JP3812151B2 - Phosphor and method for producing phosphor - Google Patents

Phosphor and method for producing phosphor Download PDF

Info

Publication number
JP3812151B2
JP3812151B2 JP17160298A JP17160298A JP3812151B2 JP 3812151 B2 JP3812151 B2 JP 3812151B2 JP 17160298 A JP17160298 A JP 17160298A JP 17160298 A JP17160298 A JP 17160298A JP 3812151 B2 JP3812151 B2 JP 3812151B2
Authority
JP
Japan
Prior art keywords
phosphor
nucleus
fine particles
phosphor according
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17160298A
Other languages
Japanese (ja)
Other versions
JP2000008035A (en
Inventor
均 土岐
茂生 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP17160298A priority Critical patent/JP3812151B2/en
Publication of JP2000008035A publication Critical patent/JP2000008035A/en
Application granted granted Critical
Publication of JP3812151B2 publication Critical patent/JP3812151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、蛍光体及び蛍光体の製造方法に関する。
【0002】
【従来の技術】
GaNの単結晶は、LED、LD等において高輝度の青色、緑色の発光を示す材料として知られている。これらの材料を電子線で発光させようという試みは過去にあるが、粉体状とした蛍光体は実用化されていない。
【0003】
【発明が解決しようとする課題】
電子線で発光する粉体状のGaN蛍光体を実用化できない理由として、他の蛍光体と異なり窒化が困難であることが挙げられる。即ち、この材料は窒化される温度(900℃〜1050℃)と分解が始まる温度の差が小さいため、通常の加熱による反応では窒化と分解が同時に進行しやすく、この結果欠陥を多く生成してしまう。このため、発光機構が阻害されて満足な輝度を得ることができないものと考えられる。
【0004】
通常、LED等として利用するGaNを合成する場合には、各原料が反応してGaNが合成された瞬間に冷却され、サファイヤ基板上に堆積されていく。これは熱非平衡下の反応であり、生成された物質の分解は進まず、窒化による合成だけが進行していく。しかしながら、蛍光表示管において発光部に用いる蛍光体は、蛍光体による表示のパターンを任意の形状に形成する必要があるため、粉体状にしなければならない。例えば、印刷法、スラリー法、電着法、沈降法などのパターン形成法があるが、いずれも蛍光体を粉体状にして行うものである。
【0005】
本発明は、良質なGaN蛍光体の微粒子又は薄膜が少なくとも表面の一部に形成された粉体状の蛍光体とその製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
請求項1に記載された蛍光体は、III-V族化合物半導体であるGaX In1-X N(0<X≦1)の微粒子又は薄膜を、前記GaX In1-X N(0<X≦1)と同一の結晶形でかつその格子不整合率が10%以内である無機材料の粒子である核の表面にヘテロエピタキシャル成長させてなることを特徴としている。
【0007】
請求項2に記載された蛍光体は、請求項1記載の蛍光体において、前記核がZnOとSiCからなる群から選択されたことを特徴としている。
【0008】
請求項3に記載された蛍光体は、請求項1又は2記載の蛍光体において、前記核の粒径が、0.01μm〜2μmの範囲内であることを特徴としている。
【0009】
請求項4に記載された蛍光体は、請求項1又は2又は3記載の蛍光体において、前記微粒子又は薄膜中にドーパントが導入されていることを特徴としている。
【0010】
請求項5に記載された蛍光体は、請求項4記載の蛍光体において、前記ドーパントがZn、Si、Mg、Geから選択された1以上の元素であることを特徴としている。
【0011】
請求項6に記載された蛍光体は、請求項1又は2又は3又は4又は5記載の蛍光体において、紫外線又は電子線によって励起することを特徴としている。
【0012】
請求項7に記載された蛍光体の製造方法は、III-V族化合物半導体であるGaX In1-X N(0<X≦1)と同一の結晶形でかつその格子不整合率が10%以内である無機材料の微粒子を核とし、前記核の表面に前記GaX In1-X N(0<X≦1)の微粒子又は薄膜をヘテロエピタキシャル成長させることを特徴としている。
【0013】
請求項8に記載された蛍光体の製造方法は、請求項7記載の蛍光体の製造方法において、前記核を収納した密閉空間内に有機金属ガスを導入しながら又は導入した後にエネルギーを与え、前記核の表面に前記微粒子又は薄膜を化学気相成長させることを特徴としている。
【0014】
請求項9に記載された蛍光体の製造方法は、請求項8記載の蛍光体の製造方法において、前記有機金属ガスとともに、アンモニアガスと、ドーパントとなる成分を含むガスを導入して行うことを特徴としている。
【0015】
請求項10に記載された蛍光体の製造方法は、請求項9記載の蛍光体の製造方法において、前記有機金属ガスが、TMGaとTMInからなる群から選択され、前記ドーパントとなる成分を含むガスが、DMZn、DEZn、SiH4 からなる群から選択され、前記核がZnOとSiCからなる群から選択されたことを特徴としている。
【0016】
【発明の実施の形態】
本発明の実施の形態の一例である蛍光体は、GaX In1-X N(0<X≦1)の微粒子又は薄膜を、GaX In1-X N(0<X≦1)と同一の結晶形でかつその格子不整合率が10%以内である無機材料の粒子(核)の表面にヘテロエピタキシャル成長させたものであり、所定の大きさの粒径で結晶性が良好な蛍光体粒子である。GaX In1-X Nが六方晶系であることから、蛍光体の核となる粒子としては、GaX In1-X Nと同一の結晶構造である例えばZnO、SiC等が望ましい。なお、GaNの格子定数は3.18であり、ZnOの格子定数は3.24であり、SiCの格子定数は3.079である。GaNの格子定数に対し、ZnOとSiCの格子定数はいずれも90%以上の格子整合率である。また、この粒子の粒径は、通常使用されている蛍光体の粒径よりも小さい必要があり、0.01〜2μmが適当である。前記核としては、GaNに対する格子整合率が90%以上の六方晶系の無機材料であって、かつ前述した粒径のものであれば、本発明に適用できる。しかしながら、前記ZnOとSiCは、工業的に多く使用されており、純度も非常によく粒形制御管理が十分な材料が得やすい。ZnOとSiCは、いずれか一方ずつ核として用いてもよいし、両方を適当な比で混合して前記核として使用してもよい。なお、GaX In1-X N(0<X≦1)半導体中には、ドーパントとしてZn、Mg、Si、Ge等を添加してもよい。
【0017】
本発明の実施の形態の一例である蛍光体の製造方法は、前述したような蛍光体を製造する方法であり、化学気相成長法(Chemical Vapor Deposition, 略してCVD)を用い、前記粒子の表面で前記III-V族化合物半導体の微粒子又は薄膜をヘテロエピタキシャル成長させ、所定の大きさの粒径で結晶性が良好な蛍光体を製造するものである。
【0018】
CVD法とは、半導体薄膜等を結晶成長させる方法であり、特に本発明のように単結晶上に成長させる場合にはエピタキシャル成長が可能である。原料はガスを用い、他の結晶成長法と異なり、化学反応を利用した薄膜堆積法である。このため、化合物薄膜の化学量論比が保ちやすい。反応のためのエネルギー供給は、抵抗加熱、高周波加熱、IR加熱、プラズマ、ECRプラズマ、光、レーザ等多様な方法が採用可能である。原料ガス温度制御により飽和蒸気圧を制御し、流量調節により原料供給量を任意に変化させ、精密な組成制御が可能である。ガスを用いるために粒子の表面に対して均一な微粒子又は薄膜が作製可能であり、量産性が高いという利点もある。
【0019】
具体的には、密閉された反応容器内に前記粒子を収納し、ここに有機金属ガスと、アンモニアガスと、必要に応じてドーパントとなる成分を含むガスを導入しながら又はした後エネルギーを与え、前記粒子の表面に前記薄膜を化学気相成長させる。前記有機金属ガスの一例を挙げれば、TMGaやTMInがある。前記ドーパントとなる成分を含むガスの一例を挙げれば、DMZn、DEZn、SiH4 等がある。
【0020】
上記CVD法を用いた反応系で原料をエレメントに分解しこれを核になる粒子上に堆積成長させることにより、所定の大きさの粒径で結晶性が良好なGaN蛍光体を作製できる。また、加速電圧が1kV以下の低速電子線励起の場合は電子の侵入深さは高々0.1μm以下であるため、核の表面に形成する膜厚は高々1μm程度あればよい。
以下に、上記発明の実施の形態の一例をさらに具体的に説明するため、本発明の実施例を示す。
【0021】
【実施例】
(1) 実施例1
図1に示す蛍光体の製造装置10を用いる。密閉空間を構成する真空容器1には、その内部を真空状態にするために、吸引管2を介して図示しない真空系が連結されている。真空容器1には原料ガスを導入する複数本の導入管3が接続連通されている。真空容器1の内部には、粒子(核)を載置する容器4が設置されている。容器4は断熱性の高い石英ガラスからなる。容器4の底には熱の吸収を高めるためにSiウエハー5が設けられている。容器4の上方には、加熱手段としてのランプ6があり、容器4内の粒子を所望の温度で加熱できる。加熱手段は前述したように多様な手段が採用可能である。容器4は例えば超音波を利用した攪拌機7(振動子)に連結されており、容器4内に収納する粒子(核)を攪拌できるようになっている。なお。へらのような機械的な手段で攪拌してもよい。
【0022】
この装置1によれば、攪拌機7が容器を振動させ、粒子(核)が攪拌される。このため、粒子(核)に対する加熱と材料の供給が均一になり、粒子(核)の結晶面に材料が均一に堆積される。本例では、粒子(核)の表面には半導体の微粒子が連続的につながった状態で堆積して薄膜を形成する。また、粒子(核)の表面に半導体薄膜が結晶成長すると、隣接の粒子(粒子)の薄膜どうしがくっついて粉体状の蛍光体が得られなくなってしまうが、この装置で振動を与えながら成長させればそのような不都合は生じない。
【0023】
原料ガスとしては、有機金属ガスとしてのTMGa(トリメチルGa)、アンモニアガス(NH3 )、ドーパントとなる成分を含むガスとしてDMZn(ジメチル亜鉛)、SiH4 (シラン)を用いる。核となる粒子(粉体)としては、平均粒径が1μmのZnOを用いた。ランプ加熱によりSiウエハーの温度で950℃に設定し成長を行った。半導体成長の核としてZnOを用いる場合は、1100℃以上ではZnOが分解を生じ特性を悪化させるため、成長温度は1100℃以下が望ましい。
【0024】
成長は、40Torrの圧力で、TMGを20μmol/min、NH3 を0.08mol/min流し、ドーパントとして上記材料を各々0.5μmol/min流し、ZnOの粒子の表面にGaN:Zn,Siを成長させた。これを窒素中にて700℃でアニールし、蛍光体を作製した。PLを観察したところ青色の発光が得られた。また、これをVFDのアノード基板に塗布しアノード電圧30Vで評価したところ青色の発光が得られ、この時の輝度は約530cd/m2 であった。また、同時にGa2 3 を原料としてNH3 及びドーパントとしてDMZn、SiH4 を用いて窒化させた試料も評価したが、この時の輝度は約5cd/m2 であった。
【0025】
(2) 実施例2
同様にして原料にTMGa、NH3 さらにTMIn及びドーパントとしてDEZnを用い、核となる粉体に平均粒径が0.5μmのSiCを用いた。ランプ加熱によりSiウエハーの温度で800℃に設定し成長を行った。
【0026】
成長は40Torrの圧力下で、IMGを5μmol/min、TMInを20μmol/min、NH3 を0.08mol/min流し、ドーパントとして上記材料を各々0.5μ mol/min流し、SiCの粒子の表面にGaInN:Zn,Siを成長させた。これを窒素中にて650℃でアニールし、蛍光体を作製した。PLを観察したところ黄色の発光が得られた。また、これをVFDのアノード基板に塗布し、アノード電圧30Vで評価したところ、黄色の発光が得られた。この時の輝度は約410cd/m2 であった。また、同時にGa2 3 を原料としてNH3 及びドーパントとしてDEZnを用いて窒化させた試料も評価したが、この時の輝度は約8cd/m2 であった。
【0027】
(3) その他の実施例
上記実施例1、2において、TMGa、TMInのフロー量を制御することにより、Gax In1-x N(0<X≦1)で表される組成の化合物を合成できる。また、この固溶体はZnCdSと同様にGaとInの比率でエネルギーギャップを連続して変えることがすでに知られているため青色から赤色までの発光が得られる。また、ドーパントに関しては上記以外にMg化合物なども用いることができる。
【0028】
【発明の効果】
本発明によれば、GaNと格子整合しやすい種結晶(核)の表面にGaNを結晶成長させるため、再現よく良質なGaN蛍光体が得られる。
【0029】
また、種結晶(核)の粒度分布をシャープにすることにより、成長条件と合わせ、粒径が揃った均一なGaN粉末が得られる。
【図面の簡単な説明】
【図1】本発明の実施例において用いられる蛍光体の製造装置の模式的な断面図である。
【符号の説明】
1 蛍光体の製造装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phosphor and a method for producing the phosphor.
[0002]
[Prior art]
A single crystal of GaN is known as a material that emits blue and green light with high luminance in LEDs, LDs, and the like. There have been past attempts to emit these materials with an electron beam, but powdered phosphors have not been put to practical use.
[0003]
[Problems to be solved by the invention]
The reason why a powdery GaN phosphor that emits light with an electron beam cannot be put to practical use is that nitriding is difficult unlike other phosphors. That is, since the difference between the nitriding temperature (900 ° C. to 1050 ° C.) and the temperature at which decomposition starts is small, nitriding and decomposition are likely to proceed simultaneously in a normal heating reaction, resulting in many defects. End up. For this reason, it is considered that satisfactory luminance cannot be obtained because the light emission mechanism is inhibited.
[0004]
Usually, when synthesizing GaN to be used as an LED or the like, each raw material reacts to be cooled at the moment of synthesizing GaN and deposited on the sapphire substrate. This is a reaction under thermal non-equilibrium, and the generated substance does not decompose and only synthesis by nitriding proceeds. However, the phosphor used for the light-emitting portion in the fluorescent display tube must be formed into a powder since it is necessary to form a display pattern with the phosphor in an arbitrary shape. For example, there are pattern forming methods such as a printing method, a slurry method, an electrodeposition method, a sedimentation method, etc., all of which are performed by making the phosphor into powder form.
[0005]
An object of the present invention is to provide a powdery phosphor in which fine particles or a thin film of a high-quality GaN phosphor are formed on at least a part of the surface, and a method for producing the same.
[0006]
[Means for Solving the Problems]
The phosphor according to claim 1 is a Ga X In 1-X N (0 <X ≦ 1) fine particle or thin film which is a III-V group compound semiconductor, the Ga X In 1-X N (0 < It is characterized by being heteroepitaxially grown on the surface of a nucleus which is a particle of an inorganic material having the same crystal form as X ≦ 1) and a lattice mismatch rate of within 10%.
[0007]
According to a second aspect of the present invention, in the phosphor according to the first aspect, the nucleus is selected from the group consisting of ZnO and SiC.
[0008]
The phosphor described in claim 3 is characterized in that, in the phosphor according to claim 1 or 2, the particle diameter of the nucleus is in the range of 0.01 μm to 2 μm.
[0009]
The phosphor described in claim 4 is the phosphor according to claim 1, 2 or 3, wherein a dopant is introduced into the fine particles or the thin film.
[0010]
The phosphor described in claim 5 is the phosphor according to claim 4, wherein the dopant is one or more elements selected from Zn, Si, Mg, and Ge.
[0011]
The phosphor described in claim 6 is characterized in that it is excited by ultraviolet rays or electron beams in the phosphor according to claim 1 or 2 or 3 or 4 or 5.
[0012]
The method for producing a phosphor according to claim 7 is the same crystal form as Ga X In 1-X N (0 <X ≦ 1), which is a III-V compound semiconductor, and has a lattice mismatch ratio of 10 It is characterized in that fine particles of an inorganic material within a percentage are used as nuclei, and the Ga X In 1-X N (0 <X ≦ 1) fine particles or thin film are heteroepitaxially grown on the surface of the nuclei.
[0013]
The method for producing a phosphor according to claim 8 is the method for producing a phosphor according to claim 7, wherein energy is applied while introducing or after introducing an organometallic gas into the sealed space containing the core, The fine particles or the thin film is grown on the surface of the nucleus by chemical vapor deposition.
[0014]
The phosphor manufacturing method according to claim 9 is the phosphor manufacturing method according to claim 8, wherein ammonia gas and a gas containing a dopant component are introduced together with the organometallic gas. It is a feature.
[0015]
The method for producing a phosphor according to claim 10 is the method for producing a phosphor according to claim 9, wherein the organometallic gas is selected from the group consisting of TMGa and TMIn, and includes a component that becomes the dopant. Is selected from the group consisting of DMZn, DEZn, and SiH 4 , and the nucleus is selected from the group consisting of ZnO and SiC.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the phosphor as an example of the embodiment of the present invention, Ga X In 1-X N (0 <X ≦ 1) fine particles or thin films are the same as Ga X In 1-X N (0 <X ≦ 1). Phosphor particles that are heteroepitaxially grown on the surface of particles (nuclei) of inorganic material having a lattice mismatch rate of 10% or less and having a predetermined size and good crystallinity It is. Since Ga X In 1-X N is a hexagonal system, for example, ZnO, SiC, or the like having the same crystal structure as Ga X In 1-X N is desirable as the particle serving as the nucleus of the phosphor. Note that the lattice constant of GaN is 3.18, the lattice constant of ZnO is 3.24, and the lattice constant of SiC is 3.079. The lattice constant of ZnO and SiC is 90% or more of the lattice matching ratio with respect to the lattice constant of GaN. Further, the particle size of the particles needs to be smaller than the particle size of a phosphor that is usually used, and 0.01 to 2 μm is appropriate. The nucleus is applicable to the present invention as long as it is a hexagonal inorganic material having a lattice matching ratio of 90% or more with respect to GaN and having the above-mentioned particle size. However, ZnO and SiC are widely used industrially, and it is easy to obtain a material with very good purity and sufficient particle shape control management. Either one of ZnO and SiC may be used as a nucleus, or both may be mixed in an appropriate ratio and used as the nucleus. Incidentally, Ga X In 1-X N (0 <X ≦ 1) in the semiconductor, Zn as a dopant, Mg, Si, may be added such as Ge.
[0017]
A method for producing a phosphor as an example of an embodiment of the present invention is a method for producing a phosphor as described above, using chemical vapor deposition (abbreviated as CVD), The above-described III-V compound semiconductor fine particles or thin film is heteroepitaxially grown on the surface to produce a phosphor having a predetermined particle size and good crystallinity.
[0018]
The CVD method is a method for crystal growth of a semiconductor thin film or the like, and epitaxial growth is possible particularly when growing on a single crystal as in the present invention. Unlike other crystal growth methods, the raw material is a thin film deposition method using a chemical reaction, unlike other crystal growth methods. For this reason, it is easy to maintain the stoichiometric ratio of the compound thin film. Various methods such as resistance heating, high-frequency heating, IR heating, plasma, ECR plasma, light, and laser can be used for energy supply for the reaction. Precise composition control is possible by controlling the saturated vapor pressure by controlling the raw material gas temperature and arbitrarily changing the raw material supply amount by adjusting the flow rate. Since gas is used, uniform fine particles or thin films can be produced on the surface of the particles, and there is an advantage that mass productivity is high.
[0019]
Specifically, the particles are housed in a sealed reaction vessel, and energy is applied after or while introducing a gas containing an organometallic gas, ammonia gas, and, if necessary, a dopant component. And chemical vapor deposition of the thin film on the surface of the particles. Examples of the organometallic gas include TMGa and TMIn. Examples of the gas containing the component serving as the dopant include DMZn, DEZn, SiH 4 and the like.
[0020]
A raw material is decomposed into elements in the reaction system using the CVD method, and this is deposited and grown on the core particles, whereby a GaN phosphor having a predetermined size and good crystallinity can be produced. Further, in the case of low-energy electron beam excitation with an acceleration voltage of 1 kV or less, the penetration depth of electrons is at most 0.1 μm, so that the film thickness formed on the surface of the nucleus may be at most about 1 μm.
Examples of the present invention will be described below in order to more specifically describe one example of the embodiment of the present invention.
[0021]
【Example】
(1) Example 1
A phosphor manufacturing apparatus 10 shown in FIG. 1 is used. A vacuum system (not shown) is connected to the vacuum vessel 1 constituting the sealed space via a suction pipe 2 in order to make the inside of the vacuum vessel 1 in a vacuum state. A plurality of introduction pipes 3 for introducing a raw material gas are connected to the vacuum vessel 1. Inside the vacuum container 1, a container 4 on which particles (nuclei) are placed is installed. The container 4 is made of quartz glass having high heat insulating properties. A Si wafer 5 is provided at the bottom of the container 4 to increase heat absorption. Above the container 4 is a lamp 6 as a heating means, which can heat the particles in the container 4 at a desired temperature. As described above, various means can be adopted as the heating means. The container 4 is connected to a stirrer 7 (vibrator) using ultrasonic waves, for example, so that particles (nuclei) stored in the container 4 can be stirred. Note that. You may stir by mechanical means, such as a spatula.
[0022]
According to this apparatus 1, the stirrer 7 vibrates the container, and particles (nuclei) are stirred. For this reason, heating to the particles (nuclei) and supply of the material become uniform, and the material is uniformly deposited on the crystal plane of the particles (nuclei). In this example, a thin film is formed by depositing semiconductor fine particles continuously on the surfaces of the particles (nuclei). In addition, when a semiconductor thin film grows on the surface of particles (nuclei), the thin films of adjacent particles (particles) stick to each other and a powdery phosphor cannot be obtained. If so, such inconvenience does not occur.
[0023]
As the source gas, TMGa (trimethyl Ga), ammonia gas (NH 3 ) as the organometallic gas, and DMZn (dimethyl zinc) and SiH 4 (silane) are used as the gas containing the dopant component. ZnO having an average particle diameter of 1 μm was used as the core particle (powder). Growth was performed by setting the temperature of the Si wafer to 950 ° C. by lamp heating. When ZnO is used as the nucleus for semiconductor growth, ZnO decomposes and deteriorates characteristics at 1100 ° C. or higher, so the growth temperature is preferably 1100 ° C. or lower.
[0024]
Growth is performed at a pressure of 40 Torr by flowing TMG at 20 μmol / min and NH 3 at 0.08 mol / min, and the above materials as dopants at 0.5 μmol / min to grow GaN: Zn, Si on the surface of ZnO particles. I let you. This was annealed at 700 ° C. in nitrogen to produce a phosphor. When PL was observed, blue light emission was obtained. When this was applied to a VFD anode substrate and evaluated at an anode voltage of 30 V, blue light emission was obtained, and the luminance at this time was about 530 cd / m 2 . Further, DMZn, was a sample also evaluated which were nitrided by SiH 4, the luminance at that time was about 5 cd / m 2 as NH 3 and the dopant Ga 2 O 3 as a raw material at the same time.
[0025]
(2) Example 2
Similarly, TMGa, NH 3 and TMIn were used as raw materials and DEZn was used as a dopant, and SiC having an average particle diameter of 0.5 μm was used as a core powder. Growth was performed by setting the temperature of the Si wafer to 800 ° C. by lamp heating.
[0026]
In the growth, under the pressure of 40 Torr, 5 μmol / min of IMG, 20 μmol / min of TMIn, 0.08 mol / min of NH 3 and 0.5 μmol / min of each of the above materials as dopants were flown on the surface of the SiC particles. GaInN: Zn, Si was grown. This was annealed at 650 ° C. in nitrogen to produce a phosphor. When PL was observed, yellow light emission was obtained. When this was applied to a VFD anode substrate and evaluated at an anode voltage of 30 V, yellow light emission was obtained. The luminance at this time was about 410 cd / m 2 . At the same time, a sample nitrided using Ga 2 O 3 as a raw material NH 3 and DEZn as a dopant was evaluated, and the luminance at this time was about 8 cd / m 2 .
[0027]
(3) Other Examples In Examples 1 and 2 above, by controlling the flow amount of TMGa and TMIn, a compound having a composition represented by Ga x In 1-x N (0 <X ≦ 1) was synthesized. it can. Moreover, since it is already known that this solid solution continuously changes the energy gap at the ratio of Ga and In as with ZnCdS, light emission from blue to red can be obtained. Moreover, regarding a dopant, Mg compound etc. can be used besides the above.
[0028]
【The invention's effect】
According to the present invention, since GaN is grown on the surface of a seed crystal (nucleus) that easily lattice matches with GaN, a high-quality GaN phosphor can be obtained with good reproducibility.
[0029]
In addition, by sharpening the particle size distribution of the seed crystals (nuclei), uniform GaN powder having a uniform particle size can be obtained in accordance with the growth conditions.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a phosphor manufacturing apparatus used in an embodiment of the present invention.
[Explanation of symbols]
1 Phosphor production equipment

Claims (10)

III-V族化合物半導体であるGaX In1-X N(0<X≦1)の微粒子又は薄膜を、前記GaX In1-X N(0<X≦1)と同一の結晶形でかつその格子不整合率が10%以内である無機材料の粒子である核の表面にヘテロエピタキシャル成長させてなる蛍光体。The fine particles or thin films of a group III-V compound semiconductor Ga X In 1-X N ( 0 <X ≦ 1), and in the Ga X In 1-X N ( 0 <X ≦ 1) and the same crystal form A phosphor obtained by heteroepitaxial growth on the surface of a nucleus which is a particle of an inorganic material having a lattice mismatch rate of 10% or less. 前記核がZnOとSiCからなる群から選択された請求項1記載の蛍光体。The phosphor according to claim 1, wherein the nucleus is selected from the group consisting of ZnO and SiC. 前記核の粒径が、0.01μm〜2μmの範囲内である請求項1又は2記載の蛍光体。The phosphor according to claim 1 or 2, wherein a particle diameter of the nucleus is in a range of 0.01 µm to 2 µm. 前記微粒子又は薄膜中にドーパントが導入されている請求項1又は2又は3記載の蛍光体。The phosphor according to claim 1, 2 or 3, wherein a dopant is introduced into the fine particles or the thin film. 前記ドーパントがZn、Si、Mg、Geから選択された1以上の元素である請求項4記載の蛍光体。The phosphor according to claim 4, wherein the dopant is one or more elements selected from Zn, Si, Mg, and Ge. 紫外線又は電子線によって励起することを特徴とする請求項1又は2又は3又は4又は5記載の蛍光体。6. The phosphor according to claim 1, which is excited by ultraviolet rays or an electron beam. III-V族化合物半導体であるGaX In1-X N(0<X≦1)と同一の結晶形でかつその格子不整合率が10%以内である無機材料の微粒子を核とし、前記核の表面に前記GaX In1-X N(0<X≦1)の微粒子又は薄膜をヘテロエピタキシャル成長させることを特徴とする蛍光体の製造方法。Fine particles of an inorganic material having the same crystal form as Ga X In 1-X N (0 <X ≦ 1), which is a group III-V compound semiconductor, and having a lattice mismatch ratio within 10% are used as nuclei. A method for producing a phosphor, characterized in that the Ga X In 1-X N (0 <X ≦ 1) fine particles or thin film are heteroepitaxially grown on the surface of the substrate. 前記核を収納した密閉空間内に有機金属ガスを導入しながら又は導入した後にエネルギーを与え、前記核の表面に前記微粒子又は薄膜を化学気相成長させることを特徴とする請求項7記載の蛍光体の製造方法。8. The fluorescence according to claim 7, wherein energy is applied while introducing or after introducing an organometallic gas into the sealed space containing the nucleus, and the fine particles or thin film is grown on the surface of the nucleus by chemical vapor deposition. Body manufacturing method. 前記有機金属ガスとともに、アンモニアガスと、ドーパントとなる成分を含むガスを導入して行う請求項8記載の蛍光体の製造方法。The method for producing a phosphor according to claim 8, wherein the phosphor is produced by introducing ammonia gas and a gas containing a dopant component together with the organometallic gas. 前記有機金属ガスが、TMGaとTMInからなる群から選択され、前記ドーパントとなる成分を含むガスが、DMZn、DEZn、SiH4 からなる群から選択され、前記核がZnOとSiCからなる群から選択された請求項9記載の蛍光体の製造方法。The organometallic gas is selected from the group consisting of TMGa and TMIn, the gas containing the component serving as the dopant is selected from the group consisting of DMZn, DEZn, and SiH 4 , and the nucleus is selected from the group consisting of ZnO and SiC The method for producing a phosphor according to claim 9.
JP17160298A 1998-06-18 1998-06-18 Phosphor and method for producing phosphor Expired - Fee Related JP3812151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17160298A JP3812151B2 (en) 1998-06-18 1998-06-18 Phosphor and method for producing phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17160298A JP3812151B2 (en) 1998-06-18 1998-06-18 Phosphor and method for producing phosphor

Publications (2)

Publication Number Publication Date
JP2000008035A JP2000008035A (en) 2000-01-11
JP3812151B2 true JP3812151B2 (en) 2006-08-23

Family

ID=15926218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17160298A Expired - Fee Related JP3812151B2 (en) 1998-06-18 1998-06-18 Phosphor and method for producing phosphor

Country Status (1)

Country Link
JP (1) JP3812151B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861650B2 (en) 2001-01-31 2005-03-01 Hamamatsu Photonics K.K. Electron beam detector, scanning type electron microscope, mass spectrometer, and ion detector
KR20030067162A (en) * 2002-02-07 2003-08-14 대한민국 (한밭대학총장) Manufacturing methods of nano size Gallium Nitride powder, Gallium Nitride - Gallium Oxide compound powder and Electro luminescence Devices
JP2006104411A (en) 2004-10-08 2006-04-20 Sharp Corp Phosphor, its manufacturing method and light-emitting device using the same
JP4318710B2 (en) 2006-10-12 2009-08-26 シャープ株式会社 Nanocrystalline phosphor, coated nanocrystalline phosphor, and method for producing coated nanocrystalline phosphor
CN103441232A (en) * 2013-08-28 2013-12-11 李星辉 Power battery pack composition structure and battery box adopting same

Also Published As

Publication number Publication date
JP2000008035A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
US8142566B2 (en) Method for producing Ga-containing nitride semiconductor single crystal of BxAlyGazIn1-x-y-zNsPtAs1-s-t (0&lt;=x&lt;=1, 0&lt;=y&lt;1, 0&lt;z&lt;=1, 0&lt;s&lt;=1 and 0&lt;=t&lt;1) on a substrate
JP4901145B2 (en) Compound semiconductor device and manufacturing method thereof
US10125433B2 (en) Nitride semiconductor crystal, manufacturing method and manufacturing equipment
US20020155712A1 (en) Method of fabricating group-III nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
KR20090122347A (en) Method and device for manufacturing semiconductor compound materials by means of vapour phase epitaxy
WO2007133512A2 (en) Methods and materials for growing iii-nitride semiconductor compounds containing aluminum
JPS63188938A (en) Method for vapor growth of gallium nitride compound semiconductor
EP0460710A2 (en) Gallium nitride group compound semiconductor and luminous element comprising it and the process of producing the same
JPH0331678B2 (en)
JP2006298744A (en) NITRIDE SEMICONDUCTOR SINGLE CRYSTAL INCLUDING Ga, METHOD FOR MANUFACTURING THE SAME, AND SUBSTRATE AND DEVICE USING THE CRYSTAL
WO2002017369A1 (en) Method of fabricating group-iii nitride semiconductor crystal, metho of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
JP3829464B2 (en) Phosphor and method for producing phosphor
JP3812151B2 (en) Phosphor and method for producing phosphor
EP0333120B1 (en) Method for producing semiconductive single crystal
JPH09251957A (en) Manufacturing method for 3-5 group compound semiconductor
JP3399642B2 (en) Method for forming semiconductor light emitting element layer
JPH09295890A (en) Apparatus for producing semiconductor and production of semiconductor
JPH05109621A (en) Method for growing gallium nitride thin film
CN107794567A (en) Method for manufacturing III nitride semiconductor
JPH0529220A (en) Gallium nitride thin film growing method
GB2410836A (en) 3-5 group compound semiconductor and method for preparation thereof
KR0124972B1 (en) Method of preparation for epitaxial film of gallium nitride
KR100385634B1 (en) Metal-organic chemical vapor deposition of zinc oxide thin films exhibiting lasers
JPH08264464A (en) Vapor-phase epitaxy
JP2008266482A (en) Phosphor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees