JP3821656B2 - Friction welding method of amorphous alloy and joining member - Google Patents

Friction welding method of amorphous alloy and joining member Download PDF

Info

Publication number
JP3821656B2
JP3821656B2 JP2001081745A JP2001081745A JP3821656B2 JP 3821656 B2 JP3821656 B2 JP 3821656B2 JP 2001081745 A JP2001081745 A JP 2001081745A JP 2001081745 A JP2001081745 A JP 2001081745A JP 3821656 B2 JP3821656 B2 JP 3821656B2
Authority
JP
Japan
Prior art keywords
bonding
amorphous alloy
joining
friction
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001081745A
Other languages
Japanese (ja)
Other versions
JP2002283067A (en
Inventor
能人 河村
恭秀 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001081745A priority Critical patent/JP3821656B2/en
Publication of JP2002283067A publication Critical patent/JP2002283067A/en
Application granted granted Critical
Publication of JP3821656B2 publication Critical patent/JP3821656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非晶質合金材料同士および非晶質合金材料と結晶材料との接合を可能とする摩擦接合法の技術に関するものであり、非晶質合金材料の応用範囲を拡げるものである。
【0002】
【従来の技術とその課題】
最近、結晶化の前でガラス遷移が見られ、広い過冷却液体領域を有しており、大きい非晶質形成能を示す各種非晶質合金が開発された。これら非晶質合金は、従来の非晶質合金に比較して大きな非晶質形成能を有しているために、単ロール式液体急冷法などのような大きな冷却速度が得られる特殊な方法のみならず、Cu鋳型鋳造や水焼き入れ法などのような比較的冷却速度の遅い一般的な鋳造法によってでも非晶質化し、バルク非晶質合金を比較的容易に作製することができるようになってきており、種々の実用化の検討が実施されてきている。
【0003】
非晶質合金材料は、溶接すると、溶接部が結晶化するのみならず、その熱影響部まで結晶化してしまうために、一般的な金属材料のように溶接ができなかった。また、高温での原子拡散を利用する固相拡散接合法でも、原子拡散が活発に生じる高温まで加熱すると結晶化してしまい、非晶質相を保持したままでの接合はできなかった。
【0004】
約15年ほど前に超音波接合により非晶質薄帯同士の接合が試みられているが、非晶質合金は高強度であるために、接合が不十分であり、また、結晶化してしまうという問題があった。このように、非晶質合金材料同士の接合や非晶質合金材料と他の結晶材料との接合ができなかったために、非晶質合金の応用範囲がかなり制約されている。
【0005】
結晶化温度前に過冷却液体温度域を示すアモルファス合金(金属ガラスと言われている)の接合に関しては、Appl. Phys. Lett., 67 (1995), 2008-2010.やMater. Sci. Eng., A219 (1996), 39-43 において、金属ガラス粉末をガラス遷移温度以上の過冷却液体温度域に加熱し、押出法を用いて剪断変形させることにより、金属ガラス粉末同士が強固に接合することが報告されている。この粉末の固化成形では、下記の問題がある。
【0006】
(1)酸化皮膜が破壊されて新生面で接合するが、押出可能な押出比が5以下であり、変形量が少ないために、酸化皮膜の破壊と分散が充分ではない。
(2)破壊された酸化物などは接合界面近傍に分散物として残留してしまうために、強固な接合強度が得られない。
(3)最初に粉末全体を外部ヒーターによりガラス遷移温度以上に加熱している。さらに、加工が接合面のみならず粉末全体に加わるために、粉末全体の温度が上昇してしまい、非晶質構造を保つ条件が制約されている。
【0007】
また、特開平9-323174号公報では、上記論文と同じように、金属ガラスをガラス遷移温度以上に加熱して塑性流動により接合する方法が報告されている。特に、金属ガラスパイプの摩擦圧接が、実施例(実施の形態6)として述べられている。この実施例では、300 秒間でPd系非晶質合金パイプをアルミニウム合金パイプに摩擦圧接している。この摩擦圧接には、下記の問題がある。
【0008】
(1)パイプの実施例のみが述べられているが、パイプのみではその応用範囲に制約がある。
(2)摩擦時間が5 分間(300 秒)であり、一回当たりの接合時間が長すぎて、大量生産に向かない。
(3)雰囲気が真空或いは不活性ガス雰囲気となっているが、これも大量生産には向かず、生産コストも高くなる。
(4)当金により座屈や変形を防止する方法も示されているが、この方法では、破壊および分散された酸化皮膜などの排出が起こらず、それらが接合界面に残留してしまい、強固な接合が得られない。また、当金が無いと母材の変形を招く。
(5)摩擦時間が5 分と長いために、摩擦熱の母材への熱伝導により、接合界面のみならず母材の温度が上昇し、母材の大きな変形を招くのみならず、母材の熱影響部での材料の脆弱化を招く可能性が大きい、などの問題がある。
【0009】
【課題を解決するための手段】
本発明は、結晶化温度前に約30K 以上の過冷却液体温度域(結晶化温度とガラス遷移温度の差で表される)を持つ金属ガラスの接合法であり、金属ガラス同士あるいは金属ガラスと結晶材料との接合法である。
【0010】
すなわち、本発明は、加熱速度 0.67K/s の場合に、ガラス遷移現象を示し、ガラス遷移温度と結晶化温度の差が 30K 以上である非晶質合金材料同士の接合または非晶質合金材料と結晶材料との接合を、両材料の接合面を加圧しながら回転させることにより発生する摩擦熱を利用して行う摩擦接合方法において、摩擦圧力を 10MPa 以上かつ 500 MPa 以下、摩擦時間を 60 秒以下とし、摩擦熱により両材料の接合界面近傍の非晶質合金材料を過冷却液体状態にするとともに、過冷却液体の粘性流動による超塑性変形を該摩擦圧力により生ぜしめることにより接合界面近傍の両材料を同時に接合界面の外側に張り出させることによって接合面の酸化皮膜破壊分断し、かつ張り出し材とともに接合界面から外部に排出することにより新生面で接合し、かつ過冷却液体の接合部における自己温度制御機能により、非晶質合金材料の接合部の結晶化を避けて、接合を行うことを特徴とする摩擦接合方法である。
【0011】
また、本発明は、接合界面近傍の超塑性変形により、張り出し長さが0.2r(r は接合材の半径)以上の張り出しを形成することを特徴とする上記の接合方法である。
【0012】
また、本発明は、両材料の接合面の周縁部に 45 °以下のテーパーのエッジを付けることにより、パイプ材または丸棒材の接合を行うことを特徴とする上記の接合方法である。
【0014】
また、本発明は、 回転を止めると共にアップセット圧力を付加させることを特徴とする上記の接合方法である。
【0015】
さらに、本発明は、上記の接合方法によって接合された非晶質合金材料同士または非晶質合金材料と結晶材料とからなる接合部材である。
【0016】
【作用】
非晶質合金は、加熱して行くと、ガラス遷移温度で非晶質固体から過冷却液体に遷移し、さらに温度を上げて行くと、過冷却液体から結晶に遷移する。過冷却液体状態とは、ガラス遷移温度以上結晶化温度以下の領域のことである。過冷却液体状態になると原子が動きやすくなり、原子の協同現象により粘性流動が起きる。最近の研究では、この粘性流動により超塑性、すなわち、200%以上の伸びが一軸引っ張りで生じる現象が出現することが知られている。
【0017】
本発明の方法では、上記の現象により、接合界面近傍に摩擦圧力により生ぜしめた非晶質合金材料の超塑性変形による張り出し部が接合界面の外側に形成される。本発明の方法における接合機構は、以下のように考えられる。摩擦熱により接合部近傍が加熱され、その温度がガラス遷移温度以上で超塑性変形温度領域に入ると、加圧によって超塑性温度領域に加熱された接合界面近傍の領域が張り出される。加圧初期の接合界面の摩擦と張り出し形成により酸化皮膜の破壊と分断が行われ、かつ破壊、分断された酸化皮膜が張り出し材とともに接合界面から外部に排出されて接合界面が清浄になると同時に接合面が密着される。これにより非晶質合金材料が相手材料に接合される。
【0018】
【発明の実施の形態】
本発明の方法は、接合界面近傍の超塑性変形により、張り出しを形成することを特徴としており、この張り出しにより、酸化皮膜の破壊と分散が促進されるのみならず、それらの酸化物が張り出し材と共に接合界面から外部に排出され、酸化物などの不純物を含まない接合界面が得られ、その結果として、より強固な接合が得られる。
【0019】
本発明の方法においては、非晶質合金材料同士または非晶質合金材料と結晶材料とを摩擦熱により加熱してガラス遷移温度以上結晶化温度以下の温度になるように条件を制御する。摩擦熱によりガラス遷移温度以上になるように条件を制御さえすれば、結晶化温度以下の温度に自動的に制御される自己温度制御機能が過冷却液体の接合部において働く。これは、ガラス遷移温度以上になると非晶質合金の粘性が急激に減少するために、それに伴い発生する摩擦熱も減少し、温度がそれ以上上昇しなくなるからである。
【0020】
温度上昇は力と時間に比例する。過冷却液体になると、力が急激に減少する。材料にもよるが、例えば、20Kの温度上昇により粘性が一桁減少する。このため、温度上昇が制御され、この機能により、非晶質合金材料の接合部の結晶化を避けて接合を行うことが可能になる。
【0021】
本発明の方法は、接合界面近傍の超塑性変形により、図3(a)に模式的に示す張り出しCの長さが0.2r(r は接合材の半径)以上、好ましくは1.0 ×r程度の張り出しを形成することを特徴とする。張り出しCが0.2r未満では、酸化物の排出が不十分であるために、接合界面に酸化物が残留してしまい、高い接合強度が得られない。張り出しが0.4r以上だと、接合界面に残留する酸化物が十分に減少し、高い接合強度が得られるので望ましい。これにより、酸化皮膜の破壊と分散が促進されるのみならず、それらの酸化物が張り出し材と共に接合界面から外部に排出され、酸化物などの不純物を含まない接合界面が得られ、その結果として、より強固な接合が得られる。
【0022】
摩擦圧力は10MPa 以上かつ500 MPa 以下、好ましくは150MPa程度であり、また、摩擦時間も60秒以下であることを特徴としている。これにより、脆弱化あるいは結晶化を避けることが容易になると共に、摩擦時間の短縮による生産性向上を可能にする。これは、加圧力が高くなると、加熱速度が速くなり、また、張り出し形成の流動速度が速くなり、より短時間で張り出し部を形成することができるようになるためである。
【0023】
同じ長さの張り出しを形成させる場合、圧力が小さいと、接合部の温度をより高くしたり、摩擦時間を長くする必要がある。特に、接合部の温度を高くするにはより高い回転数が必要となる。その結果、接合部が結晶化する危険性が高くなる。また、圧力が小さいと、接合部の摩擦による温度上昇が小さくなる。さらに、接合界面の温度を同じになるようにしても、圧力が小さいと、張り出しが小さくなり、その結果、接合面の酸化皮膜の排出が少なく、接合強度が小さくなる。一方、圧力を高くしすぎると、接合部の摩擦による温度上昇が大きくなり、結晶化の危険が高くなる。
【0024】
一般に、非晶質合金の結晶化温度は時間が長いほど低下する。よって、摩擦時間が長いと、接合部の結晶化の危険が高くなる。また、摩擦時間が長いと、その間に張り出しが形成され続け、接合材料が小さくなってしまう。さらに、熱伝導により接合界面の熱が母材の方へ伝わり、母材の温度が上昇し、母材が変形したり、母材の結晶化の危険性が高くなる。
【0025】
特に、加圧力を高めて、摩擦時間を60秒以内とすることにより、接合面近傍のみを加熱し、母材への熱伝達とそれによる母材の変形を防ぎ、接合界面近傍のみの変形に留めることも可能になる。さらに、短時間で接合が完了するために、接合時の雰囲気として、真空あるいは不活性ガス雰囲気を用いなくても、強固な接合が得られるようになる。
【0026】
また、本発明の方法では、金属ガラスの接合面の周縁部に45°以下、好ましくは30°程度のテーパーのエッジを切削などの手段によって付けることにより、中心部から酸化物の排出が進み、最終的には酸化物の接合界面からの排出を可能にし、強固な接合が得られる。さらに、接合時の雰囲気として、真空あるいは不活性ガス雰囲気を用いなくても、強固な接合が得られるようになる。よって、パイプのみならず、棒材や板材の接合も可能になる。
【0027】
回転体の摩擦では、外周部が先に加熱される。フラットな面であると接合面の酸化皮膜が外部に排出されなくなる。接合面の周縁部にテーパーのエッジを付けると、内部から変形が始まり、接合面の酸化皮膜が外部に押し出され易くなる。したがって、接合面が小面積の場合はテーパは無くても接合は可能であるが、大面積の場合はテーパを設けることが望ましい。また、テーパ大きくした場合、接合に不必要な過剰張り出しが形成され、接合部材が小さくなってしまう。
【0028】
本発明の方法においては、通常の熱分析で行われている0.67K/sの加熱速度で熱分析した場合、ガラス遷移温度と結晶化温度の差が30K 以上である非晶質合金材料を相手材料と接合する。接合材の材質と形状の組み合わせは種々可能であるが、その例を図9に示す。また、接合材Aと接合材Bが共に非晶質合金の組み合わせの形態1〜5を表1に、接合材Aが非晶質合金であり接合材Bが結晶質合金である組み合わせの形態6〜10を表2に、接合材Aが結晶質合金であり接合材Bが非晶質合金である組み合わせの形態11〜13を表3に示す。これらの組み合わせの形態で接合された部材はいずれも接合性および非晶質合金部の非晶質性は良好である。
【0029】
ちなみに、表中のZrTiCuNiBeのΔTx(=Tx-Tg)は120 Kであり、強度は1900MPa、FeAlGaPCB のΔTx(=Tx-Tg)は45Kであり、強度は不明、PdNiCuP のΔTx(=Tx-Tg)は95Kであり、強度は1600MPa 、CoFeNbB のΔTx(=Tx-Tg)は75Kであり、強度は不明、ZrAlNiCuのΔTx(=Tx-Tg)は82Kであり、強度は1500MPa 、PdNiP のΔTx(=Tx-Tg)は73Kであり、強度は1600MPa である。
【0030】
【表1】

Figure 0003821656
【0031】
【表2】
Figure 0003821656
【0032】
【表3】
Figure 0003821656
【0033】
【実施例】
実施例1
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約73K であるPd40Ni40P20 非晶質合金の丸棒材を、図1(b)のように、長さa=10mmの内の接合面側の長さb=4mmの部分の直径cを4.4mmとし、非接合面側の直径dを4mmとし、図3(a)に示すように、接合面F、Fの周縁に長さe=1.2mmの位置まで接合面に対する角度θとして45°のテーパーをつけて接合面F、Fの直径fを2mmに加工して接合試験片を作製した。
【0034】
この試験片を接合材Aと接合材Bとして、図1(a)に示すような、クラッチ1とブレーキ2を介してモータ3で回転させるチャック4と油圧プレス6で軸方向に押圧されるチャック5からなる摩擦接合装置に取り付けた。
図2に、横軸=時間、縦軸=回転数および荷重を示すように、片方の接合材Aをモータ3によりN1=6000rpmで回転させた状態で、油圧プレス6によりP1=100MPa の荷重を付加し、t1=0.2秒後に、ブレーキ2により回転を止めると共にP2=150MPa のアップセット圧力をt2=3秒間付加させることにより、非晶質合金材料を接合させた。
【0035】
得られた接合体の外観は、図3(b)の側面図に示すように、接合部に6mmの張り出しCを形成することができた。接合試験片をゲージ長さ4.0mm、ゲージ部直径1.7mmの引っ張り試験片に加工して引張試験を行った結果、引張強度が1500MPa であり、Pd40Ni40P20 非晶質合金材料自身の引張強度が得られ、強固に接合していることが明らかになった。
【0036】
また、引張試験後の破面には、図4の走査型電子顕微鏡写真に示すように、粘ばい非晶質合金に特有のベインパターンが観察され、脆弱化せずに接合していることが分かった。接合試験片の接合部の断面は、図5の光学顕微鏡写真(a)と走査型電子顕微鏡写真(b)に示すように、欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。
【0037】
また、この断面のマイクロエリアX線回折図形を図6に示す。回折図形には、結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0038】
実施例2
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約82K であるZr55Al10Ni5Cu30 非晶質合金の丸棒材を用いた他は実施例1と同様に、接合試験片を作製した。
【0039】
この試験片を、摩擦接合装置に取り付け、片方の試験片を7000rpm で回転させた状態で、100MPaの荷重を付加し、0.2 秒後に、ブレーキにより回転を止めると共に150MPaのアップセット圧力を3 秒間付加させることにより、非晶質合金材料を接合させた。
【0040】
接合試験片を引張試験した結果、引張強度が1500MPa であり、Zr55Al10Ni5Cu30 非晶質合金材料自身の引張強度が得られ、強固に接合していることが明らかになった。また、接合試験片の接合部の断面には欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。
【0041】
また、この断面のマイクロエリアX 線回折実験の結果、回折図形には、結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0042】
実施例3
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約73K であるPd40Ni40P20 非晶質合金材料と通常の軟鋼材の丸棒材を用いた他は実施例1と同様に接合試験片を作製した。
【0043】
この試験片を、摩擦接合装置に取り付け、片方の試験片を6000rpm で回転させた状態で、100MPaの荷重を付加し、0.2 秒後に、ブレーキにより回転を止めると共に150MPaのアップセット圧力を3 秒間付加させることにより、非晶質合金材料と軟鋼材を接合させた。張り出しは2mmであった。
【0044】
接合試験片を引張試験した結果、軟鋼材自身の引張強度が得られ、強固に接合していることが明らかになった。また、接合試験片の接合部の断面には、欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。
【0045】
また、この断面のマイクロエリアX 線回折実験の結果、非晶質合金材料の部分の回折図形には、結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0046】
実施例4
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約73K であるPd40Ni40P20 非晶質合金材料と通常のアルミニウム材の丸棒材を用いた他は実施例1と同様に、接合試験片を作製した。
【0047】
この試験片を、摩擦接合装置に取り付け、片方の試験片を6000rpm で回転させた状態で、100MPaの荷重を付加し、0.2 秒後に、ブレーキにより回転を止めると共に150MPaのアップセット圧力を3 秒間付加させることにより、非晶質合金材料とアルミニウム材を接合させた。張り出しは2mmであった。
【0048】
接合試験片を引張試験した結果、引張強度が400MPaであり、アルミニウム材自身の引張強度が得られ、強固に接合していることが明らかになった。また、図7 に示すように、接合試験片の接合部の断面には、欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。
【0049】
また、この断面のマイクロエリアX 線回折実験の結果、非晶質合金材料の部分の回折図形には、結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0050】
実施例5
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約120KであるZr47Ti8Cu7.5Ni10Be27.5非晶質合金の丸棒材を用いた他は実施例1と同様に、接合試験片を作製した。
【0051】
この試験片を、摩擦接合装置に取り付け、100MPaの荷重を付加した状態で片方の試験片を6000rpm で回転させて、0.1 秒後に、150MPaのアップセット圧力を3 秒間付加させることにより、非晶質合金材料を接合させた。張り出しは5mmであった。
【0052】
接合試験片を引張試験した結果、引張強度が1900MPa であり、Zr47Ti8Cu7.5Ni10Be27.5非晶質合金材料自身の引張強度が得られ、強固に接合していることが明らかになった。また、接合試験片の接合部の断面には欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。
【0053】
また、この断面のマイクロエリアX 線回折実験の結果、回折図形には、結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0054】
実施例6
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約95K であるPd40Ni10Cu30P20 非晶質合金の丸棒材を用いた他は実施例1と同様に接合試験片を作製した。
【0055】
この試験片を、摩擦接合装置に取り付け、片方の試験片を6000rpm で回転させた状態で、100MPaの荷重を付加し、0.2 秒後に、ブレーキにより回転を止めると共に150MPaのアップセット圧力を3 秒間付加させることにより、非晶質合金材料を接合させた。張り出しは7mmであった。
【0056】
接合試験片を引張試験した結果、引張強度が1600MPa であり、Pd40Ni10Cu30P20 非晶質合金材料自身の引張強度が得られ、強固に接合していることが明らかになった。また、接合試験片の接合部の断面には欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。
【0057】
また、この断面のマイクロエリアX 線回折実験の結果、回折図形には、結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0058】
実施例7
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約73K であるPd40Ni40P20 非晶質合金の丸棒材を用いた他は実施例1と同様に、接合試験片を作製した。
【0059】
この試験片を、摩擦接合装置に取り付け、片方の試験片を6000rpm で回転させた状態で、10MPa の荷重を付加し、60秒後以内に、ブレーキにより回転を止めると共に15MPa のアップセット圧力を3 秒間付加させることにより、非晶質合金材料を接合させた。張り出しは2〜10mmであった。摩擦時間はそれぞれ0.1,0.3,1.0,5,10,60秒とした。
【0060】
接合試験片を引張試験を行った結果、図8に示すように、引張強度は摩擦時間が60秒では1600MPa であり、Pd40Ni40P20 非晶質合金材料自身の引張強度が得られ、強固に接合していることが明らかになった。
【0061】
接合試験片の接合部の断面は、欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。また、回折図形には、結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0062】
比較例1
摩擦時間を60秒を超えるようにした以外は実施例7と同様に接合した。摩擦時間はそれぞれ70秒、80秒、100秒、500秒とした。図8に示すように、摩擦時間が60秒以上では、引張強度が減少した。回折図形には、結晶相に対応する回折ピークが見られ、結晶化したことが明らかになった。
【0063】
【発明の効果】
本発明の非晶質を保持した状態で充分な強度が得られる非晶質合金材料の接合方法によれば、その作用として、接合に関しては、(1)摩擦による酸化皮膜の破壊と分散、(2)摩擦熱によって接合界面の温度が過冷却液体温度域まで上昇することによる接合界面の著しい軟化と超塑性変形による酸化物の破壊と分散の促進、(3)その時の超塑性変形による張り出し形成に伴う酸化物の排出、による強固な接合が達成できる。
【0064】
一方、接合界面の脆弱化や結晶化防止に関しては、(1)高い摩擦圧力と短時間摩擦圧接による加熱時間と加熱領域の低減、(2)張り出し形成による温度上昇部の排出による接合界面での加熱部体積減少による冷却効率向上、(3)過冷却液体状態における、接合界面の加工発熱による温度上昇の粘性激減による自己抑制、による接合界面近傍の熱履歴の減少が得られる。
【図面の簡単な説明】
【図1】(a)は、実施例1〜7の摩擦接合法を示す模式図、(b)は、接合試験片形状を示す側面図である。
【図2】実施例1〜7の摩擦接合法の接合条件を示す模式図である。
【図3】実施例1の接合前の接合試験片(Pd40Ni40P20/Pd40Ni40P20 )と接合後の接合試験片の形状を示す側面図である。
【図4】実施例1の接合後の接合体の破断面を示す図面代用の走査型電子顕微鏡写真(Pd40Ni40P20/Pd40Ni40P20)である。
【図5】実施例1の接合後の接合体の接合界面の断面組織を示す図面代用の写真(Pd40Ni40P20/Pd40Ni40P20 :光学顕微鏡写真(a)と走査型電子顕微鏡写真(b)である。
【図6】実施例1の接合後の接合体の接合界面のマイクロエリアX 線回折図形(Pd40Ni40P20/Pd40Ni40P20 )を示すグラフである。
【図7】実施例4の接合後の接合体(Pd40Ni40P20/アルミニウム)の接合界面の断面組織を示す図面代用の光学顕微鏡写真である。
【図8】実施例7の接合後の接合材の引張強度の摩擦時間(t1)依存性を示すグラフである。
【図9】本発明の方法における接合材の材質と形状の組み合わせの例を示す概念図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique of a friction welding method that enables bonding between amorphous alloy materials and between an amorphous alloy material and a crystal material, and extends the application range of the amorphous alloy material.
[0002]
[Prior art and its problems]
Recently, various amorphous alloys have been developed that exhibit a glass transition before crystallization, have a wide supercooled liquid region, and exhibit a large amorphous forming ability. Since these amorphous alloys have a large amorphous forming ability compared with conventional amorphous alloys, a special method for obtaining a large cooling rate such as a single roll type liquid quenching method. Not only can it become amorphous even by a general casting method with a relatively slow cooling rate, such as Cu mold casting or water quenching, so that bulk amorphous alloys can be produced relatively easily. Therefore, various practical applications have been studied.
[0003]
When the amorphous alloy material is welded, not only the welded portion is crystallized but also the heat-affected zone is crystallized, so that it cannot be welded like a general metal material. Further, even in the solid phase diffusion bonding method using atomic diffusion at high temperature, it is crystallized when heated to a high temperature at which atomic diffusion actively occurs, and bonding with the amorphous phase maintained cannot be performed.
[0004]
Attempts have been made to bond amorphous ribbons by ultrasonic bonding about 15 years ago. However, since amorphous alloys have high strength, bonding is insufficient and crystallization occurs. There was a problem. As described above, since the bonding between the amorphous alloy materials and the bonding between the amorphous alloy material and another crystal material cannot be performed, the application range of the amorphous alloy is considerably limited.
[0005]
For joining amorphous alloys (called metallic glasses) that exhibit a supercooled liquid temperature range before the crystallization temperature, see Appl. Phys. Lett., 67 (1995), 2008-2010. And Mater. Sci. Eng. ., A219 (1996), 39-43, the metallic glass powder is strongly bonded to each other by heating the metallic glass powder to a supercooled liquid temperature range equal to or higher than the glass transition temperature and shearing it using an extrusion method. It has been reported. The solidification molding of this powder has the following problems.
[0006]
(1) Although the oxide film is broken and joined on the new surface, the extrudable extrusion ratio is 5 or less, and the amount of deformation is small, so the oxide film is not sufficiently broken and dispersed.
(2) Since the broken oxide or the like remains in the vicinity of the bonding interface as a dispersion, a strong bonding strength cannot be obtained.
(3) First, the entire powder is heated to the glass transition temperature or higher by an external heater. Furthermore, since the processing is applied not only to the joint surface but also to the whole powder, the temperature of the whole powder rises, and the conditions for maintaining the amorphous structure are restricted.
[0007]
In addition, in Japanese Patent Laid-Open No. 9-323174, a method of joining a metal glass to a glass transition temperature or higher and joining it by plastic flow is reported as in the above paper. In particular, friction welding of a metal glass pipe is described as an example (Embodiment 6) . In this embodiment, it is friction welding the aluminum alloy pipe Pd-based amorphous alloy pipe 300 seconds. This friction welding has the following problems.
[0008]
(1) Only the embodiment of the pipe is described, but the application range is limited only by the pipe.
(2) The friction time is 5 minutes (300 seconds) and the joining time per time is too long, making it unsuitable for mass production.
(3) Although the atmosphere is a vacuum or an inert gas atmosphere, this is also not suitable for mass production and the production cost is increased.
(4) Although a method for preventing buckling and deformation by using this metal is shown, this method does not cause destruction and dispersion of the oxide film and the like, and they remain at the bonding interface and are strong. Can not be obtained. Also, if there is no money, the base material will be deformed.
(5) Since the friction time is as long as 5 minutes, the heat conduction of the frictional heat to the base material raises the temperature of the base material as well as the joint interface, leading to a large deformation of the base material. There is a problem that there is a high possibility that the material will be weakened in the heat affected zone.
[0009]
[Means for Solving the Problems]
The present invention is a method for joining metallic glasses having a supercooled liquid temperature range (expressed by the difference between the crystallization temperature and the glass transition temperature) of about 30 K or more before the crystallization temperature, This is a bonding method with a crystal material.
[0010]
That is, the present invention, when the heating rate 0.67K / s, showed a glass transition phenomenon, bonding or the amorphous alloy of the amorphous alloy materials with each other difference in glass transition temperature and the crystallization temperature is above 30K In the friction welding method that uses frictional heat generated by rotating the joint surfaces of the two materials while applying pressure to the joint surfaces of the two materials , the friction pressure is 10 MPa or more and 500 MPa or less, and the friction time is 60 and sec, joined by frictional heat the amorphous alloy material of the bonding interface area of the both materials while in the supercooled liquid state, by give rise by the frictional pressure superplastic deformation that by the viscous flow of the supercooled liquid breaking an oxide film of the bonding boundary surface by leaving tension on the outside of simultaneously bonding interface both materials near the interface, divided and joined with new surfaces by discharged to the outside from the bonding interface along with the outrigger, and over Self-temperature control function at the junction of the却液body, to avoid crystallization of the junction of the amorphous alloy material, a friction bonding method and performing bonding.
[0011]
Further, the present invention is the above-mentioned joining method, characterized in that an overhang having an overhang length of 0.2r (where r is the radius of the bonding material) or more is formed by superplastic deformation in the vicinity of the bonding interface.
[0012]
Further, the present invention is the above-described joining method characterized in that the pipe material or the round bar material is joined by attaching a taper edge of 45 ° or less to the peripheral portion of the joining surface of both materials .
[0014]
The present invention also provides: The above-described joining method is characterized in that the rotation is stopped and an upset pressure is applied .
[0015]
Furthermore, this invention is a joining member which consists of amorphous alloy materials joined by said joining method, or an amorphous alloy material and a crystal material.
[0016]
[Action]
An amorphous alloy transitions from an amorphous solid to a supercooled liquid at a glass transition temperature when heated, and from a supercooled liquid to a crystal as the temperature is further increased. The supercooled liquid state is a region from the glass transition temperature to the crystallization temperature. In the supercooled liquid state, atoms move easily, and viscous flow occurs due to the cooperative phenomenon of atoms. In recent researches, it is known that the viscous flow causes superplasticity, that is, a phenomenon in which elongation of 200% or more is caused by uniaxial tension.
[0017]
In the method of the present invention, due to the phenomenon described above, an overhang portion due to superplastic deformation of the amorphous alloy material generated by the friction pressure near the joint interface is formed outside the joint interface . The joining mechanism in the method of the present invention is considered as follows. When the vicinity of the joint is heated by the frictional heat and its temperature is equal to or higher than the glass transition temperature and enters the superplastic deformation temperature region, the region near the joint interface heated to the superplastic temperature region by pressurization is projected. Is performed divided and destruction of the oxide film by friction and overhang formation of the pressure initial bonding interface, and breaking, simultaneously with the bonding interface shed oxide film is discharged to the outside from the bonding interface along with the outrigger is clean junction The surfaces are in close contact. Thereby, the amorphous alloy material is bonded to the counterpart material.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The method of the present invention is characterized in that the overhang is formed by superplastic deformation in the vicinity of the joint interface, and this overhang not only promotes the destruction and dispersion of the oxide film, but also the oxides of the overhang material. At the same time, a bonding interface that is discharged to the outside from the bonding interface and does not contain impurities such as oxides is obtained, and as a result, a stronger bond is obtained.
[0019]
In the method of the present invention, the conditions are controlled so that the amorphous alloy materials or the amorphous alloy material and the crystal material are heated by frictional heat to a temperature not lower than the glass transition temperature and not higher than the crystallization temperature. As long as the conditions are controlled so as to be equal to or higher than the glass transition temperature due to frictional heat, a self-temperature control function that is automatically controlled to a temperature below the crystallization temperature works at the joint of the supercooled liquid. This is because, since the viscosity of the amorphous alloy rapidly decreases when the glass transition temperature is exceeded, the frictional heat generated therewith also decreases, and the temperature does not increase any more.
[0020]
Temperature rise is proportional to force and time. When it becomes a supercooled liquid, the force decreases rapidly. Depending on the material, for example, the viscosity decreases by an order of magnitude with a temperature rise of 20K. Therefore, the temperature rise is controlled, and this function makes it possible to perform bonding while avoiding crystallization of the bonded portion of the amorphous alloy material.
[0021]
According to the method of the present invention, the length of the overhang C schematically shown in FIG. 3A is 0.2 r (r is the radius of the bonding material) or more, preferably about 1.0 × r due to superplastic deformation in the vicinity of the bonding interface. It is characterized by forming an overhang. When the overhang C is less than 0.2r, the oxide is not sufficiently discharged, so that the oxide remains at the bonding interface, and high bonding strength cannot be obtained. If the overhang is 0.4 r or more, it is desirable because the oxide remaining at the bonding interface is sufficiently reduced and high bonding strength can be obtained. As a result, not only the destruction and dispersion of the oxide film are promoted, but those oxides are discharged together with the overhanging material from the joint interface to obtain a joint interface free of impurities such as oxides. A stronger bond can be obtained.
[0022]
The friction pressure is 10 MPa or more and 500 MPa or less, preferably about 150 MPa, and the friction time is 60 seconds or less. This facilitates avoiding embrittlement or crystallization and enables productivity improvement by shortening the friction time. This is because when the applied pressure is increased, the heating rate is increased, the flow rate of the overhang formation is increased, and the overhang portion can be formed in a shorter time.
[0023]
When forming the overhang of the same length, if the pressure is small, it is necessary to increase the temperature of the joint or to increase the friction time. In particular, a higher rotational speed is required to increase the temperature of the joint. As a result, the risk of crystallization of the joint becomes high. Further, when the pressure is small, the temperature rise due to the friction of the joint portion is small. Furthermore, even if the temperature at the bonding interface is the same, if the pressure is small, the overhang is small, and as a result, the discharge of the oxide film on the bonding surface is small and the bonding strength is low. On the other hand, if the pressure is too high, the temperature rise due to the friction of the joint becomes large and the risk of crystallization increases.
[0024]
In general, the crystallization temperature of an amorphous alloy decreases with time. Therefore, if the friction time is long, the risk of crystallization of the joint becomes high. Further, if the friction time is long, overhangs continue to be formed between them, and the joining material becomes small. Furthermore, the heat at the bonding interface is transmitted to the base material due to heat conduction, the temperature of the base material rises, the base material is deformed, and the risk of crystallization of the base material increases.
[0025]
In particular, by increasing the applied pressure and keeping the friction time within 60 seconds, only the vicinity of the joint surface is heated, preventing heat transfer to the base material and the deformation of the base material, thereby reducing the deformation only near the joint interface. It can also be fastened. Furthermore, in order to bond in a short time it is complete, as the atmosphere during the bonding, even without using a vacuum or inert gas atmosphere, so that strength solid Do junction is obtained.
[0026]
Further, in the method of the present invention, by attaching a taper edge of 45 ° or less, preferably about 30 ° to the peripheral edge of the joint surface of the metal glass by means such as cutting, the discharge of oxide proceeds from the center, Ultimately, the oxide can be discharged from the bonding interface, and a strong bond can be obtained. Further, as the atmosphere during the bonding, even without using a vacuum or inert gas atmosphere, so that strength solid Do junction is obtained. Therefore, not only pipes but also bars and plates can be joined.
[0027]
In the friction of the rotating body, the outer peripheral portion is heated first. If the surface is flat, the oxide film on the joint surface will not be discharged to the outside. When a tapered edge is attached to the peripheral edge portion of the joint surface, deformation starts from the inside, and the oxide film on the joint surface is easily pushed out. Therefore, when the joining surface has a small area, joining is possible even without a taper, but when the joining surface has a large area, it is desirable to provide a taper. Further, when the taper is increased, an excessive overhang unnecessary for bonding is formed, and the bonding member becomes small.
[0028]
In the method of the present invention, when thermal analysis is performed at a heating rate of 0.67 K / s, which is performed in normal thermal analysis, an amorphous alloy material whose difference between the glass transition temperature and the crystallization temperature is 30 K or more is used as a counterpart. Join the material. Various combinations of the material and shape of the bonding material are possible, and examples thereof are shown in FIG. Further, combinations 1 to 5 of the combination of the amorphous material and the bonding material A and the bonding material B are shown in Table 1, and the combination of the bonding material A is an amorphous alloy and the bonding material B is a crystalline alloy. Table 10 shows combinations 11 to 13 in which the bonding material A is a crystalline alloy and the bonding material B is an amorphous alloy. All the members joined in the form of these combinations have good jointability and amorphousness of the amorphous alloy part.
[0029]
By the way, ΔTx (= Tx-Tg) of ZrTiCuNiBe in the table is 120 K, strength is 1900 MPa, ΔTx (= Tx-Tg) of FeAlGaPCB is 45 K, strength is unknown, ΔTx (= Tx-Tg of PdNiCuP) ) Is 95K, strength is 1600MPa, CoFeNbB ΔTx (= Tx-Tg) is 75K, strength is unknown, Δrx of ZrAlNiCu (= Tx-Tg) is 82K, strength is 1500MPa, PdNiP ΔTx ( = Tx-Tg) is 73K, and the strength is 1600 MPa.
[0030]
[Table 1]
Figure 0003821656
[0031]
[Table 2]
Figure 0003821656
[0032]
[Table 3]
Figure 0003821656
[0033]
【Example】
Example 1
A round rod of Pd40Ni40P20 amorphous alloy with a difference between glass transition temperature and crystallization temperature of about 73K at a heating rate of 0.67K / s is shown in Fig. 1 (b). The diameter c of the portion with the length b = 4 mm on the joining surface side is set to 4.4 mm, the diameter d on the non-joining surface side is set to 4 mm, and as shown in FIG. A taper of 45 ° was added as an angle θ with respect to the bonding surface up to a position of e = 1.2 mm, and the diameter f of the bonding surfaces F and F was processed to 2 mm to prepare a bonding test piece.
[0034]
As shown in FIG. 1A, a chuck 4 rotated by a motor 3 through a clutch 1 and a brake 2 and a chuck pressed in an axial direction by a hydraulic press 6 with the test piece as a bonding material A and a bonding material B. It was attached to a friction welding apparatus consisting of 5.
As shown in FIG. 2, the horizontal axis = time, the vertical axis = rotation speed and load, with one of the joining materials A being rotated by the motor 3 at N1 = 6000 rpm, the load of P1 = 100 MPa is applied by the hydraulic press 6. Then, after t1 = 0.2 seconds, the amorphous alloy material was joined by stopping the rotation by the brake 2 and applying an upset pressure of P2 = 150 MPa for t2 = 3 seconds.
[0035]
As shown in the side view of FIG. 3B, the outer appearance of the obtained joined body was able to form a 6 mm overhang C at the joint. As a result of processing the joint test piece into a tensile test piece with a gauge length of 4.0 mm and a gauge part diameter of 1.7 mm and conducting a tensile test, the tensile strength is 1500 MPa and the tensile strength of the Pd40Ni40P20 amorphous alloy material itself is obtained. It was revealed that they were firmly joined.
[0036]
Further, as shown in the scanning electron micrograph of FIG. 4, a vane pattern peculiar to a viscous amorphous alloy is observed on the fracture surface after the tensile test, and it is confirmed that the bonded surface is not weakened. I understood. As shown in the optical micrograph (a) and scanning electron micrograph (b) of FIG. 5, the cross section of the bonded portion of the bonded test piece is firmly bonded over the entire bonded surface, with no defects observed. I found out.
[0037]
Moreover, the micro area X-ray diffraction pattern of this cross section is shown in FIG. In the diffraction pattern, no diffraction peak corresponding to the crystal phase was observed, and only a halo pattern peculiar to the amorphous alloy was observed, indicating that the amorphous phase was retained and bonded.
[0038]
Example 2
A joining specimen was prepared in the same manner as in Example 1 except that a round bar of Zr55Al10Ni5Cu30 amorphous alloy having a difference between the glass transition temperature and the crystallization temperature of about 82 K at a heating rate of 0.67 K / s was used.
[0039]
With this specimen attached to the friction welding device, with one specimen rotated at 7000 rpm, a load of 100 MPa was applied. After 0.2 seconds, rotation was stopped by the brake and an upset pressure of 150 MPa was applied for 3 seconds. As a result, the amorphous alloy material was joined.
[0040]
As a result of the tensile test of the joining specimen, it was found that the tensile strength was 1500 MPa, the tensile strength of the Zr55Al10Ni5Cu30 amorphous alloy material itself was obtained, and it was firmly joined. Further, no defects were observed in the cross section of the joint portion of the joint test piece, and it was found that the joint surface was firmly joined over the entire joint surface.
[0041]
In addition, as a result of the microarea X-ray diffraction experiment of this cross section, the diffraction pattern shows no diffraction peak corresponding to the crystal phase, only the halo pattern peculiar to the amorphous alloy, and the amorphous phase It became clear that it was held and joined.
[0042]
Example 3
Similar to Example 1 except that a Pd40Ni40P20 amorphous alloy material with a difference between glass transition temperature and crystallization temperature of about 73K at a heating rate of 0.67 K / s and a round bar material of ordinary mild steel were used. A piece was made.
[0043]
With this test piece attached to the friction welding device, with one test piece rotated at 6000 rpm, a load of 100 MPa was applied, 0.2 seconds later, rotation was stopped by a brake and an upset pressure of 150 MPa was applied for 3 seconds. As a result, the amorphous alloy material and the mild steel material were joined. The overhang was 2 mm.
[0044]
As a result of the tensile test of the joining specimen, it was revealed that the tensile strength of the mild steel material itself was obtained, and that the joining was strong. In addition, it was found that no defects were observed in the cross section of the bonded portion of the bonded test piece, and the entire bonded surface was firmly bonded.
[0045]
In addition, as a result of the micro-area X-ray diffraction experiment of this cross section, the diffraction pattern corresponding to the crystalline phase is not seen in the diffraction pattern of the amorphous alloy material part, and only the halo pattern peculiar to the amorphous alloy is found. As a result, it was revealed that the amorphous phase was retained and bonded.
[0046]
Example 4
Similar to Example 1, except that Pd40Ni40P20 amorphous alloy material with a difference between glass transition temperature and crystallization temperature of about 73K at a heating rate of 0.67 K / s and a round rod material of normal aluminum material were used. A test piece was prepared.
[0047]
With this test piece attached to the friction welding device, with one test piece rotated at 6000 rpm, a load of 100 MPa was applied, 0.2 seconds later, rotation was stopped by a brake and an upset pressure of 150 MPa was applied for 3 seconds. By doing so, the amorphous alloy material and the aluminum material were joined. The overhang was 2 mm.
[0048]
As a result of the tensile test of the joining test piece, it was revealed that the tensile strength was 400 MPa, the tensile strength of the aluminum material itself was obtained, and it was firmly joined. Further, as shown in FIG. 7, it was found that no defects were observed in the cross section of the bonded portion of the bonded test piece, and the entire bonded surface was firmly bonded.
[0049]
In addition, as a result of the micro-area X-ray diffraction experiment of this cross section, the diffraction pattern corresponding to the crystalline phase is not seen in the diffraction pattern of the amorphous alloy material part, and only the halo pattern peculiar to the amorphous alloy is found. As a result, it was revealed that the amorphous phase was retained and bonded.
[0050]
Example 5
Similar to Example 1, except that a Zr47Ti8Cu7.5Ni10Be27.5 amorphous alloy round bar with a heating rate of 0.67 K / s and a difference between the glass transition temperature and the crystallization temperature of about 120 K was used. Was made.
[0051]
By attaching this test piece to a friction welding device, rotating one of the test pieces at 6000 rpm with a 100 MPa load applied, and applying an upset pressure of 150 MPa for 3 seconds after 0.1 second, an amorphous state was obtained. Alloy material was joined. The overhang was 5 mm.
[0052]
As a result of the tensile test of the joining test piece, the tensile strength was 1900 MPa, the tensile strength of the Zr47Ti8Cu7.5Ni10Be27.5 amorphous alloy material itself was obtained, and it was revealed that the joint was firmly joined. Further, no defects were observed in the cross section of the joint portion of the joint test piece, and it was found that the joint surface was firmly joined over the entire joint surface.
[0053]
In addition, as a result of the microarea X-ray diffraction experiment of this cross section, the diffraction pattern shows no diffraction peak corresponding to the crystal phase, only the halo pattern peculiar to the amorphous alloy, and the amorphous phase It became clear that it was held and joined.
[0054]
Example 6
A joining specimen was prepared in the same manner as in Example 1 except that a Pd40Ni10Cu30P20 amorphous alloy round bar material having a difference between the glass transition temperature and the crystallization temperature of about 95K at a heating rate of 0.67 K / s was used.
[0055]
With this test piece attached to the friction welding device, with one test piece rotated at 6000 rpm, a load of 100 MPa was applied, 0.2 seconds later, rotation was stopped by a brake and an upset pressure of 150 MPa was applied for 3 seconds. As a result, the amorphous alloy material was joined. The overhang was 7 mm.
[0056]
As a result of the tensile test of the joining specimen, it was found that the tensile strength was 1600 MPa, the tensile strength of the Pd40Ni10Cu30P20 amorphous alloy material itself was obtained, and the joint was firmly joined. Further, no defects were observed in the cross section of the joint portion of the joint test piece, and it was found that the joint surface was firmly joined over the entire joint surface.
[0057]
In addition, as a result of the microarea X-ray diffraction experiment of this cross section, the diffraction pattern shows no diffraction peak corresponding to the crystal phase, only the halo pattern peculiar to the amorphous alloy, and the amorphous phase It became clear that it was held and joined.
[0058]
Example 7
A joining specimen was prepared in the same manner as in Example 1 except that a round bar of Pd40Ni40P20 amorphous alloy having a difference between the glass transition temperature and the crystallization temperature of about 73 K at a heating rate of 0.67 K / s was used.
[0059]
With this test piece attached to the friction welding device, with one test piece rotated at 6000 rpm, a 10 MPa load was applied, and within 60 seconds the rotation was stopped by the brake and an upset pressure of 15 MPa was applied. The amorphous alloy material was joined by adding for 2 seconds. The overhang was 2-10 mm. The friction times were 0.1, 0.3, 1.0, 5, 10, 60 seconds, respectively.
[0060]
As a result of the tensile test of the bonded specimen, as shown in FIG. 8, the tensile strength is 1600 MPa when the friction time is 60 seconds, and the tensile strength of the Pd40Ni40P20 amorphous alloy material itself can be obtained and bonded firmly. It became clear that
[0061]
It was found that no defects were observed in the cross section of the bonded portion of the bonded test piece, and the bonded surface was firmly bonded over the entire bonded surface. In addition, the diffraction pattern does not show a diffraction peak corresponding to the crystal phase, and only a halo pattern peculiar to the amorphous alloy is seen, and it is clear that the amorphous phase is retained and bonded. It was.
[0062]
Comparative Example 1
Joining was carried out in the same manner as in Example 7 except that the friction time exceeded 60 seconds. The friction times were 70 seconds, 80 seconds, 100 seconds, and 500 seconds, respectively. As shown in FIG. 8, the tensile strength decreased when the friction time was 60 seconds or more. In the diffraction pattern, a diffraction peak corresponding to the crystal phase was observed, which revealed that the crystal was crystallized.
[0063]
【The invention's effect】
According to the bonding method of the amorphous alloy material of the present invention that can obtain a sufficient strength in the state of holding the amorphous material, as its function, as for the bonding, (1) destruction and dispersion of the oxide film due to friction, ( 2) The joint interface temperature rises to the supercooled liquid temperature range due to frictional heat, the joint interface is significantly softened, and the destruction and dispersion of oxides are accelerated by superplastic deformation. (3) Overhang formation by superplastic deformation at that time A strong bonding can be achieved by the discharge of oxide accompanying the above.
[0064]
On the other hand, regarding the weakening and crystallization prevention of the bonding interface, (1) reduction of heating time and heating area by high friction pressure and short-time friction welding, and (2) discharge at the bonding interface due to discharge of the temperature rising portion by overhang formation. It is possible to improve the cooling efficiency by reducing the volume of the heating section, and (3) to reduce the thermal history in the vicinity of the joint interface by self-suppression due to drastic decrease in viscosity due to processing heat generation at the joint interface in the supercooled liquid state.
[Brief description of the drawings]
FIG. 1A is a schematic view showing a friction joining method of Examples 1 to 7, and FIG. 1B is a side view showing a shape of a joining test piece.
FIG. 2 is a schematic view showing joining conditions of the friction joining method of Examples 1 to 7.
3 is a side view showing the shape of a joining test piece (Pd40Ni40P20 / Pd40Ni40P20) before joining and a joining test piece after joining in Example 1. FIG.
4 is a scanning electron micrograph (Pd40Ni40P20 / Pd40Ni40P20) instead of a drawing, showing a fracture surface of the joined body after joining in Example 1. FIG.
FIG. 5 is a drawing-substituting photograph (Pd40Ni40P20 / Pd40Ni40P20: optical micrograph (a) and scanning electron micrograph (b)) showing the cross-sectional structure of the bonded interface of the bonded body after bonding in Example 1.
6 is a graph showing a micro area X-ray diffraction pattern (Pd40Ni40P20 / Pd40Ni40P20) of a bonded interface of the bonded body after bonding in Example 1. FIG.
7 is a drawing-substituting optical micrograph showing a sectional structure of a bonded interface of a bonded body (Pd40Ni40P20 / aluminum) after bonding in Example 4. FIG.
8 is a graph showing the dependency of the tensile strength of the bonded material after bonding in Example 7 on the friction time (t1). FIG.
FIG. 9 is a conceptual diagram showing an example of a combination of the material and shape of a bonding material in the method of the present invention.

Claims (5)

加熱速度0.67K/s の場合に、ガラス遷移現象を示し、ガラス遷移温度と結晶化温度の差が30K 以上である非晶質合金材料同士の接合または該非晶質合金材料と結晶材料との接合を、両材料の接合面を加圧しながら回転させることにより発生する摩擦熱を利用して行う摩擦接合方法において、
摩擦圧力を10MPa 以上かつ500 MPa 以下、
摩擦時間を60秒以下とし、
摩擦熱により両材料の接合界面近傍の非晶質合金材料を過冷却液体状態にするとともに、過冷却液体の粘性流動による超塑性変形を該摩擦圧力により生ぜしめることにより接合界面近傍の両材料を同時に接合界面の外側に張り出させることによって
接合界面の酸化皮膜を破壊、分断し、かつ張り出し材とともに接合界面から外部に排出することにより新生面で接合し、かつ過冷却液体の接合部における自己温度制御機能により、非晶質合金材料の接合部の結晶化を避けて、接合を行うことを特徴とする摩擦接合方法。
When the heating rate is 0.67 K / s, the glass transition phenomenon is exhibited, and the bonding between the amorphous alloy materials having a difference between the glass transition temperature and the crystallization temperature of 30 K or more, or the bonding between the amorphous alloy material and the crystalline material. In a friction welding method that uses frictional heat generated by rotating while pressing the joint surfaces of both materials,
The friction pressure is 10 MPa or more and 500 MPa or less,
The friction time is 60 seconds or less,
The amorphous alloy material near the joint interface between the two materials is brought into a supercooled liquid state by frictional heat, and superplastic deformation due to the viscous flow of the supercooled liquid is caused by the friction pressure, so that both materials near the joint interface are At the same time, the oxide film on the bonding interface is destroyed and divided by projecting to the outside of the bonding interface, and it is bonded to the new surface by discharging from the bonding interface together with the projecting material, and the self-temperature at the supercooled liquid bonding part A friction welding method characterized in that the bonding is performed by avoiding crystallization of the bonded portion of the amorphous alloy material by the control function.
接合界面近傍の超塑性変形により、張り出し長さが0.2r(rは接合材の半径)以上の張り出しを形成することを特徴とする請求項1記載の接合方法。 2. The joining method according to claim 1, wherein an overhang having an overhang length of 0.2r (where r is a radius of the bonding material) or more is formed by superplastic deformation in the vicinity of the bonding interface. 両材料の接合面の周縁部に45°以下のテーパーのエッジを付けることにより、パイプ材または丸棒材の接合を行うことを特徴とする請求項1又は2記載の接合方法。 3. The joining method according to claim 1, wherein the pipe material or the round bar material is joined by attaching an edge having a taper of 45 [deg.] Or less to the peripheral portion of the joining surface of both materials. 回転を止めると共にアップセット圧力を付加させることを特徴とする請求項1乃至のいずれかに記載の接合方法。The bonding method according to any one of claims 1 to 3, characterized in that an addition of the upset pressure with stops rotating. 請求項1乃至のいずれかに記載の接合方法によって接合された非晶質合金材料同士または非晶質合金材料と結晶材料とからなる接合部材。The joining member which consists of amorphous alloy materials joined by the joining method in any one of Claims 1 thru | or 4 , or an amorphous alloy material and a crystal material.
JP2001081745A 2001-03-21 2001-03-21 Friction welding method of amorphous alloy and joining member Expired - Fee Related JP3821656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081745A JP3821656B2 (en) 2001-03-21 2001-03-21 Friction welding method of amorphous alloy and joining member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081745A JP3821656B2 (en) 2001-03-21 2001-03-21 Friction welding method of amorphous alloy and joining member

Publications (2)

Publication Number Publication Date
JP2002283067A JP2002283067A (en) 2002-10-02
JP3821656B2 true JP3821656B2 (en) 2006-09-13

Family

ID=18937789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081745A Expired - Fee Related JP3821656B2 (en) 2001-03-21 2001-03-21 Friction welding method of amorphous alloy and joining member

Country Status (1)

Country Link
JP (1) JP3821656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104014927A (en) * 2014-06-10 2014-09-03 东莞台一盈拓科技股份有限公司 Amorphous alloy and nut welding method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608534B1 (en) 2005-06-29 2006-08-03 신형섭 Friction welding method and apparatus for bulk metallic glass
DE102006053790A1 (en) * 2006-11-15 2008-05-21 Volkswagen Ag Joining a jockey wheel with a coupling body in the manufacture of motor vehicle gear box, comprises producing a projection in a joining area and connecting the jockey wheel and the coupling body axially by friction welding with one another
JP5378044B2 (en) * 2009-04-09 2013-12-25 オリンパス株式会社 Medical instrument parts and medical instruments
DE102009059055A1 (en) * 2009-12-18 2011-06-22 MAHLE International GmbH, 70376 Method for connecting two components, where each component has a joining surface, comprises connecting two joining surfaces associated to each other by means of a friction welding
FR2992880B1 (en) * 2012-07-06 2015-02-13 Snecma PIECE FOR FRICTION WELDING
CN104307906A (en) * 2014-10-17 2015-01-28 深圳市锆安材料科技有限公司 Composite forming method of amorphous alloy and non-amorphous alloy
CN111112822A (en) * 2020-01-03 2020-05-08 中国航空制造技术研究院 Linear friction welding method
CN113798654B (en) * 2021-08-04 2023-05-16 广东工业大学 Friction connection method of amorphous alloy and bulk amorphous alloy
CN113909609A (en) * 2021-09-28 2022-01-11 广东工业大学 Amorphous alloy brazing method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104014927A (en) * 2014-06-10 2014-09-03 东莞台一盈拓科技股份有限公司 Amorphous alloy and nut welding method

Also Published As

Publication number Publication date
JP2002283067A (en) 2002-10-02

Similar Documents

Publication Publication Date Title
Muhammad et al. Effect of ultrasonic vibration on the intermetallic compound layer formation in Al/Cu friction stir weld joints
US4331286A (en) Method for pressure bonding metal members by utilizing eutectic reaction
JP3209170B2 (en) Friction welding method and joint for aluminum alloy hollow member
JP3821656B2 (en) Friction welding method of amorphous alloy and joining member
JP4591547B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
EP2578345B1 (en) Method of joining aluminum alloys
WO2017154658A1 (en) Method for low-temperature joining of metal materials, and joint structure
JP2008214704A (en) Amorphous metal or metal glass joined body
CN102131611B (en) Liquid phase diffusion bonding pipe joint and manufacturing method therefor
JP6819958B2 (en) Linear friction stir welding method
EP0028763B1 (en) Method for pressure bonding metal members by utilizing eutectic reaction
JP2002346770A (en) Aluminum-based bonded structure
Zhang et al. Cladding thick Al plate onto strong steel substrate using a novel process of multilayer-friction stir brazing (ML-FSB)
US4337886A (en) Welding with a wire having rapidly quenched structure
JP3857535B2 (en) Pulse current welding method of amorphous alloy material
Zhou et al. Interface microstructure and formation mechanism of ultrasonic spot welding for Al-Ti dissimilar metals
JP2018069289A (en) Joint method for dissimilar metal plates
JP6426883B2 (en) Method of manufacturing joined body excellent in corrosion resistance
WO2021095528A1 (en) Dissimilar material solid phase bonding method, dissimilar material solid phase bonded structure, and dissimilar material solid phase bonding device
JP2006326613A (en) Resistance seam welding method for different kind of metal and its welding structure
Chauhan et al. Effect of friction stir welding parameters on impact strength of the AZ31 magnesium alloy joints
JP2015157307A (en) Au-Sn-Ag TYPE SOLDER ALLOY, ELECTRONIC PARTS SEALED BY USING Au-Sn-Ag TYPE SOLDER ALLOY AND ELECTRONIC PARTS MOUNTED DEVICE
JPH02160188A (en) Method for joining intermetallic compound of ti-al system and ti-based alloy
Ikeuchi et al. Effect of Interfacial Reaction Layer on Bond Strength of Friction-Bonded Joint of A1 Alloys to Steel
JP4540268B2 (en) Friction welding method between aluminum alloy member and steel member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees