JP3821577B2 - Engine driven compression refrigerator - Google Patents

Engine driven compression refrigerator Download PDF

Info

Publication number
JP3821577B2
JP3821577B2 JP12857198A JP12857198A JP3821577B2 JP 3821577 B2 JP3821577 B2 JP 3821577B2 JP 12857198 A JP12857198 A JP 12857198A JP 12857198 A JP12857198 A JP 12857198A JP 3821577 B2 JP3821577 B2 JP 3821577B2
Authority
JP
Japan
Prior art keywords
absorber
oil
refrigerant vapor
engine
refrigerating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12857198A
Other languages
Japanese (ja)
Other versions
JPH11325648A (en
Inventor
武 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP12857198A priority Critical patent/JP3821577B2/en
Publication of JPH11325648A publication Critical patent/JPH11325648A/en
Application granted granted Critical
Publication of JP3821577B2 publication Critical patent/JP3821577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はエンジン駆動の圧縮式冷凍機に関するものである。
【0002】
【従来の技術】
図3は周知の圧縮式冷凍機の基本構成を示すもので、符号101は圧縮機、102は凝縮器、103は減圧弁、104は蒸発器、105は油分離器、106は減圧弁である。凝縮器102と蒸発器104は空気熱交換器として構成しており、夫々にファン107,108を設置している。符号109は油分離器105から蒸発器104の下流側に至る冷凍機油戻し経路で、前記減圧弁106が設けられている。また符号100,111は夫々高圧冷媒蒸気経路、低圧冷媒蒸気経路である。
【0003】
この圧縮式冷凍機において、圧縮機101を潤滑する冷凍機油は、高圧冷媒蒸気と共に圧縮機101の吐出側を出て油分離器105にて分離され、冷凍機油戻し経路109を通って蒸発器104の下流側に合流し、低圧冷媒蒸気と混合されて圧縮機101の吸込側に還流する。
以上のようにして圧縮式冷凍機では、冷凍機油が圧縮機101内部に保持されるようにサイクルが形成されている。
【0004】
一般に、油分離器105で冷媒と冷凍機油を完全に分離することは不可能であり、冷凍機油の一部は冷媒蒸気に同伴されて凝縮器102へと流れてしまう。そのため、凝縮器102でも冷凍機油が問題なく流れるように、冷凍機油は冷媒に対して溶解性を有するものを選定する場合が多い。即ち、高粘度の冷凍機油と低粘度の冷媒が溶け合えば、冷凍機油の粘度が低下して凝縮器102や、その後の蒸発器104も流れやすくなるため、凝縮器102へと流れた冷凍機油も確実に冷媒と共に圧縮機101に戻すことができる。
【0005】
【発明が解決しようとする課題】
他の各種機器、システムと同様、圧縮式冷凍機においても、効率のより一層の向上が計られているのであるが、従来、冷凍機油は単なる潤滑油として使用しており、効率の向上には利用されていない。
本発明はこのような点に鑑みて創案されたもので、冷凍機油の冷媒に対する溶解性を有効に利用することにより、効率の向上を計ることを目的とするものである。
【0006】
【課題を解決するための手段】
上述した課題を解決するために本発明では、冷媒に対する溶解性を有する冷凍機油を使用したエンジン駆動の圧縮式冷凍機において、油分離器から蒸発器の下流側に至る冷凍機油戻し経路に、その上流側から順次、排気ガス熱交換器、気液分離器、冷却器、吸収器を設けると共に、蒸発器の下流側から吸収器の上流側に至る低圧冷媒蒸気経路を設けたエンジン駆動の圧縮式冷凍機を提案する。
【0007】
以上の構成において、冷却器と吸収器は空気熱交換器として構成することができ、そしてこれらの冷却器と吸収器を、凝縮器を構成する空気熱交換器と並設することを提案する。
【0008】
以上の本発明によれば、油分離器において分離された高温の冷凍機油を冷凍機油戻し経路を経て蒸発器の下流側の低圧冷媒蒸気経路に戻す際、まず排気ガス熱交換器において加熱して、溶解している冷媒を蒸発させた後、冷却器において冷却することにより冷媒に対する溶解性を高くし、この状態において低圧冷媒蒸気経路の冷媒蒸気を混合して、吸収器において吸収熱を除去しながら冷媒蒸気を吸収するので、圧縮機に戻す冷凍機油に、蒸発器の下流側の低圧冷媒蒸気の一部が溶け込み、この一部は液の状態で圧縮機に入るので、その分、圧縮機が圧縮する冷媒蒸気の量が減る。従って圧縮機の所要動力が減り、効率が向上する。
【0009】
【発明の実施の形態】
次に本発明の実施の形態を図を参照して説明する。
図1は本発明を適用した圧縮式冷凍機の実施の形態を示すもので、図2に示す従来の圧縮式冷凍機と同様な構成要素には同一の符号を付して、重複する説明は省略する。
図1に示すように本発明を適用した圧縮式冷凍機では、まず圧縮機1はエンジン12により駆動する構成としている。符号13はエンジン12の排気ガス経路であり、この排気ガス経路13を通して排気する排気ガスと、油分離器5から冷凍機油戻し経路10を流れる冷凍機油との間で熱交換を行わせる排気ガス熱交換器14を設けている。また冷凍機油戻し経路10には、この排気ガス熱交換器14の下流側に気液分離器15を設けており、その分離した蒸気の経路、即ち蒸気経路16は高圧冷媒蒸気経路10に合流させている。更に、冷凍機油戻し経路10には、気液分離器15の下流側に冷却器17、更にその下流側に吸収器18を設けて低圧冷媒ガス経路11に合流させている。蒸発器4の下流側の低圧冷媒ガス経路11から吸収器18の上流側に低圧冷媒蒸気経路19を設けている。
そしてこの実施の形態では、冷却器17及び吸収器18は空気熱交換器として構成し、凝縮器2を構成する空気熱交換器と並設している。
【0010】
以上の構成において、圧縮機1の吐出側を出た冷凍機油は冷媒と同程度の高温で油分離器5に入り、ここで高圧冷媒蒸気と分離される。この際、上述したように一部の冷凍機油は高圧冷媒蒸気に同伴されて凝縮器2へと流れる。
油分離器5において分離された高温の冷凍機油は冷凍機油戻し経路9を流れて排気ガス熱交換器14に至り、エンジン12の排気ガスと熱交換して加熱される。加熱により冷凍機油に溶解している冷媒が蒸発し、気液分離器15で分離される。気液分離器15で分離された冷媒蒸気は、高圧冷媒蒸気経路10に流入し、油分離器5からの高圧冷媒蒸気と合流して凝縮器2方向に流れる。
一方、溶解していた冷媒が蒸発した冷凍機油は冷却器17において冷却されて温度が低下した後、吸収器18に流入する。この際、吸収器18の上流側において低圧冷媒蒸気経路19からの低圧冷媒蒸気が冷凍機油に混合されて吸収器18に流入する。冷凍機油は冷却器17での冷却により、冷媒に対する溶解性が高くなっているので、冷媒蒸気の一部を吸収して温度上昇し、次いで吸収器18において、更に冷凍機油が低圧冷媒蒸気を吸収する。この際に吸収器18に発生する吸収熱は外気に放出されるため、冷凍機油に対する冷媒蒸気の吸収が良好に行われる。
次いで冷媒蒸気を吸収した冷凍機油は吸収器18から低圧冷媒蒸気経路11に流入し、ここを流れている低圧冷媒蒸気と合流して圧縮機1の吸込側に入る。従って、蒸発器4から還流する低圧冷媒蒸気の一部は、冷凍機油に溶解し、液の状態で圧縮機1の吸込側に入る。
圧縮機1に還流した低圧冷媒蒸気は圧縮されて高温高圧の蒸気となり、また冷凍機油は吐出側に移動しながら圧縮機1の各部の潤滑と冷却に供される。この際、冷凍機油は圧縮後の高温高圧の蒸気と接触して温度が上昇するため、溶解していた冷媒が蒸発し、圧縮された高圧冷媒蒸気と共に圧縮機1の吐出側から出て油分離器5へと向かう。
【0011】
このように、低圧冷媒蒸気経路11の低圧冷媒蒸気の一部は、冷凍機油に溶け込んで液の状態で圧縮機1に入り、圧縮された高圧冷媒蒸気により加熱された冷凍機油から蒸発して、高圧冷媒蒸気と共に圧縮機1を出るので、圧縮機1から出る冷媒蒸気の量に対して、圧縮機が圧縮する冷媒蒸気の量を減らすことができる。これにより、圧縮機1の所要動力が減り、効率が向上する。
