JP3815169B2 - Microstructured optical fiber preform and method of manufacturing microstructured optical fiber - Google Patents

Microstructured optical fiber preform and method of manufacturing microstructured optical fiber Download PDF

Info

Publication number
JP3815169B2
JP3815169B2 JP2000034794A JP2000034794A JP3815169B2 JP 3815169 B2 JP3815169 B2 JP 3815169B2 JP 2000034794 A JP2000034794 A JP 2000034794A JP 2000034794 A JP2000034794 A JP 2000034794A JP 3815169 B2 JP3815169 B2 JP 3815169B2
Authority
JP
Japan
Prior art keywords
glass
optical fiber
outer peripheral
needle
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000034794A
Other languages
Japanese (ja)
Other versions
JP2001220165A (en
Inventor
正志 大西
健美 長谷川
丈夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000034794A priority Critical patent/JP3815169B2/en
Publication of JP2001220165A publication Critical patent/JP2001220165A/en
Application granted granted Critical
Publication of JP3815169B2 publication Critical patent/JP3815169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02338Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02376Longitudinal variation along fibre axis direction, e.g. tapered holes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の長手方向に延びる中空部を有する微細構造光ファイバの製造方法とその製造に使用する微細構造光ファイバ用母材の製造方法に関する。
【0002】
【従来の技術】
最近、光ファイバのガラス中に長手方向に平行して延びる多数の微細な中空部を有する光ファイバが、通常の充実したガラス構造の光ファイバよりもコア領域とクラッド領域との比屈折率差を大きくし得る光ファイバとして注目されている。SCIENCE VOL285 3 SEPTEMBER 1999 1537頁〜1539頁「Single−Mode Photonic Band Gap Guidance of Light in Air」、あるいは特開平10−95628号公報に記載された微細構造の光ファイバはそれらの一例である。
【0003】
図5は、特開平10−95628号公報に記載された微細構造光ファイバの一例を示す光ファイバ内部の横断面図である。なお、図5で描かれた同心円状の破線はコア領域、内部クラッド領域、外部クラッド領域の境界を示す。また、図5において、11はコア領域、12は内部クラッド領域、13は外部クラッド領域、14は内部クラッドボイド、15は外部クラッドボイドである。
【0004】
また、この光ファイバは次のようにして製造される。外径0.718mmのシリカロッドの周囲に、外径0.718mm、内径0.615mmのシリカ管を6本並べて、更にその周囲を外径0.718mm、内径0.508mmのシリカ管で少なくとも4層に囲んで、それらシリカロッドとシリカ管からなる束を作り、その束をオーバクラッド管で覆って、両端を閉じてプリフォームとする。そのプリフォームを線引き機にかけて、その片方の端部を加熱溶融して線引きすることによって、コア領域11の外径が1.017μm、内部クラッドボイド14の内径が0.833μm、外部クラッドボイド15の内径が0.688μm、光ファイバ外径125μmの光ファイバを得ることが出来る。
【0005】
また、図5では、内部クラッドボイド14の内径と外部クラッドボイド15の内径が異なる例を示したが、内部クラッド領域12と外部クラッド領域13との区別をつけず、両者の中空部の内径を同じにすることもある。なお、線引きの作業中、各シリカ管の両端を封止してシリカ管の孔内の空気を閉じ込め、プリフォームのオーバクラッド管内部の空気は外に排出することによって、内径の大きい方のシリカ管の孔が比較的大きい内径の内部クラッドボイド14に、内径の小さい方のシリカ管の孔が比較的小さい内径の外部クラッドボイド15になる。
【0006】
【発明が解決しようとする課題】
上述した光ファイバの製造方法では、外径0.718mmのシリカロッドの周囲に外径0.717mmのシリカ管を5層以上にわたって少なくとも計94本のシリカ管を平行に配列してシリカロッドとシリカ管からなる束を構成することになる。同じ外径のシリカロッド及びシリカ管を密接して配列する場合、幾何学的には各シリカ管の中心がそれぞれ正三角形の頂点に位置するようにハニカム状に精密に配列させることが可能であるが、実際にシリカロッドとシリカ管からなる束を幾何学的に精密に中心対称となるように同心円の円周上に配置するのは難しい。
【0007】
特開平10−95628号公報では、まず内径の小さい方のシリカ管だけの束を作って、中心部のシリカ管7本をシリカロッドと内径の大きい方のシリカ管6本に置き換えるといった方法でシリカロッドと2種類のシリカ管からなる束を作っているようであるが、シリカロッド及びシリカ管には長手方向及びシリカ管毎の外径変動があるため、各層のシリカ管の配列が幾何学的に中心の周りに等間隔で精密に配列されるとは限らない。各層の位置も精密に円周上に位置するとは限らない。また、中心であるはずのシリカロッドの中心が幾何学的な中心からずれることもある。また、このようなシリカロッド及びシリカ管の配置のずれは、シリカ管の集合体の長手方向にもばらつくことがある。
【0008】
そして、シリカロッドの中心からのずれ及びその周りのシリカ管の配列のずれは、光ファイバとなった時のコア領域の大きさ及び位置のずれ、並びにその周囲の内部クラッドボイドの位置及び相互間隔のずれ、となって現れる。このコア領域及び内部クラッドボイド等の中空部の位置のずれは、光ファイバの伝送特性の設計値からのずれとなって偏波依存性その他の特性に影響をもたらす。特に、コア領域及びそれに近いところは外部クラッド領域よりも光のエネルギーが集中する部分であるため、そこでの位置のずれによる伝送特性への影響は大きい。
【0009】
また、シリカロッドの周囲にシリカ管を配列させて束を作る作業は手作業で行われるが、シリカロッドとシリカ管の見分けが困難であること、また束を構成するに当たっての中心の見間違い等によって、シリカロッドが中心以外の箇所に間違って配列されることもある。
【0010】
本発明は、クラッド領域での中空部位置のずれを小さくし、かつ中心となるガラス部材の位置を正確に配置することが出来る微細構造光ファイバ用母材及び光ファイバの製造方法を提供するものである。
【0011】
【課題を解決するための手段】
本発明の微細構造光ファイバ用母材の製造方法では、まず、円盤部と該円盤部の片方の面にその中心にガラスロッド配置部を有しそれを取り囲むように同心円の円周上に間隔をおいてかつ多層に配列され該円盤部の面に対して直立し互いに平行になるようにして固定された複数の針状部とを有する配列用治具を準備する。そして、該配列用治具のガラスロッド配置部にガラスロッドを直立させて、併せて複数の針状部をそれぞれガラスパイプの孔の片方の端から差し込んで該複数の針状部にて該複数の各ガラスパイプをそれぞれ保持してガラスパイプの束となす。続いて、前記複数のガラスパイプの束上を外周ガラスパイプにて覆って該外周ガラスパイプをガラスパイプの束上に固定し、その後前記配列用治具を抜き去って、前記外周ガラスパイプの両端を圧力調整用開口部付き又は圧力調整用開口部無しのガラス封止部材にて封止して微細構造光ファイバ用母材とする。
【0012】
また、配列用治具を2つ使って、複数のガラスパイプのそれぞれ孔の両端側から2つの配列用治具のそれぞれの針状部を差し込んでそれぞれ複数のガラスパイプを保持してガラスパイプの束を形成することにすれば、ガラスロッド及び複数のガラスパイプの直線性及び相互位置精度をより一層高めることが出来るので、更に長手方向に断面が均一な微細構造光ファイバ用母材を製造することが出来る。
【0013】
また、本発明の微細構造光ファイバの製造方法は、上記微細構造光ファイバ用母材の製造方法にて製造した微細構造光ファイバ用母材を使って、その一端を加熱溶融して線引きすることによって、光ファイバのガラス中に複数の長手方向に延びる中空部が中心のコア領域の周囲に間隔をおいてかつ多層に配列された光ファイバを得るものである。
【0014】
以上の微細構造光ファイバ用母材及び光ファイバの製造方法によれば、予め円盤部と複数の針状部とからなる配列用治具を作るので、円盤部の片方の面に精密に複数の針状部を配置し固定することによって、複数のガラスパイプのそれぞれの位置を設計通りの精密な位置に合わせることが出来る。従って、光ファイバとなった時のコア領域及びクラッド領域の中空部の位置の配置精度を高めることが出来る。
【0015】
【発明の実施の形態】
図1は、本発明にかかる微細構造光ファイバ用母材の製造方法を説明する図であって、図1(A)(B)は微細構造光ファイバ用母材の製造に使用する配列用治具の斜視図と正面図、図1(C)は配列用治具にてガラスパイプを保持させ外周ガラスパイプで覆った状態を示す拡大縦断面図、図1(D)は微細構造光ファイバ用母材の縦断面図である。図1において、1は配列用治具、2は円盤部、2aはガラスロッド配置部(凹部)、3は針状部、4はガラスパイプ、4aは孔、5はガラスロッド、6は外周ガラスパイプ、7はガラス封止部材、7aは圧力調整用開口部、8は微細構造光ファイバ用母材である。
【0016】
まず、図1(A)(B)に示す形状の配列用治具1を準備する。配列用治具1は、円盤部2とその円盤部2の片方の面の中心にガラスロッド配置部2aを有し円盤部2に対して直立するように配列し固定された複数の針状部3とからなり、アルミニウム、ステンレススチール等の金属等変形し難い材料で作る。複数の各針状部3は、細長い円柱状物体とし、円盤部2の中心周りの同心円の円周上に間隔をおいてかつ層状に配列する。同一同心円の円周上の針状部3の間隔は一般には等間隔とするが、微細構造光ファイバの種類によっては間隔を変えることもある。また、複数の針状部3は、互いに平行にかつ円盤部2に対して垂直に配置する。また、針状部3のそれぞれの外径は、後述するガラスパイプの内径に合せた寸法とする。なお、針状部3は、ガラスパイプの孔へ針状部を挿抜するときの容易性を考慮して、円盤部2側から先端側に向かってわずかに細くなるような抜き勾配を付けることが望ましい。
【0017】
また、ガラスパイプが配列される層によって内径が変わる場合があるが、その場合は、ガラスパイプの内径に合わせて針状部の外径を層によって変える。また、針状部3の長さは全て同じとする必要はなく、後述するガラスパイプの差し込みの容易性等を考慮して、配列される層によって長さを変えるようにすることも可能である。例えば中心に近い層の方を長くし、外周に向かって各層毎に短くなるようにしておけば、中心に近い層から順にガラスパイプへの針状部の差し込み作業を行なうことが容易になる。
【0018】
針状部3の寸法の事例と、円盤部2に対する針状部3の配列の事例をあげると次の通りである。ガラスパイプの内径が1.0mmの場合、針状部3の外径は、先端部側で0.95mm程度、円盤部側で0.98mm程度とし、針状部3の長さは30mm〜50mm程度とすることが望ましい。また、針状部3は、円盤部2の片方の面上に、その中心から半径2mm、4mm、6mm、8mm、10mm、12mm、14mmの各円周を層としてその上に、互いに等間隔に、6本、12本、18本、24本、30本、36本、42本をそれぞれ層毎に配置する。また、円盤部2の中心のガラスロッド配置部2aは後述するガラスロッドを保持し易くするため、内径2mm、深さ1mm〜2mm程度の凹部とすることが望ましい。
【0019】
次に配列用治具によるガラスパイプ等の保持について説明する。純粋なシリカガラス等のガラスで出来たガラスパイプ4を針状部の数だけ準備し、併せて純粋なシリカガラス等のガラスで出来たガラスロッド5を1本準備する。先に例示した寸法の配列用治具を使用する場合、ガラスパイプ4は外径が2.0mm、内径が1.0mm、長さが約300mm、ガラスロッド5の外径は2.0mm、長さは約302mmとする。なお、ガラスパイプ4の外径はマイナス公差とする。
【0020】
そして図1(C)に示すように、2つの配列用治具1をその針状部3同士が向き合うように対向して配置し、その間に複数のガラスパイプ4を配置してその孔4aの両端側からそれぞれに各針状部3を差し込む。なお、ガラスパイプの孔に両端側から針状部を同時に差し込むのは難しいので、次のようにすることが望ましい。まず、一方の配列用治具1を針状部3側を上側となるようにして保持し、各針状部3にガラスパイプ4の片端側の孔4aを挿入する。また、円盤部2の中心のガラスロッド配置部2aの凹部にガラスパイプ5を挿入する。それによって、ガラスロッド5及び複数のガラスパイプ4を円盤部2上に直立させる。
【0021】
続いて、他方の配列用治具1を針状部3を下側にしてガラスパイプ4の他端側の上方から降下させ、各針状部3をそれぞれガラスパイプ4の他端側の孔4aに差し込む。この時、上方から降下させる配列用治具1は、各針状部の長さを中心に近い層から周辺に近い層に向かって順次長さを短くしておけば、中心に近い層の針状部から順に差し込まれるので、組立作業が容易である。
【0022】
上記では、ガラスロッド5はガラスロッド配置部2aの凹部に挿入して支持することにしたが、ガラスパイプ4の外径とガラスロッド5の外径が等しい場合は、中心に最も近い第1層のガラスパイプの表面で出来る内接円がガラスロッドの外周円と同じになるので、針状部で保持された第1層のガラスパイプの隙間にガラスロッドを差し込むだけで、ガラスパイプでもってガラスロッドを保持させることも可能である。その場合は、ガラスロッド配置部2aの凹部の形成は不要である。
【0023】
配列用治具1とガラスパイプ4及びガラスロッド5の束の組立が終われば、図1(C)に示すようにガラスパイプ4の束を覆うようにシリカガラス等からなる外周ガラスパイプ6を通してガラスパイプ4の束上に外周ガラスパイプ6を固定する。外周ガラスパイプの内径がガラスパイプの束の外径とほぼ同じである場合は、外周ガラスパイプの孔に配列用治具1とガラスパイプ4及びガラスロッド5の組立体を通すだけでよいが、外周ガラスパイプの内径がガラスパイプの束の外径よりも大きい場合は、外周ガラスパイプの周囲を加熱してコラプスさせ、外周ガラスパイプの内壁面をガラスパイプの束に密着させることが望ましい。
【0024】
その後、両側の配列用治具1を引抜いて除去し、外周ガラスパイプ6の両端の開口をシリカガラス等からなるガラス封止部材7で封止する。その時、外周ガラスパイプの内側の圧力を調整するための圧力調整開口部7aをいずれかの端側のガラス封止部材7又はその近傍に設けることがある。以上にようにして、図1(D)に示すように、複数のガラスパイプ4、1本のガラスロッド5、外周ガラスパイプ6及びガラス封止部材7からなる本発明の微細構造光ファイバ用母材8を製造することが出来る。
【0025】
以上は、2つの配列用治具のそれぞれの針状部をガラスパイプの両側の孔に差し込んで両側からガラスパイプを保持する例を示したが、ガラスパイプの長さがあまり長くない場合は、1つの配列用治具の針状部をガラスパイプの片方の孔に差し込んで保持するだけで複数のガラスパイプ及びその中央に配置したガラスロッドを平行に保持することが可能である。この場合は外周ガラスパイプでガラスパイプを覆うに当たっては、外周ガラスパイプをガラスパイプのある側から通すことが出来るので、配列用治具の円盤部が大きくてもそれが外周ガラスパイプの挿通の障害になることがない。従って、外周ガラスパイプの内径をガラスパイプの束の外径に合わせることが容易である。但し、ガラスパイプの長手方向の配列精度を高める上では、2つの配列用治具によってガラスパイプを保持することが好ましい。
【0026】
また、配列用治具1にガラスパイプ4等を組み合わせる前又は後で、少なくともガラスパイプ4の外表面、ガラスロッド5の外表面及び外周ガラスパイプ6の内壁面をふっ酸等によってエッチング処理し、壁面等に付着した不純物を除去することが望ましい。エッチング処理によって、微細構造光ファイバのガラス中に閉じ込められる不純物を少なくすることが出来るので、製造される微細構造光ファイバの伝送損失の低損失化を図ることが出来る。
【0027】
また後述する理由で、ガラス封止部材7による外周ガラスパイプ6の封止に先立って、図4に示すように各ガラスパイプ4の少なくとも片方の端部4dの孔を封止し他方の端部4cの孔は開放したままとする場合と、図示しないが各ガラスパイプ4の両端の孔を開放させたままとしておく場合がある。また、ガラスパイプ4の端部4dの封止はパイプの一部を潰して溶融させるだけで簡単に行なうことが出来る。
【0028】
以上によって製造された本発明の微細構造光ファイバ用母材8を用いて微細構造光ファイバの製造は次の通り行なう。図2は、その線引き工程を説明する図であって、図1と同じ符号は同じものを示す。また、図2において、9はヒータ、10は微細構造光ファイバである。微細構造光ファイバ用母材8を線引き機にかけて、その圧力調整用開口部7aのない側の微細構造光ファイバ用母材8の端部をヒータ9で加熱して溶融させ、そこから例えば外径125μmの微細構造光ファイバ10を線引きする。線引き機は、通常シングルモード光ファイバ等の製造に用いられているものを用いることが出来る。この線引き時の加熱溶融によって、外周ガラスパイプ6、ガラスパイプ4及びガラスロッド5の各ガラス体は溶融されて一体化し、横断面の形状が長手方向に一定した微細構造光ファイバが引出される。
【0029】
また、線引き中、圧力調整用開口部7aから内部の圧力を調整して、外周ガラスパイプ7中のガラスパイプ4の内外の圧力を一定に保てば、ガラスパイプ4の孔4aの内部及び隣接する配列されたガラスパイプ4の外表面で出来る略三角形の空隙部に空気が閉じ込められた状態で線引きされるので、光ファイバのガラス中にそれらの部分が長手方向に延びる中空部となって残った状態で線引きされる。また、それらの中空部の内径は閉じ込められた空気の圧力と溶融ガラスの表面張力との関係で決まるので、所望の内径の中空部が得られるように内部圧力を調整する。また、外周ガラスパイプの内部圧力が大気圧でもよい場合は、ガラス封止部材に圧力調整用開口部を設ける必要はない。
【0030】
また、図4に示すように微細構造光ファイバ用母材8の圧力調整用開口部7aのある方の端部側において各ガラスパイプ4の孔4aを封止しておいて、内部圧力を調整した後、その微細構造光ファイバ用母材4の反対側の端部側を加熱溶融して線引きを開始し、その後圧力調整用開口部から外周円筒部の空洞部が真空に近くなるように減圧する。そうすると、加熱端側のガラスパイプ4の孔4aは線引き開始直後溶融によって塞がれるので、ガラスパイプ4の孔4aには空気が閉じ込められた状態のままで線引きされる。従って、その孔の部分は光ファイバのガラス中に長手方向に延びる中空部となって残る。また、配列されたガラスパイプ4の外表面で出来る略三角形の空隙部にあった空気は圧力調整用開口部から排出されるので、その空隙部はガラスが充填され、中空部は残らない。
【0031】
これによって線引きして得られた微細構造光ファイバ10は、図3に示す横断面を有するもので、中心にコア領域10aを有し、それを取り囲むようにそれぞれ長手方向に延びる断面円形の孔からなる中空部10bが横断面同心円の円周上に7層に配列されてクラッド領域10cが形成されており、それらの外側を外周部10dが取り囲んでいる。
【0032】
以上述べた本発明の微細構造光ファイバ用母材の製造方法によれば、配列用治具を使用してその針状部によって各ガラスパイプの位置を固定して保持して複数のガラスパイプを配列した束とするので、ガラスパイプを単に束ねるものに比べて、ガラスパイプの配列精度を向上させることが出来る。またこの微細構造光ファイバ用母材から線引きされた微細構造光ファイバのコア領域及びその周囲の中空部の配列精度を向上させ、製造ばらつきに少ない設計通りの光ファイバを得ることが出来る。
【0033】
因みに、図3に示す微細構造光ファイバにおいて、上述した外径2.0mmのシリカガラスからなるガラスロッドの周囲に外径2.0mm、内径1.0mmのシリカガラスからなるガラスパイプを168本配列させて、外径60mm、内径30mmのシリカガラスからなる外周ガラスパイプで覆った微細構造光ファイバ用母材を使って、図3に示す横断面で外径は125μmの微細構造光ファイバ10を線引きした場合、コア領域10aの外径が2.1μm、各中空部10bの内径が0.53μm、中空部10bの間隔が1.05μmの微細構造光ファイバが得られる。また、その微細構造光ファイバの波長1550nmにおける波長分散は−314ps/km/nm、実効断面積は5.6μm2であることが計算で求められるので、通常のシングルモード光ファイバに比べて大きな波長分散値となり、分散補償ファイバ等の用途に適している。
【0034】
また線引きの前に、空洞部内及びガラスパイプの孔内の空気を塩素ガス等のハロゲン系ガスで置換し、ハロゲン系ガスの圧力調整を行いながら線引きすることにすれば、ガラス中の水分や不純物がハロゲン系ガスと反応して空気とハロゲン系ガスの置換に合わせて追い出されて除去されるので、更に微細構造光ファイバの伝送損失の低減化を図ることが出来る。
【0035】
【発明の効果】
本発明の微細構造光ファイバ用母材の製造方法では、円盤部とその片面に固定した複数の針状部とからなる配列用治具を使って、各ガラスパイプを保持してガラスパイプの束となすことにしたので、円盤部の面に精密に複数の針状部を配置し固定することが可能で、複数のガラスパイプのそれぞれの位置を設計通りの精密な位置に合わせることが出来る。従って、微細構造光ファイバとなった時のコア領域及びコア領域に近い中空部の位置の配置精度を高めることが出来る。
【0036】
また、配列用治具を2つ使って、複数のガラスパイプのそれぞれ孔の両端側から針状部を差し込んで複数のガラスパイプを保持することにすれば、更にガラスロッド及び複数のガラスパイプの直線性及び相互位置精度をより一層高めることが出来るので、長手方向に断面が均一な微細構造光ファイバ用母材を製造することが出来る。
【0037】
また、ガラスロッド、ガラスパイプ、外周ガラスパイプ及びガラス封止部材の材質をシリカガラスとしたものは、線引きその他の加工が容易であり、製造された微細構造光ファイバも低損失で、かつ接続性にも優れている。また、外周ガラスパイプの内壁面、ガラスパイプの外表面をエッチング処理して付着した塵埃を除去すれば、製造される微細構造光ファイバの伝送損失をより小さくすることが出来る。また、微細構造光ファイバ用母材の線引きにおいて内部圧力を制御するに当たって、内部の空気をハロゲン系ガスで置換して線引きすることにすれば、ハロゲン系ガスによって水分、不純物等を反応させて除去することが出来るので、より伝送損失の低下を図ることが出来る。
【図面の簡単な説明】
【図1】本発明にかかる微細構造光ファイバ用母材の製造方法を説明する図であって、(A)(B)は微細構造光ファイバ用母材の製造に使用する配列用治具の斜視図と正面図、(C)は配列用治具にてガラスパイプを保持させ外周ガラスパイプで覆った状態を示す拡大縦断面図、(D)は微細構造光ファイバ用母材の縦断面図である。
【図2】本発明の微細構造光ファイバの線引き工程を説明する図である。
【図3】微細構造光ファイバの一例を示す横断面図である。
【図4】微細構造光ファイバ用母材において、ガラスパイプの端部を封止する例を説明する部分縦断面図である。
【図5】従来技術による微細構造光ファイバの一例を示す光ファイバ内部の横断面図である。
【符号の説明】
1:配列用治具
2:円盤部
2a:ガラスロッド配置部(凹部)
3:針状部
4:ガラスパイプ
4a:孔
4c:封止しない端部
4d:封止した端部
5:ガラスロッド
6:外周ガラスパイプ
7:ガラス封止部材
7a:圧力調整用開口部
8:微細構造光ファイバ用母材
9:ヒータ
10:微細構造光ファイバ
10a:コア領域
10b:中空部
10c:クラッド領域
10d:外周部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a microstructured optical fiber having a plurality of longitudinally extending hollow portions and a method for manufacturing a microstructured optical fiber preform used for the manufacturing.
[0002]
[Prior art]
Recently, an optical fiber having a large number of minute hollow portions extending in the longitudinal direction in the glass of the optical fiber has a relative refractive index difference between the core region and the clad region more than the optical fiber having a normal solid glass structure. It is attracting attention as an optical fiber that can be enlarged. SCIENCE VOL285 3 SEPTEMBER 1999, pages 1537 to 1539, “Single-Mode Photonic Band Gap Guidance of Light in Air”, or an optical fiber having a fine structure described in Japanese Patent Application Laid-Open No. 10-95628 is an example thereof.
[0003]
FIG. 5 is a cross-sectional view of the inside of an optical fiber showing an example of a microstructured optical fiber described in JP-A-10-95628. Note that concentric broken lines drawn in FIG. 5 indicate boundaries between the core region, the inner cladding region, and the outer cladding region. In FIG. 5, 11 is a core region, 12 is an inner cladding region, 13 is an outer cladding region, 14 is an inner cladding void, and 15 is an outer cladding void.
[0004]
The optical fiber is manufactured as follows. Six silica tubes having an outer diameter of 0.718 mm and an inner diameter of 0.615 mm are arranged around a silica rod having an outer diameter of 0.718 mm, and at least four of the surroundings are formed by a silica tube having an outer diameter of 0.718 mm and an inner diameter of 0.508 mm. Surrounded by layers, a bundle of silica rods and silica tubes is made. The bundle is covered with an overclad tube, and both ends are closed to form a preform. The preform is applied to a drawing machine, and one end of the preform is heated and melted and drawn, whereby the outer diameter of the core region 11 is 1.017 μm, the inner diameter of the inner cladding void 14 is 0.833 μm, and the outer cladding void 15 An optical fiber having an inner diameter of 0.688 μm and an optical fiber outer diameter of 125 μm can be obtained.
[0005]
5 shows an example in which the inner diameter of the inner cladding void 14 and the inner diameter of the outer cladding void 15 are different from each other. Sometimes the same. During drawing, both ends of each silica tube are sealed to trap the air in the hole of the silica tube, and the air inside the overclad tube of the preform is discharged outside, so that the silica with the larger inner diameter is discharged. The inner cladding void 14 having a relatively large inner diameter in the tube hole becomes the outer cladding void 15 having a relatively smaller inner diameter in the silica tube having the smaller inner diameter.
[0006]
[Problems to be solved by the invention]
In the optical fiber manufacturing method described above, at least 94 silica tubes in total of at least 94 silica tubes are arranged in parallel around five or more layers of silica tubes having an outer diameter of 0.717 mm around a silica rod having an outer diameter of 0.718 mm. A bundle of tubes will be constructed. When silica rods and silica tubes with the same outer diameter are closely arranged, it is geometrically possible to arrange them precisely in a honeycomb shape so that the center of each silica tube is located at the apex of an equilateral triangle. However, it is difficult to actually arrange a bundle of silica rods and silica tubes on the circumference of a concentric circle so as to be geometrically precise and centrally symmetric.
[0007]
In Japanese Patent Application Laid-Open No. 10-95628, a bundle of silica pipes having a smaller inner diameter is first prepared, and the seven silica pipes in the center are replaced with a silica rod and six silica pipes having a larger inner diameter. It seems that a bundle of rods and two types of silica tubes is made, but since the silica rods and silica tubes have a longitudinal direction and an outer diameter variation for each silica tube, the arrangement of the silica tubes in each layer is geometric. It is not always precisely arranged around the center at equal intervals. The position of each layer is not necessarily precisely located on the circumference. In addition, the center of the silica rod, which should be the center, may deviate from the geometric center. Further, such displacement of the arrangement of the silica rod and the silica tube may vary in the longitudinal direction of the aggregate of silica tubes.
[0008]
The deviation from the center of the silica rod and the deviation of the arrangement of the silica tube around it are the deviation of the size and position of the core region when it becomes an optical fiber, and the position and mutual spacing of the inner cladding void around it. It appears as a gap. The deviation of the position of the hollow portion such as the core region and the inner clad void becomes a deviation from the design value of the transmission characteristic of the optical fiber, and affects the polarization dependence and other characteristics. In particular, since the light energy is concentrated more in the core region and in the vicinity of the core region than in the outer cladding region, the influence on the transmission characteristics due to the position shift there is great.
[0009]
In addition, the work of making a bundle by arranging the silica tubes around the silica rod is done manually, but it is difficult to distinguish the silica rod from the silica tube, and the misunderstanding of the center when forming the bundle, etc. Depending on the case, the silica rod may be mistakenly arranged at a place other than the center.
[0010]
The present invention provides a microstructure optical fiber preform and an optical fiber manufacturing method capable of reducing the displacement of the hollow portion position in the cladding region and accurately arranging the position of the central glass member. It is.
[0011]
[Means for Solving the Problems]
In the manufacturing method of the microstructure optical fiber preform according to the present invention, first, a disk portion and a glass rod arrangement portion at the center thereof on one surface of the disk portion are arranged at intervals on the circumference of a concentric circle so as to surround it. And an arraying jig having a plurality of needle-like parts fixed in a multi-layered manner and standing upright and parallel to each other with respect to the surface of the disk part. Then, the glass rod is made to stand upright on the glass rod arrangement portion of the arrangement jig, and a plurality of needle-like portions are respectively inserted from one end of the hole of the glass pipe, and the plurality of needle-like portions are inserted into the plurality of needle-like portions. Each glass pipe is held to form a bundle of glass pipes. Subsequently, a bundle of the plurality of glass pipes is covered with an outer peripheral glass pipe, the outer peripheral glass pipe is fixed on the bundle of glass pipes, and then the arrangement jig is removed, and both ends of the outer peripheral glass pipe are removed. Is sealed with a glass sealing member with a pressure adjusting opening or without a pressure adjusting opening to obtain a base material for a microstructured optical fiber.
[0012]
In addition, using two arrangement jigs, the needle-like portions of the two arrangement jigs are inserted from both ends of the holes of the plurality of glass pipes, and the glass pipes are held by holding the glass pipes. If the bundle is formed, the linearity and mutual positional accuracy of the glass rod and the plurality of glass pipes can be further improved, and thus a preform for a microstructured optical fiber having a uniform cross section in the longitudinal direction is manufactured. I can do it.
[0013]
Further, the method for producing a microstructured optical fiber of the present invention is to draw one end by heating and melting one end of the preform for the microstructured optical fiber produced by the method for producing a microstructured optical fiber preform. Thus, an optical fiber is obtained in which a plurality of longitudinally extending hollow portions are arranged at intervals around the central core region and are arranged in multiple layers in the glass of the optical fiber.
[0014]
According to the above microstructured optical fiber preform and optical fiber manufacturing method, an arrangement jig consisting of a disk part and a plurality of needle-like parts is made in advance, so that a plurality of pieces are precisely placed on one surface of the disk part. By arranging and fixing the needle-like portions, the positions of the plurality of glass pipes can be adjusted to precise positions as designed. Therefore, the arrangement accuracy of the positions of the hollow portions of the core region and the cladding region when the optical fiber is obtained can be increased.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1A and 1B are diagrams for explaining a method for manufacturing a microstructure optical fiber preform according to the present invention. FIGS. 1A and 1B are diagrams illustrating an array jig used for manufacturing a microstructure optical fiber preform. 1C is an enlarged longitudinal sectional view showing a state in which the glass pipe is held by an arrangement jig and covered with an outer peripheral glass pipe, and FIG. 1D is for a microstructure optical fiber. It is a longitudinal cross-sectional view of a base material. In FIG. 1, 1 is an arrangement jig, 2 is a disk portion, 2a is a glass rod arrangement portion (concave portion), 3 is a needle-like portion, 4 is a glass pipe, 4a is a hole, 5 is a glass rod, and 6 is an outer glass. A pipe, 7 is a glass sealing member, 7a is a pressure adjusting opening, and 8 is a base material for a fine structure optical fiber.
[0016]
First, an arrangement jig 1 having the shape shown in FIGS. 1A and 1B is prepared. The arrangement jig 1 has a disc portion 2 and a plurality of needle-like portions that are arranged and fixed so as to stand upright with respect to the disc portion 2 having a glass rod arrangement portion 2a at the center of one surface of the disc portion 2. 3 and made of a material that is difficult to deform, such as a metal such as aluminum or stainless steel. Each of the plurality of needle-like parts 3 is an elongated cylindrical object, and is arranged in layers on the circumference of a concentric circle around the center of the disk part 2 at intervals. The intervals between the needle-like portions 3 on the circumference of the same concentric circle are generally equal intervals, but the interval may be changed depending on the type of the microstructured optical fiber. The plurality of needle-like parts 3 are arranged in parallel to each other and perpendicular to the disk part 2. In addition, the outer diameter of each of the needle-like portions 3 is set to a size that matches the inner diameter of a glass pipe to be described later. In addition, the needle-like part 3 may be given a draft angle that becomes slightly narrower from the disk part 2 side to the tip side in consideration of the ease of inserting and removing the needle-like part into the hole of the glass pipe. desirable.
[0017]
In some cases, the inner diameter may change depending on the layer in which the glass pipes are arranged. In this case, the outer diameter of the needle-like portion is changed according to the inner diameter of the glass pipe. In addition, the lengths of the needle-like portions 3 do not have to be the same, and it is possible to change the length depending on the arranged layers in consideration of easiness of inserting a glass pipe described later. . For example, if the layer closer to the center is made longer and shortened for each layer toward the outer periphery, it becomes easier to insert the needle-like portion into the glass pipe in order from the layer closer to the center.
[0018]
An example of the dimensions of the needle-like part 3 and an example of the arrangement of the needle-like part 3 with respect to the disk part 2 are as follows. When the inner diameter of the glass pipe is 1.0 mm, the outer diameter of the needle-like part 3 is about 0.95 mm on the tip side and about 0.98 mm on the disk part side, and the length of the needle-like part 3 is 30 mm to 50 mm. It is desirable to set the degree. In addition, the needle-like part 3 is formed on one surface of the disk part 2 with each circumference having a radius of 2 mm, 4 mm, 6 mm, 8 mm, 10 mm, 12 mm, and 14 mm from the center as a layer, and at equal intervals on each other. 6, 12, 18, 24, 30, 36, 42 are arranged for each layer. Moreover, in order to make it easy to hold | maintain the glass rod mentioned later, the glass rod arrangement | positioning part 2a of the center of the disk part 2 is desirable to make it a recessed part with an internal diameter of 2 mm and a depth of about 1 mm-2 mm.
[0019]
Next, holding | maintenance of the glass pipe etc. by the jig | tool for arrangement | sequence is demonstrated. Glass pipes 4 made of glass such as pure silica glass are prepared as many as the number of needle-shaped parts, and one glass rod 5 made of glass such as pure silica glass is also prepared. When using the arrangement jig having the dimensions exemplified above, the glass pipe 4 has an outer diameter of 2.0 mm, an inner diameter of 1.0 mm, a length of about 300 mm, and the glass rod 5 has an outer diameter of 2.0 mm. The length is about 302 mm. Note that the outer diameter of the glass pipe 4 has a minus tolerance.
[0020]
And as shown in FIG.1 (C), two arrangement | positioning jig | tools 1 are arrange | positioned facing each other so that the needle-shaped parts 3 may face each other, A plurality of glass pipes 4 are arranged between them, and the hole 4a Each needle-like part 3 is inserted into each from both ends. In addition, since it is difficult to insert a needle-like part into the hole of a glass pipe from both ends side simultaneously, it is desirable to do as follows. First, one arrangement jig 1 is held so that the needle-like portion 3 side is on the upper side, and a hole 4 a on one end side of the glass pipe 4 is inserted into each needle-like portion 3. Further, the glass pipe 5 is inserted into the concave portion of the glass rod arrangement portion 2 a at the center of the disk portion 2. Thereby, the glass rod 5 and the plurality of glass pipes 4 are erected on the disk portion 2.
[0021]
Subsequently, the other arrangement jig 1 is lowered from above the other end side of the glass pipe 4 with the needle-like portion 3 on the lower side, and each needle-like portion 3 is moved to the hole 4a on the other end side of the glass pipe 4, respectively. Plug in. At this time, the arrangement jig 1 to be lowered from above can be obtained by gradually shortening the length of each needle-like portion from the layer near the center toward the layer near the periphery. Since it is inserted in order from the shape part, assembly work is easy.
[0022]
In the above description, the glass rod 5 is inserted and supported in the concave portion of the glass rod arrangement portion 2a. However, when the outer diameter of the glass pipe 4 and the outer diameter of the glass rod 5 are equal, the first layer closest to the center. Since the inscribed circle formed on the surface of the glass pipe is the same as the outer circumference of the glass rod, just insert the glass rod into the gap between the glass pipes of the first layer held by the needle-shaped part, and the glass with the glass pipe It is also possible to hold the rod. In that case, it is not necessary to form the concave portion of the glass rod arrangement portion 2a.
[0023]
When the assembly of the bundle of the arrangement jig 1, the glass pipe 4 and the glass rod 5 is finished, the glass is passed through the outer peripheral glass pipe 6 made of silica glass or the like so as to cover the bundle of the glass pipe 4 as shown in FIG. An outer peripheral glass pipe 6 is fixed on the bundle of pipes 4. When the inner diameter of the outer peripheral glass pipe is substantially the same as the outer diameter of the bundle of glass pipes, it is only necessary to pass the assembly of the arrangement jig 1, the glass pipe 4 and the glass rod 5 through the hole of the outer peripheral glass pipe. When the inner diameter of the outer peripheral glass pipe is larger than the outer diameter of the bundle of glass pipes, it is desirable that the periphery of the outer peripheral glass pipe is heated to collapse so that the inner wall surface of the outer peripheral glass pipe is in close contact with the bundle of glass pipes.
[0024]
Thereafter, the arrangement jigs 1 on both sides are pulled out and removed, and the openings at both ends of the outer peripheral glass pipe 6 are sealed with glass sealing members 7 made of silica glass or the like. At that time, a pressure adjusting opening 7a for adjusting the pressure inside the outer peripheral glass pipe may be provided in the glass sealing member 7 on one end side or in the vicinity thereof. As described above, as shown in FIG. 1 (D), the optical fiber mother of the present invention comprising a plurality of glass pipes 4, one glass rod 5, an outer glass pipe 6 and a glass sealing member 7. The material 8 can be manufactured.
[0025]
The above shows an example of holding the glass pipe from both sides by inserting the respective needle-like portions of the two arrangement jigs into the holes on both sides of the glass pipe, but when the length of the glass pipe is not so long, A plurality of glass pipes and a glass rod arranged at the center thereof can be held in parallel simply by inserting and holding the needle-like portion of one arrangement jig into one hole of the glass pipe. In this case, when covering the glass pipe with the outer peripheral glass pipe, the outer peripheral glass pipe can be passed from the side where the glass pipe is located, so even if the disk part of the arrangement jig is large, it is an obstacle to the insertion of the outer peripheral glass pipe. Never become. Therefore, it is easy to match the inner diameter of the outer glass pipe to the outer diameter of the bundle of glass pipes. However, in order to increase the alignment accuracy of the glass pipes in the longitudinal direction, it is preferable to hold the glass pipes by two arrangement jigs.
[0026]
Before or after combining the glass pipe 4 or the like with the arrangement jig 1, at least the outer surface of the glass pipe 4, the outer surface of the glass rod 5, and the inner wall surface of the outer peripheral glass pipe 6 are etched with hydrofluoric acid, It is desirable to remove impurities attached to the wall surface. Since the impurities confined in the glass of the microstructure optical fiber can be reduced by the etching process, the transmission loss of the manufactured microstructure optical fiber can be reduced.
[0027]
Further, for the reason described later, prior to sealing of the outer peripheral glass pipe 6 by the glass sealing member 7, as shown in FIG. 4, the hole of at least one end 4d of each glass pipe 4 is sealed and the other end. There are cases where the holes of 4c are left open and holes which are not shown in the drawings, but the holes at both ends of each glass pipe 4 are left open. Further, the end 4d of the glass pipe 4 can be easily sealed simply by crushing and melting a part of the pipe.
[0028]
The microstructure optical fiber is manufactured as follows using the base material 8 for the microstructure optical fiber of the present invention manufactured as described above. FIG. 2 is a diagram for explaining the drawing process, and the same reference numerals as those in FIG. 1 denote the same components. In FIG. 2, 9 is a heater and 10 is a microstructured optical fiber. The fine-structure optical fiber preform 8 is drawn through a wire drawing machine, and the end of the fine-structure optical fiber preform 8 on the side without the pressure adjusting opening 7a is heated and melted by the heater 9, for example, from the outer diameter. A 125 μm microstructured optical fiber 10 is drawn. As the wire drawing machine, those usually used for manufacturing a single mode optical fiber or the like can be used. The glass bodies of the outer peripheral glass pipe 6, the glass pipe 4, and the glass rod 5 are melted and integrated by heating and melting at the time of drawing, and a microstructured optical fiber having a cross-sectional shape constant in the longitudinal direction is drawn.
[0029]
Moreover, if the internal pressure is adjusted from the pressure adjusting opening 7a during drawing and the internal and external pressures of the glass pipe 4 in the outer peripheral glass pipe 7 are kept constant, the inside and adjacent to the hole 4a of the glass pipe 4 Since air is confined in a substantially triangular space formed on the outer surface of the arranged glass pipes 4, these portions remain as hollow portions extending in the longitudinal direction in the glass of the optical fiber. It is drawn in the state. Further, since the inner diameters of these hollow portions are determined by the relationship between the pressure of the trapped air and the surface tension of the molten glass, the internal pressure is adjusted so as to obtain a hollow portion having a desired inner diameter. Moreover, when the internal pressure of an outer periphery glass pipe may be atmospheric pressure, it is not necessary to provide the opening part for pressure adjustment in a glass sealing member.
[0030]
Also, as shown in FIG. 4, the internal pressure is adjusted by sealing the hole 4a of each glass pipe 4 at the end of the fine-structure optical fiber preform 8 where the pressure adjusting opening 7a is located. After that, the opposite end side of the microstructure optical fiber preform 4 is heated and melted to start drawing, and then the pressure is reduced from the pressure adjustment opening so that the cavity of the outer cylindrical portion is close to vacuum. To do. Then, since the hole 4a of the glass pipe 4 on the heating end side is closed by melting immediately after the start of drawing, the hole 4a of the glass pipe 4 is drawn while air is confined. Accordingly, the hole portion remains as a hollow portion extending in the longitudinal direction in the glass of the optical fiber. Moreover, since the air which was in the substantially triangular space | gap part formed on the outer surface of the arranged glass pipe 4 is discharged | emitted from the opening part for pressure adjustment, the space | gap part is filled with glass, and a hollow part does not remain.
[0031]
The fine-structure optical fiber 10 obtained by drawing in this manner has a cross section shown in FIG. 3, and has a core region 10a at the center and circular holes extending in the longitudinal direction so as to surround the core region 10a. The hollow portions 10b are arranged in seven layers on the circumference of a concentric cross section to form a clad region 10c, and an outer peripheral portion 10d surrounds the outside thereof.
[0032]
According to the method for manufacturing a preform for a microstructure optical fiber of the present invention described above, a plurality of glass pipes are formed by fixing and holding the positions of the glass pipes by the needle-like portions using an arrangement jig. Since the bundles are arranged, the arrangement accuracy of the glass pipes can be improved as compared with the case where the glass pipes are simply bundled. In addition, it is possible to improve the alignment accuracy of the core region of the microstructured optical fiber drawn from the base material for the microstructured optical fiber and the surrounding hollow portions, and to obtain an optical fiber as designed with less manufacturing variation.
[0033]
Incidentally, in the microstructure optical fiber shown in FIG. 3, 168 glass pipes made of silica glass having an outer diameter of 2.0 mm and an inner diameter of 1.0 mm are arranged around the glass rod made of silica glass having an outer diameter of 2.0 mm. Then, using a microstructured optical fiber preform covered with a peripheral glass pipe made of silica glass having an outer diameter of 60 mm and an inner diameter of 30 mm, the microstructured optical fiber 10 having an outer diameter of 125 μm in the cross section shown in FIG. 3 is drawn. In this case, a microstructured optical fiber is obtained in which the outer diameter of the core region 10a is 2.1 μm, the inner diameter of each hollow portion 10b is 0.53 μm, and the interval between the hollow portions 10b is 1.05 μm. Further, since the wavelength dispersion of the microstructure optical fiber at a wavelength of 1550 nm is calculated to be −314 ps / km / nm and the effective area is 5.6 μm 2 , the wavelength is larger than that of a normal single mode optical fiber. The dispersion value is suitable for applications such as dispersion compensating fiber.
[0034]
Moreover, if the air in the cavity and the hole of the glass pipe is replaced with a halogen-based gas such as chlorine gas before the drawing, and the drawing is performed while adjusting the pressure of the halogen-based gas, moisture and impurities in the glass can be obtained. Reacts with the halogen-based gas and is expelled and removed in accordance with the replacement of the air and the halogen-based gas, so that the transmission loss of the microstructure optical fiber can be further reduced.
[0035]
【The invention's effect】
In the method for manufacturing a microstructured optical fiber preform according to the present invention, a glass pipe bundle is obtained by holding each glass pipe using an arraying jig comprising a disk part and a plurality of needle-like parts fixed to one side of the disk part. Therefore, it is possible to place and fix a plurality of needle-like parts precisely on the surface of the disk part, and to adjust the position of each of the plurality of glass pipes to a precise position as designed. Therefore, it is possible to increase the arrangement accuracy of the core region and the position of the hollow portion close to the core region when the microstructured optical fiber is formed.
[0036]
In addition, if two arraying jigs are used to hold the plurality of glass pipes by inserting the needle-like portions from both ends of the holes of the plurality of glass pipes, the glass rod and the plurality of glass pipes Since the linearity and the mutual positional accuracy can be further improved, it is possible to manufacture a base material for a microstructured optical fiber having a uniform cross section in the longitudinal direction.
[0037]
Also, glass rods, glass pipes, outer glass pipes, and glass sealing members made of silica glass are easy to draw and other processing, and the manufactured microstructured optical fiber has low loss and connectivity. Also excellent. Further, if the dust attached by removing the inner wall surface of the outer peripheral glass pipe and the outer surface of the glass pipe is removed, the transmission loss of the manufactured microstructured optical fiber can be further reduced. In addition, when controlling the internal pressure in drawing the optical fiber preform, if the internal air is replaced with a halogen-based gas and then drawn, moisture, impurities, etc. are reacted and removed by the halogen-based gas. Therefore, transmission loss can be further reduced.
[Brief description of the drawings]
FIGS. 1A and 1B are diagrams for explaining a method for manufacturing a microstructure optical fiber preform according to the present invention, wherein FIGS. 1A and 1B are diagrams of an alignment jig used for manufacturing a microstructure optical fiber preform; FIGS. A perspective view and a front view, (C) is an enlarged longitudinal sectional view showing a state in which a glass pipe is held by an arrangement jig and covered with an outer peripheral glass pipe, and (D) is a longitudinal sectional view of a base material for a microstructure optical fiber. It is.
FIG. 2 is a diagram illustrating a drawing process of a microstructured optical fiber according to the present invention.
FIG. 3 is a cross-sectional view showing an example of a microstructured optical fiber.
FIG. 4 is a partial longitudinal sectional view for explaining an example of sealing an end portion of a glass pipe in a base material for a microstructure optical fiber.
FIG. 5 is a cross-sectional view of the inside of an optical fiber showing an example of a microstructured optical fiber according to the prior art.
[Explanation of symbols]
1: Arrangement jig 2: Disk part 2a: Glass rod arrangement part (concave part)
3: Needle-shaped portion 4: Glass pipe 4a: Hole 4c: Unsealed end portion 4d: Sealed end portion 5: Glass rod 6: Outer peripheral glass pipe 7: Glass sealing member 7a: Pressure adjusting opening 8: Fine structure optical fiber preform 9: heater 10: fine structure optical fiber 10a: core region 10b: hollow portion 10c: cladding region 10d: outer periphery

Claims (9)

円盤部と該円盤部の片方の面にその中心にガラスロッド配置部を有しそれを取り囲むように同心円の円周上に間隔をおいてかつ多層に配列され該円盤部の面に対して直立し互いに平行になるようにして固定された複数の針状部とを有する配列用治具を使って、前記ガラスロッド配置部にガラスロッドを直立させて併せて前記複数の針状部をそれぞれガラスパイプの孔の片方の端に差し込んで該複数の針状部にて該複数のガラスパイプをそれぞれ保持してガラスパイプの束となし、続いて前記複数のガラスパイプの束上を外周ガラスパイプにて覆って該外周ガラスパイプをガラスパイプの束上に固定し、その後前記配列用治具を抜き去って、前記外周ガラスパイプの両端を圧力調整用開口部付き又は圧力調整用開口部無しのガラス封止部材にて封止することを特徴とする微細構造光ファイバ用母材の製造方法。A disk part and a glass rod arrangement part in the center of one side of the disk part and a concentric circle so as to surround it and arranged in multiple layers and upright with respect to the surface of the disk part And using a jig for arrangement having a plurality of needle-like portions fixed so as to be parallel to each other, the glass rod is placed upright on the glass rod arrangement portion, and the plurality of needle-like portions are respectively made of glass. A plurality of glass pipes are respectively inserted into one end of the hole of the pipe and held by the plurality of needle-like portions to form a bundle of glass pipes, and then the outer peripheral glass pipe is formed on the bundle of the plurality of glass pipes. The outer peripheral glass pipe is fixed on a bundle of glass pipes, and then the arrangement jig is removed, and both ends of the outer peripheral glass pipe are provided with pressure adjusting openings or without pressure adjusting openings. With sealing member Method for manufacturing a microstructured optical fiber preform, characterized in that the stop. 円盤部と該円盤部の片方の面にその中心にガラスロッド配置部を有しそれを取り囲むように同心円の円周上に間隔をおいてかつ多層に配列され該円盤部の面に対して直立し互いに平行になるようにして固定された複数の針状部とを有する配列用治具を2つ使って、2つの該配列用治具のそれぞれの針状部側を向き合わせて対向させ、2つのガラスロッド配置部間にわたってガラスロッドを配置し、併せて複数のガラスパイプのそれぞれの孔の両端側から前記複数の針状部をそれぞれ差し込むことによって該複数のガラスパイプをそれぞれ保持してガラスパイプの束となし、続いて前記複数のガラスパイプの束上を外周ガラスパイプにて覆って該外周ガラスパイプをガラスパイプの束上に固定し、その後前記2つの配列用治具を抜き去って、前記外周ガラスパイプの両端を圧力調整用開口部付き又は圧力調整用開口部無しのガラス封止部材にて封止することを特徴とする微細構造光ファイバ用母材の製造方法。A disk part and a glass rod arrangement part in the center of one side of the disk part and a concentric circle so as to surround it and arranged in multiple layers and upright with respect to the surface of the disk part Then, using two arraying jigs having a plurality of needle-shaped parts fixed so as to be parallel to each other, the respective needle-shaped part sides of the two arraying jigs are faced to face each other, A glass rod is arranged between two glass rod arrangement parts, and the glass pipes are respectively held by inserting the plurality of needle-like parts from both ends of the holes of the glass pipes. A bundle of pipes is formed, and then the outer peripheral glass pipe is covered with an outer peripheral glass pipe so that the outer peripheral glass pipe is fixed on the bundle of glass pipes, and then the two arrangement jigs are removed. ,in front Method for manufacturing a microstructured optical fiber preform, characterized in that the sealing with a glass sealing member of the pressure with adjustable opening or a pressure regulating opening portion without the ends of the outer glass pipe. 前記ガラスパイプ、前記ガラスロッド、前記外周ガラスパイプ及び前記ガラス封止部材は、シリカガラスからなることを特徴とする請求項1又は請求項2に記載の微細構造光ファイバ用母材の製造方法。The method for producing a preform for a microstructured optical fiber according to claim 1 or 2, wherein the glass pipe, the glass rod, the outer peripheral glass pipe, and the glass sealing member are made of silica glass. 前記針状部は、円盤部側から先端側に向かって外径が小さくなる抜き勾配を有することを特徴とする請求項1又は請求項2に記載の微細構造光ファイバ用母材の製造方法。3. The method for manufacturing a preform for a microstructured optical fiber according to claim 1, wherein the needle-like portion has a draft angle in which an outer diameter decreases from a disk portion side toward a tip side. 前記円盤部のガラスロッド配置部には凹部が設けられていることを特徴とする請求項1又は請求項2に記載の微細構造光ファイバ用母材の製造方法。The method of manufacturing a preform for a microstructured optical fiber according to claim 1 or 2, wherein a concave portion is provided in the glass rod arrangement portion of the disk portion. 少なくとも、前記複数のガラスパイプの外表面、前記ガラスロッドの外表面及び外周ガラスパイプの内面は、前記微細構造光ファイバ用母材の組立前あるいは組立後にエッチング処理して付着した不純物を除去することを特徴とする請求項1又は請求項2に記載の微細構造光ファイバ用母材の製造方法。At least the outer surface of the plurality of glass pipes, the outer surface of the glass rod, and the inner surface of the outer peripheral glass pipe are subjected to etching treatment before or after assembly of the preform for the microstructured optical fiber to remove impurities attached thereto. The manufacturing method of the preform | base_material for microstructure optical fibers of Claim 1 or Claim 2 characterized by these. 請求項1又は請求項2に基づいて製造した微細構造光ファイバ用母材の一端を加熱溶融して線引きすることによって光ファイバのガラス中に複数の長手方向に延びる中空部が中心のコア領域の周囲の円周上に間隔をおいてかつ層状に配列された光ファイバを得ることを特徴とする微細構造光ファイバの製造方法。One end of a preform for a microstructured optical fiber manufactured according to claim 1 or 2 is heated, melted, and drawn to draw a plurality of longitudinally extending hollow portions in the core region of the optical fiber glass. A method for producing a microstructured optical fiber, characterized in that an optical fiber is obtained which is arranged in layers on the circumference of the circumference at intervals. 前記圧力調整用開口部から前記微細構造光ファイバ用母材の外周ガラスパイプ内の内部圧力を調整しながら、前記光ファイバを線引きすることを特徴とする請求項7に記載の微細構造光ファイバの製造方法。8. The microstructure optical fiber according to claim 7, wherein the optical fiber is drawn while adjusting an internal pressure in an outer peripheral glass pipe of the microstructure optical fiber preform from the pressure adjusting opening. Production method. 前記微細構造光ファイバ用母材の線引きを行なう前に外周ガラスパイプ内の空気をハロゲン系ガスで置換し、該ハロゲン系ガスの内部圧力を調整しながら線引きを行なうことを特徴とする請求項7に記載の微細構造光ファイバの製造方法。8. The air in the outer peripheral glass pipe is replaced with a halogen-based gas before the fine structure optical fiber preform is drawn, and the drawing is performed while adjusting the internal pressure of the halogen-based gas. A method for producing a microstructured optical fiber as described in 1).
JP2000034794A 2000-02-14 2000-02-14 Microstructured optical fiber preform and method of manufacturing microstructured optical fiber Expired - Fee Related JP3815169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000034794A JP3815169B2 (en) 2000-02-14 2000-02-14 Microstructured optical fiber preform and method of manufacturing microstructured optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000034794A JP3815169B2 (en) 2000-02-14 2000-02-14 Microstructured optical fiber preform and method of manufacturing microstructured optical fiber

Publications (2)

Publication Number Publication Date
JP2001220165A JP2001220165A (en) 2001-08-14
JP3815169B2 true JP3815169B2 (en) 2006-08-30

Family

ID=18559082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000034794A Expired - Fee Related JP3815169B2 (en) 2000-02-14 2000-02-14 Microstructured optical fiber preform and method of manufacturing microstructured optical fiber

Country Status (1)

Country Link
JP (1) JP3815169B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030056550A1 (en) * 2000-09-21 2003-03-27 Masatoshi Tanaka Method of manufacturing photonic crystal fiber

Also Published As

Publication number Publication date
JP2001220165A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
JP4368844B2 (en) Etching taper type optical fiber bundle and manufacturing method thereof
JP5074427B2 (en) How to enable dual pressure control in fiber preforms during fiber production
JP3057331B2 (en) Fiber optic coupler and method of manufacturing the same
KR20050013206A (en) Methods and preforms for drawing microstructured optical fibers
JP5577739B2 (en) Multi-core optical fiber preform manufacturing method
JP3815170B2 (en) Microstructured optical fiber preform and method of manufacturing microstructured optical fiber
US20130008210A1 (en) Method for manufacturing a birefringent microstructured optical fiber
EP0425649A1 (en) Process for the manufacture of objects with small complex cross-sections
JP5435504B2 (en) Method for manufacturing preform for optical fiber
JP7400585B2 (en) Method for manufacturing multi-core fiber base material and method for manufacturing multi-core fiber
JP4476900B2 (en) Photonic crystal fiber preform manufacturing method
JP3815169B2 (en) Microstructured optical fiber preform and method of manufacturing microstructured optical fiber
JP2009149470A (en) Preform for optical fiber and its manufacturing method
JP4116479B2 (en) Tapered photonic crystal fiber, manufacturing method thereof, and connection method of photonic crystal fiber
EP0352957B1 (en) Method of reproducibly making fiber optic coupler
US5889908A (en) 1xN fiber optic coupler/splitter
JP4541264B2 (en) Optical fiber preform manufacturing method and optical fiber manufacturing method
KR950000689B1 (en) Method of producing preform for polarization retaining optical fiber
CN114924345A (en) Inner hexagonal capillary tube, manufacturing method thereof and application of inner hexagonal capillary tube in multi-core space division multiplexer
RU2301782C1 (en) Method of manufacture of the single-mode fiber light guide keeping the polarization of its light emission
JP2006044950A (en) Method for producing optical fiber preform
JP3513101B2 (en) Manufacturing method of photonic crystal fiber
JP4343066B2 (en) Optical fiber manufacturing method
JP2021109812A (en) Method for producing optical fiber preform and method for producing optical fiber
WO2023162775A1 (en) Optical fiber preform

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees