような光学系により、正反射方向からの共通な光軸での測定であるため、鋼板距離変動や速度変化に影響されることなく、鏡面反射・鏡面拡散反射それぞれに対応した2つの信号を得ることが可能になり、顕著な凹凸性を持たない模様状ヘゲ疵を検出もれを生じることなく検出可能な表面疵検査装置を実現できる。
【0079】
そこで、この発明においては、被検査面に対して一定入射角で被検査面の幅方向全体に偏光を入射するように投光部を配置し、被検査面からの反射光を受光する受光部を所定の位置に配置する。受光部は入射した光を例えば3本のビームに分離するビームスプリッタと、分離した3本のビームを別々に入射して画像信号を出力する例えばCCDセンサを有する3組のリニアアレイカメラと、ビームスプリッタと各リニアアレイカメラの間に設けられ、非検査面からの反射光を異なる振動面の偏光にする検光子とが設けられている。3個の検光子はそれぞれ異なる方位角、すなわち透過軸が被検査面の入射面となす角が、例えば、0度,45度,−45度になるように配置されている。
【0080】
信号処理部は各リニアアレイカメラからの出力画像信号をシェーディング補正して正常部が全階調の中心濃度になるように正規化して平坦化し、正常部に対する相対的な変化を示す光強度信号に変換する。この正常部に対する相対的な変化を示す3種類の光強度信号の分布の変化極性と変化量とをそれぞれあらかじめ定めたパターンと比較して偏光の変化を検出する。この3種類の光強度信号の正常部に対する変化極性と変化量の大小から表面の物性が母材と異なる疵の疵種を判定する。
【0081】
また、信号処理部は上記処理とともに各受光光学系から出力された光強度分布から光量変化の画素の絶対値のピーク値と基準値を上回る光量の絶対値の積分値を演算し、各受光光学系のピーク値と光量積分値の最大値から疵種毎にあらかじめ定めたパターンと比較し、例えば凹凸状の疵のように正常部と表面幾何学形状が異なる疵の等級を判定する。
【0082】
【実施例】
図17はこの発明の一実施例の光学系を示す配置図である。図に示すように、光学系21は投光部22と3板式偏光リニアアレイカメラ23を有する。投光部22は被検査体、例えば鋼板4の表面に一定の入射角で偏光を入射するものであり、光源24と光源24の前面に設けられた偏光子25とを有する。光源24は鋼板4の幅方向に伸びた棒状発光光源及びシリンドリカルレンズからなり、鋼板4の幅方向全体に一様な強度分布を有する光を照射する。偏光子25は例えば偏光板又は偏光フィルタからなり、図18の配置説明図に示すように、透過軸Pが鋼板4の入射面となす角αが45度になるように配置されている。3板式偏光リニアアレイカメラ23は、図18の構成図に示すように、ビームスプリッタ26と3個の検光子27a,27b,27cと3個のリニアアレイセンサ28a,28b,28cとを有する。ビームスプリッタ26は3個のプリズムからなり、入射面に誘電体多層膜を蒸着した半透過性を有する反射面が2面設けられ、鋼板4からの反射光を入射する第1の反射面26aは透過率と反射率が約2対1の割合になっており、第1の反射面26aを透過した光を入射する第2の反射面26bは透過率と反射率が1対1の割合になっており、鋼板4からの反射光を同じ光量の3本のビームに分離する。また、ビームスプリッタ26の入射面から分離した3本のビームの出射面までの光路長は同じにしてある。検光子25aは第2の反射面26bの透過光の光路に設けられ、図18に示すように、方位角すなわち透過軸が鋼板4の入射面となす角βが0度になるように配置され、検光子27bは第2の反射面26bの反射光の光路に設けられ、方位角βが45度になるように配置され、検光子27cは第1の反射面26aの反射光の光路に設けられ、方位角βが−45度になるように配置されている。リニアアレイセンサ28a,28b,28cは例えばCCDセンサからなり、それぞれ検光子27a,27b,27cの後段に配置されている。また、ビームスプリッタ26と検光子27a,27b,27cの間にはビームスプリッタ26内の多重反射光や不必要な散乱光をカットするスリット29a,29b,29cが設けられ、ビームスプリッタ26の前段にはレンズ群30が設けられている。また、リニアアレイセンサ28a,28b,28cは同じ光強度の光が入射したときに同じ信号を出力するように利得が調整してある。
【0083】
このように入射した光を分離した3本のビームの光路に検光子27a〜27cとリニアアレイセンサ28a〜28cが一体化して設けられているから、リニアアレイセンサ28a〜28c等を鋼板4の搬送路近傍に配置して鋼板4からの反射光を検出するときに、リニアアレイセンサ28a〜28c等の位置調整を必要としないとともに鋼板4の同じ位置からの反射光を同じタイミングで検出することができる。また、3板式偏光リニアアレイカメラ23内に3組のリニアアレイセンサ28a〜28cがまとまって収納されて小型化しているから、3板式偏光リニアアレイカメラ23を鋼板4の反射光の光路に簡単に配置することができるとともに配置位置を任意に選択することができ、光学系1の配置の自由度を向上することができる。
【0084】
3板式偏光リニアアレイカメラ23のリニアアレイセンサ28a〜28cは、図20のブロック図に示すように信号処理部31に接続されている。信号処理部31は信号前処理部32a,32b,32cとメモリ33a,33b,33cと疵パラメータ演算部34とパターン記憶部35と光量記憶部36と基準パターン記憶部37と疵種判定部38と等級パターン記憶部39と疵等級判定部40及び出力部41を有する。信号前処理部32a〜32cはリニアアレイセンサ28a〜28cから出力された偏光の光強度信号I1,I2,I3の幅方向等の感度むら等を補正するシェーディング補正等を行ってから正常部の信号を基準レベルとして、正常部の信号が255階調の中心濃度である128階調になるように正規化して、正規化した光強度信号I1,I2,I3をそれぞれメモリ33a〜33cに格納する。疵パラメータ演算部34は、メモリ33a〜33cに格納された光強度信号I1,I2,I3の分布に表れた疵部の各点を正常部の値である128階調を基準にして予め定められた閾値を越える変化点について、変化点の最初の幅方向アドレスA1s1,A2s1,A3s1と変化点の最後の幅方向アドレスA1e1,A2e1,A3s1を求め、最初の幅方向アドレスA1s1,A2s1,A3s1のうちで最初のアドレスをAs1、最後の幅方向アドレスA1e1,A2e1,A3s1の最後のアドレスをAe1とする。その後、最初のアドレスAs1と最後のアドレスAe1の間にある信号について閾値を越える各点について基準値「128」を「0」としたときの濃度積算値I1s1,I2s1,I3s1と疵ピーク値I1p1,I2p1,I3p1を求める。疵パラメータ演算部34は繰り返してスキャンしているリニアアレイセンサ28a〜28cの次回の出力についても同様の演算を行い、次回の変化点の幅方向アドレスAs2、Ae2が前回の変化点の幅方向アドレスAs1、Ae1と重なるアドレスがあった場合、前回の濃度積算値I1s1,I2s1,I3s1に今回の濃度積算値I1s2,I2s2,I3s2を加算し、連結濃度積算値Is1,Is2,ls3を求める。また、前回の疵ピーク値I1p1,I2p1,I3p1を上回る疵ピーク値があった場合、前回の疵ピーク値を更新し、新たな疵ピーク値I1p,I2p,I3pとする。これをライン出力ごとに疵信号の幅方向アドレスが重なることがなくなるまで繰り返し、重なる幅方向アドレスがなくなったとき、疵パラメータ演算部34は一つの疵の測定が完了したものとみなし、これまでに求めた連結濃度積算値Is1,Is2,Is3と疵ピーク値I1p,I2p,I3pより極性パターンIppと変化量を示す値パターンVppを算出するとともに疵部の等級を判定をするための最大濃度積算値IsMaxと最大疵ピーク値Ipeakを演算し、パターン記憶部35と光量記憶部36に各特徴量を出力する。パターン記憶部35は算出された極性パターンIppと値パターンVppを記憶し、光量記憶部36は算出された最大濃度積算値IsMaxと最大疵ピーク値Ipeakを記憶する。基準パターン記憶部37には各種極性パターンと値パターン及びこれらに対応する疵種があらかじめ格納されている。疵種判定部38はパターン記憶部35に記憶された極性パターンIppと値パターンVppとを基準パターン記憶部37に記憶された各種極性パターンと値パターンと比較して疵種を判定する。等級パターン記憶部39には各疵種毎に最大濃度積算値IsMaxと最大疵ピーク値Ipeakに対する疵の等級を示す等級基準パターンがあらかじめ格納してある。疵等級判定部40は光量記憶部36に記憶した最大濃度積算値IsMaxと最大疵ピーク値Ipeakと疵種判定部38で判定した疵種を等級パターン記憶部39に記憶してある等級基準パターンと比較して疵の等級を判定する。出力部41は疵等級判定部40から出力される疵種と疵の等級を不図示の表示装置や記録装置に出力する。
【0085】
次に上記のように構成された表面検査装置で鋼板4の表面を検査する時の動作を説明する。一定速度で移動している鋼板4に投光部22から出射されて鋼板4の表面で反射した偏光は3板式偏光リニアアレイカメラ23で受光される。3板式偏光リニアアレイカメラ23に入射した鋼板4の反射光はビームスプリッタ26で分離され検光子27a〜27cを通ってリニアアレイセンサ28a〜28cに入射する。このリニアアレイセンサ28a〜28cで反射光の光強度を検出するときに、リニアアレイセンサ28a〜28cの前面に異なる方位角βの検光子27a〜28cが設けられているから、リニアアレイセンサ28a〜28cは異なる偏光の光強度I1,I2,I3を検出して信号処理部31に送る。信号処理部31の信号前処理部32a〜32cはリニアアレイセンサ28a〜28cから出力された偏光の光強度信号I1,I2,I3の幅方向等の感度むら等を補正するシェーディング補正等を行ってから、例えば図21の疵信号分布図に示すように、正常部の信号が128階調になるように正規化し、正規化した光強度信号I1,I2,I3をそれぞれメモリ33a〜メモリ33cに格納する。図21において、(a)は光強度信号I1の分布を示し、(b)は光強度信号I2の分布、(c)は光強度信号I3の分布を示し、(A)は1ライン目、(B)は2ライン目、(C)は3ライン目の光強度信号の分布を示す。疵パラメータ演算部34はメモリ33a〜33cに格納された光強度信号I1,I2,I3の分布に表れた疵部の各点を正常値である128階調を基準として予め定められた閾値例えば±8階調を越える変化点より、変化点の最初と最後の幅方向アドレスAs1,Ae1を求め、基準値「128」を「0」としたときの最大濃度積算値の極性パターンIppと変化量を示す値パターンVppを算出する。図21(A)に示す例では正規化した光強度信号I1,I2,I3の疵部の幅方向アドレスはA1s1=26、A1e1=31、A2s1=28、A2e1=31、A3s1=24、A3e1=29であるため、光強度信号I1,I2,I3の疵部をまとめてオア処理して、疵部の最初のアドレスAs1=24とし、最後のアドレスAe1=31とする。正常値128階調を「0」としたときの光強度信号I1,I2,I3の積分値I1s1,I2s1,I3s1は(102,50,98)となり、疵ピーク値I1p,I2p,I3pは(22,15,21)となる。図21の(B)に示す次ラインの出力における疵部のアドレスは、A1s2=26、A1e2=31、A2s2=28、A2e2=29、A3s2=25、A3e2=29で、疵部の最初のアドレスAs2=25、最後のアドレスAe2=31となり、光強度信号I1、I2、I3の積分値I1s2,I2s2,I3s2は(71,39,59)となる。疵部のアドレスは前ラインと重なるため同一疵と見なされ、濃度積算値Is1,Is2,Is3は(173,89,157)となり、疵ピーク値I1p,I2p,l3pは(22,17,21)となる。図21の(C)に示す次ラインの出力では前ラインと重なる疵アドレスはないため、疵パラメータ演算部35は疵が終わったものとみなし、1ライン目と2ライン目の結果から疵パラメータ極性パターンIppと変化量を示す値パターンVppを演算する。このとき濃度積算値は全てプラスであるから、極性パターンIppを(+,+,+)として、光強度信号I1を基準に濃度積算値(Is1,Is2,Is3)=(173,89,157)を規格化した値パターンVppは(1.0,0.51,0.91)、最大濃度積算値IsMaxは「173」、疵ピーク値Ipeakは「22」となり、算出した極性パターンIpp=(+,+,+)と値パターンVpp=(1.0,0.51,0.91)をパターン記憶部35に格納する。また、疵パラメータ演算部34は最大濃度積算値IsMax=173と最大疵ピーク値Ipeak=22を光記憶部36に記憶させる。