【0012】
一方、冷凍機油は、圧縮機1から吐出して油分離器において冷媒を分離すると共に、さらにエンジン12の排気ガスで加熱して冷媒を蒸発させ、蒸発した冷媒を気液分離器15を経て高圧冷媒蒸気経路10に合流させるので、凝縮器2方向に流して冷凍動作を行わせる冷媒量を減らすことがなく、これによる効率の低下を防止することができる。
以上の動作を図2のi−x線図につき説明すると次の通りである。
尚、図において、直線a,b,cは夫々冷媒の飽和蒸気圧,冷媒吸収後の冷凍機油の飽和蒸気圧,圧縮機出の冷凍機油の飽和蒸気圧を示すものである。
またd〜hは各点における下記の夫々の状態を示すものである。
d:圧縮機1を出た冷凍機油 e:冷却器17を出た冷却器油
f:冷凍機油と低圧冷媒蒸気が混合された状態
g:吸収器18出口の冷凍機油 h:圧縮機1を出た冷凍機油
上述した動作は図2において、次のように示される。
(1) 冷凍機油は、冷却器17において冷却されて温度が低下し、この状態はd〜eの変化として示される。
(2) 冷却器17を出た冷凍機油と冷媒蒸気が混合し、冷凍機油が冷媒の一部を吸収すると温度が上昇し、この状態は、e〜fの変化として示される。この場合、fで飽和圧力が蒸発器4の圧力と等しくなる。
(3) 吸収器18においては、冷凍機油が冷媒蒸気を吸収し、この際に発生する吸収熱は外気に放熱される。この状態は、f〜gの変化として示される。
(4) 圧縮機1内で冷凍機油は各部の潤滑や冷却に使用されて温度上昇し、この状態はg〜hの変化として示される。
(5) 圧縮機1を出た冷凍機油は油分離器5を経て排気ガス熱交換器14においてエンジン12の排気ガスと熱交換して加熱され、飽和蒸気圧が凝縮器2の圧力以上となると、冷凍機油に解けていた冷媒が蒸発する。この状態は、h〜dの変化として示され。
【0013】
ここで、以上に説明した実施の形態では、冷却器17及び吸収器18は空気熱交換器として構成し、凝縮器2を構成する空気熱交換器と並設しているため、ファン7を共用することができる。
しかしながら、冷却器17及び吸収器18は、必ずしも空気熱交換器として構成して凝縮器2を構成する空気熱交換器と並設する必要はなく、また冷却器17及び吸収器18自体の構成も適宜である。
【0014】
【発明の効果】
本発明は以上のとおり、エンジン駆動の圧縮式冷凍機において、冷凍機油の冷媒に対する溶解性を有効に利用することにより、効率の向上を計ることができるという効果がある。
また冷凍機油に溶解した冷媒は、エンジンの排気ガスにより加熱して蒸発させて凝縮器方向に流すので、冷却動作に供する冷媒量を減らさないという効果がある。
【図面の簡単な説明】
【図1】 本発明を適用したエンジン駆動の圧縮式冷凍機の基本構成の実施の形態を示す系統図である。
【図2】 本発明における動作を示すi−x線図である。
【図3】 従来の圧縮式冷凍機の基本構成の例を示す系統図である。
【符号の説明】
1 圧縮機
2 凝縮器
3 減圧弁
4 蒸発器
5 油分離器
6 減圧弁
7,8 ファン
9 冷凍機油戻し経路
10 高圧冷媒蒸気経路
11 低圧冷媒蒸気経路
12 エンジン
13 排気ガス経路
14 排気ガス熱交換器
15 気液分離器
16 蒸気経路
17 冷却器
18 吸収器
19 低圧冷媒蒸気経路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an engine-driven compression refrigerator.
[0002]
[Prior art]
FIG. 3 shows a basic configuration of a known compression type refrigerator. Reference numeral 101 denotes a compressor, 102 denotes a condenser, 103 denotes a pressure reducing valve, 104 denotes an evaporator, 105 denotes an oil separator, and 106 denotes a pressure reducing valve. . The condenser 102 and the evaporator 104 are configured as air heat exchangers, and fans 107 and 108 are installed respectively. Reference numeral 109 denotes a refrigerating machine oil return path from the oil separator 105 to the downstream side of the evaporator 104, and the pressure reducing valve 106 is provided. Reference numerals 100 and 111 denote a high-pressure refrigerant vapor path and a low-pressure refrigerant vapor path, respectively.
[0003]
In this compression refrigerator, the refrigerating machine oil that lubricates the compressor 101 leaves the discharge side of the compressor 101 together with the high-pressure refrigerant vapor, is separated by the oil separator 105, passes through the refrigerating machine oil return path 109, and the evaporator 104. And is mixed with the low-pressure refrigerant vapor and refluxed to the suction side of the compressor 101.
As described above, in the compression refrigerator, the cycle is formed so that the refrigerator oil is held inside the compressor 101.
[0004]
In general, it is impossible to completely separate the refrigerant and the refrigerating machine oil by the oil separator 105, and a part of the refrigerating machine oil flows along with the refrigerant vapor to the condenser 102. Therefore, in many cases, the refrigeration oil that is soluble in the refrigerant is selected so that the refrigeration oil flows in the condenser 102 without any problem. That is, if the high-viscosity refrigerating machine oil and the low-viscosity refrigerant are melted together, the refrigerating machine oil viscosity decreases and the condenser 102 and the subsequent evaporator 104 flow easily. Can also be reliably returned to the compressor 101 together with the refrigerant.
[0005]
[Problems to be solved by the invention]
As with other devices and systems, the efficiency of compression refrigeration machines has been further improved. Conventionally, refrigeration oil has been used only as a lubricating oil, and it is necessary to improve efficiency. Not used.
The present invention was devised in view of such points, and an object of the present invention is to improve efficiency by effectively utilizing the solubility of refrigeration oil in a refrigerant.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, in an engine-driven compression refrigerator using a refrigerator oil having solubility in a refrigerant, a refrigerating machine oil return path extending from an oil separator to a downstream side of an evaporator, An engine-driven compression type with an exhaust gas heat exchanger, a gas-liquid separator, a cooler, and an absorber in order from the upstream side, and a low-pressure refrigerant vapor path from the downstream side of the evaporator to the upstream side of the absorber Propose a refrigerator.
[0007]
In the above configuration, the cooler and the absorber can be configured as an air heat exchanger, and it is proposed that these cooler and the absorber are juxtaposed with the air heat exchanger constituting the condenser.
[0008]
According to the present invention as described above, when the high-temperature refrigeration oil separated in the oil separator is returned to the low-pressure refrigerant vapor path on the downstream side of the evaporator via the refrigeration oil return path, it is first heated in the exhaust gas heat exchanger. After evaporating the dissolved refrigerant, cooling in the cooler increases the solubility in the refrigerant. In this state, the refrigerant vapor in the low-pressure refrigerant vapor path is mixed, and the absorbed heat is removed in the absorber. Since the refrigerant vapor is absorbed, a part of the low-pressure refrigerant vapor on the downstream side of the evaporator is dissolved in the refrigeration oil returned to the compressor, and this part enters the compressor in a liquid state. The amount of refrigerant vapor that is compressed decreases. Accordingly, the required power of the compressor is reduced and the efficiency is improved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of a compression type refrigerator to which the present invention is applied. The same components as those in the conventional compression type refrigerator shown in FIG. Omitted.
As shown in FIG. 1, in the compression type refrigerator to which the present invention is applied, the compressor 1 is first driven by an engine 12. Reference numeral 13 denotes an exhaust gas path of the engine 12. Exhaust gas heat for exchanging heat between the exhaust gas exhausted through the exhaust gas path 13 and the refrigerating machine oil flowing through the refrigerating machine oil return path 10 from the oil separator 5. An exchanger 14 is provided. The refrigerating machine oil return path 10 is provided with a gas-liquid separator 15 on the downstream side of the exhaust gas heat exchanger 14, and the separated steam path, that is, the steam path 16 is joined to the high-pressure refrigerant steam path 10. ing. Further, the refrigerator oil return path 10 is provided with a cooler 17 on the downstream side of the gas-liquid separator 15 and an absorber 18 on the downstream side thereof, and is joined to the low-pressure refrigerant gas path 11. A low-pressure refrigerant vapor path 19 is provided on the upstream side of the absorber 18 from the low-pressure refrigerant gas path 11 on the downstream side of the evaporator 4.
In this embodiment, the cooler 17 and the absorber 18 are configured as an air heat exchanger, and are arranged in parallel with the air heat exchanger that constitutes the condenser 2.
[0010]
In the above configuration, the refrigeration oil exiting the discharge side of the compressor 1 enters the oil separator 5 at a temperature as high as that of the refrigerant, and is separated from the high-pressure refrigerant vapor here. At this time, as described above, a part of the refrigerating machine oil flows along with the high-pressure refrigerant vapor to the condenser 2.
The high-temperature refrigerating machine oil separated in the oil separator 5 flows through the refrigerating machine oil return path 9 and reaches the exhaust gas heat exchanger 14, and is heated by exchanging heat with the exhaust gas of the engine 12. The refrigerant dissolved in the refrigerating machine oil evaporates by heating and is separated by the gas-liquid separator 15. The refrigerant vapor separated by the gas-liquid separator 15 flows into the high-pressure refrigerant vapor path 10, merges with the high-pressure refrigerant vapor from the oil separator 5, and flows in the direction of the condenser 2.
On the other hand, the refrigerating machine oil in which the dissolved refrigerant has evaporated is cooled in the cooler 17 and the temperature is lowered, and then flows into the absorber 18. At this time, the low-pressure refrigerant vapor from the low-pressure refrigerant vapor path 19 is mixed with the refrigeration oil on the upstream side of the absorber 18 and flows into the absorber 18. Since the refrigerating machine oil is highly soluble in the refrigerant by cooling in the cooler 17, the temperature of the refrigerating machine oil is increased by absorbing a part of the refrigerant vapor, and the refrigerating machine oil further absorbs the low-pressure refrigerant vapor in the absorber 18. To do. At this time, the absorbed heat generated in the absorber 18 is released to the outside air, so that the refrigerant vapor is favorably absorbed by the refrigerating machine oil.
Next, the refrigerating machine oil that has absorbed the refrigerant vapor flows from the absorber 18 into the low-pressure refrigerant vapor path 11, joins the low-pressure refrigerant vapor flowing therethrough, and enters the suction side of the compressor 1. Therefore, a part of the low-pressure refrigerant vapor recirculated from the evaporator 4 is dissolved in the refrigeration oil and enters the suction side of the compressor 1 in a liquid state.
The low-pressure refrigerant vapor returned to the compressor 1 is compressed into high-temperature and high-pressure vapor, and the refrigeration oil is used for lubrication and cooling of each part of the compressor 1 while moving to the discharge side. At this time, since the temperature of the refrigeration oil increases due to contact with the compressed high-temperature and high-pressure steam, the melted refrigerant evaporates and comes out from the discharge side of the compressor 1 together with the compressed high-pressure refrigerant vapor to separate the oil. Head to vessel 5.
[0011]
In this way, part of the low-pressure refrigerant vapor in the low-pressure refrigerant vapor path 11 is dissolved in the refrigeration oil and enters the compressor 1 in a liquid state, evaporates from the refrigeration oil heated by the compressed high-pressure refrigerant vapor, Since the compressor 1 is discharged together with the high-pressure refrigerant vapor, the amount of refrigerant vapor compressed by the compressor can be reduced with respect to the amount of refrigerant vapor coming out of the compressor 1. Thereby, the required power of the compressor 1 is reduced and the efficiency is improved.
[0012]
On the other hand, the refrigerating machine oil is discharged from the compressor 1 and separated from the refrigerant in the oil separator, and further heated by the exhaust gas of the engine 12 to evaporate the refrigerant, and the evaporated refrigerant passes through the gas-liquid separator 15 to be high pressure. Since the refrigerant is combined with the refrigerant vapor path 10, the amount of refrigerant flowing in the direction of the condenser 2 to perform the refrigeration operation is not reduced, and a decrease in efficiency due to this can be prevented.
The above operation will be described with reference to the ix diagram of FIG.
In the figure, straight lines a, b, and c indicate the saturated vapor pressure of the refrigerant, the saturated vapor pressure of the refrigerating machine oil after absorption of the refrigerant, and the saturated vapor pressure of the refrigerating machine oil discharged from the compressor, respectively.
D to h indicate the following states at each point.
d: Refrigerating machine oil exiting the compressor 1 e: Refrigerating machine oil exiting the cooler 17 f: Refrigerating machine oil and low-pressure refrigerant vapor mixed g: Refrigerating machine oil at the outlet of the absorber 18 h: Exiting the compressor 1 The operation described above is shown in FIG. 2 as follows.
(1) The refrigerating machine oil is cooled in the cooler 17 to decrease the temperature, and this state is shown as a change of de.
(2) When the refrigerating machine oil exiting the cooler 17 and the refrigerant vapor are mixed and the refrigerating machine oil absorbs a part of the refrigerant, the temperature rises, and this state is shown as a change in ef. In this case, the saturation pressure becomes equal to the pressure of the evaporator 4 at f.
(3) In the absorber 18, the refrigerating machine oil absorbs the refrigerant vapor, and the absorbed heat generated at this time is radiated to the outside air. This state is shown as a change in fg.
(4) Refrigerating machine oil is used for lubrication and cooling of each part in the compressor 1 and the temperature rises, and this state is shown as changes in g to h.
(5) When the refrigeration oil leaving the compressor 1 passes through the oil separator 5 and is heated by exchanging heat with the exhaust gas of the engine 12 in the exhaust gas heat exchanger 14, the saturated vapor pressure becomes equal to or higher than the pressure of the condenser 2. The refrigerant that has been dissolved in the refrigeration oil evaporates. This state is shown as a change in hd.
[0013]
Here, in the embodiment described above, the cooler 17 and the absorber 18 are configured as an air heat exchanger, and are arranged side by side with the air heat exchanger that configures the condenser 2. can do.
However, the cooler 17 and the absorber 18 are not necessarily arranged side by side with the air heat exchanger that constitutes the condenser 2 by being configured as an air heat exchanger, and the configurations of the cooler 17 and the absorber 18 themselves are also included. It is appropriate.
[0014]
【The invention's effect】
As described above, the present invention has an effect that in an engine-driven compression refrigerator, efficiency can be improved by effectively using the solubility of the refrigerator oil in the refrigerant.
Further, since the refrigerant dissolved in the refrigeration oil is heated and evaporated by the exhaust gas of the engine and flows in the direction of the condenser, there is an effect that the amount of the refrigerant used for the cooling operation is not reduced.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a basic configuration of an engine-driven compression refrigerator to which the present invention is applied.
FIG. 2 is an ix diagram showing the operation in the present invention.
FIG. 3 is a system diagram showing an example of a basic configuration of a conventional compression refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Pressure reducing valve 4 Evaporator 5 Oil separator 6 Pressure reducing valve 7, 8 Fan 9 Refrigerator oil return path 10 High pressure refrigerant vapor path 11 Low pressure refrigerant vapor path 12 Engine 13 Exhaust gas path 14 Exhaust gas heat exchanger 15 Gas-liquid separator 16 Steam path 17 Cooler 18 Absorber 19 Low-pressure refrigerant steam path

Claims (3)

冷媒に対する溶解性を有する冷凍機油を使用したエンジン駆動の圧縮式冷凍機において、油分離器から蒸発器の下流側に至る冷凍機油戻し経路に、その上流側から順次、排気ガス熱交換器、気液分離器、冷却器、吸収器を設け、排気ガス熱交換器においてエンジンの排気ガスと熱交換する構成とすると共に、蒸発器の下流側から吸収器の上流側に至る低圧冷媒蒸気経路を設けたことを特徴とするエンジン駆動の圧縮式冷凍機In an engine-driven compression refrigeration machine that uses refrigeration oil that is soluble in the refrigerant, an exhaust gas heat exchanger, an air flow are sequentially provided from the upstream side to the refrigeration oil return path from the oil separator to the downstream side of the evaporator. A liquid separator, cooler, and absorber are provided to exchange heat with the exhaust gas of the engine in the exhaust gas heat exchanger, and a low-pressure refrigerant vapor path from the downstream side of the evaporator to the upstream side of the absorber is provided. Engine driven compression refrigerator 冷却器と吸収器は空気熱交換器として構成することを特徴とする請求項1記載のエンジン駆動の圧縮式冷凍機2. The engine-driven compression refrigerator according to claim 1, wherein the cooler and the absorber are configured as an air heat exchanger. 冷却器と吸収器を、凝縮器を構成する空気熱交換器と並設することを特徴とする請求項2記載のエンジン駆動の圧縮式冷凍機3. The engine-driven compression refrigerator according to claim 2, wherein the cooler and the absorber are arranged in parallel with an air heat exchanger constituting the condenser.
JP12857198A 1998-05-12 1998-05-12 Engine driven compression refrigerator Expired - Fee Related JP3821577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12857198A JP3821577B2 (en) 1998-05-12 1998-05-12 Engine driven compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12857198A JP3821577B2 (en) 1998-05-12 1998-05-12 Engine driven compression refrigerator

Publications (2)

Publication Number Publication Date
JPH11325648A JPH11325648A (en) 1999-11-26
JP3821577B2 true JP3821577B2 (en) 2006-09-13

Family

ID=14988056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12857198A Expired - Fee Related JP3821577B2 (en) 1998-05-12 1998-05-12 Engine driven compression refrigerator

Country Status (1)

Country Link
JP (1) JP3821577B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006194A (en) * 2019-04-09 2019-07-12 珠海格力电器股份有限公司 Air-conditioning system and its control method with drop oil temperature and anti-hydrops function

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020566A1 (en) * 2016-07-26 2018-02-01 三菱電機株式会社 Refrigeration cycle device
CN108954914A (en) * 2018-08-08 2018-12-07 广东欧亚制冷设备制造有限公司 A kind of low ambient temperature net for air-source heat pump units

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006194A (en) * 2019-04-09 2019-07-12 珠海格力电器股份有限公司 Air-conditioning system and its control method with drop oil temperature and anti-hydrops function

Also Published As

Publication number Publication date
JPH11325648A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP4311115B2 (en) Air conditioner
EP2543941B1 (en) Chiller
CN104380013A (en) Electronics cooling using lubricant return for a shell-and-tube style evaporator
JP2007192465A (en) Evaporator unit and ejector type refrigerating cycle
JP2011133123A (en) Refrigerating cycle device
WO2011142352A1 (en) Air conditioning device for vehicle
CN104508400A (en) Electronics cooling using lubricant return for a shell-and-tube style evaporator
JPH10259737A (en) Gas turbine intake air cooling device
CN111412677A (en) Cab CO2Refrigerant frequency conversion air conditioner
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
CN108482058B (en) A kind of car air-conditioner battery cooling system
JP3821577B2 (en) Engine driven compression refrigerator
JP2008138895A (en) Evaporator unit
JP2003336927A (en) Combined refrigerating system
JP3565477B2 (en) Compression refrigerator
JP3365027B2 (en) Air conditioner
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
KR100805424B1 (en) Condenser having double refrigerant pass and refrigerating plant used the condenser
CN210772889U (en) Heat exchanger system and water chilling unit
CN218442572U (en) Dehumidifier capable of preventing liquid impact
BE1018356A7 (en) COOLING WITH HIGH PERFORMANCE.
JP2014126344A (en) Heat exchange system
US3509731A (en) Oil cooling arrangement in refrigeration system
JPH11325616A (en) Compression type refrigerator
JPH05264121A (en) Engine-driven air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees