JP2005143232A - Protection method for power semiconductor device - Google Patents

Protection method for power semiconductor device Download PDF

Info

Publication number
JP2005143232A
JP2005143232A JP2003378003A JP2003378003A JP2005143232A JP 2005143232 A JP2005143232 A JP 2005143232A JP 2003378003 A JP2003378003 A JP 2003378003A JP 2003378003 A JP2003378003 A JP 2003378003A JP 2005143232 A JP2005143232 A JP 2005143232A
Authority
JP
Japan
Prior art keywords
power semiconductor
temperature
semiconductor element
cooling module
thermoelectric cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003378003A
Other languages
Japanese (ja)
Inventor
Akira Sasaki
亮 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003378003A priority Critical patent/JP2005143232A/en
Publication of JP2005143232A publication Critical patent/JP2005143232A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protection method whereby high load operation can be intermittently performed without interrupting an inverter current. <P>SOLUTION: The protection method for power semiconductor devices (1 to 6) is as follows: a thermoelectric cooling module (27) is installed on a heat sink (7), and the temperature of the thermoelectric cooling module is detected by a thermistor (10) installed thereon. A semiconductor device current is computed from a drive signal for turning on/off the gates of the power semiconductor devices, sent out from a PWM control unit (14), and an inverter output current, and the temperature rise between the thermoelectric cooling module and a junction is estimated from the semiconductor device current. When the junction temperature of the power semiconductor devices, computed from the estimated temperature rise and the thermoelectric cooling module temperature exceeds a preset temperature, the current of an inverter circuit is limited and a voltage command is given to the thermoelectric cooling module to cool the power semiconductor devices. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、インバータ回路に用いられるトランジスタやサイリスタやパワーMOSFET等の電力半導体素子の保護方式に関するものである。   The present invention relates to a protection system for power semiconductor elements such as transistors, thyristors, and power MOSFETs used in inverter circuits.

従来、電力半導体素子の保護方式として図4に示すようなものがある(たとえば特許文献1参照)。
図4は従来の電力半導体素子の保護方式を示すブロック図である。図において1〜6はインバータ回路を構成するパワーMOSFET、7はパワーMOSFET1〜6を冷却制御するヒートシンク、8はモータ、9はインバータ出力電流検出のための変流器、10はパワーMOSFET1〜6の近傍の熱電冷却モジュール上に設置したサーミスタ、11はインバータ直流母線電圧平滑用のコンデンサ、12は整流用のダイオードである。13はインバータ制御部であり、14は電流指令に基づく電流制御からの指令によってパワーMOSFET1〜6をドライブするベースドライバ23へ送出するオンオフ信号であるドライブ信号を発生するPWM制御部、15はサーミスタ10の信号を温度情報に変換する温度検出部、16は温度検出部15のヒートシンク温度情報をPWM制御部から送出される前記ドライブ信号と変流器9で検出した出力電流からパワーMOSFET1〜6の素子電流を計算し、パワーMOSFETの熱抵抗に基づいてパワーMOSFETのジャンクション温度(Tj)を計算するTj推定部、18は電流制限に使用する設定温度を設定する温度設定器、19、20はコンパレータ、21は電流制限機能を有する電流制限器、22は電流遮断機能を有する電流遮断器である。
つぎに、動作について説明する。
ヒートシンク上に設置したサーミスタで検出した温度とPWM制御信号およびインバータ出力電流から推定した電力半導体素子のジャンクション温度が第一の設定温度を超えるとインバータ回路の電流制限動作を行い、第一の設定温度より高い第二の設定温度を超えるとインバータ電流を遮断して電力半導体素子の保護を行うものである。
特開平5−68331号公報
Conventionally, there is a power semiconductor element protection system as shown in FIG. 4 (see, for example, Patent Document 1).
FIG. 4 is a block diagram showing a conventional method for protecting a power semiconductor device. In the figure, 1 to 6 are power MOSFETs constituting an inverter circuit, 7 is a heat sink for controlling cooling of the power MOSFETs 1 to 6, 8 is a motor, 9 is a current transformer for detecting inverter output current, and 10 is a power MOSFET 1-6. A thermistor installed on a nearby thermoelectric cooling module, 11 is an inverter DC bus voltage smoothing capacitor, and 12 is a rectifying diode. 13 is an inverter control unit, 14 is a PWM control unit that generates a drive signal which is an on / off signal sent to the base driver 23 that drives the power MOSFETs 1 to 6 in response to a command from the current control based on the current command, and 15 is a thermistor 10. The temperature detector 16 converts the temperature signal into temperature information, and 16 is an element of the power MOSFETs 1 to 6 based on the drive signal sent from the PWM controller and the output current detected by the current transformer 9. Tj estimator for calculating the current and calculating the junction temperature (Tj) of the power MOSFET based on the thermal resistance of the power MOSFET, 18 is a temperature setter for setting a set temperature used for current limiting, 19 and 20 are comparators, 21 is a current limiter having a current limiting function, and 22 has a current interrupting function. A flow breaker.
Next, the operation will be described.
When the junction temperature of the power semiconductor element estimated from the temperature detected by the thermistor installed on the heat sink, the PWM control signal, and the inverter output current exceeds the first set temperature, the inverter circuit performs current limiting operation, and the first set temperature When the higher second set temperature is exceeded, the inverter current is cut off to protect the power semiconductor element.
JP-A-5-68331

しかしながら、上記の従来技術ではヒートシンクの熱時定数より短い断続負荷運転時の電力半導体素子の保護は可能であるが、高負荷運転時には電流制限レベルを超えて電流遮断レベルまで短時間に到達するため、システムが頻繁に停止するという問題があった。
そこで、本発明は、電力半導体素子のジャンクション温度が設定温度を超えた場合に、電流制限動作するとともに熱電冷却モジュールに電圧指令を与え冷却を行うことで、ヒートシンクの温度を設定温度以下に制御し、インバータ電流を遮断することなく断続的な高負荷運転を行える保護方式を確立することを目的とする。
However, although the above-mentioned conventional technology can protect the power semiconductor element during intermittent load operation shorter than the heat time constant of the heat sink, it exceeds the current limit level and reaches the current cutoff level in a short time during high load operation. There was a problem that the system stopped frequently.
Therefore, the present invention controls the temperature of the heat sink below the set temperature by performing a current limiting operation and performing a cooling by giving a voltage command to the thermoelectric cooling module when the junction temperature of the power semiconductor element exceeds the set temperature. The purpose is to establish a protection system capable of intermittent high-load operation without interrupting the inverter current.

上記問題を解決するため、本発明は次のように構成したものである。
(1)電力用半導体素子とこの電力用半導体素子を駆動制御するPWM制御部を含むインバータ回路と、前記電力半導体素子を冷却するヒートシンクを備えたインバータ装置において、前記ヒートシンク上に熱電冷却モジュールを設置し、前記熱電冷却モジュールの上にサーミスタを設置し、前記サーミスタの抵抗値変化により前記熱電冷却モジュール温度を検出するとともに、前記PWM制御部から送出され、前記電力半導体素子のゲートをオンオフするドライブ信号とインバータ出力電流から半導体素子電流を計算し、この半導体素子電流から計算された前記電力用半導体素子の通電時損失とスイッチング損失とから前記電力用半導体素子の熱電冷却モジュールとジャンクション間の温度上昇を推定し、この推定された温度上昇と前記熱電冷却モジュール温度から計算される前記電力半導体素子のジャンクション温度が設定温度を超えると前記インバータ回路の電流制限を行うとともに、前記熱電冷却モジュールに電圧指令を与え冷却を行う。
(2)前記電力用半導体素子のジャンクション温度が前記設定温度を超えた場合に、予め設定されたジャンクション温度と熱電冷却モジュールの電圧指令レベルの関数に基づいて温度に対して連続的に電圧指令を変え冷却する。
このようにすることにより、ヒートシンク熱時定数より短い断続高負荷運転の場合でも、電力半導体素子の熱破壊を防止でき、インバータ電流を遮断することなく断続的な高負荷運転を行えるようにするものである。
In order to solve the above problems, the present invention is configured as follows.
(1) In an inverter device including a power semiconductor element, an inverter circuit including a PWM control unit that drives and controls the power semiconductor element, and a heat sink that cools the power semiconductor element, a thermoelectric cooling module is installed on the heat sink A thermistor installed on the thermoelectric cooling module, detects the temperature of the thermoelectric cooling module based on a change in resistance of the thermistor, and is sent from the PWM control unit to turn on and off the gate of the power semiconductor element. The semiconductor element current is calculated from the inverter output current, and the temperature rise between the thermoelectric cooling module and the junction of the power semiconductor element is calculated from the loss during switching and switching loss of the power semiconductor element calculated from the semiconductor element current. Estimate the temperature rise and the heat Junction temperature of the power semiconductor element to be calculated from the cooling module temperature exceeds the set temperature performs a current limiting of the inverter circuit, to provide cooling giving a voltage command to said thermoelectric cooling module.
(2) When the junction temperature of the power semiconductor element exceeds the set temperature, a voltage command is continuously issued with respect to the temperature based on a function of a preset junction temperature and a voltage command level of the thermoelectric cooling module. Change and cool.
By doing so, even in the case of intermittent high load operation shorter than the heat sink thermal time constant, it is possible to prevent thermal destruction of the power semiconductor element, and to perform intermittent high load operation without interrupting the inverter current It is.

本発明によれば、短い断続高負荷運転の場合でも、サーミスタ信号とインバータ出力電流信号を用いることで、電力半導体素子の熱破壊を防止でき、インバータ電流を遮断することなく断続的な高負荷運転を行うことができる。また、熱電冷却モジュールにより冷却を制御できるため、外気温度に影響されることが無く、安定して電力半導体素子の能力を最大限に活用することができるという効果がある。   According to the present invention, even in the case of short intermittent high-load operation, thermistor signal and inverter output current signal can be used to prevent thermal destruction of the power semiconductor element, and intermittent high-load operation without interrupting the inverter current. It can be performed. Further, since the cooling can be controlled by the thermoelectric cooling module, there is an effect that the ability of the power semiconductor element can be stably utilized to the maximum without being affected by the outside air temperature.

以下、本発明の具体的実施例を図に基づいて説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第一の実施例を示すブロック図である。図において、17は温度設定器、25は電圧指令器、27は熱電冷却モジュールである。電圧指令器25は熱電冷却モジュール27に冷却指令を与える。なお、符号1〜16、19、21、23は従来技術と同じ機能であるため説明を省略する。
つぎに、動作について説明する。
熱電冷却モジュール27の温度Tは熱電冷却モジュール27上に設置したサーミスタ10の抵抗値変化より(1)式を用いて計算できる。
T=rT0×exp{B×(1/T-1/T0)} (1)
ここで、rT0:基準抵抗値、B:サーミスタ定数、T0: 基準抵抗値の時のサーミスタの絶対温度である。また、パワーMOSFETの熱電冷却モジュール27とジャンクション間の温度上昇Tj-Fは、パワーMOSFETの発生ロスPLとパワーMOSFETのジャンクションと熱電冷却モジュール27間の熱抵抗Rj-Fから(2)式によって求められる。
j-F=PL/Rj-F (2)
パワーMOSFETの発生ロスPLは、インバータ電流とPWM制御部14から送出され、ベースドライバ23へ送出されるオンオフ信号であるドライブ信号から素子電流を計算し、素子特性に基づいて通電時のロスとスイッチングロスを計算する。通電ロスは次式(3)で表せられる。
通電ロス=検出した相電流からの素子特性に基づいて計算された損失
×ドライブ信号 (3)
ドライブ信号はPWMキャリア周波数毎に一回ずつPWM制御部14から送出されるから、PWMキャリア1周期毎の平均通電ロスは次式(4)で表わされる。
1周期毎の平均通電ロス=通電ロス×ドライブ信号が出力されている時間
/PWMキャリア周期 (4)
また、スイッチングロスは次式(5)、(6)で表わされる。
オン時スイッチングロス=ドライブ信号立ち上がり時の検出電流
×パワーMOSFETに印加されていた電圧×スイッチング時間/2 (5)
オフ時オン時スイッチングロス=ドライブ信号立ち下がり時の検出電流
×パワーMOSFETに印加される電圧×スイッチング時間/2 (6)
従って、個々のパワーMOSFETの発生ロスは(4)、(5)、(6)式の和で表せられる。以上より、(2)式のTj-Fと熱電冷却モジュール27の温度Tから、パワーMOSFETのジャンクション温度Tjを(7)式により計算推定することができる。
j=Tj-F+T (7)
FIG. 1 is a block diagram showing a first embodiment of the present invention. In the figure, 17 is a temperature setting device, 25 is a voltage command device, and 27 is a thermoelectric cooling module. The voltage command device 25 gives a cooling command to the thermoelectric cooling module 27. Note that reference numerals 1 to 16, 19, 21, and 23 have the same functions as those of the prior art, and thus description thereof is omitted.
Next, the operation will be described.
The temperature T of the thermoelectric cooling module 27 can be calculated from the change in resistance value of the thermistor 10 installed on the thermoelectric cooling module 27 using equation (1).
r T = r T0 × exp {B × (1 / T-1 / T 0 )} (1)
Here, r T0 is the reference resistance value, B is the thermistor constant, and T 0 is the absolute temperature of the thermistor at the reference resistance value. Further, the temperature rise T jF between the thermoelectric cooling module 27 and the junction of the power MOSFET can be obtained from the generated loss P L of the power MOSFET and the thermal resistance R jF between the junction of the power MOSFET and the thermoelectric cooling module 27 by the equation (2). .
T jF = P L / R jF (2)
The generated loss P L of the power MOSFET is calculated by calculating an element current from an inverter current and a drive signal which is an on / off signal transmitted from the PWM control unit 14 and transmitted to the base driver 23. Calculate the switching loss. The energization loss is expressed by the following equation (3).
Current loss = loss calculated based on device characteristics from detected phase current
× Drive signal (3)
Since the drive signal is sent from the PWM control unit 14 once for each PWM carrier frequency, the average energization loss for each PWM carrier cycle is expressed by the following equation (4).
Average energization loss per cycle = energization loss x drive signal output time
/ PWM carrier cycle (4)
The switching loss is expressed by the following equations (5) and (6).
ON switching loss = Detect current when drive signal rises
× Voltage applied to power MOSFET × Switching time / 2 (5)
Switching loss when OFF and switching loss = detection current when drive signal falls
X Voltage applied to power MOSFET x Switching time / 2 (6)
Therefore, the generation loss of each power MOSFET can be expressed by the sum of equations (4), (5), and (6). As described above, the junction temperature T j of the power MOSFET can be calculated and estimated by the equation (7) from the T jF of the equation (2) and the temperature T of the thermoelectric cooling module 27.
T j = T jF + T (7)

この温度は、パワーMOSFETの熱破壊と密接な関係があり、パワーMOSFETは許容範囲内で使用しなければならない。そこで、推定したパワーMOSFETのジャンクション温度が第一の設定温度を超えると、コンパレータ19が動作し、電流制限器21がインバータの電流制限動作を行い、同時に電圧指令器25が熱電冷却モジュール27に電圧指令を送り冷却動作を行う。このとき電流制限動作によりパワーMOSFET1〜6のジャンクション温度を瞬時に低下させると同時に、電圧指令器25が動作し熱電冷却モジュール27が動作し、サーミスタ10の検出値が瞬時に下がる。この結果、サーミスタ10の検出温度が下がり、Tj推定値が第一の温度設定器17の設定値を下回り、電流制限動作と電圧指令による冷却動作が解除される。また、図2に示すように、図1のコンパレータ19を演算増幅器24に変更し、電圧指令器25に図3に示す特性をもたせれば連続的に指令電圧レベルを変化させて冷却動作をさせることも可能である。   This temperature is closely related to the thermal destruction of the power MOSFET, and the power MOSFET must be used within an allowable range. Therefore, when the estimated junction temperature of the power MOSFET exceeds the first set temperature, the comparator 19 operates, the current limiter 21 performs the current limiting operation of the inverter, and at the same time, the voltage command unit 25 supplies the voltage to the thermoelectric cooling module 27. Sends command to perform cooling operation. At this time, the junction temperature of the power MOSFETs 1 to 6 is instantaneously lowered by the current limiting operation, and at the same time, the voltage command unit 25 is operated and the thermoelectric cooling module 27 is operated, and the detection value of the thermistor 10 is instantaneously lowered. As a result, the temperature detected by the thermistor 10 decreases, the Tj estimated value falls below the set value of the first temperature setter 17, and the current limiting operation and the cooling operation by the voltage command are released. Further, as shown in FIG. 2, if the comparator 19 of FIG. 1 is changed to an operational amplifier 24 and the voltage command device 25 has the characteristics shown in FIG. 3, the command voltage level is continuously changed to perform the cooling operation. It is also possible.

本発明の第1の実施例を示す図である。It is a figure which shows the 1st Example of this invention. 本発明の第2の実施例を示す図である。It is a figure which shows the 2nd Example of this invention. 本発明の熱電冷却モジュールの電圧指令特性を示す図である。It is a figure which shows the voltage command characteristic of the thermoelectric cooling module of this invention. 従来の電力半導体素子の保護方式を示す図である。It is a figure which shows the protection system of the conventional power semiconductor element.

符号の説明Explanation of symbols

1、2、3、4、5、6 電力半導体素子
7 ヒートシンク
8 モータ
9 変流器
10 サーミスタ
11 コンデンサ
12 ダイオード
13 インバータ制御部
14 PWM制御部
15 温度検出部
16 Tj推定部
17、18 温度設定器
18a 第一温度設定器
18b 第二温度設定器
19、20 コンパレータ
21 電流制限器
22 電流遮断器
23 ベースドライバ
24 演算増幅器
25 電圧指令器
27 熱電冷却モジュール
1, 2, 3, 4, 5, 6 Power semiconductor element 7 Heat sink 8 Motor 9 Current transformer 10 Thermistor 11 Capacitor 12 Diode 13 Inverter control unit 14 PWM control unit 15 Temperature detection unit 16 Tj estimation units 17 and 18 Temperature setter 18a First temperature setting device
18b Second temperature setting device 19, 20 Comparator 21 Current limiter 22 Current breaker 23 Base driver 24 Operational amplifier 25 Voltage command device 27 Thermoelectric cooling module

Claims (2)

電力用半導体素子とこの電力用半導体素子を駆動制御するPWM制御部を含むインバータ回路と、前記電力半導体素子を冷却するヒートシンクを備えたインバータ装置において、
前記ヒートシンク上に熱電冷却モジュールを設置し、前記熱電冷却モジュールの上にサーミスタを設置し、前記サーミスタの抵抗値変化により前記熱電冷却モジュール温度を検出するとともに、前記PWM制御部から送出され、前記電力半導体素子のゲートをオンオフするドライブ信号とインバータ出力電流から半導体素子電流を計算し、この半導体素子電流から計算された前記電力用半導体素子の通電時損失とスイッチング損失とから前記電力用半導体素子の熱電冷却モジュールとジャンクション間の温度上昇を推定し、この推定された温度上昇と前記熱電冷却モジュール温度から計算される前記電力半導体素子のジャンクション温度が設定温度を超えると前記インバータ回路の電流制限を行うとともに、前記熱電冷却モジュールに電圧指令を与え冷却することを特徴とする電力半導体素子の保護方式。
In an inverter device including a power semiconductor element and an inverter circuit including a PWM control unit that drives and controls the power semiconductor element, and a heat sink that cools the power semiconductor element,
A thermoelectric cooling module is installed on the heat sink, a thermistor is installed on the thermoelectric cooling module, the thermoelectric cooling module temperature is detected by a resistance value change of the thermistor, and is sent from the PWM control unit, and the power A semiconductor element current is calculated from a drive signal for turning on and off the gate of the semiconductor element and an inverter output current, and a thermoelectric power of the power semiconductor element is calculated from a loss during switching of the power semiconductor element and a switching loss calculated from the semiconductor element current. A temperature rise between the cooling module and the junction is estimated, and when the junction temperature of the power semiconductor element calculated from the estimated temperature rise and the thermoelectric cooling module temperature exceeds a set temperature, the current of the inverter circuit is limited. A voltage finger on the thermoelectric cooling module Protection scheme of the power semiconductor device characterized by the given cooling.
前記電力用半導体素子のジャンクション温度が前記設定温度を超えた場合に、予め設定されたジャンクション温度と熱電冷却モジュールの電圧指令レベルの関数に基づいて温度に対して連続的に電圧指令を変え冷却することを特徴とする請求項1記載の電力半導体素子の保護方式。   When the junction temperature of the power semiconductor element exceeds the set temperature, cooling is performed by continuously changing the voltage command with respect to the temperature based on a function of the preset junction temperature and the voltage command level of the thermoelectric cooling module. The power semiconductor element protection method according to claim 1.
JP2003378003A 2003-11-07 2003-11-07 Protection method for power semiconductor device Pending JP2005143232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378003A JP2005143232A (en) 2003-11-07 2003-11-07 Protection method for power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378003A JP2005143232A (en) 2003-11-07 2003-11-07 Protection method for power semiconductor device

Publications (1)

Publication Number Publication Date
JP2005143232A true JP2005143232A (en) 2005-06-02

Family

ID=34688530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378003A Pending JP2005143232A (en) 2003-11-07 2003-11-07 Protection method for power semiconductor device

Country Status (1)

Country Link
JP (1) JP2005143232A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034544A1 (en) * 2005-09-21 2007-03-29 Mitsubishi Denki Kabushiki Kaisha Excessive-temperature detection system of motor controller
JP2007083991A (en) * 2005-09-26 2007-04-05 Hitachi Ltd Control device of converter for electric power
EP1981160A1 (en) 2007-04-12 2008-10-15 Schneider Toshiba Inverter Europe SAS Method and system for managing the temperature in a speed controller
EP1826897A3 (en) * 2006-02-27 2009-06-24 Honeywell International Inc. Adaptive Startup Control Method for Electric Drives
WO2010139530A1 (en) * 2009-06-04 2010-12-09 Schneider Toshiba Inverter Europe Sas Control method for managing the temperature in a power converter
JP2011083135A (en) * 2009-10-08 2011-04-21 Toshiba Mitsubishi-Electric Industrial System Corp Cooling system for power converter
JP2011223678A (en) * 2010-04-06 2011-11-04 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device
CN102299508A (en) * 2011-08-26 2011-12-28 深圳茂硕电子科技有限公司 Power supply with duplex over-temperature protection circuits
JP2012505528A (en) * 2008-10-07 2012-03-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Power semiconductor device adaptive cooling assembly
US8238131B2 (en) 2005-12-20 2012-08-07 Abb Oy Method of changing an operation mode of a frequency converter based on temperature conditions, and a frequency converter having a changeable mode of operation based on temperature conditions
CN107121629A (en) * 2017-05-27 2017-09-01 上海大学 A kind of detection means and method for judging electric power electronic module failure
KR20190040425A (en) * 2017-10-10 2019-04-18 엘지전자 주식회사 Power module package
US10910939B2 (en) 2017-09-26 2021-02-02 Canon Medical Systems Corporation Inverter device, gradient amplifier, and magnetic resonance imaging device
CN115065223A (en) * 2022-08-18 2022-09-16 杭州飞仕得科技有限公司 Optimization control method and device for active clamp three-level circuit
WO2024053779A1 (en) * 2022-09-05 2024-03-14 엘지전자 주식회사 Inverter control device and method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005336596B2 (en) * 2005-09-21 2009-06-11 Mitsubishi Denki Kabushiki Kaisha Excessive-temperature detection system of motor controller
US7791300B2 (en) 2005-09-21 2010-09-07 Mitsubishi Denki Kabushiki Kaisha Excessive temperature detecting system of electric motor controller
WO2007034544A1 (en) * 2005-09-21 2007-03-29 Mitsubishi Denki Kabushiki Kaisha Excessive-temperature detection system of motor controller
JP2007083991A (en) * 2005-09-26 2007-04-05 Hitachi Ltd Control device of converter for electric power
JP4673175B2 (en) * 2005-09-26 2011-04-20 株式会社日立製作所 Control device for power converter
US8238131B2 (en) 2005-12-20 2012-08-07 Abb Oy Method of changing an operation mode of a frequency converter based on temperature conditions, and a frequency converter having a changeable mode of operation based on temperature conditions
EP1826897A3 (en) * 2006-02-27 2009-06-24 Honeywell International Inc. Adaptive Startup Control Method for Electric Drives
EP1981160A1 (en) 2007-04-12 2008-10-15 Schneider Toshiba Inverter Europe SAS Method and system for managing the temperature in a speed controller
JP2012505528A (en) * 2008-10-07 2012-03-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Power semiconductor device adaptive cooling assembly
WO2010139530A1 (en) * 2009-06-04 2010-12-09 Schneider Toshiba Inverter Europe Sas Control method for managing the temperature in a power converter
FR2946477A1 (en) * 2009-06-04 2010-12-10 Schneider Toshiba Inverter CONTROL METHOD FOR MANAGING TEMPERATURE IN A POWER CONVERTER
JP2011083135A (en) * 2009-10-08 2011-04-21 Toshiba Mitsubishi-Electric Industrial System Corp Cooling system for power converter
JP2011223678A (en) * 2010-04-06 2011-11-04 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device
CN102299508A (en) * 2011-08-26 2011-12-28 深圳茂硕电子科技有限公司 Power supply with duplex over-temperature protection circuits
CN107121629A (en) * 2017-05-27 2017-09-01 上海大学 A kind of detection means and method for judging electric power electronic module failure
CN107121629B (en) * 2017-05-27 2023-11-17 上海大学 Detection device and method for judging failure of power electronic module
US10910939B2 (en) 2017-09-26 2021-02-02 Canon Medical Systems Corporation Inverter device, gradient amplifier, and magnetic resonance imaging device
KR20190040425A (en) * 2017-10-10 2019-04-18 엘지전자 주식회사 Power module package
KR102022967B1 (en) 2017-10-10 2019-09-19 엘지전자 주식회사 Power module package
CN115065223A (en) * 2022-08-18 2022-09-16 杭州飞仕得科技有限公司 Optimization control method and device for active clamp three-level circuit
CN115065223B (en) * 2022-08-18 2022-11-29 杭州飞仕得科技有限公司 Optimization control method and device for active clamp three-level circuit
WO2024053779A1 (en) * 2022-09-05 2024-03-14 엘지전자 주식회사 Inverter control device and method

Similar Documents

Publication Publication Date Title
JP3075303B2 (en) Protection method for power semiconductor devices
JP2005143232A (en) Protection method for power semiconductor device
US10966291B2 (en) Power conversion apparatus and power conversion method
US9035689B2 (en) Thermal controller for semiconductor switching power devices
JPWO2007034544A1 (en) Overheat detection method for motor controller
JP5843735B2 (en) Inverter overheat protection control device and inverter overheat protection control method
JP2009225631A (en) Drive device for inverter
JP2011130564A (en) Apparatus and method for protecting power semiconductor switch element
RU2581612C1 (en) Limitation of overload when operating at peak power
JP2007143293A (en) Power supply device and power feeding method
WO2016170584A1 (en) Power conversion device
JP5546687B2 (en) Motor control device
KR20200007295A (en) Inverter apparatus of electric vehicle
JP2000228882A (en) Protective device for variable speed inverter
JP5454067B2 (en) Cooling system for power converter
JP2002262580A (en) Inverter circuit
JP5697713B2 (en) Power converter and control method thereof
US10251320B2 (en) Managing device for cooling inverter
JPH099637A (en) Temperature protection circuit of power converting apparatus
JP2005218226A (en) Method and apparatus for controlling motor
JP2016140122A (en) Control method for electric power conversion system
JP2005102346A (en) Control unit of elevator
JP5267644B2 (en) Power supply device, power supply method, and motor drive system
JPH0284011A (en) Temperature protection for power converter
JP2008067476A (en) Gate drive circuit for voltage-driven power semiconductor device