【0086】
基準パターン記憶部37には疵の程度に応じて複数の疵種に対応する極性パターンと値パターンが実験で定められて、例えば図22に示すように、基準パターンとして格納してある。図22において、疵種A〜疵種Lは例えば有害度が低い疵から有害度が高い疵の順に疵種を示し、疵種A〜疵種Lに対応する極性パターンと値パターンの基準値を示す。また、等級パターン記憶部39には疵種A〜疵種Lに応じて最大濃度積算値と最大疵ピーク値と疵の等級を示す相関をあらかじめ調べて、図23に示すように等級判定基準値が格納してある。疵種判定部38はパターン記憶部35に記憶された極性パターンと値パターン例えば図21に示す例の場合、極性パターンIpp=(+,+,+)と値パターン=(1.0,0.51,0.91)と、図22に示す基準パターン記憶部37に記憶された基準パターンとを比較して疵種を判定する。例えば図21に示す場合には疵種Aと判定する。
【0087】
一方、疵等級判定部40は光量記憶部36に記憶した最大濃度積算値IsMaxと最大疵ピーク値Ipeak及び疵種判定部38で判定した疵種とを等級パターン記憶部39に疵種A〜疵種Lに応じて記憶してある最大濃度積算値とピーク値と比較して疵の等級を判定する。例えば図23に示すように疵種Aで最大濃度積算値IsMax=150、最大疵ピーク値Ipeak=10の場合には疵の等級を「軽」と判定し、最大濃度積算値IsMax=150、最大疵ピーク値Ipeak=20の場合には疵の等級を「中」と判定する。疵種Aで最大濃度積算値IsMax=1200、最大疵ピーク値Ipeak=35の場合には疵の等級を「重」と判定するが、最大疵ピーク値Ipeak=20を越えない場合は、疵の等級を「中」と判定する。最大濃度積算値IsMax=3000であれば最大疵ピーク値Ipeakに関係なく疵の等級を「重」と判定する。疵種Cで最大濃度積算値IsMax=700、最大疵ピーク値Ipeak=15の場合には疵の等級を「軽」と判定する。疵種Cで最大濃度積算値IsMax=400のときは等級判定により有害な疵とは判定されない。このように最大濃度積算値IsMaxと最大疵ピーク値Ipeakと疵種により疵の等級を判定するから、鋼板4の表面に生じた凹凸のない模様状疵だけでなく凹凸状の疵の程度を精度よく判別することができる。疵等級判定部40は疵種判定部38で判定した疵種と判別した疵の等級を出力部41に送る。出力部41は疵等級判定部40から出力される疵種と疵の等級を表示装置や記録装置に出力する。
【0088】
この疵の等級判定を行う疵特徴量として最大濃度積算値IsMaxと各チャンネルにおける濃度積算値Is1,Is2,Is3と濃度積算値の和ΣIjを使用し、等級判定の閾値を最適化したときの等級判定疵数の結果と目視判定疵数の結果を図24に示す。図24に示すように、最大濃度積算値IsMaxを使用したときに目視判定による軽欠陥と中欠陥及び重欠陥で一致した数の合計が最大であり最もよく一致した。また、IsMax,IS1,Is2,Is3及びΣIjのそれぞれの判定に、さらに最大疵ピーク値Ipeakを考慮したときの等級判定疵数の結果と目視判定疵数の結果を図25に示す。図25に示すように最大疵ピーク値Ipeakを考慮することにより、目視判定との一致率は更に向上することが確認できた。
【0089】
また、図26(a)の側面図と(b)の上面図に示す光学系1aを使用しても良い。この光学系1aの受光部61は、レンズの前に検光角βがそれぞれ−45度,45度,0度に設定された検光子62a,62b,62cを有する3台のリニアアレイカメラ63a,63b,63cから構成されている。そして各リニアアレイカメラ63a〜63cの各光軸は互いに平行に維持されている。また、各リニアアレイカメラ63a〜63cの視野のずれは信号処理部31で補正している。信号処理部31は、各リニアアレイカメラ63a〜63cからの信号毎に2値化,疵候補領域抽出,特徴量演算までを行い、各疵候補領域の代表座標を比較することにより、各リニアアレイカメラ63a〜63cの疵候補領域の対応付けを行っている。
【0090】
この実施例においても、前記実施例と同様な結果を得ることができる。また、このように各リニアアレイカメラ63a〜63cの光軸が互いに平行に維持されていると、3台のリニアアレイカメラ63a〜63cの光学条件は全く同一となり、各画素も同一サイズとなる。また、3台のリニアアレイカメラ63a〜63cを配置しているので、ビームスプリッタを用いるのに比べて光量の損失がなくなり、より効率良く測定することができる。また、このような信号処理を行うことにより、各CCD間の画素毎の位置合わせを省略することも可能である。
【0091】
【発明の効果】
この発明は以上説明したように、被検査面に対して一定入射角で偏光を入射し、その反射光の異なる複数の偏光の光強度分布を検出し、検出した強度分布を正規化し、正常部に対する疵部の異なる偏光の光強度信号の変化極性と変化量とを算出し、算出した変化極性と変化量とをそれぞれあらかじめ定めたパターンと比較して疵種を判定するようにしたから、簡単な処理で疵種を迅速に判定することができる。
【0092】
また、各受光光学系から出力された光強度分布から光量変化の積分値及びピーク値の最大値を選択し、選択した最大濃度積算値と最大疵ピーク値及び疵種から疵の等級を判定するから、凹凸のない模様状疵だけでなく凹凸状の疵の程度を簡単な処理で精度良く判別することができる。
【0093】
さらに、簡単な処理で迅速に疵種と疵の等級を判定するから、装置自体の構成を簡略化することができるとともに、高速で移動しているシ−ト状製品の表面にある異常部をオンラインで精度良く検出することができる。
【図面の簡単な説明】
【図1】鋼板表面のミクロな凹凸形状を示す説明図である。
【図2】鋼板表面の光学的反射を示す断面模式図である。
【図3】鋼板表面の反射光の角度分布を示す説明図である。
【図4】ヘゲ欠陥を示す説明図である。
【図5】鋼板表面の反射光量の角度分布の違いを示す説明図である。
【図6】法線角度をテンパ部の面積率との関係を示す説明図である。
【図7】微小面素の法線角度を示す説明図である。
【図8】重み関数を示す説明図である。
【図9】線状拡散光源からの光の鋼板表面における反射特性を示す説明図である。
【図10】線状拡散光源からの光の鋼板表面における反射を示す説明図である。
【図11】直線偏光を鋼板表面に入射したときの反射光を示す説明図である。
【図12】直線偏光を鋼板表面に入射したときの反射光を示す他の説明図である。
【図13】微小面素からの反射光の楕円偏光状態を示す説明図である。
【図14】微小面素の法線角度と重み関数の関係を示す説明図である。
【図15】微小面素の法線角度と重み関数の関係を示す他の説明図である。
【図16】鋼板の反射特性を示す説明図である。
【図17】この発明の実施例の光学系を示す配置図である。
【図18】光学系の動作を示す配置説明図である。
【図19】3板式偏光リニアアレイカメラの構成図である。
【図20】信号処理部の構成を示すブロック図である。
【図21】疵信号を示す光強度分布図である。
【図22】疵種と極性パターンと値パターンの相関を示す基準パターン図である。
【図23】疵種と疵特徴量と等級の相関を示す基準パターン図である。
【図24】最大疵ピーク値を考慮せずに濃度積算値による疵の等級判定疵数の結果を示す比較図である。
【図25】最大疵ピーク値を考慮した疵の等級判定疵数の結果を示す比較図である。
【図26】他の実施例の光学系を示し、(a)は側面図、(b)は上面図である。
【符号の説明】
4 鋼板
21 光学系
22 投光部
23 3板式偏光リニアアレイカメラ
24 光源
25 偏光子
26 ビームスプリッタ
27 検光子
28 リニアアレイセンサ
31 信号処理部
32 前処理部
33 メモリ
24 疵パラメータ演算部
35 パターン記憶部
36 光量記憶部
37 基準パターン記憶部
38 疵種判定部
39 等級パターン記憶部
40 疵等級判定部
41 出力部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface defect inspection apparatus that optically detects surface defects on a surface to be inspected by irradiating light to a non-inspection surface such as a surface of a thin steel plate.
[0002]
[Prior art]
Surface flaw inspection that optically detects surface flaws existing on the surface to be inspected by irradiating light to the surface to be inspected such as the surface of a thin steel plate and analyzing the reflected light from the surface to be inspected has various conventional Is proposed and implemented.
[0003]
For example, Japanese Patent Application Laid-Open No. 58-204353 proposes a surface flaw detection method for a metal object in which light is incident on a subject surface and specular reflection light and diffuse reflection light from the subject surface are detected by a camera. . In this surface flaw detection method, light is incident on the surface of the subject at an angle of 35 to 75 degrees, and the reflected light from the surface of the subject is reflected at an angle within 20 degrees from the regular reflection direction and the incident direction or the regular reflection direction. Light is received by two cameras installed in the direction. The received light signals of these two cameras are compared and, for example, the logical sum of them is obtained. Only when two cameras detect an abnormal value at the same time, the corresponding abnormal value is regarded as a scratch, thereby realizing a surface flaw detection method that is not affected by noise.
[0004]
Japanese Laid-Open Patent Publication No. 60-228943 proposes a method for inspecting the surface of a subject by receiving backscattered light from the subject. In this wrinkle inspection method, light is incident on the stainless steel plate at a large incident angle, and reflected light returning to the incident side, that is, backscattered light, is detected, thereby detecting the baldness on the surface of the stainless steel plate.
[0005]
Furthermore, Japanese Patent Application Laid-Open No. 8-178867 proposes a flat steel hot flaw detector by detecting a plurality of backscattered reflected lights. This flat steel hot flaw detector detects pruritus on a hot rolled flat bar. In this flaw detector, the heel slope angle of the pruritus is 10 to 40 degrees, and a plurality of cameras are arranged in the backward diffuse reflection direction so as to cover all the regular reflection light from the heel slope in this range. ing.
[0006]
Also, surface measuring devices using polarized light have been proposed in Japanese Patent Application Laid-Open Nos. 57-166533 and 9-166552. In the measuring apparatus proposed in Japanese Patent Application Laid-Open No. 57-166533, a 45-degree direction deflection is incident on a measurement object, and reflected light is received by a polarization camera. In a polarization camera, reflected light is split into three using a beam splitter inside the camera, and is received through polarization filters having different azimuth angles. And the technique which displays three signals from a polarization camera on a monitor by the signal processing similar to a color TV system, and visualizes a polarization state is disclosed. This technology uses ellipsometry technology, and the light source is preferably parallel light, for example, laser light is used.
[0007]
Further, in the surface inspection apparatus proposed in Japanese Patent Laid-Open No. 9-166552, the surface of the steel sheet is inspected using ellipsometry in the same manner as the technique described in Japanese Patent Laid-Open No. 57-166533. .
[0008]
[Problems to be solved by the invention]
However, each of the measurement techniques proposed in each of the above publications is intended to detect wrinkles having remarkable unevenness, or to detect wrinkles in which foreign matters such as oxide films are present. It has been difficult to reliably capture all wrinkles with respect to a pattern-like bald defect or the like having no remarkable unevenness.
[0009]
For example, the flaw detection method described in Japanese Patent Laid-Open No. 58-204353 has two cameras that receive specularly reflected light and scattered reflected light. The purpose of the flaw detection method is to detect the logic of detection signals in the two cameras. It is removal of the influence of noise by sum. Therefore, the wrinkle signal can be captured by both cameras for wrinkles having remarkable unevenness, that is, wrinkles that are cracked, wrinkled, or turned up. However, in the case of a wrinkle such as a pattern-like bald defect that has no remarkable unevenness that can only be captured by either camera, it is not possible to detect all the wrinkles.
[0010]
In addition, the surface condition inspection method disclosed in Japanese Patent Application Laid-Open No. 60-228943 is directed to a raised bald ridge that has been manifested as a stainless steel plate having a small surface roughness. Therefore, the present invention cannot be applied to a steel plate having a rough surface that reflects the light that returns to the incident side even if there is no raised part that has not been revealed or in which no part exists.
[0011]
The flat steel hot flaw detector disclosed in Japanese Patent Application Laid-Open No. 8-178867 is intended for scraping flaws and is based on capturing specularly reflected light on the scissors slope. In the case of moths such as moths, there are some that cannot be captured by the backscattered reflected light, and there has been a problem of leaking detection. Further, once the camera is installed and it is determined which angle of reflection component is received, there is a problem that the camera position cannot be easily changed.
[0012]
Furthermore, the measuring device disclosed in Japanese Patent Laid-Open No. 57-166533 and the surface inspection device disclosed in Japanese Patent Laid-Open No. 9-166552 use ellipsometry technology, and the thickness and refractive index of the thin transparent layer and the unevenness of the physical property values Can be detected. However, even if the collar part originally had a physical property value different from that of the base material part, such as a surface-treated steel sheet, for an object covered with the same physical property value from above There was a problem that the effectiveness was reduced.
[0013]
In ellipsometry, it is necessary to receive reflected light from the same point at the corresponding pixel of each CCD and calculate the ellipsometric parameters for each pixel. For this reason, in Japanese Patent Application Laid-Open No. 57-166533, the reflected light is split into three by a beam splitter and detected by three CCDs, and there is a problem that the amount of light is reduced and it is difficult to align pixels between CCDs. .
[0014]
In Japanese Patent Laid-Open No. 7-28633, three cameras are arranged in the steel plate traveling direction, vertically or horizontally, or the inclination of the three cameras is changed so that the same area is viewed. . However, there is a problem that the processing when the speed of the steel plate is changed is complicated. In addition, the optical conditions are not the same because the angles of the cameras are different. Therefore, there is a problem that pixel alignment is difficult.
[0015]
Furthermore, in Japanese Patent Application Laid-Open Nos. 58-204353 and 8-178867, the optical axes of a plurality of cameras are not common and the emission angles are different, so that the field sizes of the corresponding pixels of the two obtained images are different. In addition, there is a problem that the visual field is displaced when there is a variation in the distance due to the flickering of the surface to be inspected or the thickness of the object. In particular, Japanese Patent Application Laid-Open No. 58-204353 has a serious problem because two cameras are required to perform a logical sum for the same field of view.
[0016]
In a surface inspection apparatus incorporated in a product quality inspection line, it is an absolute condition that no defects are detected from the viewpoint of quality assurance for manufactured products. However, the surface flaw inspection apparatus that has been inspected for surface-treated steel sheets and the like has not been put to practical use.
[0017]
The present invention has been made in view of such circumstances, and the surface cracks on the surface to be inspected by distinguishing and detecting the specular reflection component and the specular diffuse reflection component included in the reflected light from the surface to be inspected. A surface inspection device that can reliably detect pattern-like hege defects such as twists and twists and turns, can exhibit high defect detection accuracy, and can be fully incorporated into product quality inspection lines It is intended to provide.
[0018]
[Means for Solving the Problems]
The surface inspection apparatus according to the present invention includes a light projecting unit, a light receiving unit, and a signal processing unit, the light projecting unit makes polarized light incident on the surface to be inspected, and the light receiving unit receives polarized light at different angles in at least three directions. A plurality of light receiving optical systems that detect the reflected light reflected from the surface to be inspected and convert it into an image signal, and the signal processing unit converts the light intensity distribution output from each light receiving optical system to normal on the surface of the surface to be inspected. Standardized so that the light intensity of the part becomes a predetermined reference value, and 疵 is extracted from the amount of change in light intensity, and the normalized change polarity of the light intensity in the 疵 region and integration of the amount of change in light intensity exceeding the threshold Light intensity distribution output from each light receiving optical system by comparing the value with a predetermined pattern to determine the species From The integrated value of the light intensity change amount exceeding the threshold value in the buttock Calculate for each light receiving optical system, select the maximum value from the integral values calculated for each light receiving optical system, It is characterized by determining the grade of cocoon.
[0019]
A surface inspection apparatus according to a second aspect of the invention has a light projecting unit, a light receiving unit, and a signal processing unit, the light projecting unit makes polarized light incident on the surface to be inspected, and the light receiving unit is polarized light having at least three different angles. A plurality of light receiving optical systems for receiving light, detecting reflected light reflected by the surface to be inspected and converting it into an image signal, and the signal processing unit converts the light intensity distribution output from each light receiving optical system to the surface to be inspected. Normalize the light intensity of the normal part of the skin to a predetermined reference value, extract wrinkles from the light intensity change amount, and change the light intensity change amount that exceeds the normalized change polarity and threshold of light intensity in the wrinkle region The light intensity distribution output from each light receiving optical system by comparing the integral value of From the absolute value of the peak value of the light intensity change when the reference value of the light intensity change amount is 0, Integral value of the change in light intensity exceeding the threshold For each light receiving optical system, select the maximum value from the calculated peak value and integral value for each light receiving optical system, and select the It is characterized by determining the grade of cocoon.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
First, the form of optical reflection on the surface of the steel sheet to be inspected by the surface defect inspection apparatus of the present invention will be described in relation to the micro uneven shape on the surface of the steel sheet. For example, when the object to be inspected is an alloyed galvanized steel sheet, as shown in FIG. 1 (a), the underlying cold-rolled steel sheet passes through an alloying furnace after being hot-dip galvanized. During this time, the iron element of the underlying steel plate 1 diffuses into the zinc of the plating layer 2 and usually forms columnar crystals 3 of the alloy as shown in FIG. The plated steel plate 4 is then temper rolled with rolls 5a and 5b. Then, as shown in FIG. 1 (d), particularly protruding portions in the columnar crystal 3 are flattened by the rolls 5 a and 5 b, and other portions remain in the original shape of the column crystal 3. The portion flattened by the temper rolling rolls 5a and 5b is referred to as a tempered portion 6, and the other tempered rolling portions 5a and 5b other than the original concavo-convex shape are left non-tempered. This will be referred to as part 7.
[0021]
FIG. 2 is a schematic cross-sectional view modeling what kind of optical reflection occurs on the surface of the steel plate 4 having such a temper portion 6 and a non-temper portion 7. The surface (surface to be inspected) of the steel plate 4 is composed of innumerable minute surface elements 13 facing various directions when viewed microscopically. Incident light 8 incident on the tempered portion 6 crushed by the temper rolling rolls 5 a and 5 b is specularly reflected in the regular reflection direction of the steel plate 4 to become specular reflection light 9. On the other hand, the incident light 8 incident on the non-tempered portion 7 that leaves the original structure of the columnar crystal 3 with which the temper rolling rolls 5a and 5b do not abut is one minute surface element on each surface of the columnar crystal 3 when viewed microscopically. Although it is reflected in a specular manner by one, the reflection direction is a specular diffuse reflection light 10 that does not necessarily coincide with the regular reflection direction of the steel plate 4. Therefore, the angle distribution of each reflected light of the temper portion 6 and the non-temper portion 7 on the surface of the steel plate 4 is as shown in FIG. 3A and FIG. That is, sharp mirror surface reflection occurs in the tempered portion 6 in the regular reflection direction of the steel sheet, and the non-tempered portion 7 becomes reflected light having a spread corresponding to the angular distribution of the minute surface elements on the surface of the columnar crystal 3. As described above, the reflected light from the temper portion 6 is referred to as specular reflected light 9, and the reflected light from the non-tempered portion 7 is referred to as specular diffuse reflected light 10. Since the temper portion 6 and the non-temper portion 7 are macroscopically mixed, the angular distribution of the reflected light observed with an optical measuring instrument such as a camera is specularly reflected as shown in FIG. The angular distributions of the light 9 and the specular diffuse reflection light 10 are added according to the respective area ratios of the temper portion 6 and the non-temper portion 7.
[0022]
As described above, the tempered portion 6 and the non-tempered portion 7 have been described by taking the alloyed galvanized steel plate as an example. However, the tempered portion 6 and the non-tempered portion 7 generally hold for other steel plates in which a flat portion is generated by temper rolling.
[0023]
Next, the optical reflection characteristics of a defect called a pattern-like hege defect that does not have remarkable unevenness, which is a detection target of the present invention, will be described. As shown in FIG. 4, the shave defect (shave part) 11 found in the alloyed hot dip galvanized steel sheet has a shave defect in the cold-rolled steel sheet before plating, and the plating layer 2 is formed thereon. In addition, alloying of hege defects due to diffusion of iron elements in the underlying steel sheet 1 has progressed.
[0024]
Generally, compared with the base material 12 which shows the normal part of the steel plate 4, the shaving part 11 produces a difference in plating thickness, for example, or a difference in the degree of alloying. As a result, for example, when the plating thickness of the shaving portion 11 is thick and convex with respect to the base material 12, temper rolling is applied so that the area of the temper portion 6 is larger than that of the non-temper portion 7. On the other hand, when the plating thickness of the shaving portion 11 is thin and concave compared to the base material 12, the tempering roll 5a, 5b does not come into contact with the shaving portion 11, and the non-tempered portion 7 occupies the majority. . Further, when the alloying of the shaving portion 11 is shallow, the angle distribution of the micro surface elements is strong in the direction of the steel plate direction, and the diffusibility is small.
[0025]
Next, it will be described how the pattern-like shaving defect looks due to the difference in surface properties between the shaving portion 11 and the base material portion 12. If the difference between the shaving portion 11 and the base material portion 12 is classified based on the above-described model, it is generally divided into the following three types.
[0026]
(A) The area ratio of the tempered portion 6 in the shaving portion 11 and the angle distribution of the minute surface elements of the non-tempered portion 7 are the area ratio of the tempered portion 6 in the base material portion 12 and the angle of the minute surface elements of the non-tempered portion 7. Different from the distribution (FIG. 6A, FIG. 5A).
[0027]
(B) Although the area ratio of the temper portion 6 in the spatula portion 11 is different from the area ratio of the temper portion 6 in the base material portion 12, the angle distribution of the minute surface elements of the non-temper portion 7 in the spatula portion 11 is the base material portion. 12 is the same as the angular distribution of the minute surface elements of the non-tempered portion 7 (FIG. 6B, FIG. 5B).
[0028]
(C) Although the angular distribution of the minute surface element of the non-tempered portion 7 in the shaving portion 11 is different from the angular distribution of the minute surface element of the non-tempered portion 7 of the base material portion 12, the area of the tempered portion 6 in the shaving portion 11 The rate is not different from the area rate of the temper portion 6 in the base material portion 12 (FIGS. 6C and 5C).
[0029]
As shown in FIG. 7, the inclination angle of the normal direction of the fine surface element 13 with which the incident light 8 abuts with respect to the normal direction of the steel sheet 4 is defined as the normal angle ξ of the fine surface element 13. FIGS. 6A, 6B, and 6C show the relationship with the area ratio S (ξ) of the temper portion 6 for the three cases (a), (b), and (c) described above.
[0030]
The difference in the area ratio S (ξ) of the temper portion 6 and the angular distribution of the minute surface element 13 is observed as the difference in the angular distribution of the reflected light amount as shown in FIGS. 5 (a), (b), and (c). The In the drawing, the angle distribution indicated by the solid line is the beveled portion angle distribution 11 a corresponding to the beveled portion 11, and the angle distribution indicated by the dotted line is the base material portion angle distribution 12 a corresponding to the base material portion 12.
[0031]
That is, FIG. 5A shows a case where there is a difference between the specular reflection component and the specular diffuse reflection component between the bevel portion angle distribution 11a and the base material portion angle distribution 12a, and FIG. Shows a case where a difference exists only in the specular reflection component, and FIG. 5C shows a case where a difference exists only in the specular diffuse reflection component. When there is a difference in the area ratio S (ξ) of the temper portion 6 between the bevel portion angle distribution 11a and the base material portion angle distribution 12a, as shown in FIGS. 5 (a) and 5 (b), The difference is observed from the specular direction. Specifically, the area ratio S (ξ) of the tempered portion 6 of the ledge 11 is measured when the reflected light of the ledge 11 is measured from the regular reflection direction and when the reflected light of the base material 12 is measured. When the area ratio S (ξ) of the temper portion 6 of the base material portion 12 is larger than that of the base material portion 12, the bald portion 11 looks relatively bright. On the contrary, when the temper ratio 6 of the shaving portion 11 is smaller than the base material portion 12, the shaving portion 11 is observed relatively darker than the base material portion 12.
[0032]
When there is no difference in the area ratio S (ξ) of the temper portion 6 between the bevel portion angle distribution 11a and the base material portion angle distribution 12a, as shown in FIG. The presence of the bald portion 11 cannot be observed only by observing the difference. However, when there is a difference in the diffusivity (angle distribution) of the specular diffuse reflection component, a defect is observed from a diffusion direction other than the regular reflection direction as shown in FIG.
[0033]
For example, when the diffusivity (angle distribution) of the specular diffuse reflection component of the bald portion 11 is small, the bald portion 11 is generally observed brightly from the diffusion direction relatively close to the regular reflection direction, and the brightness increases as the distance from the regular reflection direction increases. Becomes smaller and becomes unobservable at a certain angle. Further, when moving away from the regular reflection direction, the bevel 11 is observed darkly.
[0034]
In order to reliably detect such a shaved part 11 from the base material part 12, in FIG. 6, the angle (normal angle ξ) of the reflected light from the micro-surface element 13 is extracted. It is necessary to. For example, as in the example of FIGS. 5A and 5B, detecting the difference between the beveled portion 11 and the base material portion 12 in the regular reflection direction means that the angle of the minute surface element 13 shown in FIG. The normal angle ξ = 0 of the minute surface element 13 is extracted from the distribution, and the difference between the bald portion 11 and the base material portion 12 is detected.
[0035]
Here, when mathematically expressing that the reflected light with the normal angle ξ = 0 of the minute surface element 13 is extracted, the characteristic (area ratio S (ξ)) of FIG. 6 is shown in FIG. 8A. This corresponds to integration by multiplying a function indicating the extraction characteristic represented by the delta function δ (ξ) shown (hereinafter, this function is referred to as a weighting function Ι (ξ)).
[0036]
Further, for example, when the reflected light is measured at an angular position of 40 degrees shifted by 20 degrees from the regular reflection direction at an incident angle of 60 degrees, the weighting function な る as a delta function δ (ξ + 10) as shown in FIG. This corresponds to calculation using (ξ).
[0037]
As shown in FIG. 7, the relationship between the reflection angle θ degree, the normal angle ξ of the microscopic surface element 13, and the incident angle θ of the incident light 8 can be obtained by Equation (1) by simple geometric consideration.
θ degree = −θ + 2ξ (1)
That is, it can be understood that what kind of angle (normal angle ξ) the reflected light from the minute surface element 13 is extracted corresponds to what weight function Ι (ξ) is designed.
[0038]
From this point of view, a weight function I (ξ) for detecting each bald part 11 as shown in FIGS. 6A, 6B, and 6C from the base material part 12 is considered. The delta functions δ (ξ) and δ (ξ + 10) shown in FIGS. 8A and 8B are also effective weight functions I (ξ). Note that the weighting function Ι (ξ) does not necessarily need to be a delta function δ (ξ) with an infinitesimal width for extracting only the specific normal angle shown in FIG. 8, and may have a certain signal width. Is possible.
[0039]
However, in such a discrimination method, the fields of view of the two optical systems cannot be made the same. Also, once a camera is installed to measure diffusely reflected light, it is not easy to change its weight function Ι (ξ) because it is necessary to change the installation position of the camera.
[0040]
For the former problem, measurement on the same optical axis is required. That is, it is desirable to capture both the specular reflection component and the specular diffuse reflection component only by measurement from the regular reflection direction of the steel plate 4 instead of capturing diffuse reflection light. For the latter problem, it is desirable that the weight function Ι (ξ) can be set with a certain degree of freedom.
[0041]
Therefore, in the present invention, a linear light source having diffusion characteristics, that is, a linear diffused light source is used as a light source instead of a parallel light source such as a laser. Further, since it is necessary to separate and extract the specular reflection component and the specular diffuse reflection component from the regular reflection direction of the steel plate 4, polarized light is used. In order to explain the effect of this linear diffused light source, as shown in FIGS. 9A and 9B, the linear diffused light source 14 is arranged in parallel to the surface of the steel plate 4 and is in a plane perpendicular to the light source. Consider the reflection characteristics when one point on the steel plate 4 is observed from the regular reflection direction of the steel plate, which is the direction in which the incident angle coincides with the output angle.
[0042]
As shown in FIG. 9 (a), in the case of the incident light 8 irradiated from the central part of the linear diffused light source 14, the incident light 8 incident on the temper part 6 is specularly reflected, and in the regular reflection direction of the steel sheet. Everything is caught. On the other hand, the light incident on the non-tempered portion 7 is reflected in a specularly diffuse manner, and only the portion reflected by the minute surface element 13 that happens to be in the same direction as the normal direction of the steel plate is captured. Since there are very few micro-surface elements 13 facing in such a direction, the specular reflected light from the temper portion 6 is dominant among the reflected light captured by the light receiving camera arranged in the regular reflection direction of the steel plate. .
[0043]
On the other hand, as shown in FIG. 9B, in the case of the incident light 8 irradiated from a position outside the central portion of the linear diffused light source 14, the light incident on the temper portion 6 is specularly reflected and reflected by the steel plate. Reflects in a direction different from the regular reflection direction. Therefore, the specularly reflected light cannot be captured in the regular reflection direction of the steel plate. On the other hand, the light incident on the non-tempered portion 7 is reflected in a specular diffusion manner, and the portion reflected in the regular reflection direction of the steel plate is captured by the light receiving camera. Therefore, all the reflected light captured by the light receiving camera disposed in the regular reflection direction of the steel sheet is specular diffuse reflected light reflected by the non-tempered portion 7.
[0044]
When the above two cases are combined, the specular reflection light from the temper portion 6 is captured by the observation from the regular reflection direction of the steel plate among all the incident light 8 irradiated from the entire longitudinal direction of the linear diffused light source 14. This is the sum of the specular diffuse reflected light from the non-tempered portion 7.
[0045]
Next, how the polarization characteristics change when observed from the regular reflection direction of the steel plate 4 using the linear diffused light source 14 will be described. In general, in reflection on a mirror-like metal surface, polarization characteristics are preserved by reflection in light parallel to the incident surface (p-polarized light) or light perpendicular to the incident surface (s-polarized light). . That is, the light is output as p-polarized light or s-polarized light. Further, when linearly polarized light having an arbitrary polarization angle having a p-polarized component and an s-polarized component at the same time is reflected, it is output as elliptically polarized light according to the reflectance non-tan Ψ and phase difference Δ of p and s-polarized light. To do.
[0046]
A case where the alloyed galvanized steel sheet is irradiated with light from the linear diffusion light source 14 will be described with reference to FIGS. As shown in FIG. 10A, the light emitted from the central portion of the linear diffused light source 14 is specularly reflected by the temper portion 6 of the steel plate 4 and observed in the regular reflection direction of the steel plate. In this regard, the reflection on the general mirror-like metal surface is established as it is.
[0047]
On the other hand, as shown in FIG. 10 (b), the light emitted from a position outside the central portion of the linear diffused light source 14 is specularly reflected by the minute surface element 13 inclined on the crystal surface of the non-tempered portion 7 of the steel plate 4. And observed in the direction of regular reflection of the steel sheet. In this case, even when p-polarized light parallel to the incident surface of the steel plate 4 is incident, the incident surface is not parallel to the minute surface element 13 in consideration of the inclined minute surface element 13 that actually reflects. Since it is linearly polarized light having both p and s polarization components, it is emitted as elliptically polarized light. The same applies when s-polarized light is incident from the linear diffused light source 14.
[0048]
Further, when linearly polarized light having an arbitrary polarization angle α having both p and s polarization components is incident on the steel plate 4 from the linear diffuse light source 14, the minute surface element 13 tilted from a position other than the central portion of the linear diffuse light source 14. Since the light incident on the light beam acts with an inclination of the polarization angle α, the shape of the elliptically polarized light emitted in the regular reflection direction of the steel sheet is different from the light incident from the center portion of the linear diffused light source 14 and specularly reflected by the temper portion 6. .
[0049]
Hereinafter, a case where linearly polarized light having p and s amphoteric components is incident on the steel plate 4 from the linear diffused light source 14 will be described in detail. First, as shown in FIG. 11, the incident light 8 from the linear diffused light source 14 is linearly polarized by the polarizing plate 15 having an azimuth angle (polarization angle) α, and then incident on the steel plate 4 arranged horizontally, As described above, the regular reflected light is received by the light receiving camera 16, and the incident light 8 emitted from the point C on the linear diffused light source 14 is specularly reflected by the temper portion 6 in the steel plate 4, and The component diffusely reflected from the minute surface element 13 having a normal angle ξ = 0 in which the normal line in the non-tempered portion 7 is oriented in the vertical direction of the steel plate 4 is reflected from the zero point on the steel plate 4 toward the light receiving camera 16. It contributes to the light to be.
[0050]
On the other hand, as shown in FIG. 12, for the incident light 8 from the point A shifted from the point O of the steel plate 4 on the linear diffused light source 14 by the angle φ, the specular reflection component is different from the direction of the light receiving camera 16. Since the light is reflected in the direction, only the specular diffuse reflection component by the minute surface element 13 having the normal angle ξ described above contributes.
[0051]
Here, the relationship between the angle φ indicating the incident direction of the incident light 8 and the normal angle ξ of the micro surface element 13 is determined by a simple geometrical consideration using the incident angle θ of the incident light 8 with respect to the steel plate 4. , (2).
[0052]
[Expression 1]
Figure 0003826578
[0053]
Next, the polarization state of the light reflected in this way will be considered. The polarization state Ec after the incident light 8 emitted from the point C passes through the polarizing plate 15 having the azimuth angle (polarization angle) α and is specularly reflected at the point O on the steel plate 4 is generally used in polarization optics. Using the Jones matrix,
Ec = T · Ein (3)
It is expressed. However, Ein shows the right-angled polarization vector of the azimuth angle (polarization angle) (alpha) of the polarizing plate 15, and T shows the reflective characteristic matrix of the steel plate 4. FIG. The linearly polarized light vector Ein and the reflection characteristic matrix T are expressed as follows, where the amplitude reflectance ratio of p and s-polarized light is tan Ψ, the phase difference between the reflectances of p and s-polarized light is Δ, and the amplitude reflectance of s-polarized light is rs. It is given by equations (4) and (5).
[0054]
[Expression 2]
Figure 0003826578
[0055]
Similarly, the incident light 8 emitted from the point A on the linear diffused light source 14 is reflected in the direction of the light receiver 16 by the minute pixel 13 having the normal angle ξ. If it is orthogonal to the analyzer of the light receiving camera 16, it is given by equation (6). In the equation (6), R is a rotation matrix and is given by the equation (7).
[0056]
[Equation 3]
Figure 0003826578
[0057]
Equation (3) is a special case where the normal angle ξ = 0 of the micro-surface element 13 in Equation (6), and both the specular reflection component and the specular diffuse reflection component are unified using Equation (6). Can think. Equation (6) is calculated, and the elliptical polarization state of the reflected light from the micro-surface element 13 having the normal angle ξ is illustrated in FIG. Here, the azimuth angle (polarization angle) α of incident polarized light is 45 degrees, the incident angle θ is 60 degrees, and the reflection characteristic of the steel plate 4 is the arctangent Ψ = 28 degrees of the amplitude reflectance ratio of p and s polarized light, and p and s polarized light. As shown in FIG. 13, the ellipse tilts as the normal angle ξ = 0, that is, the value of the normal angle ξ changes with respect to the ellipse in the case of specular reflection. Can understand. Therefore, for example, by inserting the analyzer 17 in front of the light-receiving camera 16 and setting the detection angle β, it is selected which normal angle ξ to extract more reflected light from the micro-surface element 13. be able to.
[0058]
In order to quantify this, as shown in FIG. 12, the polarization state Eo after inserting the analyzer 17 having the detection angle β with respect to the reflected light of the polarization state Ea expressed by the equation (3) is expressed as When calculated, equation (8) is obtained.
[0059]
[Expression 4]
Figure 0003826578
[0060]
In equation (8), A is a matrix representing the analyzer 17, and is represented by equation (9).
[0061]
[Equation 5]
Figure 0003826578
[0062]
Next, the light intensity of the reflected light from the minute surface element 13 having the normal angle ξ detected by the light receiving camera 16 is obtained from the equation (8). As described above, when the area ratio of the corresponding micro-surface element 13 is S (ξ), the following equation (10) is established.
[0063]
[Formula 6]
Figure 0003826578
[0064]
As described above, Ι (ξ, β) in the above equation is a weighting function indicating how much the reflected light from the micro-surface element 13 having the normal angle ξ can be extracted, and the polarization characteristics of the optical system and the subject. Depends on. And the reflectance rs of the steel plate 4 to it 2 And incident light intensity Ep 2 And the area ratio S (ξ) are multiplied by the detected light intensity.
[0065]
When considering an object with a uniform surface material such as a surface-treated steel plate, the reflectance rs 2 The value of is considered constant. Moreover, incident light quantity Ep 2 If the amount of incident light is uniform regardless of the position of the light source, it may be a constant value. Therefore, in order to obtain the light intensity detected by the light receiving camera 16, the area ratio S (ξ) and the weighting function Ι (ξ, β) of the minute surface element 13 having the normal angle ξ may be considered.
[0066]
Here, the weight function Ι (ξ, β) is considered. When trying to select the analysis angle βo of the analyzer 17 that maximizes the contribution of the normal angle ξ from the micro-surface element 13, the candidate is given by solving the following equation (11) for β. .
[0067]
[Expression 7]
Figure 0003826578
[0068]
According to the equation (11), when the normal angle ξ = 0, that is, the detection angle β that maximizes the contribution of the specular reflection component, the detection angle β is about −45 degrees. However, also here, as the reflection characteristic of the steel plate 4, the arc tangent Ψ = 28 degrees of the reflectance ratio described above and the phase difference Δ = 120 degrees are adopted, and the orientation of the polarizing plate 15 with respect to the incident light 8 from the linear diffused light source 14 An angle (polarization angle) α = 45 degrees was adopted.
[0069]
FIG. 14 shows the relationship between the normal angle ξ of the minute surface element 13 and the weighting function Ι (ξ, −45) when the analysis angle β of the analyzer 17 is −45 degrees. However, the maximum value of the weight function Ι (ξ, −45) is normalized to [1] for easy viewing. From the characteristics of FIG. 14, the normal angle ξ = 0 degrees, that is, the specular reflection component is the most dominant, and conversely, the specular diffuse reflection light from the micro-surface element 13 near the normal angle ξ = ± 35 degrees is the least extracted. I understand that.
[0070]
Further, when the detection angle β of the analyzer 17 that best extracts the reflected light having the normal angle ξ = ± 35 ° is obtained from the equations (10) and (11), it is approximately β = 45 degrees. . FIG. 15 shows the relationship between the normal angle ξ of the minute surface element 13 and the weighting function Ι (ξ, 45) with respect to the analysis angle β = 45 degrees of the analyzer 17. Here, the reason why the characteristics of the weight function Ι (ξ, β) in FIG. 15 are not symmetrical is that the microscopic surface is considered based on the incident surface (the plane stretched by the incident light 8 and the reflected light with respect to the microsurface element 13). When the normal angle ξ of the element 13 is positive, the apparent azimuth angle (polarization angle) α of the incident light 8 is reduced (approaching p-polarized light), and the p-polarized reflectance of the steel plate 4 is reflected by s-polarized light. By being less than rate.
[0071]
Also, the weight functions ξ (ξ, 0) and Ι (ξ, β) calculated for β = 0 ° and 90 ° which are characteristics between the analysis angles β = −45 ° and 45 ° of the analyzer 17 are also obtained. This is shown in FIG. Ι (ξ, 0) has a peak in the vicinity of −50 degrees, but in many cases, the influence in the vicinity of ξ = 15 degrees is the largest due to the area ratio of the measurement target. As shown by the equation (10), the reflected light intensity from the micro-surface element 13 having the normal angle ξ is given by the product of the weighting function Ι (ξ, β) and the area ratio S (ξ). The light intensity received by the light receiving camera 16 is obtained by integrating [S (ξ) · Ι (ξ, β)] with respect to the normal angle ξ. For example, when the reflected light from the steel plate 4 having reflection characteristics as shown in FIG. 16 is received through the analyzer 17 having the detection angle β of −45 degrees, the area ratio S (ξ) shown in FIG. The light intensity actually received is obtained by integrating the weights indicated by the weight function Ι (ξ, β) shown in FIG.
[0072]
Therefore, a case is considered where there is a shaving portion 11 having the characteristics shown in FIGS. 5A, 5B, and 5C on the surface of the steel plate 4. FIG. Each area ratio S (ξ) in that case is as shown in FIGS. 6 (a), 6 (b), and 6 (c).
[0073]
First, let us consider a case in which only the specular reflection component is different as shown in FIGS. 5B and 6B. The light intensity when such a wrinkle is received through the analyzer 17 having the detection angle β = −45 degrees is the weighting function I () shown in FIG. 14 with the area ratio S (ξ) shown in FIG. Since it corresponds to an integral obtained by multiplying by (ξ, β), it is possible to detect a difference in the amount of reflected light between the base material portion 12 and the shaving portion 11.
[0074]
Further, as shown in FIG. 6B, there is no difference in the specular diffuse reflection component with respect to the light intensity when the same light is received through the analyzer 17 having the detection angle β = 45 degrees. As apparent from the fact that the integration is performed by applying the weighting function Ι (ξ, β) with the angle β = 45 degrees, the difference between the base material portion 12 and the shaving portion 11 cannot be detected.
[0075]
If only the specular diffuse reflection component is different as shown in FIGS. 5C and 6C, it can be detected by passing through the analyzer 17 having the detection angle β = −45 degrees. First, it can be detected when it passes through the power analyzer 17 having a light detection angle β = 45 degrees. However, the normal angle ξ at which the difference between the specular diffuse reflection components of the base material portion 12 and the shaving portion 11 has disappeared was around the normal angle ξ = ± 20 degrees in FIG. If there is a wrinkle whose angle happens to be around ± 30 degrees, it cannot be detected even through the analyzer 17 having the detection angle β = 45 degrees. In that case, another analyzer 17 having a light detection angle β (for example, 90 °) such as another weight function, for example, Ι (ξ, 90), is prepared and received by the third light receiving camera 16. You can do it.
[0076]
In general, the reflection characteristics of the base material portion 12 and the shaving portion 11 on the surface of the steel plate 4 are any of FIGS. 5A, 5B, and 5C, so that the shading portion 11 is not overlooked. It is necessary to extract and receive the reflected light from the micro-surface element 13 having three corresponding normal angles ξ by using the analyzer 17 having three different detection angles β. When there is a difference between the specular reflection component and the specular diffuse reflection component as shown in FIGS. 5A and 6A, basically, for example, an analyzer of either −45 degrees or +45 degrees. The difference between the base material portion 12 and the shaving portion 11 can be detected even by the reflected light that has passed through 17. Therefore, in the present invention, the linear diffused light source 14 is used, and the first light receiving means has a mirror surface compared to the specular diffuse reflection component among the specular reflection component and the specular diffuse reflection component included in the specular reflection light from the surface to be inspected. More reflection components are extracted and received, and the specular diffuse reflection component is compared with the specular reflection component of the specular reflection component and the specular diffuse reflection component included in the specular reflection light from the surface to be inspected by the second light receiving means. Extract more.
[0077]
Therefore, for example, even with the first and second light receiving means that receive only the regular reflection light from the surface to be inspected, each reflection characteristic of the surface of the steel plate 4 shown in FIGS. 5 (a), 5 (b), and 5 (c). The presence of the shaving portion 11 can be reliably detected in comparison with the base material portion 12.
[0078]
With such an optical system, measurement is performed on a common optical axis from the regular reflection direction, so two signals corresponding to specular reflection and specular diffuse reflection can be obtained without being affected by fluctuations in the steel plate distance or speed changes. It is possible to obtain a surface wrinkle inspection apparatus that can detect a pattern-like bald wrinkle having no remarkable unevenness without causing a leakage.
[0079]
Therefore, in the present invention, the light projecting portion is arranged so that the polarized light is incident on the entire width direction of the surface to be inspected at a constant incident angle with respect to the surface to be inspected, and the light receiving portion that receives the reflected light from the surface to be inspected. Is placed at a predetermined position. The light receiving unit includes, for example, a beam splitter that separates incident light into, for example, three beams, three sets of linear array cameras that include, for example, CCD sensors that separately input the three separated beams and output image signals, and beams An analyzer is provided between the splitter and each linear array camera, and converts the reflected light from the non-inspected surface into polarized light having a different vibration surface. The three analyzers are arranged so that the respective azimuth angles, that is, the angles that the transmission axis forms with the incident surface of the surface to be inspected are, for example, 0 degrees, 45 degrees, and -45 degrees.
[0080]
The signal processing unit performs shading correction on the output image signal from each linear array camera to normalize and flatten the normal part so that it has the center density of all the gradations, and generates a light intensity signal indicating a relative change with respect to the normal part. Convert. A change in polarization is detected by comparing the change polarity and the change amount of the distribution of the three kinds of light intensity signals indicating the relative change with respect to the normal part with respective predetermined patterns. From the change polarity of the three kinds of light intensity signals with respect to the normal part and the magnitude of the change amount, the type of soot having a surface property different from that of the base material is determined.
[0081]
Also, the signal processing unit calculates the peak value of the absolute value of the pixel of light quantity change and the integral value of the absolute value of the light quantity exceeding the reference value from the light intensity distribution output from each light receiving optical system together with the above processing, The pattern is compared with a pattern predetermined for each type from the peak value of the system and the maximum value of the integrated light quantity, and for example, a grade of a wrinkle having a surface geometric shape different from that of a normal part such as an uneven wrinkle is determined.
[0082]
【Example】
FIG. 17 is a layout view showing an optical system according to an embodiment of the present invention. As shown in the figure, the optical system 21 includes a light projecting unit 22 and a three-plate polarization linear array camera 23. The light projecting unit 22 is for making polarized light incident on the surface of an object to be inspected, for example, a steel plate 4 at a constant incident angle, and includes a light source 24 and a polarizer 25 provided in front of the light source 24. The light source 24 includes a rod-like light emitting source and a cylindrical lens extending in the width direction of the steel plate 4, and irradiates light having a uniform intensity distribution over the entire width direction of the steel plate 4. The polarizer 25 is made of, for example, a polarizing plate or a polarizing filter, and is arranged such that an angle α between the transmission axis P and the incident surface of the steel plate 4 is 45 degrees, as shown in the layout explanatory diagram of FIG. The three-plate polarization linear array camera 23 includes a beam splitter 26, three analyzers 27a, 27b, and 27c, and three linear array sensors 28a, 28b, and 28c, as shown in the configuration diagram of FIG. The beam splitter 26 is composed of three prisms, and two reflecting surfaces having semi-transmission properties, in which a dielectric multilayer film is deposited on the incident surface, are provided, and the first reflecting surface 26a on which the reflected light from the steel plate 4 is incident is The transmittance and the reflectance are in a ratio of about 2 to 1, and the transmittance and the reflectance are in a ratio of 1: 1 in the second reflecting surface 26b on which the light transmitted through the first reflecting surface 26a is incident. The reflected light from the steel plate 4 is separated into three beams having the same light quantity. Further, the optical path lengths from the entrance surface of the beam splitter 26 to the exit surface of the three beams separated are the same. The analyzer 25a is provided in the optical path of the transmitted light of the second reflecting surface 26b, and is arranged so that the azimuth angle, that is, the angle β that the transmission axis forms with the incident surface of the steel plate 4 is 0 degree as shown in FIG. The analyzer 27b is provided in the optical path of the reflected light of the second reflecting surface 26b and is arranged so that the azimuth angle β is 45 degrees, and the analyzer 27c is provided in the optical path of the reflected light of the first reflecting surface 26a. The azimuth angle β is arranged to be −45 degrees. The linear array sensors 28a, 28b, and 28c are composed of CCD sensors, for example, and are arranged at the subsequent stages of the analyzers 27a, 27b, and 27c, respectively. In addition, slits 29a, 29b, and 29c for cutting the multiple reflected light and unnecessary scattered light in the beam splitter 26 are provided between the beam splitter 26 and the analyzers 27a, 27b, and 27c. A lens group 30 is provided. Further, the gains of the linear array sensors 28a, 28b, and 28c are adjusted so as to output the same signal when light having the same light intensity is incident.
[0083]
Since the analyzers 27a to 27c and the linear array sensors 28a to 28c are integrally provided in the optical path of the three beams separated from the incident light in this way, the linear array sensors 28a to 28c and the like are transported by the steel plate 4. When detecting the reflected light from the steel plate 4 arranged in the vicinity of the road, it is not necessary to adjust the position of the linear array sensors 28a to 28c and the like, and the reflected light from the same position of the steel plate 4 can be detected at the same timing. it can. In addition, since the three sets of linear array sensors 28a to 28c are housed together in the three-plate polarization linear array camera 23 and are downsized, the three-plate polarization linear array camera 23 can be easily placed in the optical path of the reflected light of the steel plate 4. Arrangement positions can be arbitrarily selected, and the degree of freedom of arrangement of the optical system 1 can be improved.
[0084]
The linear array sensors 28a to 28c of the three-plate polarization linear array camera 23 are connected to the signal processing unit 31 as shown in the block diagram of FIG. The signal processing unit 31 includes signal preprocessing units 32a, 32b, and 32c, memories 33a, 33b, and 33c, a soot parameter calculation unit 34, a pattern storage unit 35, a light amount storage unit 36, a reference pattern storage unit 37, and a soot type determination unit 38. A grade pattern storage unit 39, a heel grade determination unit 40, and an output unit 41 are provided. The signal preprocessing units 32a to 32c perform shading correction for correcting the unevenness of sensitivity in the width direction and the like of the polarized light intensity signals I1, I2, and I3 output from the linear array sensors 28a to 28c, and then perform normal signal processing. Is normalized so that the signal of the normal part becomes 128 gradations, which is the central density of 255 gradations, and the normalized light intensity signals I1, I2, I3 are stored in the memories 33a to 33c, respectively. The eyelid parameter calculation unit 34 is determined in advance with respect to each point of the eyelid that appears in the distribution of the light intensity signals I1, I2, and I3 stored in the memories 33a to 33c with reference to 128 gradations that are values of the normal part. For the change point exceeding the threshold value, the first width direction address A1s1, A2s1, A3s1 of the change point and the last width direction address A1e1, A2e1, A3s1 of the change point are obtained, and among the first width direction addresses A1s1, A2s1, A3s1 The first address is As1, and the last address in the width direction A1e1, A2e1, A3s1 is Ae1. Thereafter, the density integrated values I1s1, I2s1, I3s1 and the peak value I1p1, when the reference value “128” is set to “0” for each point exceeding the threshold for the signal between the first address As1 and the last address Ae1 I2p1 and I3p1 are obtained. The parameter calculation unit 34 performs the same calculation for the next output of the linear array sensors 28a to 28c that are repeatedly scanned, and the width direction addresses As2 and Ae2 of the next change points are the width direction addresses of the previous change points. If there is an address that overlaps As1 and Ae1, the current density integrated values I1s2, I2s2, and I3s2 are added to the previous density integrated values I1s1, I2s1, and I3s1, and the combined density integrated values Is1, Is2, and ls3 are obtained. Further, when there is a heel peak value that exceeds the previous heel peak value I1p1, I2p1, I3p1, the previous heel peak value is updated to be a new heel peak value I1p, I2p, I3p. This is repeated for each line output until the width direction addresses of the eyelid signals do not overlap. When there are no overlapping width direction addresses, the eyelid parameter calculation unit 34 considers that the measurement of one eyelid has been completed. The maximum concentration integrated value for calculating the polarity pattern Ipp and the value pattern Vpp indicating the amount of change from the obtained connected concentration integrated values Is1, Is2, Is3 and the soot peak values I1p, I2p, I3p and determining the grade of the buttocks IsMax and maximum peak value Ipeak are calculated, and each feature amount is output to the pattern storage unit 35 and the light amount storage unit 36. The pattern storage unit 35 stores the calculated polarity pattern Ipp and the value pattern Vpp, and the light amount storage unit 36 stores the calculated maximum density integrated value IsMax and the maximum peak value Ipeak. The reference pattern storage unit 37 stores in advance various polarity patterns and value patterns, and types corresponding thereto. The species determination unit 38 compares the polarity pattern Ipp and the value pattern Vpp stored in the pattern storage unit 35 with various polarity patterns and value patterns stored in the reference pattern storage unit 37 to determine the species. The grade pattern storage unit 39 stores in advance a grade reference pattern indicating the grade of the soot relative to the maximum density integrated value IsMax and the maximum soot peak value Ipeak for each type of soot. The soot grade determination unit 40 has a maximum density integrated value IsMax, a maximum soot peak value Ipeak, and a soot type determined by the soot type determination unit 38 stored in the light amount storage unit 36 and a grade reference pattern stored in the grade pattern storage unit 39. Compare to determine the grade of the bag. The output unit 41 outputs the soot type and soot grade output from the soot grade determining unit 40 to a display device or a recording device (not shown).
[0085]
Next, an operation when the surface of the steel plate 4 is inspected by the surface inspection apparatus configured as described above will be described. Polarized light emitted from the light projecting unit 22 and reflected by the surface of the steel plate 4 to the steel plate 4 moving at a constant speed is received by the three-plate polarization linear array camera 23. The reflected light of the steel plate 4 incident on the three-plate polarization linear array camera 23 is separated by the beam splitter 26 and passes through the analyzers 27a-27c and enters the linear array sensors 28a-28c. When the linear array sensors 28a to 28c detect the light intensity of the reflected light, the analyzers 27a to 28c having different azimuth angles β are provided on the front surfaces of the linear array sensors 28a to 28c. 28 c detects the light intensities I 1, I 2 and I 3 of different polarizations and sends them to the signal processing unit 31. The signal preprocessing units 32a to 32c of the signal processing unit 31 perform shading correction or the like for correcting the sensitivity unevenness in the width direction or the like of the polarized light intensity signals I1, I2 and I3 output from the linear array sensors 28a to 28c. From FIG. 21, for example, the normal signal is normalized so as to have 128 gradations, and the normalized light intensity signals I1, I2, and I3 are stored in the memories 33a to 33c, respectively, as shown in FIG. To do. In FIG. 21, (a) shows the distribution of the light intensity signal I1, (b) shows the distribution of the light intensity signal I2, (c) shows the distribution of the light intensity signal I3, (A) shows the first line, B) shows the distribution of the light intensity signal on the second line, and (C) shows the distribution of the light intensity signal on the third line. The eyelid parameter calculation unit 34 uses a threshold value that is determined in advance for each point of the eyelid portion that appears in the distribution of the light intensity signals I1, I2, and I3 stored in the memories 33a to 33c with reference to a normal gradation of 128 gradations, for example, ± The first and last width direction addresses As1 and Ae1 of the change points are obtained from the change points exceeding 8 gradations, and the polarity pattern Ipp and change amount of the maximum density integrated value when the reference value “128” is set to “0”. The indicated value pattern Vpp is calculated. In the example shown in FIG. 21A, the width direction addresses of the normalized light intensity signals I1, I2, and I3 are A1s1 = 26, A1e1 = 31, A2s1 = 28, A2e1 = 31, A3s1 = 24, A3e1 = 29, the heads of the light intensity signals I1, I2, and I3 are ORed together to obtain the first address As1 = 24 and the last address Ae1 = 31. The integrated values I1s1, I2s1, and I3s1 of the light intensity signals I1, I2, and I3 when the normal value 128 gradation is “0” are (102, 50, 98), and the peak values I1p, I2p, and I3p are (22 , 15, 21). The address of the buttock in the output of the next line shown in FIG. 21B is A1s2 = 26, A1e2 = 31, A2s2 = 28, A2e2 = 29, A3s2 = 25, A3e2 = 29, and the first address of the buttock As2 = 25, the last address Ae2 = 31, and the integrated values I1s2, I2s2, I3s2 of the light intensity signals I1, I2, I3 are (71, 39, 59). Since the address of the heel overlaps with the previous line, it is regarded as the same heel, the integrated density values Is1, Is2, Is3 are (173, 89, 157), and the heel peak values I1p, I2p, l3p are (22, 17, 21). It becomes. In the output of the next line shown in (C) of FIG. 21, since there is no trap address overlapping with the previous line, the trap parameter calculation unit 35 assumes that the trap has ended, and determines the trap parameter polarity from the results of the first and second lines. A pattern Ipp and a value pattern Vpp indicating the amount of change are calculated. At this time, since the density integrated values are all positive, the polarity pattern Ipp is set to (+, +, +), and the density integrated value (Is1, Is2, Is3) = (173, 89, 157) with reference to the light intensity signal I1. The normalized value pattern Vpp is (1.0, 0.51, 0.91), the maximum density integrated value IsMax is “173”, the peak value Ipeak is “22”, and the calculated polarity pattern Ipp = (+ , +, +) And the value pattern Vpp = (1.0, 0.51, 0.91) are stored in the pattern storage unit 35. Further, the soot parameter calculation unit 34 stores the maximum density integrated value IsMax = 173 and the maximum soot peak value Ipeak = 22 in the light storage unit 36.
[0086]
In the reference pattern storage unit 37, polarity patterns and value patterns corresponding to a plurality of types are determined by experiments according to the degree of wrinkles, and are stored as reference patterns, for example, as shown in FIG. In FIG. 22, species A to species L indicate species in the order of species having a low degree of harm to species having a high degree of harm, for example, and reference values of polarity patterns and value patterns corresponding to species A to species L are shown. Show. Further, in the grade pattern storage unit 39, the correlation indicating the maximum concentration integrated value, the maximum soot peak value, and the soot grade according to the soot species A to soot L is examined in advance, and as shown in FIG. Is stored. In the case of the polarity pattern and value pattern stored in the pattern storage unit 35, for example, in the example shown in FIG. 21, the polarity type determination unit 38 has a polarity pattern Ipp = (+, +, +) and a value pattern = (1.0, 0. 51, 0.91) and the reference pattern stored in the reference pattern storage unit 37 shown in FIG. For example, in the case shown in FIG.
[0087]
On the other hand, the soot class determining unit 40 stores the maximum density integrated value IsMax, the maximum soot peak value Ipeak, and the soot type determined by the soot type determining unit 38 stored in the light quantity storage unit 36 in the class pattern storage unit 39 in the types A to A. The maximum concentration integrated value stored in accordance with the seed L and the peak value are compared with each other to determine the grade of the cocoon. For example, as shown in FIG. 23, when the maximum density integrated value IsMax = 150 and the maximum soot peak value Ipeak = 10 as shown in FIG. 23, the soot grade is determined to be “light”, and the maximum density integrated value IsMax = 150, maximum When the peak value Ipeak = 20, the rank of the peak is determined as “medium”. When the maximum concentration integrated value IsMax = 1200 and the maximum soot peak value Ipeak = 35 for the soot seed A, the soot grade is determined as “heavy”, but when the maximum soot peak value Ipeak = 20 is not exceeded, The grade is judged as “medium”. If the maximum concentration integrated value IsMax = 3000, the soot grade is determined as “heavy” regardless of the maximum soot peak value Ipeak. If the maximum concentration integrated value IsMax = 700 and the maximum soot peak value Ipeak = 15 for the soot seed C, the soot grade is determined as “light”. When the maximum concentration integrated value IsMax = 400 for the soot type C, no harmful soot is determined by the grade determination. Thus, since the grade of the wrinkles is determined based on the maximum concentration integrated value IsMax, the maximum wrinkle peak value Ipeak, and the wrinkle type, not only the wrinkled pattern wrinkles generated on the surface of the steel plate 4 but also the degree of the wrinkled wrinkles is accurate. Can be distinguished well. The soot grade determining unit 40 sends the soot grade determined as the soot type determined by the soot type determining unit 38 to the output unit 41. The output unit 41 outputs the soot type and soot grade output from the soot grade determining unit 40 to a display device or a recording device.
[0088]
The maximum density integrated value IsMax, the density integrated values Is1, Is2, Is3 and the sum ΣIj of the density integrated values in each channel are used as the characteristic amount for determining the class of the kite, and the grade when the threshold for class judgment is optimized The result of the judgment power and the result of the visual judgment power are shown in FIG. As shown in FIG. 24, when the maximum density integrated value IsMax was used, the total of the number of coincidence of the light defect, the medium defect, and the heavy defect by visual determination was the largest and the best coincidence. In addition, FIG. 25 shows the results of the class judgment power and the visual judgment power when the maximum power peak value Ipeak is further considered in the determination of IsMax, IS1, Is2, Is3, and ΣIj. As shown in FIG. 25, it was confirmed that the coincidence ratio with the visual determination was further improved by considering the maximum peak value Ipeak.
[0089]
Moreover, you may use the optical system 1a shown to the side view of Fig.26 (a), and the top view of (b). The light receiving unit 61 of the optical system 1a includes three linear array cameras 63a, 62a, 62b, 62c having analyzers β-45, 45, and 0 degrees in front of the lens. 63b, 63c. The optical axes of the linear array cameras 63a to 63c are maintained parallel to each other. Further, the signal processing unit 31 corrects the visual field shift of each of the linear array cameras 63a to 63c. The signal processing unit 31 performs binarization, hail candidate area extraction, feature amount calculation for each signal from each of the linear array cameras 63a to 63c, and compares the representative coordinates of each hail candidate area, thereby comparing each linear array. Correlation of wrinkle candidate areas of the cameras 63a to 63c is performed.
[0090]
In this embodiment, the same result as in the previous embodiment can be obtained. If the optical axes of the linear array cameras 63a to 63c are maintained in parallel with each other as described above, the optical conditions of the three linear array cameras 63a to 63c are exactly the same, and the pixels have the same size. Further, since the three linear array cameras 63a to 63c are arranged, there is no loss of light amount compared to the case of using the beam splitter, and the measurement can be performed more efficiently. Further, by performing such signal processing, it is possible to omit the alignment for each pixel between the CCDs.
[0091]
【The invention's effect】
As described above, the present invention makes polarized light incident on the surface to be inspected at a constant incident angle, detects the light intensity distribution of a plurality of polarized lights having different reflected light, normalizes the detected intensity distribution, It is easy to calculate the change polarity and change amount of the light intensity signal of polarized light with different polarization at the heel, and compare the calculated change polarity and change amount with the predetermined pattern respectively to determine the species. It is possible to quickly determine the species by simple processing.
[0092]
In addition, from the light intensity distribution output from each light receiving optical system, the integrated value of the light quantity change and the maximum value of the peak value are calculated. Selected and selected Maximum concentration integrated value and maximum peak value And varieties Since the grade of the wrinkles is determined from the above, it is possible to accurately determine not only the pattern wrinkles having no irregularities but also the degree of the irregular wrinkles with a simple process.
[0093]
Furthermore, since the type of soot and the grade of soot are determined quickly with a simple process, the configuration of the device itself can be simplified, and abnormal parts on the surface of a sheet-like product moving at high speed can be detected. It can be detected online with high accuracy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a micro uneven shape on a steel sheet surface.
FIG. 2 is a schematic cross-sectional view showing optical reflection on a steel sheet surface.
FIG. 3 is an explanatory diagram showing an angle distribution of reflected light on a steel sheet surface.
FIG. 4 is an explanatory view showing a beard defect.
FIG. 5 is an explanatory diagram showing a difference in angular distribution of the amount of reflected light on the steel sheet surface.
FIG. 6 is an explanatory diagram showing the relationship between the normal angle and the area ratio of the temper portion.
FIG. 7 is an explanatory diagram showing normal angles of minute surface elements.
FIG. 8 is an explanatory diagram showing a weight function.
FIG. 9 is an explanatory diagram showing reflection characteristics of light from a linear diffused light source on a steel plate surface.
FIG. 10 is an explanatory diagram showing the reflection of light from a linear diffused light source on the surface of a steel plate.
FIG. 11 is an explanatory diagram showing reflected light when linearly polarized light is incident on a steel sheet surface.
FIG. 12 is another explanatory view showing reflected light when linearly polarized light is incident on the steel sheet surface.
FIG. 13 is an explanatory diagram showing an elliptical polarization state of light reflected from a micro-surface element.
FIG. 14 is an explanatory diagram showing a relationship between a normal angle of a minute surface element and a weight function.
FIG. 15 is another explanatory diagram showing the relationship between the normal angle of the minute surface element and the weighting function.
FIG. 16 is an explanatory diagram showing the reflection characteristics of a steel plate.
FIG. 17 is a layout view showing an optical system according to an embodiment of the present invention.
FIG. 18 is a layout explanatory diagram showing the operation of the optical system.
FIG. 19 is a configuration diagram of a three-plate polarization linear array camera.
FIG. 20 is a block diagram illustrating a configuration of a signal processing unit.
FIG. 21 is a light intensity distribution diagram showing a wrinkle signal.
FIG. 22 is a reference pattern diagram showing the correlation between the seed type, the polarity pattern, and the value pattern.
FIG. 23 is a reference pattern diagram showing a correlation between a cocoon type, a cocoon feature amount, and a grade.
FIG. 24 is a comparative diagram showing the result of the soot class determination power by the integrated concentration value without considering the maximum soot peak value.
FIG. 25 is a comparison diagram showing the results of the number of wrinkle determination judgments considering the maximum wrinkle peak value.
FIGS. 26A and 26B show an optical system according to another embodiment, in which FIG. 26A is a side view and FIG. 26B is a top view.
[Explanation of symbols]
4 Steel plate
21 Optical system
22 Projector
23 Three-plate polarization linear array camera
24 Light source
25 Polarizer
26 Beam splitter
27 Analyzer
28 Linear array sensor
31 Signal processor
32 Preprocessing section
33 memory
24 疵 Parameter calculator
35 Pattern memory
36 Light quantity storage
37 Reference pattern storage unit
38 Species determination unit
39 grade pattern storage
40 疵 grade judgment part
41 Output section

Claims (2)

投光部と受光部と信号処理部とを有し、投光部は被検査面に偏光を入射し、受光部は少なくとも3方向の異なる角度の偏光を受光する複数の受光光学系を有し、被検査面で反射した反射光を検出して画像信号に変換し、信号処理部は各受光光学系から出力された光強度分布を被検査面の地肌正常部の光強度があらかじめ定めた基準値となるように規格化し、光強度変化量から疵を抽出し、疵領域における規格化した複数の光強度の変化極性と閾値を上回る光強度変化量の積分値とをあらかじめ定めたパターンと比較し疵種を判定し、
各受光光学系から出力された光強度分布から、疵部において閾値を上回る光強度変化量の積分値を各受光光学系毎に算出し、各受光光学系毎に算出された積分値のなかから最大値を選択し、選択した値と判定した疵種により疵の等級を判定することを特徴とする表面検査装置。
A light projecting unit, a light receiving unit, and a signal processing unit; the light projecting unit is configured to make polarized light incident on the surface to be inspected; and the light receiving unit includes a plurality of light receiving optical systems that receive polarized light of at least three different angles. The reflected light reflected from the surface to be inspected is detected and converted into an image signal, and the signal processing unit uses the light intensity distribution output from each light receiving optical system as a reference in which the light intensity of the normal portion of the surface of the surface to be inspected is predetermined. Standardized to be a value, extracted 疵 from the light intensity change amount, and compared the normalized change intensity of multiple light intensities and the integrated value of the light intensity change amount exceeding the threshold with a predetermined pattern Judging the seed
From the light intensity distribution output from the light-receiving optical system, calculating an integral value of light intensity variation exceeding the threshold value in a flaw portion for each light-receiving optical system, from among the integrated values calculated for each light receiving optical system A surface inspection apparatus characterized by selecting a maximum value and determining a grade of wrinkles according to a selected hull type .
投光部と受光部と信号処理部とを有し、投光部は被検査面に偏光を入射し、受光部は少なくとも3方向の異なる角度の偏光を受光する複数の受光光学系を有し、被検査面で反射した反射光を検出して画像信号に変換し、信号処理部は各受光光学系から出力された光強度分布を被検査面の地肌正常部の光強度があらかじめ定めた基準値となるように規格化し、光強度変化量から疵を抽出し、疵領域における規格化した複数の光強度の変化極性と閾値を上回る光強度変化量の積分値とをあらかじめ定めたパターンと比較し疵種を判定し、
各受光光学系から出力された光強度分布から、前記光強度変化量の前記基準値を0としたときの光強度変化のピーク値の絶対値と、閾値を上回る光強度変化量の積分値とを各受光光学系毎に算出し、各受光光学系毎に算出されたピーク値と積分値のなかから最大値をそれぞれ選択し、選択した値と判定した疵種により疵の等級を判定することを特徴とする表面検査装置。
A light projecting unit, a light receiving unit, and a signal processing unit; the light projecting unit is configured to make polarized light incident on the surface to be inspected; and the light receiving unit includes a plurality of light receiving optical systems that receive polarized light of at least three different angles. The reflected light reflected from the surface to be inspected is detected and converted into an image signal, and the signal processing unit uses the light intensity distribution output from each light receiving optical system as a reference in which the light intensity of the normal portion of the surface of the surface to be inspected is predetermined. Standardized to be a value, extracted 疵 from the light intensity change amount, and compared the normalized change intensity of multiple light intensities and the integrated value of the light intensity change amount exceeding the threshold with a predetermined pattern Judging the seed
From the light intensity distribution output from each light receiving optical system, the absolute value of the peak value of the light intensity change when the reference value of the light intensity change amount is 0, and the integrated value of the light intensity change amount exceeding the threshold value ; For each light receiving optical system, select the maximum value from the peak value and integral value calculated for each light receiving optical system, and determine the grade of the soot based on the selected seed value. Surface inspection device characterized by.
JP23873998A 1998-08-25 1998-08-25 Surface inspection device Expired - Fee Related JP3826578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23873998A JP3826578B2 (en) 1998-08-25 1998-08-25 Surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23873998A JP3826578B2 (en) 1998-08-25 1998-08-25 Surface inspection device

Publications (2)

Publication Number Publication Date
JP2000065756A JP2000065756A (en) 2000-03-03
JP3826578B2 true JP3826578B2 (en) 2006-09-27

Family

ID=17034547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23873998A Expired - Fee Related JP3826578B2 (en) 1998-08-25 1998-08-25 Surface inspection device

Country Status (1)

Country Link
JP (1) JP3826578B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687441B2 (en) * 1999-06-25 2005-08-24 Jfeスチール株式会社 Surface flaw marking device and method of manufacturing metal band with marking
JP4821044B2 (en) * 1999-06-25 2011-11-24 Jfeスチール株式会社 Manufacturing method of metal strip with marking
JP2002303513A (en) * 2001-01-30 2002-10-18 Fujitsu Ltd Observation device
JP4569967B2 (en) * 2005-11-21 2010-10-27 ダイハツ工業株式会社 Rolled material identification method and apparatus
JP5036757B2 (en) * 2009-05-25 2012-09-26 株式会社日立ハイテクノロジーズ Substrate surface inspection apparatus and surface inspection method
CN108007355B (en) * 2017-10-20 2019-06-18 西安电子科技大学 Distress in concrete detection method based on Image distance transform
US11255778B2 (en) * 2018-01-18 2022-02-22 Jfe Steel Corporation Spectroscopic analysis apparatus, spectroscopic analysis method, steel strip production method, and steel strip quality assurance method

Also Published As

Publication number Publication date
JP2000065756A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
JP5104004B2 (en) Surface defect inspection apparatus and surface defect inspection method
JPH09127012A (en) Method and device for detecting surface scratch
JP3882302B2 (en) Surface flaw inspection apparatus and method
JP3826578B2 (en) Surface inspection device
JP3446008B2 (en) Surface inspection equipment
JP3275811B2 (en) Surface defect inspection apparatus and method
JP2000065755A (en) Surface inspection apparatus
JP5104443B2 (en) Surface inspection apparatus and method
JP3716650B2 (en) Surface flaw inspection device
JPH09178666A (en) Surface inspection device
JPH09178667A (en) Inspection apparatus for surface
JP2002221495A (en) Inspecting equipment for surface flaw and its method
JP3508589B2 (en) Surface flaw inspection equipment
JP3687441B2 (en) Surface flaw marking device and method of manufacturing metal band with marking
JPH11183400A (en) Surface flaw inspecting device and method
JP3531002B2 (en) Surface inspection device
JP2005221391A (en) Surface flaw inspection device
JPH11183396A (en) Surface flaw inspecting device and method
JP3275737B2 (en) Surface inspection device and surface inspection method
JP4821044B2 (en) Manufacturing method of metal strip with marking
JP3591161B2 (en) Surface inspection equipment
JPH11295240A (en) Method and equipment for inspecting surface flaw
JPH09159621A (en) Surface inspection device
JP6028828B2 (en) Surface flaw inspection apparatus and surface flaw inspection method
JPH11183399A (en) Surface flaw inspecting device and surface observing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees