JP3823537B2 - Field emission cathode with focusing electrode - Google Patents

Field emission cathode with focusing electrode Download PDF

Info

Publication number
JP3823537B2
JP3823537B2 JP15439598A JP15439598A JP3823537B2 JP 3823537 B2 JP3823537 B2 JP 3823537B2 JP 15439598 A JP15439598 A JP 15439598A JP 15439598 A JP15439598 A JP 15439598A JP 3823537 B2 JP3823537 B2 JP 3823537B2
Authority
JP
Japan
Prior art keywords
electrode
focusing
focusing electrode
field emission
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15439598A
Other languages
Japanese (ja)
Other versions
JPH11345561A (en
Inventor
和彦 円谷
正晴 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP15439598A priority Critical patent/JP3823537B2/en
Publication of JPH11345561A publication Critical patent/JPH11345561A/en
Application granted granted Critical
Publication of JP3823537B2 publication Critical patent/JP3823537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高精細の電界放出カラーディスプレイなどに用いられる集束電極付電界放出カソードに関するものである。
【0002】
【従来の技術】
金属または半導体表面の印加電界を109 [ボルト/m]程度にすると、トンネル効果により電子が障壁を通過し常温でも真空中に電子放出が行われる。これを電界放出(Field Emissin)という。
このような原理で電子を放出するカソードを電界放出カソード(Field Emissin Cathode)という。半導体微細加工技術を駆使して、ミクロンサイズの電界放出カソードからなる面放出型の電界放出カソードを作成することが可能となり、電界放出ディスプレイ(Field Emissin Display)、リソグラフィー用電子ビーム装置等の電子放出源として用いられている。
【0003】
電界放出ディスプレイにおいては、カソード基板側とアノード基板側とが所定間隔のギャップを隔てて封着され、内部を真空状態とされている。その電界放出カソードとしてスピント型の冷陰極を用いるものでは、引出電極に正のゲート電圧を印加すると、この引出電極の開口部内に設けられたエミッタチップから電界放出により電子が放出され、正電圧が印加されたアノード電極に到達し、アノード電極を被覆する蛍光体が発光して表示動作が行われる。
その際、集束電極と引出電極とを絶縁層上の同一平面に形成して、電界放出カソードから放出された電子ビームを集束させる集束電極付きの電界放出カソードがある。集束電極を設けることにより電子ビームが隣接する蛍光体ドットやアノード基板のガラス部分に射突する割合を減少させ、位置決め精度の余裕を持たせることができる。
【0004】
図6は、従来の集束電極付電界放出カソードの説明図であり、図6(a)は集束電極付電界放出カソードの平面図、図6(b)はこれに対応するアノ−ド基板側のアノード発光面の平面図である。図中、1は引出電極、3は絶縁層、4は開口部、5はコンタクトホール、41は集束電極、21は蛍光体(赤)、22は蛍光体(緑)、23は蛍光体(青)である。
【0005】
図6(a)に示すように、引出電極1は、集束電極41とともに、絶縁層3の同一平面上に形成されている。引出電極1は長方形状であり、複数の開口部4内にコーン状エミッタが設けられている。集束電極41は、横方向(色選択方向)に等間隔に並んだ長方形の窓抜き部を有し、この窓抜き部内に引出電極1が集束電極41と間隔をおいて配置される。窓抜き部は複数個設けられ、各窓抜き部内に1画素の三原色の1つに対応した1個の引出電極1が設けられ、各引出電極1の開口部4内のエミッタチップから電子ビームが放出される。
【0006】
引出電極1と集束電極41との間隔は、引出電極1の長手方向の間隔bと幅方向の間隔aとが等しくされている。図示の例では、引出電極1に複数の開口部4を縦1列に配列したものを示すが、開口部4の列数および開口部4の個数は特に限定されるものではない。引出電極1は、絶縁層3を貫くコンタクトホール5を介して、カソード基板上に形成された図示しない引出線部に接続され、この引出線部は、集束電極41の下をくぐって、引出電極1および集束電極41と同一平面上に形成された横方向に延びる図示しないゲート配線部に別のコンタクトホールを介して接続される。引出電極1,引出線部,ゲート配線部によりゲート電極が構成される。
【0007】
図6(b)に示すアノード側においては、3個の引出電極1に対向して、それぞれ、長方形状の三原色の蛍光体(赤)21、蛍光体(緑)22、蛍光体(青)23が各々のアノード電極に被覆形成されることにより、ストライプ配列されて1画素を構成する。エミッタチップから放出された電子ビームは、集束電極41により集束作用を受けながら、対応する蛍光体(赤)21、蛍光体(緑)22、蛍光体(青)23に射突して各蛍光体を発光させる。
【0008】
図7は、図6に示した集束電極付電界放出カソードによる電子ビームのスポットの説明図である。アノード基板側における発光面の様子を示している。図中、図6と同様な部分には同じ符号を付して説明を省略する。24,25,26は電子ビームのスポットである。
電子ビームの集束特性を評価した結果、図6に示した集束電極付電界放出カソードを用いると、蛍光体21,22,23の長手方向(画素選択方向)が必要以上に集束されることがわかった。
【0009】
蛍光体21,22,23の長手方向の長さに一致するように電子ビームを集束させた場合、図7(a)に示すように、蛍光体21,22,23の幅方向(色選択方向)の集束が不十分になり、電子ビームのスポット24,25,26が隣接する蛍光体21,22,23を発光させる割合が増加して混色不良となる。色選択方向は、寸法的に画素選択方向よりも条件がきびしいため、位置決め精度の影響を受けやすい。
色選択方向の集束を満足させるために、引出電極1と集束電極41との電位差を大きくすると、図7(b)に示すように、画素選択方向は必要以上に集束するため、発光面積が小さくなり、結果的に面平均輝度が小さくなる。
【0010】
長方形状の引出電極1の開口部に設けられたエミッタチップの数が少ない場合、電子ビームを強く集束するほど、図7(c)に示すように、電子ビームのスポット24,25,26は、画素選択方向にバラツキが生じ易くなる。これも、輝度や色バランス等の表示品位に悪影響を及ぼす。
また、引出電極1と集束電極41との電位差を大きくすると、無効となるゲート電極流入電流が増えるため、引出電極1の長手方向(画素選択方向)の寸法を大きくしてエミッタチップ数を増やすにも限度がある。
【0011】
【発明が解決しようとする課題】
本発明は、上述した問題点を解決するためになされたもので、電子ビームのスポットの縦横比を大きくすることができ、その結果、電子ビームのスポットの縦横比を蛍光体形状および蛍光体配列に応じて設定することができる集束電極付電界放出カソードを提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明は、絶縁層、該絶縁層上に形成された縦長形状の引出電極、前記絶縁層および前記引出電極の積層部分に開けられた複数の開口部、該開口部内に設けられたエミッタチップ、および、前記絶縁層上に集束電極を有する集束電極付電界放出カソードであって、前記集束電極は窓抜き部を有し、前記引出電極は前記窓抜き部内に前記集束電極と間隔をおいて配置され、前記引出電極の長手方向の前記間隔が前記引出電極の幅方向の前記間隔よりも長いものである。
【0014】
【発明の実施の形態】
図1は、本発明の第1の実施の形態の集束電極付き電界放出カソードの構造を説明するための平面図である。図2は、図1に示した構造の切断線A−Aに沿う部分断面図である。図中、図6と同様な部分には同じ符号を付して説明を省略する。2は集束電極、11はコーン状エミッタ、12はカソード基板、13は抵抗層である。
この実施の形態の集束電極付き電界放出カソードは、図6,図7を参照して説明した従来のものに比べ、アノード側の蛍光体の縦長形状および色配列に合わせて、引出電極1も縦長形状とするとともに、引出電極1と電子ビームを集束する集束電極2との間隔は、引出電極1の長手方向(色選択方向)の間隔bが幅方向(画素選択方向)の間隔aよりも大きくしたものである。
【0015】
図6を参照して説明した従来技術と同様に、絶縁層3上に形成された引出電極1は長方形状であり、絶縁層3および引出電極1の積層部分に複数の開口部4を有し、この開口部4内にエミッタチップとしてコーン状エミッタ11(図2)が設けられている。集束電極2は、横方向に等間隔に並んだ窓抜き部を有し、この窓抜き部内に引出電極1が集束電極2と間隔をおいて配置されることにより、引出電極1は集束電極2に囲まれている。窓抜き部は、引出電極1の幅方向に3個設けられ、各窓抜き部に引出電極が1つの画素の各色に対応して1個ずつ設けられている。図示の例では、引出電極1に複数の開口部4を縦1列に配列したものを示すが、開口部4の配列数および開口部4の個数は特に限定されるものではない。
【0016】
図2に示すように、引出電極1は、集束電極2とともに、絶縁層3の同一平面上に形成されている。カソード基板12上に抵抗層13が形成され、開口部4における抵抗層13の上にコーン状エミッタ11が形成されている。この断面には現れないが、例えば、図1における集束電極2の窓抜き部の左右の位置にカソード配線部が、カソード基板12の上に縦方向に形成されている。抵抗層13が、このカソード配線部の上を部分的に覆うことにより、コーン状エミッタ11からカソード配線部にカソード電流が流れる。
引出電極1は、コンタクトホール5を介して、カソード基板上に形成された図示しない引出線部に接続され、この引出線部は、集束電極2の下をくぐって、引出電極1および集束電極2と同一平面上に形成され、横方向に延びる図示しないゲート配線部に別のコンタクトホールを介して接続される。カソード配線部とゲート配線部とでマトリクスを構成することにより、電子を放出するコーン状エミッタ11群を選択する。なお、集束電極2に印加する電圧を走査することにより画素の選択を行う場合には、隣接する画素の集束電極2は分離して形成されるが、このような選択が不要な場合には、隣接する集束電極2が一体になるように形成される。
【0017】
図1に示すように、引出電極1と集束電極2との間隔は、引出電極1の長手方向の間隔bが幅方向の間隔aよりも大きくされている。その結果、電子ビームが引出電極1の幅方向よりも長手方向に弱く集束されることになり、電子ビームスポットの縦横比を大きくすることができる。
【0018】
図3は、図1,図2に示した集束電極付き電界放出カソードによる電子ビームのスポットの説明図である。アノード基板側における発光面の様子を示している。図中、図6,図7と同様な部分には同じ符号を付して説明を省略する。
電子ビームのスポット24,25,26の大きさを、図3(a)に示すように、蛍光体(赤)21,蛍光体(緑)22,蛍光体(青)23の各長手方向の全長に一致するように電子ビームを集束させても、電子ビームの集束が引出電極1の幅方向よりも長手方向に弱いことから、幅方向の集束も蛍光体の幅に一致して満足できるものとなる。また、エミッタチップ11の数が少ない場合、電子ビームを強く集束するほど、図3(b)に示すように、寸法が長い長手方向の電子ビームのスポット24,25,26の長さおよび位置にバラツキが生じ易くなるが、長手方向の集束を弱くすることにより、表示品位への影響が緩和される。
【0019】
図4は、本発明の第2の実施の形態の集束電極付電界放出カソードの構造を説明するための平面図である。図中、図6,図1と同様な部分には同じ符号を付して説明を省略する。31はゲート電極、31aは引出線部、31bは引出電極部、32は集束電極である。
この実施の形態の集束電極付き電界放出カソードは、図6,図7を参照して説明した従来のものに比べ、アノード側の蛍光体の縦長形状および色配列に合わせて、引出電極部31bを縦長形状とするとともに、集束電極32は、引出電極31bをこの引出電極31bの幅方向に挟んで配置した構造である。引出電極31bの長手方向(画素選択方向)には集束電極32を設けないようにしている。
【0020】
絶縁層3上に形成された引出電極部31bは長方形状であり、絶縁層3および引出電極31bの積層部分に複数の開口部4を有し、開口部4内にコーン状エミッタが設けられている。引出電極部31bは、長手方向の上下に延びる引出線部31aにより、図示しないゲート配線部に接続されゲート電圧が印加される。引出線部31aは引出電極部31bの幅よりも細くされている。引出電極部31bは、1つの画素の三原色に対応して幅方向に3個設けられる。絶縁層3上に形成された集束電極32も、1つの画素に対して4個設けられたストライプ形状であり、引出電極部31bの長手方向に引出電極部31bよりも長く延びており、3個の引出電極部31bをその幅方向に挟んで配列されている。図示の例では、引出電極部31bに複数の開口部4を縦1列に配列したものを示すが、開口部4の配列数および開口部4の個数は特に限定されるものではない。引出電極部31b、引出線部31aは、集束電極32とともに絶縁層3の同一平面上に形成されている。
【0021】
断面構造の図示は省略するが、カソード基板上に抵抗層が形成され、開口部4における抵抗層の上にコーン状エミッタが形成されている。また、カソード基板12の上には、図4における集束電極32の位置にカソード配線部が形成され、抵抗層がこのカソード配線部の上を部分的に覆うことにより、コーン状エミッタからカソード配線部にカソード電流が流れる。
この図では、引出線部31aを、引出電極部31bおよび集束電極32と同一平面上に上及び下方向に引き出している。しかし、引出線部31aは個々にいずれか一方向にのみ引き出してもよい。また、引出線部31aをカソード基板上に設け、引出電極部31bをコンタクトホールを用いて下層の引出線部31aに接続してもよい。なお、集束電極32に印加する電圧を走査することにより画素の選択を行う場合には、隣接する画素の集束電極32は分離して形成されるが、このような選択が不要な場合には、隣接する集束電極2が一体になるように形成される。
【0022】
図5は、本発明の第3の実施の形態の集束電極付電界放出カソードの構造を説明するための斜視図である。図中、図6,図1,図2と同様な部分には同じ符号を付して説明を省略する。
この実施の形態の集束電極付電界放出カソードは、図1,図2,図3に示した第1の実施の形態のものと比較して、引出電極1と集束電極2とを絶縁層3の異なる高さの平面上に配置し、集束電極2が引出電極1よりもアノード側に近い上層に位置する縦型集束構造である。集束電極2がアノード側に近く配置される結果、集束電圧が同じでも、全方向に集束力を強くすることができる。
【0023】
さらに、引出電極1と集束電極2との水平面上の間隔は、引出電極1の長手方向(色選択方向)の間隔bが幅方向(画素選択方向)の間隔a(図示の例では、a=0)よりも大きくされている。そのため、電子ビームが引出電極1の幅方向よりも長手方向に弱く集束されることになり、第1の実施の形態における図3(a)と同様に、蛍光体(赤)21,蛍光体(緑)22,蛍光体(青)23の各々の長手方向の全長に一致するように電子ビームを集束させても、幅方向の集束も同時に満足できるものとなる。
また、エミッタチップ11の数が少ない場合、電子ビームを強く集束するほど、寸法が長い長手方向の電子ビームのスポット24,25,26にバラツキが生じ易くなるが、図3(b)に示すように表示品位への影響は緩和される。
【0024】
上述した第3の実施の形態は、第1の実施の形態の集束電極付電界放出カソードを縦型集束構造にしたものであるが、図4を参照して説明した第2の実施の形態の集束電極付電界放出カソードを縦型集束構造にしてもよい。
上述した縦型集束構造は、図2に示したような積層構造において、集束電極2のないものをまず形成し、その上層に絶縁層3を再び形成し、その上に集束電極を形成し、その後、引出電極1の上の絶縁層3のみを除去することにより作製することができる。
【0025】
【発明の効果】
本発明の集束電極付電界放出カソードによれば、上述した説明から明らかなように、電子ビームのスポットの縦横比を大きくすることができるという効果がある。その結果、蛍光体形状および蛍光体配列に応じて縦横比を設定することができ、特に、高精細の電界放出カラーディスプレイの電界放出カソードに用いると好適である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の集束電極付電界放出カソードの構造を説明するための平面図である。
【図2】図1に示した構造の切断線A−Aに沿う部分断面図である。
【図3】図1,図2に示した集束電極付電界放出カソードによる電子ビームのスポットの説明図である。
【図4】本発明の第2の実施の形態の集束電極付電界放出カソードの構造を説明するための平面図である。
【図5】本発明の第3の実施の形態の集束電極付き電界放出カソードの構造を説明するための斜視図である。
【図6】従来の集束電極付電界放出カソードの説明図であり、図6(a)は集束電極付電界放出カソードの平面図、図6(b)はこれに対応するアノ−ド基板側のアノード発光面の平面図である。
【図7】図6に示した集束電極付電界放出カソードによる電子ビームのスポットの説明図である。
【符号の説明】
1 引出電極、2,32,41 集束電極、3 絶縁層、4 開口部、5 コンタクトホール、21 蛍光体(赤)、22 蛍光体(緑)、23 蛍光体(青)、24,25,26 電子ビームのスポット、11 コーン状エミッタ、12カソード基板、13 抵抗層、31ゲート電極、31a 引出線部、31b 引出電極部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a field emission cathode with a focusing electrode used for a high-definition field emission color display or the like.
[0002]
[Prior art]
When the applied electric field on the surface of the metal or semiconductor is set to about 10 9 [volt / m], electrons pass through the barrier due to the tunnel effect, and electrons are emitted into the vacuum even at room temperature. This is called field emission.
A cathode that emits electrons based on this principle is called a field emission cathode (Field Emissin Cathode). By making full use of semiconductor microfabrication technology, it becomes possible to create field emission cathodes consisting of micron-sized field emission cathodes, and electron emission from field emission displays, lithography electron beam devices, etc. Used as a source.
[0003]
In the field emission display, the cathode substrate side and the anode substrate side are sealed with a gap of a predetermined interval, and the inside is in a vacuum state. In the case of using a Spindt-type cold cathode as the field emission cathode, when a positive gate voltage is applied to the extraction electrode, electrons are emitted from the emitter tip provided in the opening of the extraction electrode by field emission, and the positive voltage is reduced. When the applied anode electrode is reached, the phosphor covering the anode electrode emits light and a display operation is performed.
In this case, there is a field emission cathode with a focusing electrode that forms the focusing electrode and the extraction electrode on the same plane on the insulating layer and focuses the electron beam emitted from the field emission cathode. By providing the focusing electrode, it is possible to reduce the rate at which the electron beam strikes the adjacent phosphor dots or the glass portion of the anode substrate, and to provide a margin for positioning accuracy.
[0004]
6A and 6B are explanatory views of a conventional field emission cathode with a focusing electrode. FIG. 6A is a plan view of the field emission cathode with a focusing electrode, and FIG. 6B is a corresponding side of the anode substrate. It is a top view of an anode light emission surface. In the figure, 1 is an extraction electrode, 3 is an insulating layer, 4 is an opening, 5 is a contact hole, 41 is a focusing electrode, 21 is a phosphor (red), 22 is a phosphor (green), and 23 is a phosphor (blue). ).
[0005]
As shown in FIG. 6A, the extraction electrode 1 is formed on the same plane of the insulating layer 3 together with the focusing electrode 41. The extraction electrode 1 has a rectangular shape, and a cone-shaped emitter is provided in the plurality of openings 4. The focusing electrode 41 has rectangular window extraction portions arranged at equal intervals in the horizontal direction (color selection direction), and the extraction electrode 1 is disposed in the window extraction portion with a distance from the focusing electrode 41. A plurality of window extraction portions are provided, one extraction electrode 1 corresponding to one of the three primary colors of one pixel is provided in each window extraction portion, and an electron beam is emitted from the emitter tip in the opening 4 of each extraction electrode 1. Released.
[0006]
The distance between the extraction electrode 1 and the focusing electrode 41 is such that the distance b in the longitudinal direction of the extraction electrode 1 is equal to the distance a in the width direction. In the illustrated example, a plurality of openings 4 are arranged in one vertical column on the extraction electrode 1. However, the number of the openings 4 and the number of the openings 4 are not particularly limited. The lead electrode 1 is connected to a lead line portion (not shown) formed on the cathode substrate through a contact hole 5 penetrating the insulating layer 3, and the lead line portion passes under the focusing electrode 41 and passes through the lead electrode. 1 and the focusing electrode 41 are connected to a gate wiring portion (not shown) extending in the lateral direction formed on the same plane through another contact hole. The lead electrode 1, the lead line portion, and the gate wiring portion constitute a gate electrode.
[0007]
On the anode side shown in FIG. 6 (b), the three primary color phosphors (red) 21, phosphor (green) 22, phosphor (blue) 23 are opposed to the three extraction electrodes 1, respectively. Are coated on each anode electrode to form a stripe arrangement in one pixel. The electron beam emitted from the emitter tip strikes the corresponding phosphor (red) 21, phosphor (green) 22, and phosphor (blue) 23 while receiving a focusing action by the focusing electrode 41, and each phosphor. To emit light.
[0008]
FIG. 7 is an explanatory diagram of electron beam spots by the field emission cathode with a focusing electrode shown in FIG. The state of the light emitting surface on the anode substrate side is shown. In the figure, parts similar to those in FIG. Reference numerals 24, 25 and 26 are electron beam spots.
As a result of evaluating the focusing characteristics of the electron beam, it was found that the longitudinal direction (pixel selection direction) of the phosphors 21, 22 and 23 is focused more than necessary when the field emission cathode with a focusing electrode shown in FIG. 6 is used. It was.
[0009]
When the electron beam is focused so as to coincide with the length in the longitudinal direction of the phosphors 21, 22 and 23, as shown in FIG. 7A, the width direction (color selection direction) of the phosphors 21, 22 and 23 ) Is insufficiently focused, and the rate at which the electron beam spots 24, 25, and 26 emit light from the adjacent phosphors 21, 22, and 23 increases, resulting in poor color mixing. The color selection direction is more sensitive to positioning accuracy because the dimensions are more severe than the pixel selection direction in terms of dimensions.
If the potential difference between the extraction electrode 1 and the focusing electrode 41 is increased in order to satisfy the focusing in the color selection direction, the pixel selection direction is focused more than necessary as shown in FIG. As a result, the surface average luminance is reduced.
[0010]
When the number of emitter tips provided in the opening of the rectangular extraction electrode 1 is small, as the electron beam is more strongly focused, the electron beam spots 24, 25, and 26 are, as shown in FIG. Variation in the pixel selection direction is likely to occur. This also adversely affects display quality such as brightness and color balance.
Further, when the potential difference between the extraction electrode 1 and the focusing electrode 41 is increased, an invalid gate electrode inflow current increases. Therefore, the size of the extraction electrode 1 in the longitudinal direction (pixel selection direction) is increased to increase the number of emitter chips. There is also a limit.
[0011]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and can increase the aspect ratio of the electron beam spot. As a result, the aspect ratio of the electron beam spot can be changed to the phosphor shape and the phosphor arrangement. It is an object of the present invention to provide a field emission cathode with a focusing electrode that can be set according to the above.
[0012]
[Means for Solving the Problems]
The present invention includes an insulating layer, a vertically elongated lead electrode formed on the insulating layer, a plurality of openings opened in a laminated portion of the insulating layer and the lead electrode, an emitter chip provided in the opening, And a field emission cathode with a focusing electrode having a focusing electrode on the insulating layer, wherein the focusing electrode has a window extraction portion, and the extraction electrode is disposed in the window extraction portion at a distance from the focusing electrode. The distance in the longitudinal direction of the extraction electrode is longer than the distance in the width direction of the extraction electrode.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a plan view for explaining the structure of a field emission cathode with a focusing electrode according to a first embodiment of the present invention. 2 is a partial cross-sectional view taken along a cutting line AA of the structure shown in FIG. In the figure, parts similar to those in FIG. 2 is a focusing electrode, 11 is a cone emitter, 12 is a cathode substrate, and 13 is a resistance layer.
The field emission cathode with a focusing electrode according to this embodiment is longer than the conventional one described with reference to FIGS. 6 and 7, and the extraction electrode 1 is also longer in accordance with the vertical shape and color arrangement of the phosphor on the anode side. The distance between the extraction electrode 1 and the focusing electrode 2 that focuses the electron beam is such that the distance b in the longitudinal direction (color selection direction) of the extraction electrode 1 is larger than the distance a in the width direction (pixel selection direction). It is a thing.
[0015]
Similar to the prior art described with reference to FIG. 6, the extraction electrode 1 formed on the insulating layer 3 has a rectangular shape, and has a plurality of openings 4 in the laminated portion of the insulating layer 3 and the extraction electrode 1. The cone-shaped emitter 11 (FIG. 2) is provided as an emitter tip in the opening 4. The focusing electrode 2 has window extraction portions arranged at equal intervals in the lateral direction, and the extraction electrode 1 is arranged in the window extraction portion with a distance from the focusing electrode 2, so that the extraction electrode 1 is connected to the focusing electrode 2. Surrounded by Three window extraction portions are provided in the width direction of the extraction electrode 1, and one extraction electrode is provided in each window extraction portion corresponding to each color of one pixel. In the illustrated example, a plurality of openings 4 are arranged in one vertical row on the extraction electrode 1, but the number of openings 4 and the number of openings 4 are not particularly limited.
[0016]
As shown in FIG. 2, the extraction electrode 1 is formed on the same plane of the insulating layer 3 together with the focusing electrode 2. A resistance layer 13 is formed on the cathode substrate 12, and a cone-shaped emitter 11 is formed on the resistance layer 13 in the opening 4. Although not shown in this cross section, for example, the cathode wiring portion is formed on the cathode substrate 12 in the vertical direction at the left and right positions of the window extraction portion of the focusing electrode 2 in FIG. When the resistance layer 13 partially covers the cathode wiring portion, a cathode current flows from the cone-shaped emitter 11 to the cathode wiring portion.
The lead electrode 1 is connected to a lead wire portion (not shown) formed on the cathode substrate through a contact hole 5, and the lead wire portion passes under the focusing electrode 2 to be connected to the lead electrode 1 and the focusing electrode 2. Are connected to a gate wiring portion (not shown) extending in the horizontal direction through another contact hole. By forming a matrix with the cathode wiring portion and the gate wiring portion, a group of cone-shaped emitters 11 that emit electrons is selected. In addition, when selecting a pixel by scanning the voltage applied to the focusing electrode 2, the focusing electrode 2 of the adjacent pixel is formed separately, but when such selection is unnecessary, Adjacent focusing electrodes 2 are formed so as to be integrated.
[0017]
As shown in FIG. 1, the distance between the extraction electrode 1 and the focusing electrode 2 is such that the distance b in the longitudinal direction of the extraction electrode 1 is larger than the distance a in the width direction. As a result, the electron beam is focused more weakly in the longitudinal direction than in the width direction of the extraction electrode 1, and the aspect ratio of the electron beam spot can be increased.
[0018]
FIG. 3 is an explanatory diagram of electron beam spots by the field emission cathode with a focusing electrode shown in FIGS. The state of the light emitting surface on the anode substrate side is shown. In the figure, the same parts as those in FIGS.
The size of the electron beam spots 24, 25, and 26 is set to the total length in the longitudinal direction of the phosphor (red) 21, the phosphor (green) 22, and the phosphor (blue) 23 as shown in FIG. Even if the electron beam is focused so as to coincide with the electron beam, the focusing of the electron beam is weaker in the longitudinal direction than the width direction of the extraction electrode 1, so that the focusing in the width direction can be satisfied in accordance with the width of the phosphor. Become. Further, when the number of emitter tips 11 is small, as the electron beam is more strongly focused, as shown in FIG. 3B, the length and position of the longitudinal electron beam spots 24, 25, and 26 having longer dimensions are increased. Although variations tend to occur, the influence on the display quality is mitigated by weakening the convergence in the longitudinal direction.
[0019]
FIG. 4 is a plan view for explaining the structure of the field emission cathode with a focusing electrode according to the second embodiment of the present invention. In the figure, parts similar to those in FIGS. 6 and 1 are denoted by the same reference numerals, and description thereof is omitted. 31 is a gate electrode, 31a is a lead line part, 31b is a lead electrode part, and 32 is a focusing electrode.
The field emission cathode with a focusing electrode of this embodiment has an extraction electrode portion 31b in accordance with the vertically long shape and color arrangement of the phosphor on the anode side, compared to the conventional one described with reference to FIGS. While having a vertically long shape, the focusing electrode 32 has a structure in which an extraction electrode 31b is sandwiched in the width direction of the extraction electrode 31b. The focusing electrode 32 is not provided in the longitudinal direction (pixel selection direction) of the extraction electrode 31b.
[0020]
The extraction electrode portion 31b formed on the insulating layer 3 has a rectangular shape, and has a plurality of openings 4 in the laminated portion of the insulation layer 3 and the extraction electrode 31b, and a cone-shaped emitter is provided in the opening 4. Yes. The lead electrode portion 31b is connected to a gate wiring portion (not shown) by a lead wire portion 31a extending vertically in the longitudinal direction, and a gate voltage is applied thereto. The lead wire portion 31a is thinner than the width of the lead electrode portion 31b. Three extraction electrode portions 31b are provided in the width direction corresponding to the three primary colors of one pixel. The four focusing electrodes 32 formed on the insulating layer 3 are also in the form of stripes provided for four pixels, and extend longer than the extraction electrode portion 31b in the longitudinal direction of the extraction electrode portion 31b. The extraction electrode portions 31b are arranged in the width direction. In the example shown in the drawing, a plurality of openings 4 are arranged in a vertical line in the extraction electrode portion 31b. However, the number of openings 4 and the number of openings 4 are not particularly limited. The extraction electrode part 31 b and the extraction line part 31 a are formed on the same plane of the insulating layer 3 together with the focusing electrode 32.
[0021]
Although illustration of a cross-sectional structure is omitted, a resistance layer is formed on the cathode substrate, and a cone-shaped emitter is formed on the resistance layer in the opening 4. Further, a cathode wiring portion is formed on the cathode substrate 12 at the position of the focusing electrode 32 in FIG. 4, and the resistance layer partially covers the cathode wiring portion, so that the cone wiring emitter to the cathode wiring portion are formed. Cathode current flows through
In this figure, the lead wire portion 31a is drawn upward and downward on the same plane as the lead electrode portion 31b and the focusing electrode 32. However, the leader line portion 31a may be individually drawn out in only one direction. Further, the lead wire portion 31a may be provided on the cathode substrate, and the lead electrode portion 31b may be connected to the lower lead wire portion 31a using a contact hole. In addition, when selecting a pixel by scanning the voltage applied to the focusing electrode 32, the focusing electrode 32 of an adjacent pixel is formed separately, but when such selection is unnecessary, Adjacent focusing electrodes 2 are formed so as to be integrated.
[0022]
FIG. 5 is a perspective view for explaining the structure of a field emission cathode with a focusing electrode according to a third embodiment of the present invention. In the figure, the same parts as those in FIGS. 6, 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
The field emission cathode with a focusing electrode of this embodiment has an extraction layer 1 and a focusing electrode 2 made of an insulating layer 3 as compared with the first embodiment shown in FIGS. The vertical focusing structure is arranged on planes having different heights, and the focusing electrode 2 is positioned in an upper layer closer to the anode side than the extraction electrode 1. As a result of the focusing electrode 2 being arranged close to the anode side, the focusing force can be increased in all directions even if the focusing voltage is the same.
[0023]
Further, the distance between the extraction electrode 1 and the focusing electrode 2 on the horizontal plane is such that the distance b in the longitudinal direction (color selection direction) of the extraction electrode 1 is the distance a in the width direction (pixel selection direction) (in the example shown, a = 0). Therefore, the electron beam is focused more weakly in the longitudinal direction than the width direction of the extraction electrode 1, and the phosphor (red) 21, phosphor ( Even if the electron beam is focused so as to coincide with the total length in the longitudinal direction of each of (green) 22 and phosphor (blue) 23, focusing in the width direction can be satisfied at the same time.
Further, when the number of emitter tips 11 is small, the longer the electron beam is focused, the more easily the long electron beam spots 24, 25, and 26 in the longitudinal direction vary, but as shown in FIG. In addition, the effect on display quality will be mitigated.
[0024]
In the third embodiment described above, the field emission cathode with a focusing electrode of the first embodiment has a vertical focusing structure. The third embodiment described with reference to FIG. The field emission cathode with a focusing electrode may have a vertical focusing structure.
The vertical focusing structure described above has a stacked structure as shown in FIG. 2, in which the one without the focusing electrode 2 is first formed, the insulating layer 3 is formed again thereon, the focusing electrode is formed thereon, Thereafter, it can be produced by removing only the insulating layer 3 on the extraction electrode 1.
[0025]
【The invention's effect】
According to the field emission cathode with a focusing electrode of the present invention, as apparent from the above description, there is an effect that the aspect ratio of the spot of the electron beam can be increased. As a result, the aspect ratio can be set according to the phosphor shape and the phosphor arrangement, and it is particularly suitable for use in the field emission cathode of a high-definition field emission color display.
[Brief description of the drawings]
FIG. 1 is a plan view for explaining the structure of a field emission cathode with a focusing electrode according to a first embodiment of the present invention.
2 is a partial cross-sectional view taken along a cutting line AA of the structure shown in FIG.
3 is an explanatory diagram of electron beam spots by the field emission cathode with a focusing electrode shown in FIGS. 1 and 2. FIG.
FIG. 4 is a plan view for explaining the structure of a field emission cathode with a focusing electrode according to a second embodiment of the present invention.
FIG. 5 is a perspective view for explaining the structure of a field emission cathode with a focusing electrode according to a third embodiment of the present invention.
6A and 6B are explanatory views of a conventional field emission cathode with a focusing electrode, FIG. 6A is a plan view of the field emission cathode with a focusing electrode, and FIG. 6B is a corresponding side of an anode substrate. It is a top view of an anode light emission surface.
7 is an explanatory diagram of electron beam spots by the field emission cathode with a focusing electrode shown in FIG. 6. FIG.
[Explanation of symbols]
1 Extraction electrode, 2, 32, 41 Focusing electrode, 3 Insulating layer, 4 Opening, 5 Contact hole, 21 Phosphor (red), 22 Phosphor (green), 23 Phosphor (blue), 24, 25, 26 Electron beam spot, 11 cone emitter, 12 cathode substrate, 13 resistance layer, 31 gate electrode, 31a leader line part, 31b leader electrode part

Claims (1)

絶縁層、該絶縁層上に形成された縦長形状の引出電極、前記絶縁層および前記引出電極の積層部分に開けられた複数の開口部、該開口部内に設けられたエミッタチップ、および、前記絶縁層上に集束電極を有する集束電極付電界放出カソードであって、
前記集束電極は窓抜き部を有し、
前記引出電極は前記窓抜き部内に前記集束電極と間隔をおいて配置され、前記引出電極の長手方向の前記間隔が前記引出電極の幅方向の前記間隔よりも長いことを特徴とする集束電極付電界放出カソード。
Insulating layer, vertically elongated lead electrode formed on the insulating layer, a plurality of openings opened in a laminated portion of the insulating layer and the lead electrode, an emitter chip provided in the opening, and the insulation A field emission cathode with a focusing electrode having a focusing electrode on the layer,
The focusing electrode has a window opening;
The extraction electrode is disposed in the window extraction portion at a distance from the focusing electrode, and the interval in the longitudinal direction of the extraction electrode is longer than the interval in the width direction of the extraction electrode. Field emission cathode.
JP15439598A 1998-06-03 1998-06-03 Field emission cathode with focusing electrode Expired - Fee Related JP3823537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15439598A JP3823537B2 (en) 1998-06-03 1998-06-03 Field emission cathode with focusing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15439598A JP3823537B2 (en) 1998-06-03 1998-06-03 Field emission cathode with focusing electrode

Publications (2)

Publication Number Publication Date
JPH11345561A JPH11345561A (en) 1999-12-14
JP3823537B2 true JP3823537B2 (en) 2006-09-20

Family

ID=15583214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15439598A Expired - Fee Related JP3823537B2 (en) 1998-06-03 1998-06-03 Field emission cathode with focusing electrode

Country Status (1)

Country Link
JP (1) JP3823537B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3962728B2 (en) * 2003-06-20 2007-08-22 キヤノン株式会社 Image display device
KR101002649B1 (en) 2004-02-26 2010-12-20 삼성에스디아이 주식회사 Electron emission display device
US7402942B2 (en) * 2005-10-31 2008-07-22 Samsung Sdi Co., Ltd. Electron emission device and electron emission display using the same
FR2912254B1 (en) * 2007-02-06 2009-10-16 Commissariat Energie Atomique ELECTRON EMITTING STRUCTURE BY FIELD EFFECT, FOCUSED ON TRANSMISSION
JP5345324B2 (en) * 2008-01-09 2013-11-20 ソニー株式会社 Cold cathode field emission display

Also Published As

Publication number Publication date
JPH11345561A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
JP3171121B2 (en) Field emission display
JP4191701B2 (en) Field emission display
JP2002505502A (en) Design and manufacture of flat panel displays with spacer systems to accommodate temperature differences
KR100658666B1 (en) Field emission display device having carbon nanotube emitter
KR100270135B1 (en) Field emission display
US5747927A (en) Display device
JP3823537B2 (en) Field emission cathode with focusing electrode
KR100863952B1 (en) Field emission display device having carbon-based emitter
US7274139B2 (en) Electron emission device with improved electron emission source structure
US20050116600A1 (en) Field emission display having grid plate with multi-layered structure
US20070035229A1 (en) Light emitting display device
JP3189789B2 (en) Field emission cathode with planar focusing electrode
US6879097B2 (en) Flat-panel display containing electron-emissive regions of non-uniform spacing or/and multi-part lateral configuration
JP2004193105A (en) Triode type field emission element and field emission display using it
US6218778B1 (en) Field emission device having interlayer connections
JP2005056667A (en) Field electron emitting element
JP2002197999A (en) Flat panel display
JPH10283956A (en) Field emission display device
KR100459904B1 (en) Field emission display with separated upper electrode structure
JP3235461B2 (en) Field emission device
JP4222162B2 (en) Field emission display
JP2000133175A (en) Field emission type display element
KR100846705B1 (en) Field emission display device
JPH06111736A (en) Light emitting element
JP2008181867A (en) Image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees