JP3817666B2 - Induction motor drive control device - Google Patents

Induction motor drive control device Download PDF

Info

Publication number
JP3817666B2
JP3817666B2 JP2000048922A JP2000048922A JP3817666B2 JP 3817666 B2 JP3817666 B2 JP 3817666B2 JP 2000048922 A JP2000048922 A JP 2000048922A JP 2000048922 A JP2000048922 A JP 2000048922A JP 3817666 B2 JP3817666 B2 JP 3817666B2
Authority
JP
Japan
Prior art keywords
speed
acceleration
value
induction motor
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000048922A
Other languages
Japanese (ja)
Other versions
JP2001238497A (en
Inventor
徹郎 児島
徳之助 棚町
基巳 嶋田
清 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000048922A priority Critical patent/JP3817666B2/en
Publication of JP2001238497A publication Critical patent/JP2001238497A/en
Application granted granted Critical
Publication of JP3817666B2 publication Critical patent/JP3817666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘導電動機の駆動制御装置に係り、特に、電動機取り付けの速度センサが不要な速度センサレスベクトル制御による駆動制御に関する。
【0002】
【従来の技術】
従来、電力変換器(インバータ)を用いて誘導電動機を駆動し、この誘導電動機の速度を速度センサを用いずに推定する方法として、例えば、特開昭62−23390号公報に記載されているように、誘導電動機の出力電圧および出力電流から電動機電流のq軸電流成分(トルク電流成分)を検出し、この検出値と指令値との偏差に応じて電動機の回転速度を推定する方式が知られている。
速度センサを用いずに誘導電動機の回転速度を推定する原理は、以下に説明する理論に基づいている。すなわち、速度推定値の偏差はすべり周波数の偏差となり、q軸電流の指令値と検出値との偏差となって現れる。つまりq軸電流の指令値と検出値の偏差は、速度推定値と真の速度の偏差に比例する。したがって、q軸電流の指令値と検出値の偏差に応じて速度推定値を増減するように制御すれば、q軸電流の検出値を指令値に一致させることができると同時に、速度推定値を真の速度に一致させることができる。このように、q軸電流制御によって速度推定値を生成することにより、速度センサを不要としている。
【0003】
【発明が解決しようとする課題】
このような速度センサレスベクトル制御においては、誘導電動機の速度が極低速域の場合、出力電圧値は非常に小さな値となる。一方、ベクトル制御で使用する電動機定数の設定誤差ならびに電力変換器を構成する半導体素子の上下アームの短絡防止期間による出力電圧誤差が生じる。したがって、出力電圧の小さくなる極低速域においては、この出力電圧誤差の影響が非常に大きくなる。
一方、上述の速度センサレスベクトル制御方式においては、出力電圧が指令値に一致するものと仮定して速度推定を行っており、このように電圧誤差が大きくなると、推定速度の誤差も増大し、制御不安定の原因となる。このため、速度センサレスベクトル制御方式では、ごく低速域まで安定した速度推定を行い、確実に減速することが課題であった。
【0004】
本発明の課題は、誘導電動機の速度センサレスベクトル制御方式において、ごく低速域まで安定した速度推定を行い、確実に減速することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、誘導電動機を駆動する電力変換器と、誘導電動機に供給する交流電流を検出する電流検出手段と、前記検出された交流電流を回転磁界座標系の磁束軸(d軸)成分の電流(以下、d軸電流)とd軸と直行する成分(以下、q軸電流)に変換する変換手段と、q軸電流とq軸電流指令値との偏差から加速度推定値を生成する第1の加速度推定手段と、前記加速度推定値を積分して速度推定値を生成する速度推定手段と、前記速度推定値に基づいて誘導電動機を駆動制御する手段を備えた誘導電動機の駆動制御装置において、d軸電流指令値とq軸電流指令値の積から加速度推定値を生成する第2の加速度推定手段と、第1の加速度推定手段からの加速度推定値と第2の加速度推定手段からの加速度推定値の両者を加算した値から速度推定手段における速度推定値を生成する手段と、減速動作中に前記生成された速度推定値が所定値以下になると、速度推定手段の前記加算から第1の加速度推定手段を切り離す手段を有する
【0006】
【発明の実施の形態】
以下、本発明の実施形態について図面を用いて説明する。
図1は、本発明の速度センサレスベクトル制御方式による誘導電動機の駆動制御装置の第1の実施形態を示す。
電圧ベクトル演算器1は、d軸電流指令値Id*とq軸電流指令値Iq*とインバータ周波数Finvと電動機定数よりd軸電圧指令Vd*とq軸電圧指令Vq*を生成する。位相演算器2は、インバータ周波数Finvを積分して位相θを求める。座標変換器3は、d軸電圧指令Vd*とq軸電圧指令Vq*を位相θにより座標変換して三相交流電圧指令V1を生成する。電力変換器4は、三相交流電圧指令V1より誘導電動機5を駆動する交流電圧を生成する。電流検出器6は、電動機電流を検出し、三相交流電流Iu、Iv、Iwを出力する。座標変換器7は、三相交流電流Iu、Iv、Iwを位相θにより座標変換してd軸電流とq軸電流Iqを生成する。すべり周波数演算部8は、d軸電流指令値Id*とq軸電流指令値Iq*と電動機定数よりすべり周波数指令Fsを求める。インバータ周波数Finvは、推定速度Frにすべり周波数指令Fsを加算して求める。因みに、推定速度Frを推定速度ではなく、誘導電動機5に取り付けられた速度センサの検出値を用いてインバータを制御すれば、速度センサありのベクトル制御として動作する。
加速度推定部9は、大きく分けてd軸電流指令値Id*とq軸電流指令値Iq*よりフィードフォワード的に推定加速度を求める基準加速器10と、q軸電流指令値Iq*とq軸電流検出値Iqの偏差よりq軸電流制御を行うq軸電流制御器11からなる。基準加速器10は、d軸電流指令値Id*とq軸電流指令値Iq*の積より電動機トルクを求め、加速度α1を生成する。q軸電流制御器11は、q軸電流指令値Iq*とq軸電流検出値Iqの偏差に応じた加速度α2を出力する。
比較演算器13は、推定速度Frを常時監視し、推定速度Frが速度下限値Frminより大きい場合には“真”と判断し、推定速度Frが速度下限値Frmin以下の場合には“偽”と判断する。電流制御器11の切替信号は、比較演算器13の出力と力行/回生切替信号P/Bの論理和で生成され、力行動作中(加速中)もしくは推定速度Frが速度下限値Frminよりも大きい場合には、切替信号は“真”となり、スイッチ14は推定加速度αとして電流制御器11の出力α2を選択する。回生動作中(減速中)かつ推定速度Frが速度下限値Frmin以下になると切替信号は“偽”となり、スイッチ14は推定加速度αとして基準加速器10の出力α1を選択する。
推定速度Frは、推定加速度αを速度推定部12により積分して得る。ここで、スイッチ14が推定加速度αとして基準加速器10の出力α1を選択するとき、速度推定部12は、切り替える直前の速度推定値を初期値として加速度α1を積分することにより、推定速度Frを求める。
【0007】
本実施形態において、回生動作中(減速中)の極低速域では基準加速器10の出力する推定加速度α1に基づいて速度推定値Frを求める。次第に低速となるにつれて出力電圧の誤差が増大するが、極低速域においてはd軸電流指令値Id*とq軸電流指令値Iq*を用いて推定速度Frを演算し、精度の不確かなq軸電流検出値Iqを使用しないため、推定速度Frおよびインバータ周波数Finvを安定化することができる。この結果、安定したモータトルクを発生することができ、誘導電動機の速度を安定して減速することが可能になる。
また、本実施形態においては、電流指令値および電流検出値より推定加速度α1、α2を求め、これらを積分して推定速度Frを演算するという構成になっているため、2つの推定加速度α1、α2の切り替え時に誤差が生じていても、推定速度Frは連続した値を取ることができる。
【0008】
図2は、本発明の第2の実施形態であり、加速度推定部9において、基準加速器10を常時動作させるようにしたものである。力行動作中(加速中)もしくは推定速度Frが速度下限値Frminよりも大きい場合には、切替信号は“真”となり、スイッチ14は電流制御器11の出力を接続し、基準加速器10の出力α1と電流制御器11の出力α2の加算結果が推定加速度αとなる。回生動作中(減速中)かつ推定速度Frが速度下限値Frmin以下になると、切替信号は“偽”となり、スイッチ14は電流制御器11の出力を切り離し、基準加速器10の出力α1がそのまま推定加速度αとなる。
【0009】
本実施形態において、力行動作中(加速中)もしくは推定速度Frが速度下限値Frminよりも大きい場合は、基準加速器10が主体的に動作し、基準加速器10の出力である推定加速度α1を積分して得られる推定速度Frと真の速度の偏差によって生じるq軸電流検出値Iqとq軸電流指令値Iq*の偏差に基づいて電流制御器11は動作する。このため、電流制御器11の動作は図1の構成よりも小さくなり、低速域でのq軸電流検出値Iqの誤差の影響を少なくすることができる。このため、推定速度の下限値Frminを図1の構成よりも下げることができる。
【0010】
図3は、本発明の第3の実施形態であり、力行動作中(加速中)もしくは推定速度Frが速度下限値Frminよりも大きい場合には、切替信号は“真”となり、スイッチ14は電流制御器11の出力を速度演算器12の方へ接続し、基準加速器10の出力α1と電流制御器11の出力α2の加算結果が推定加速度αとなる。回生動作中(減速中)かつ推定速度Frが速度下限値Frmin以下になると、切替信号は“偽”となり、スイッチ14は電流制御器11の出力α2を電圧ベクトル演算器1に接続し、q軸電流指令値Iq*とq軸電流検出値Iqの偏差に基づいてd軸とq軸の電圧ベクトル指令値Vd*、Vq*を補正する。
【0011】
本実施形態において、回生動作中(減速中)の極低速域では基準加速器10の出力する推定加速度α1に基づいて速度推定値Frを求めるため、推定速度Frおよびインバータ周波数Finvを安定化することができる。
また、図2の構成と比較して、電流制御器11の出力α2を用いて電圧ベクトル指令値Vd*、Vq*の補正を行うことにより、発生するトルクの精度を高めることができる。これにより、誘導電動機の速度を安定して減速することが可能になる。
【0012】
【発明の効果】
以上説明したように、本発明によれば、所定値以下の速度域では電流指令値より推定速度を求め、低速域で精度の不確かな電流検出値を使用しないため、極低速域でも安定した推定速度を求めることができ、この結果、出力周波数(インバータ周波数)が安定し、安定したトルクを発生することが可能となり、安定してごく低速域まで減速することが可能となる。
また、電流指令値および電流検出値より推定加速度を求め、これらを積分して推定速度を演算する構成であるため、2つの推定加速度の切り替え時に誤差が生じていても、推定速度は連続した値を取ることができるという利点がある。
【図面の簡単な説明】
【図1】本発明の第1の実施形態による誘導電動機の駆動制御装置
【図2】本発明の第2の実施形態
【図3】本発明の第3の実施形態
【符号の説明】
1…電圧ベクトル演算器、2…位相演算器、3…座標変換器(二相→三相変換)、4…電力変換器、5…誘導電動機、6…交流電流検出器、7…座標変換器(三相→二相変換)、8…すべり周波数演算器、9…加速度推定部、10…基準加速器、11…電流制御器、12…速度推定部、13…比較器、14…切替スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drive control device for an induction motor, and more particularly to drive control by speed sensorless vector control that does not require a speed sensor attached to the motor.
[0002]
[Prior art]
Conventionally, as a method of driving an induction motor using a power converter (inverter) and estimating the speed of the induction motor without using a speed sensor, for example, as described in Japanese Patent Application Laid-Open No. 62-23390 In addition, a method is known in which the q-axis current component (torque current component) of the motor current is detected from the output voltage and output current of the induction motor, and the rotation speed of the motor is estimated according to the deviation between the detected value and the command value. ing.
The principle of estimating the rotational speed of the induction motor without using the speed sensor is based on the theory described below. In other words, the deviation of the estimated speed value becomes a deviation of the slip frequency, and appears as a deviation between the command value of the q-axis current and the detected value. That is, the deviation between the command value of the q-axis current and the detected value is proportional to the deviation between the estimated speed value and the true speed. Therefore, if the estimated speed value is controlled to increase or decrease in accordance with the deviation between the command value of the q-axis current and the detected value, the detected value of the q-axis current can be matched with the command value, and at the same time, the estimated speed value is Can match the true speed. Thus, the speed sensor is not required by generating the speed estimated value by the q-axis current control.
[0003]
[Problems to be solved by the invention]
In such speed sensorless vector control, when the speed of the induction motor is in an extremely low speed range, the output voltage value is a very small value. On the other hand, an error occurs in setting an electric motor constant used in vector control and an output voltage error due to a short-circuit prevention period of upper and lower arms of a semiconductor element constituting the power converter. Therefore, in the extremely low speed region where the output voltage is small, the influence of this output voltage error becomes very large.
On the other hand, in the above-described speed sensorless vector control method, speed estimation is performed on the assumption that the output voltage matches the command value. When the voltage error increases in this way, the estimated speed error also increases, and the control is performed. Causes instability. For this reason, in the speed sensorless vector control system, it has been a problem to perform reliable speed estimation to a very low speed range and to reliably decelerate.
[0004]
An object of the present invention is to perform a reliable speed estimation to a very low speed region and reliably decelerate in an induction motor speed sensorless vector control system.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, a power converter for driving an induction motor, current detection means for detecting an alternating current supplied to the induction motor, and a magnetic flux axis (d-axis) of the detected alternating current in a rotating magnetic field coordinate system ) Generates an estimated acceleration value from the deviation between the q-axis current and the q-axis current command value, conversion means for converting the component current (hereinafter referred to as d-axis current) and the component orthogonal to the d-axis (hereinafter referred to as q-axis current) Induction motor drive control comprising: first acceleration estimation means that performs speed estimation means that integrates the acceleration estimation value to generate a speed estimation value; and means that drives and controls the induction motor based on the speed estimation value In the apparatus, from the second acceleration estimating means for generating an acceleration estimated value from the product of the d-axis current command value and the q-axis current command value, from the acceleration estimated value from the first acceleration estimating means and from the second acceleration estimating means Both acceleration estimates of Means for generating a speed estimation value in the speed estimation means from the obtained value, and means for separating the first acceleration estimation means from the addition of the speed estimation means when the generated speed estimation value becomes equal to or less than a predetermined value during the deceleration operation. Have
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of a drive control device for an induction motor according to a speed sensorless vector control system of the present invention.
The voltage vector computing unit 1 generates a d-axis voltage command Vd * and a q-axis voltage command Vq * from the d-axis current command value Id *, the q-axis current command value Iq *, the inverter frequency Finv, and the motor constant. The phase calculator 2 integrates the inverter frequency Finv to obtain the phase θ. The coordinate converter 3 converts the d-axis voltage command Vd * and the q-axis voltage command Vq * with a phase θ to generate a three-phase AC voltage command V1. The power converter 4 generates an AC voltage for driving the induction motor 5 from the three-phase AC voltage command V1. The current detector 6 detects the motor current and outputs three-phase alternating currents Iu, Iv, and Iw. The coordinate converter 7 performs coordinate conversion of the three-phase alternating currents Iu, Iv, and Iw with the phase θ to generate a d-axis current and a q-axis current Iq. The slip frequency calculation unit 8 obtains a slip frequency command Fs from the d-axis current command value Id *, the q-axis current command value Iq *, and the motor constant. The inverter frequency Finv is obtained by adding the slip frequency command Fs to the estimated speed Fr. Incidentally, if the inverter is controlled using the detected value of the speed sensor attached to the induction motor 5 instead of the estimated speed Fr as the estimated speed, it operates as vector control with a speed sensor.
The acceleration estimator 9 is roughly divided into a reference accelerator 10 for obtaining an estimated acceleration in a feedforward manner from the d-axis current command value Id * and the q-axis current command value Iq *, and the q-axis current command value Iq * and the q-axis current detection. The q-axis current controller 11 performs q-axis current control based on the deviation of the value Iq. The reference accelerator 10 calculates the motor torque from the product of the d-axis current command value Id * and the q-axis current command value Iq *, and generates an acceleration α1. The q-axis current controller 11 outputs an acceleration α2 corresponding to the deviation between the q-axis current command value Iq * and the q-axis current detection value Iq.
The comparison arithmetic unit 13 constantly monitors the estimated speed Fr and determines “true” if the estimated speed Fr is greater than the speed lower limit value Frmin, and “false” if the estimated speed Fr is less than or equal to the speed lower limit value Frmin. Judge. The switching signal of the current controller 11 is generated by the logical sum of the output of the comparison calculator 13 and the power running / regeneration switching signal P / B, and the power running operation (acceleration) or the estimated speed Fr is larger than the speed lower limit value Frmin. In this case, the switching signal becomes “true”, and the switch 14 selects the output α2 of the current controller 11 as the estimated acceleration α. During the regenerative operation (deceleration) and when the estimated speed Fr falls below the speed lower limit value Frmin, the switching signal becomes “false”, and the switch 14 selects the output α1 of the reference accelerator 10 as the estimated acceleration α.
The estimated speed Fr is obtained by integrating the estimated acceleration α by the speed estimating unit 12. Here, when the switch 14 selects the output α1 of the reference accelerator 10 as the estimated acceleration α, the speed estimating unit 12 obtains the estimated speed Fr by integrating the acceleration α1 with the speed estimated value immediately before switching as an initial value. .
[0007]
In the present embodiment, in the extremely low speed region during the regenerative operation (deceleration), the estimated speed value Fr is obtained based on the estimated acceleration α1 output from the reference accelerator 10. Although the output voltage error gradually increases as the speed decreases, in the extremely low speed range, the estimated speed Fr is calculated using the d-axis current command value Id * and the q-axis current command value Iq *, and the accuracy of the q-axis is uncertain. Since the current detection value Iq is not used, the estimated speed Fr and the inverter frequency Finv can be stabilized. As a result, a stable motor torque can be generated, and the speed of the induction motor can be stably reduced.
In the present embodiment, the estimated accelerations α1 and α2 are obtained from the current command value and the current detection value, and these are integrated to calculate the estimated speed Fr. Therefore, the two estimated accelerations α1 and α2 are calculated. Even if an error occurs during switching, the estimated speed Fr can take a continuous value.
[0008]
FIG. 2 shows a second embodiment of the present invention, in which the acceleration estimator 9 operates the reference accelerator 10 at all times. When the power running operation (acceleration) or the estimated speed Fr is larger than the speed lower limit value Frmin, the switching signal becomes “true”, and the switch 14 connects the output of the current controller 11 and the output α1 of the reference accelerator 10 And the addition result of the output α2 of the current controller 11 becomes the estimated acceleration α. When the regenerative operation (deceleration) and the estimated speed Fr become equal to or lower than the speed lower limit value Frmin, the switching signal becomes “false”, the switch 14 disconnects the output of the current controller 11, and the output α1 of the reference accelerator 10 remains as it is. α.
[0009]
In the present embodiment, when the power running operation (acceleration) or the estimated speed Fr is larger than the speed lower limit value Frmin, the reference accelerator 10 operates mainly, and the estimated acceleration α1 that is the output of the reference accelerator 10 is integrated. The current controller 11 operates based on the deviation between the q-axis current detection value Iq and the q-axis current command value Iq * caused by the deviation between the estimated speed Fr obtained and the true speed. For this reason, the operation of the current controller 11 becomes smaller than that of the configuration of FIG. 1, and the influence of the error of the q-axis current detection value Iq in the low speed region can be reduced. For this reason, the lower limit value Frmin of the estimated speed can be lowered as compared with the configuration of FIG.
[0010]
FIG. 3 shows a third embodiment of the present invention. In the power running operation (acceleration) or when the estimated speed Fr is larger than the speed lower limit value Frmin, the switching signal becomes “true” and the switch 14 The output of the controller 11 is connected to the speed calculator 12, and the addition result of the output α1 of the reference accelerator 10 and the output α2 of the current controller 11 becomes the estimated acceleration α. When the regenerative operation (deceleration) and the estimated speed Fr become equal to or lower than the speed lower limit value Frmin, the switching signal becomes “false”, and the switch 14 connects the output α2 of the current controller 11 to the voltage vector calculator 1, and the q axis The d-axis and q-axis voltage vector command values Vd * and Vq * are corrected based on the deviation between the current command value Iq * and the q-axis current detection value Iq.
[0011]
In the present embodiment, the estimated speed Fr and the inverter frequency Finv can be stabilized in order to obtain the estimated speed Fr based on the estimated acceleration α1 output from the reference accelerator 10 in the extremely low speed region during the regenerative operation (decelerating). it can.
Compared with the configuration of FIG. 2, the accuracy of the generated torque can be improved by correcting the voltage vector command values Vd * and Vq * using the output α2 of the current controller 11. As a result, the speed of the induction motor can be stably decelerated.
[0012]
【The invention's effect】
As described above, according to the present invention, the estimated speed is obtained from the current command value in the speed range below the predetermined value, and the current detection value with uncertain accuracy is not used in the low speed range. The speed can be obtained, and as a result, the output frequency (inverter frequency) is stabilized, it is possible to generate a stable torque, and it is possible to stably decelerate to a very low speed range.
In addition, since the estimated acceleration is obtained from the current command value and the detected current value, and these are integrated to calculate the estimated speed, the estimated speed is a continuous value even if an error occurs when switching between the two estimated accelerations. There is an advantage that can be taken.
[Brief description of the drawings]
FIG. 1 is a drive control device for an induction motor according to a first embodiment of the present invention. FIG. 2 is a second embodiment of the present invention. FIG. 3 is a third embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 ... Voltage vector calculator, 2 ... Phase calculator, 3 ... Coordinate converter (two phase-> three phase conversion), 4 ... Power converter, 5 ... Induction motor, 6 ... Alternating current detector, 7 ... Coordinate converter (Three-phase to two-phase conversion), 8 ... slip frequency calculator, 9 ... acceleration estimation unit, 10 ... reference accelerator, 11 ... current controller, 12 ... speed estimation unit, 13 ... comparator, 14 ... changeover switch

Claims (1)

誘導電動機を駆動する電力変換器と、前記誘導電動機に供給する交流電流を検出する電流検出手段と、前記検出された交流電流を回転磁界座標系の磁束軸(d軸)成分の電流(以下、d軸電流)とd軸と直行する成分(以下、q軸電流)に変換する変換手段と、前記q軸電流とq軸電流指令値との偏差から加速度推定値を生成する第1の加速度推定手段と、前記加速度推定値を積分して速度推定値を生成する速度推定手段と、前記速度推定値に基づいて前記誘導電動機を駆動制御する手段を備えた誘導電動機の駆動制御装置において、
d軸電流指令値とq軸電流指令値の積から加速度推定値を生成する第2の加速度推定手段と、前記第1の加速度推定手段からの加速度推定値と前記第2の加速度推定手段からの加速度推定値の両者を加算した値から前記速度推定手段における速度推定値を生成する手段と、減速動作中に前記生成された速度推定値が所定値以下になると、前記速度推定手段の前記加算から前記第1の加速度推定手段を切り離す手段を有することを特徴とする誘導電動機の駆動制御装置。
A power converter for driving the induction motor; current detection means for detecting an alternating current supplied to the induction motor; and a current (hereinafter referred to as a magnetic flux axis (d-axis) component of the rotating magnetic field coordinate system for the detected alternating current. a first acceleration estimation unit that generates an acceleration estimation value from a deviation between the q-axis current and the q-axis current command value; A drive control device for an induction motor comprising: means ; speed estimation means for integrating the acceleration estimated value to generate a speed estimated value; and means for driving and controlling the induction motor based on the speed estimated value.
a second acceleration estimating means for generating an acceleration estimated value from the product of the d-axis current command value and the q-axis current command value; an acceleration estimated value from the first acceleration estimating means; and a second acceleration estimating means A means for generating a speed estimated value in the speed estimating means from a value obtained by adding both of the acceleration estimated values, and when the generated speed estimated value during a deceleration operation becomes a predetermined value or less, from the addition of the speed estimating means. An induction motor drive control device comprising means for separating the first acceleration estimation means .
JP2000048922A 2000-02-21 2000-02-21 Induction motor drive control device Expired - Lifetime JP3817666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000048922A JP3817666B2 (en) 2000-02-21 2000-02-21 Induction motor drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000048922A JP3817666B2 (en) 2000-02-21 2000-02-21 Induction motor drive control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005061754A Division JP4425818B2 (en) 2005-03-07 2005-03-07 Induction motor drive control device

Publications (2)

Publication Number Publication Date
JP2001238497A JP2001238497A (en) 2001-08-31
JP3817666B2 true JP3817666B2 (en) 2006-09-06

Family

ID=18570933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000048922A Expired - Lifetime JP3817666B2 (en) 2000-02-21 2000-02-21 Induction motor drive control device

Country Status (1)

Country Link
JP (1) JP3817666B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788057A (en) * 2016-12-21 2017-05-31 合肥工业大学 The rotary transformer adaptive fusion system and method for PMSM drive systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815806B2 (en) * 2005-01-17 2011-11-16 三菱電機株式会社 AC rotating machine control device
JP2007104777A (en) * 2005-10-03 2007-04-19 Toshiba Corp Electric vehicle drive controller
CN101432961B (en) 2006-11-29 2011-07-13 三菱电机株式会社 Control device of AC rotary motor
JP4706716B2 (en) * 2008-04-28 2011-06-22 株式会社日立製作所 Induction motor control method
JP5510034B2 (en) * 2010-04-27 2014-06-04 株式会社ジェイテクト Motor control device, electric power steering device, motor rotation angular velocity detection method, and motor impedance optimization method
JP6480859B2 (en) * 2013-03-28 2019-03-13 三菱電機株式会社 Heat pump device, air conditioner and refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788057A (en) * 2016-12-21 2017-05-31 合肥工业大学 The rotary transformer adaptive fusion system and method for PMSM drive systems
CN106788057B (en) * 2016-12-21 2019-01-11 合肥工业大学 The rotary transformer adaptive fusion system and method for PMSM drive system

Also Published As

Publication number Publication date
JP2001238497A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
KR101109067B1 (en) Position sensorless control apparatus of permanent magnet motor
US8736206B2 (en) Power converting apparatus
JP3681318B2 (en) Synchronous motor control device and vehicle using the same
US6344725B2 (en) Method and apparatus for controlling a synchronous motor
US20020117990A1 (en) Motor control apparatus and electric vehicle using same
JP4860012B2 (en) Electric vehicle power converter
JP2008167566A (en) High-response control device of permanent magnet motor
KR101024164B1 (en) Controller of ac rotating machine
JP3674741B2 (en) Control device for permanent magnet synchronous motor
JP4912516B2 (en) Power converter
JP2007089334A (en) Power conversion device for electric vehicle
JP3817666B2 (en) Induction motor drive control device
WO2019171836A1 (en) Vehicle control device
EP4207584A1 (en) Method for controlling motor, and motor system
JP3933983B2 (en) Electric vehicle control device
JP5515885B2 (en) Electric vehicle control device
JP3946689B2 (en) Electric vehicle control device
KR20090004375A (en) Power converting device for electric train
JP4437629B2 (en) Electric vehicle control device
JP4425818B2 (en) Induction motor drive control device
JP4256238B2 (en) Power converter
JP4543720B2 (en) Speed sensorless vector controller
JP4023280B2 (en) Motor control device
JP4120503B2 (en) Induction motor control method
JP3742582B2 (en) Electric vehicle control device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3817666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

EXPY Cancellation because of completion of term