JP3818082B2 - Inverter - Google Patents

Inverter Download PDF

Info

Publication number
JP3818082B2
JP3818082B2 JP2001128577A JP2001128577A JP3818082B2 JP 3818082 B2 JP3818082 B2 JP 3818082B2 JP 2001128577 A JP2001128577 A JP 2001128577A JP 2001128577 A JP2001128577 A JP 2001128577A JP 3818082 B2 JP3818082 B2 JP 3818082B2
Authority
JP
Japan
Prior art keywords
temperature
fan
inverter
semiconductor element
protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001128577A
Other languages
Japanese (ja)
Other versions
JP2002325463A (en
Inventor
徹 掛林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2001128577A priority Critical patent/JP3818082B2/en
Publication of JP2002325463A publication Critical patent/JP2002325463A/en
Application granted granted Critical
Publication of JP3818082B2 publication Critical patent/JP3818082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子を主回路スイッチ素子とするインバータに係り、特にファンのオン・オフ制御で半導体素子を空冷する保護装置に関する。
【0002】
【従来の技術】
この種の保護装置を備えたインバータの構成例を図4に示す。インバータ本体は、整流器1で交流電力を直流に変換し、電解コンデンサ2で平滑し、逆変換器3で直流から電圧と周波数を制御した交流出力を得て負荷となるモータ4等に供給する。PWM制御回路5は、モータ速度指令とモータ4の速度検出器6の検出信号を比較し、さらにPWM波形にして逆変換器3のゲート信号を得る。
【0003】
保護装置7は、インバータの運転における電圧や電流を監視し、過電流や過電圧、不足電圧の検出でインバータの出力制限や遮断器解離等の保護出力を得る。この保護装置7は、他の保護機能として、逆変換器3に設けられる半導体素子の温度保護機能が設けられる。
【0004】
この温度保護機能を説明する。逆変換器3は、ヒートシンク8に複数(例えば6アーム)の半導体素子9を装着してそのゲート信号によりオン・オフ制御され、このときの半導体素子9の発熱をヒートシンク8を通して放熱することで半導体素子9の熱破壊を防止する。ヒートシンク8の周辺には空冷用ファン10を設ける。また、ヒートシンク8にはその温度検出器としてのサーミスタ11を接触させる。
【0005】
保護装置7は、サーミスタ11で検出するヒートシンク8の温度Thを監視し、この温度Thがファン10のオン条件温度Ton以上になったときにファン10をオン制御することで半導体素子を過熱から保護し、温度Thがファン10のオフ条件温度Toff以下になったときにファン10をオフ制御することでファンの電力消費を抑制する。
【0006】
【発明が解決しようとする課題】
(1)温度サイクルの問題点
従来の温度保護方式では、インバータの周囲温度Taを考慮することなくヒートシンク8の検出温度に基づいてのみファン制御するため、周囲温度Taが低い状態ではヒートシンク8の温度上昇値(ΔT=Th−Ta)が大きくなってもファンはオン制御されない。例えば、Ton=60℃に設定され、Ta=0℃のときには ΔT=60℃の温度上昇までファンがオン制御されない。
【0007】
このため、例えば、インバータがモータ4の断続運転や加減速運転を繰り返し、ヒートシンク8の温度が0℃→60℃→0℃という温度サイクルを繰り返した場合、ヒートシンク8に取り付けられた半導体素子9が熱疲労により破壊してしまう恐れがある。
【0008】
(2)サーミスタ異常の問題点
従来の温度保護方式では、ファン10の制御はサーミスタ11の検出温度に依存しているため、サーミスタの温度検出回路に異常が発生した場合、ΔTが許容値を超えた場合にもファンをオンすることができず、半導体素子9の熱破壊の原因となる。
【0009】
この対策として、従来装置ではサーミスタ11の回路がオープンまたはショートした場合にその検出で異常と判定し、運転停止等の保護動作を得るようにしている。しかし、サーミスタ11の回路がオープンでもショートでもない異常発生、例えばヒートシンク8へのサーミスタ11の取り付け不良等が発生した場合、温度異常を検出できず、半導体素子9の熱破壊を起こしてしまう。
【0010】
本発明の目的は、前記の課題を解決したインバータを提供することにある。
【0011】
【課題を解決するための手段】
本発明は、サーミスタ等の感温素子の検出温度履歴からヒートシンクの周囲温度を予測し、この温度がファンのオン、オフ条件差分温度内に検出温度が入るようファンを制御することにより、温度サイクルによる半導体素子の熱疲労を防止するものであり、以下の構成を特徴とする。
【0012】
(1)ヒートシンクに装着した半導体素子を主回路スイッチ素子とし、ヒートシンクを空冷用ファンのオン・オフ制御で半導体素子を熱破壊から保護する保護装置を備えたインバータにおいて、
前記保護装置は、前記ヒートシンクに取り付けた感温素子により検出する半導体素子の温度検出値のうち、設定時間内の最低温度と現在の温度検出値との偏差ΔTを求め、この偏差ΔTが前記ファンのオン条件差分温度ΔTonよりも大きいときに前記ファンをオン制御し、前記偏差ΔTが前記ファンのオフ条件差分温度ΔToffよりも小さいときに前記ファンをオフ制御する保護手段を備えたことを特徴とする。
【0013】
なお、前記保護装置は、前記感温素子の温度検出値Thが前記ファンのオン条件温度設定値Tonよりも大きいときに前記ファンをオン制御し、前記温度検出値Thが前記ファンのオフ条件温度設定値Toffよりも小さいときに前記ファンをオフ制御する保護手段を備えるのが好ましい。
【0014】
また、本発明は、インバータの負荷電流の積分値を感温素子の検出温度に対応付けることで、サーミスタ回路の接触不良等の異常検出を可能にし、さらにサーミスタ回路を不要にしたもので、以下の構成を特徴とする。
【0015】
(2)ヒートシンクに装着した半導体素子を主回路スイッチ素子とし、ヒートシンクを空冷用ファンのオン・オフ制御で半導体素子を熱破壊から保護する保護装置を備えたインバータにおいて、
前記保護装置は、インバータの負荷電流iの設定時間内の積分値Iが感温素子異常判定値THerrより大きいときに前記感温素子の異常と判定して保護出力を得る保護手段を備えたことを特徴とする。
【0016】
なお、前記感温素子異常判定値THerrは、前記設定時間内の負荷電流パターンのうち、半導体素子の温度上昇が最も小さくなる運転パターンでの温度偏差ΔTがファンのオン制御差分温度ΔTonに一致する電流積分値とするのが好ましい。
【0017】
また、前記保護装置は、前記感温素子の温度検出値Thが前記ファンのオン条件温度設定値Tonよりも大きいときに前記ファンをオン制御し、前記温度検出値Thが前記ファンのオフ条件温度設定値Toffよりも小さいときに前記ファンをオフ制御する保護手段を備えるのが好ましい。
【0020】
【発明の実施の形態】
(実施形態1)
図1は、実施形態1の保護処理フローであり、保護装置7をマイクロプロセッサによるソフトウェア構成とする場合での前記の温度サイクルの問題を解消した保護方式である。
【0021】
保護装置7は、サーミスタ11の検出温度Thを周期的に読み込み(S1)、この温度Thについて設定時間(例えば過去4時間)内の最低温度Tminを記録更新を繰り返しておく(S2)。この処理S2は、最低温度Tminを半導体素子またはヒートシンクの現在の周囲温度として求めておくものである。
【0022】
次に、保護装置7は、サーミスタ11の検出温度Thを読み込む毎に、検出温度Thと最低温度Tminとの偏差ΔT(=Th−Tmin)を求め(S3)、このΔTがファン10のオン条件差分温度ΔTon(例えば15℃)よりも大きいか否かを判定し(S4)、ΔTonよりも大きいときにファン10のオン制御を行う(S5)。
【0023】
ΔTがΔTonよりも小さいとき、ΔTがファン10のオフ条件差分温度ΔToff(例えば15℃)よりも大きいか否かを判定し(S6)、ΔToffよりも小さいときにファン10のオフ制御を行う(S7)。
【0024】
したがって、サーミスタ11で検出するヒートシンクの温度(半導体素子9の温度)Thがファンのオン条件温度Tonまたはオフ条件温度にならない場合、従来ではファンのオン・オフ制御がなされないが、本実施形態では、上限が差分温度ΔTon以上、または下限が差分温度ΔToff以下になる場合にファン制御がなされ、半導体素子が広い温度範囲で温度サイクルが発生してその熱疲労を招くのを防止し、半導体素子の寿命を大幅に改善できる。
【0025】
(実施形態2)
図2は、実施形態2の保護処理フローを示し、サーミスタ回路の異常を検出することにより半導体素子を保護する場合である。
【0026】
保護装置7は、過電流保護のためのインバータの出力電流検出信号を負荷電流iとして周期的に読み込み(S11)、この負荷電流iについて設定時間(例えば16分間)での積分値Iを演算・更新しておく(S12)。この電流積分値Iは、設定時間での負荷電流の平均値に対応するものであり、この負荷電流の大小が半導体素子の発熱量に相関性をもつことから、サーミスタ11の検出信号に対応する量として求めるものである。
【0027】
次に、保護装置7は、電流積分値Iが設定値THerrよりも大きいか否かを判定し(S13)、大きい場合にはサーミスタ回路の異常と判定してその出力で保護動作を行う(S14)。また、小さいは場合にはサーミスタ回路の正常として次回の保護処理に戻る。
【0028】
ここで、設定値THerrの算出を説明する。電流積分値Iが設定値THerrに一致すれば、常にΔT>ΔTonでなければ、誤検出してしまう。そこで、設定時間の電流パターンの中で、温度上昇が最も小さくなるパターンによりインバータ運転を行い、このときのΔT=ΔTonとなる平均電流を求めてTHerrとする。
【0029】
この方式を採用することにより、サーミスタ異常を検出した時点でも、半導体素子の動作保証温度範囲内で確実に保護をかけることが可能となる。
【0030】
したがって、本実施形態によれば、設定時間での負荷電流の積分値を基にしてサーミスタ回路の異常を検出することができ、サーミスタ回路の接触不良などの異常にもその確実な検出ができ、ひいては半導体素子の保護を確実にする。
【0031】
なお、負荷電流の検出を出力電流から求めるのに代えて、インバータの直流電流を検出することでもよい。
【0032】
(実施形態3)
図3は、実施形態3の保護処理フローであり、保護装置7をマイクロプロセッサによるソフトウェア構成とする場合でのサーミスタ回路の異常にも保護を可能にする方式である。
【0033】
保護装置7は、実施形態2と同様に、インバータ直流回路の電流検出信号を負荷電流iとして周期的に読み込み(S21)、この負荷電流iについて設定時間(例えば16分間)での積分値Iを演算・更新する(S22)。
【0034】
次に、保護装置7は、電流積分値Iを求める毎に、この積分値Iがファン10のオン条件電流設定値Ionよりも大きいか否かを判定し(S23)、Ionよりも大きいときにファン10のオン制御を行う(S24)。
【0035】
IがIonよりも小さいとき、Iがファン10のオフ条件電流設定値Ioffよりも大きいか否かを判定し(S25)、Ioffよりも小さいときにファン10のオフ制御を行う(S26)。
【0036】
ここで、電流設定値Ionの算出は、設定時間での電流パターンの中で、温度上昇が最も大きくなるパターンによりインバータ運転を行い、ΔT=ΔTonとなる電流積分値をIonとする。同様に、電流設定値Ioffの算出は、設定時間での電流パターンの中で、温度上昇が最も大きくなるパターンによりインバータ運転を行い、ΔT=ΔToffとなる電流積分値をIoffとする。
【0037】
したがって、サーミスタ11で検出するヒートシンクの温度(半導体素子9の温度)Thを基にしたファン制御に代えて、負荷電流iの平均値Iを基にしたファン制御を行うことができ、サーミスタによる温度検出が不要になる。
【0038】
なお、以上までの各実施形態は、逆変換器3の温度保護方式を示すが、整流器1に代えて半導体素子構成の順変換器を設ける場合は、該順変換器の保護に適用して同等の作用を効果を得ることができる。また、保護装置をソフトウェア構成とする場合で示すが、これらをハードウェア構成に置換できるのは勿論である。また、各実施形態を従来の保護方式と併用して、半導体素子の保護が一層効果的となる。また、温度検出素子としてサーミスタを示すが他の感温素子で置換できるし、インバータの制御方式はPWM方式に限られるものではない。さらに、負荷はモータに限らない。
【0039】
【発明の効果】
以上のとおり、本発明によれば、感温素子の検出温度履歴からヒートシンクの周囲温度を予測し、ファンのオン、オフ条件差分温度内に検出温度が入るようファンを制御するようにしたため、半導体素子に加えられる温度サイクルによる熱疲労で素子が破壊するのを防止できる。
【0040】
また、本発明によれば、インバータの負荷電流の積分値を感温素子の検出温度に対応付けた保護を行うようにしたため、サーミスタ回路の接触不良等の異常検出が可能になるし、サーミスタ回路が不要になる。
【図面の簡単な説明】
【図1】本発明の実施形態1の保護処理フロー。
【図2】本発明の実施形態2の保護処理フロー。
【図3】本発明の実施形態3の保護処理フロー。
【図4】インバータの構成例。
【符号の説明】
1…整流器
2…電界コンデンサ
3…逆変換器
4…モータ
5…PWM制御回路
7…保護装置
8…ヒートシンク
9…半導体素子
10…ファン
11…サーミスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inverter having a semiconductor element as a main circuit switch element, and more particularly to a protection device for air-cooling a semiconductor element by on / off control of a fan.
[0002]
[Prior art]
FIG. 4 shows a configuration example of an inverter provided with this kind of protection device. The inverter main body converts alternating current power into direct current by the rectifier 1, smoothes it by the electrolytic capacitor 2, obtains an alternating current output in which the voltage and frequency are controlled from the direct current by the inverse converter 3, and supplies the alternating current output to the motor 4 as a load. The PWM control circuit 5 compares the motor speed command with the detection signal of the speed detector 6 of the motor 4, and further obtains the gate signal of the inverse converter 3 with a PWM waveform.
[0003]
The protective device 7 monitors the voltage and current in the operation of the inverter, and obtains a protective output such as output limitation of the inverter and circuit breaker disengagement by detecting overcurrent, overvoltage, and undervoltage. The protection device 7 is provided with a temperature protection function of a semiconductor element provided in the inverse converter 3 as another protection function.
[0004]
This temperature protection function will be described. The inverse converter 3 is equipped with a plurality of (for example, 6 arms) semiconductor elements 9 mounted on the heat sink 8 and is turned on / off by the gate signal. The element 9 is prevented from being thermally destroyed. An air cooling fan 10 is provided around the heat sink 8. Further, the thermistor 11 as a temperature detector is brought into contact with the heat sink 8.
[0005]
The protection device 7 monitors the temperature Th of the heat sink 8 detected by the thermistor 11, and protects the semiconductor element from overheating by controlling the fan 10 to turn on when the temperature Th exceeds the on-condition temperature Ton of the fan 10. Then, when the temperature Th is equal to or lower than the off-condition temperature Toff of the fan 10, the fan 10 is controlled to be turned off to suppress the power consumption of the fan.
[0006]
[Problems to be solved by the invention]
(1) Problems of the temperature cycle In the conventional temperature protection system, the fan is controlled only based on the detected temperature of the heat sink 8 without considering the ambient temperature Ta of the inverter. Therefore, the temperature of the heat sink 8 is low when the ambient temperature Ta is low. Even if the increase value (ΔT = Th−Ta) increases, the fan is not controlled to be turned on. For example, when Ton = 60 ° C. and Ta = 0 ° C., the fan is not controlled to turn on until ΔT = 60 ° C.
[0007]
For this reason, for example, when the inverter repeats intermittent operation and acceleration / deceleration operation of the motor 4 and the temperature of the heat sink 8 repeats the temperature cycle of 0 ° C. → 60 ° C. → 0 ° C., the semiconductor element 9 attached to the heat sink 8 There is a risk of destruction due to thermal fatigue.
[0008]
(2) Problem of thermistor abnormality In the conventional temperature protection method, the control of the fan 10 depends on the detected temperature of the thermistor 11, so that if an abnormality occurs in the temperature detection circuit of the thermistor, ΔT exceeds the allowable value. In this case, the fan cannot be turned on, which causes thermal destruction of the semiconductor element 9.
[0009]
As a countermeasure, in the conventional apparatus, when the circuit of the thermistor 11 is opened or short-circuited, it is determined that the abnormality is detected, and a protective operation such as operation stop is obtained. However, when an abnormality occurs in which the circuit of the thermistor 11 is neither open nor short-circuited, for example, a defective attachment of the thermistor 11 to the heat sink 8 occurs, the temperature abnormality cannot be detected and the semiconductor element 9 is thermally destroyed.
[0010]
The objective of this invention is providing the inverter which solved the said subject.
[0011]
[Means for Solving the Problems]
The present invention predicts the ambient temperature of the heat sink from the detected temperature history of a temperature sensitive element such as a thermistor, and controls the fan so that the detected temperature falls within the temperature difference between the on and off conditions of the fan, thereby controlling the temperature cycle. Is to prevent thermal fatigue of the semiconductor element due to, and is characterized by the following configuration.
[0012]
(1) In an inverter provided with a protective device that protects a semiconductor element from thermal destruction by using a semiconductor element mounted on a heat sink as a main circuit switch element, and controlling the heat sink by on / off control of an air cooling fan.
The protection device obtains a deviation ΔT between a minimum temperature within a set time and a current temperature detection value among temperature detection values of a semiconductor element detected by a temperature sensing element attached to the heat sink, and the deviation ΔT is calculated as the fan ΔT. Protective means for controlling the fan to turn on when the temperature difference is larger than the on-condition difference temperature ΔTon of the fan and to turn off the fan when the deviation ΔT is smaller than the fan-off condition difference temperature ΔToff. To do.
[0013]
The protection device controls the fan to turn on when the temperature detection value Th of the temperature sensing element is larger than the fan on-condition temperature setting value Ton, and the temperature detection value Th is the off-condition temperature of the fan. It is preferable to provide protection means for controlling the fan to be turned off when it is smaller than the set value Toff.
[0014]
Further, the present invention associates the integral value of the load current of the inverter with the detected temperature of the temperature sensing element, thereby enabling the detection of an abnormality such as a contact failure of the thermistor circuit and further eliminating the need for the thermistor circuit. Features the configuration.
[0015]
(2) In an inverter provided with a protection device that protects a semiconductor element from thermal destruction by using a semiconductor element mounted on a heat sink as a main circuit switch element, and the heat sink is controlled by on / off control of an air cooling fan.
The protection device includes protection means for obtaining a protection output by determining that the temperature sensing element is abnormal when the integral value I within the set time of the load current i of the inverter is greater than the temperature sensing element abnormality determination value THErr. It is characterized by.
[0016]
The temperature-sensitive element abnormality determination value THerr is such that the temperature deviation ΔT in the operation pattern in which the temperature rise of the semiconductor element is the smallest among the load current patterns within the set time coincides with the fan on-control difference temperature ΔTon. The current integral value is preferable.
[0017]
The protection device controls the fan to turn on when the temperature detection value Th of the temperature sensing element is larger than the fan on-condition temperature setting value Ton, and the temperature detection value Th is the fan off-condition temperature. It is preferable to provide protection means for controlling the fan to be turned off when it is smaller than the set value Toff.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
FIG. 1 is a protection processing flow according to the first embodiment, which is a protection method that solves the above-described temperature cycle problem when the protection device 7 has a software configuration of a microprocessor.
[0021]
The protection device 7 periodically reads the detected temperature Th of the thermistor 11 (S1), and repeats recording and updating the minimum temperature Tmin within a set time (for example, the past 4 hours) for this temperature Th (S2). In the process S2, the minimum temperature Tmin is obtained as the current ambient temperature of the semiconductor element or the heat sink.
[0022]
Next, every time the protection device 7 reads the detection temperature Th of the thermistor 11, it obtains a deviation ΔT (= Th−Tmin) between the detection temperature Th and the minimum temperature Tmin (S3), and this ΔT is the ON condition of the fan 10. It is determined whether or not the temperature is higher than the difference temperature ΔTon (for example, 15 ° C.) (S4). When the temperature is higher than ΔTon, the fan 10 is turned on (S5).
[0023]
When ΔT is smaller than ΔTon, it is determined whether ΔT is larger than an OFF condition difference temperature ΔToff (for example, 15 ° C.) of the fan 10 (S6), and when it is smaller than ΔToff, the fan 10 is turned off ( S7).
[0024]
Therefore, when the heat sink temperature (temperature of the semiconductor element 9) Th detected by the thermistor 11 does not reach the fan on-condition temperature Ton or the off-condition temperature, the fan on / off control is not conventionally performed. Fan control is performed when the upper limit is equal to or higher than the differential temperature ΔTon, or the lower limit is equal to or lower than the differential temperature ΔToff, thereby preventing the semiconductor element from causing a thermal cycle in a wide temperature range and causing thermal fatigue of the semiconductor element. Lifetime can be greatly improved.
[0025]
(Embodiment 2)
FIG. 2 shows a protection processing flow according to the second embodiment, in which a semiconductor element is protected by detecting an abnormality in the thermistor circuit.
[0026]
The protection device 7 periodically reads the output current detection signal of the inverter for overcurrent protection as a load current i (S11), and calculates an integral value I for a set time (for example, 16 minutes) for this load current i. Update (S12). This integrated current value I corresponds to the average value of the load current at the set time, and the magnitude of this load current has a correlation with the heat generation amount of the semiconductor element, and therefore corresponds to the detection signal of the thermistor 11. It is calculated as a quantity.
[0027]
Next, the protection device 7 determines whether or not the current integral value I is larger than the set value THErr (S13). If the current integration value I is larger, it is determined that the thermistor circuit is abnormal, and a protection operation is performed with the output (S14). ). On the other hand, if it is smaller, the thermistor circuit is normal and the process returns to the next protection process.
[0028]
Here, the calculation of the set value THerr will be described. If the current integrated value I matches the set value THerr, it will be erroneously detected unless ΔT> ΔTon. In view of this, the inverter operation is performed with a pattern in which the temperature rise is the smallest among the current patterns of the set time, and an average current at which ΔT = ΔTon at this time is obtained and set as THerr.
[0029]
By adopting this method, even when the thermistor abnormality is detected, it is possible to reliably protect the semiconductor element within the guaranteed operating temperature range.
[0030]
Therefore, according to the present embodiment, it is possible to detect abnormality of the thermistor circuit based on the integrated value of the load current at the set time, and it is possible to reliably detect abnormality such as contact failure of the thermistor circuit, As a result, protection of the semiconductor element is ensured.
[0031]
Instead of obtaining the load current from the output current, the DC current of the inverter may be detected.
[0032]
(Embodiment 3)
FIG. 3 shows a protection processing flow according to the third embodiment, which is a system that enables protection even when the thermistor circuit is abnormal when the protection device 7 has a software configuration of a microprocessor.
[0033]
Similarly to the second embodiment, the protection device 7 periodically reads the current detection signal of the inverter DC circuit as the load current i (S21), and uses the integrated value I for a set time (for example, 16 minutes) for the load current i. Calculate and update (S22).
[0034]
Next, every time the protection device 7 calculates the current integral value I, it determines whether or not the integral value I is larger than the on-condition current setting value Ion of the fan 10 (S23). The fan 10 is turned on (S24).
[0035]
When I is smaller than Ion, it is determined whether I is larger than the off-condition current setting value Ioff of the fan 10 (S25). When I is smaller than Ioff, the fan 10 is controlled to be turned off (S26).
[0036]
Here, the current set value Ion is calculated by performing inverter operation using a pattern in which the temperature rise is the largest in the current pattern at the set time, and setting the current integrated value where ΔT = ΔTon is Ion. Similarly, the current set value Ioff is calculated by performing inverter operation with a pattern in which the temperature rise is the largest in the current pattern at the set time, and setting the current integral value where ΔT = ΔToff is Ioff.
[0037]
Therefore, instead of the fan control based on the heat sink temperature (temperature of the semiconductor element 9) Th detected by the thermistor 11, the fan control based on the average value I of the load current i can be performed. Detection is not necessary.
[0038]
In addition, although each embodiment until the above shows the temperature protection system of the reverse converter 3, when replacing with the rectifier 1 and providing the forward converter of a semiconductor element structure, it applies to protection of this forward converter, and is equivalent The effect can be obtained. Although the protection device has a software configuration, it is needless to say that these can be replaced with a hardware configuration. Further, each embodiment is used in combination with a conventional protection method, so that the protection of the semiconductor element becomes more effective. Although the thermistor is shown as the temperature detection element, it can be replaced with another temperature sensing element, and the inverter control method is not limited to the PWM method. Furthermore, the load is not limited to the motor.
[0039]
【The invention's effect】
As described above, according to the present invention, the ambient temperature of the heat sink is predicted from the detected temperature history of the temperature sensing element, and the fan is controlled so that the detected temperature falls within the fan ON / OFF condition differential temperature. It is possible to prevent the element from being destroyed by thermal fatigue due to a temperature cycle applied to the element.
[0040]
In addition, according to the present invention, since the integral value of the load current of the inverter is protected in correspondence with the detected temperature of the temperature sensing element, it is possible to detect abnormality such as contact failure of the thermistor circuit, and thermistor circuit Is no longer necessary.
[Brief description of the drawings]
FIG. 1 is a protection processing flow according to a first embodiment of the present invention.
FIG. 2 is a protection processing flow according to the second embodiment of the present invention.
FIG. 3 is a protection processing flow according to a third embodiment of the present invention.
FIG. 4 is a configuration example of an inverter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rectifier 2 ... Electric field capacitor 3 ... Inverter 4 ... Motor 5 ... PWM control circuit 7 ... Protection apparatus 8 ... Heat sink 9 ... Semiconductor element 10 ... Fan 11 ... Thermistor

Claims (2)

ヒートシンクに装着した半導体素子を主回路スイッチ素子とし、ヒートシンクを空冷用ファンのオン・オフ制御で半導体素子を熱破壊から保護する保護装置を備えたインバータにおいて、
前記保護装置は、前記ヒートシンクに取り付けた感温素子により検出する半導体素子の温度検出値のうち、設定時間内の最低温度と現在の温度検出値との偏差ΔTを求め、この偏差ΔTが前記ファンのオン条件差分温度ΔTonよりも大きいときに前記ファンをオン制御し、前記偏差ΔTが前記ファンのオフ条件差分温度ΔToffよりも小さいときに前記ファンをオフ制御する保護手段を備えたことを特徴とするインバータ。
In an inverter equipped with a protection device that protects the semiconductor element from thermal destruction by turning on and off the air cooling fan as a main circuit switch element, the semiconductor element mounted on the heat sink.
The protection device obtains a deviation ΔT between a minimum temperature within a set time and a current temperature detection value among temperature detection values of a semiconductor element detected by a temperature sensing element attached to the heat sink, and the deviation ΔT is calculated as the fan ΔT. Protective means for controlling the fan to turn on when the temperature difference is larger than the on-condition difference temperature ΔTon of the fan and to turn off the fan when the deviation ΔT is smaller than the fan-off condition difference temperature ΔToff. To inverter.
前記保護装置は、インバータの負荷電流iの設定時間内の積分値Iが感温素子異常判定値THerrより大きいときに前記感温素子の異常と判定して保護出力を得る保護手段を備えたことを特徴とする請求項1に記載のインバータ。The protection device includes protection means for obtaining a protection output by determining that the temperature sensing element is abnormal when the integral value I within the set time of the load current i of the inverter is greater than the temperature sensing element abnormality determination value THErr. The inverter according to claim 1 .
JP2001128577A 2001-04-26 2001-04-26 Inverter Expired - Fee Related JP3818082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128577A JP3818082B2 (en) 2001-04-26 2001-04-26 Inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128577A JP3818082B2 (en) 2001-04-26 2001-04-26 Inverter

Publications (2)

Publication Number Publication Date
JP2002325463A JP2002325463A (en) 2002-11-08
JP3818082B2 true JP3818082B2 (en) 2006-09-06

Family

ID=18977246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128577A Expired - Fee Related JP3818082B2 (en) 2001-04-26 2001-04-26 Inverter

Country Status (1)

Country Link
JP (1) JP3818082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208992B2 (en) 2014-09-30 2019-02-19 Mitsubishi Electric Corporation Cooling-abnormality detecting system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252608A (en) * 2005-03-08 2006-09-21 Funai Electric Co Ltd Cooling device of optical disk drive, and optical disk drive
DE102005055132A1 (en) * 2005-11-16 2007-06-06 Siemens Ag Apparatus for converting an electric current and method for reducing the load cycling of power semiconductor units in the field of high voltage energy distribution and transmission
JP4796841B2 (en) 2005-12-28 2011-10-19 株式会社日立産機システム Power converter and control method thereof
JP5016967B2 (en) 2007-04-20 2012-09-05 株式会社日立産機システム Power converter and power cycle life prediction method
JP4891423B2 (en) * 2010-06-01 2012-03-07 ファナック株式会社 Abnormality inspection system for cooling part of electronic circuit
KR20150144024A (en) 2014-06-16 2015-12-24 엘에스산전 주식회사 Method for controlling temperature of inverter system by contolling a fan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208992B2 (en) 2014-09-30 2019-02-19 Mitsubishi Electric Corporation Cooling-abnormality detecting system

Also Published As

Publication number Publication date
JP2002325463A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP3695023B2 (en) Electric vehicle overload prevention device
US5831807A (en) Overload and short circuit protection device for a power semiconductor circuit
US8514537B2 (en) Power supply controller
US8050006B2 (en) Method and system of providing overload and short-circuit protection for switched mode power supply
JP2006025565A (en) Inverter circuit and compressor
JP4154639B2 (en) Method and apparatus for controlling temperature protection of motor starter
TW200826459A (en) Power converter
JP3818082B2 (en) Inverter
JPH0568331A (en) Method of protecting power semiconductor element
JP6962455B2 (en) Equipment protection device and equipment protection method
JP2005143232A (en) Protection method for power semiconductor device
JP2011062035A (en) Dynamic brake circuit protecting device
JP2000228882A (en) Protective device for variable speed inverter
JP2000333469A (en) Power switching device
JP5887854B2 (en) Anomaly detection device
JPH0638357A (en) Power supply
JP4367341B2 (en) Dynamic brake circuit protection device
JP2004080890A (en) Temperature protecting circuit
JP2001086764A (en) Inverter
JPH0675643A (en) Temperature protecting method
KR19980028572A (en) Compressor overheat prevention method of inverter air conditioner
WO2023032142A1 (en) Excessive temperature detection system, excessive temperature protection system, and excessive temperature detection method
JP2016140122A (en) Control method for electric power conversion system
JP2004274903A (en) Motor driving device
JPH07245965A (en) Inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees