JP3810688B2 - バイオセンサー、バイオセンサーアレイ、および、バイオセンサーを用いた巨大分子生体高分子の検出方法 - Google Patents

バイオセンサー、バイオセンサーアレイ、および、バイオセンサーを用いた巨大分子生体高分子の検出方法 Download PDF

Info

Publication number
JP3810688B2
JP3810688B2 JP2001573023A JP2001573023A JP3810688B2 JP 3810688 B2 JP3810688 B2 JP 3810688B2 JP 2001573023 A JP2001573023 A JP 2001573023A JP 2001573023 A JP2001573023 A JP 2001573023A JP 3810688 B2 JP3810688 B2 JP 3810688B2
Authority
JP
Japan
Prior art keywords
electrode
biosensor
potential
electrodes
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001573023A
Other languages
English (en)
Other versions
JP2003529771A (ja
Inventor
テベス,ローランド
ヴェーバー,ヴェルナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of JP2003529771A publication Critical patent/JP2003529771A/ja
Application granted granted Critical
Publication of JP3810688B2 publication Critical patent/JP3810688B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、バイオセンサー、バイオセンサーアレイ、およびバイオセンサーを用いた巨大分子生体高分子の検出方法に関するものである。
【0001】
このようなタイプのバイオセンサー、このようなタイプのバイオセンサーアレイ、およびこのようなタイプの方法は、[1]と[4]から知られている。
【0002】
図2aと図2bとは、[1]および[4]に記述されているセンサーを示す。センサー200は、金から構成される2つの電極201,202を備えており、これらの電極は、絶縁材料から構成される絶縁層203に埋設されている。電極201,202には、電極201,202に印加された電位を供給することができる電極端子204,205が接続されている。電極201,202は、プレーナ型電極として配置されている。各電極201,202上には、DNAプローブ分子206が固着されている(図2a参照)。固着は、いわゆる金−硫黄−結合によって行われる。電極201,202上には、調査する分析質、例えば、電解液207が塗布される。
【0003】
電解液207に、DNAプローブ分子206の配列と相補的な配列を有するDNA鎖208の配列が含まれている場合、これらDNA鎖208は、DNAプローブ分子206とハイブリダイズする(図2b参照)。
【0004】
従って、DNAプローブ分子206とDNA鎖208とのハイブリダイズは、各DNAプローブ分子206の配列と対応するDNA鎖208の配列とが相互に相補的である場合にのみ起こる。そうでない場合、ハイブリダイズは起こらない。それゆえ、事前に決定された配列のDNAプローブ分子は、特定のDNA鎖、つまり相補的な配列を有するDNA鎖のみと結合、つまりこれとハイブリダイズすることができる。
【0005】
ハイブリダイズが起こると、図2bから明らかなように、電極201と202との間のインピーダンスの値が変化する。この変化したインピーダンスは、約50mVの振幅を有する交流電圧を電極端子204,205に印加し、そしてその結果として生じる電流を、接続されている測定装置(図示せず)を用いて測定することにより決定される。
【0006】
ハイブリダイズの場合、電極201,202の間におけるインピーダンスのキャパシタンス成分が減少する。この原因は、DNAプローブ分子206と、妥当な場合にDNAプローブ分子206とハイブリダイズするDNA鎖208とが、共に非導電性であり、それゆえ、各電極201,202は、明らかにある程度電気的に遮蔽されているからである。
【0007】
測定精度を改善するために、多数の電極の組201,202を使用し、これらを並列接続することが[4]から知られている。これらは、相互にはっきりと噛み合って配置されており、その結果、いわゆるインターデジタル電極300となる。電極の寸法および電極の間の距離は、おおよそ検出されるべき分子程度の長さ、つまり、DNA鎖208またはそれ以下の、例えば200nmまたはそれ以下の範囲となる。
【0008】
事前に決定された配列を有するDNA鎖の存在に関する電解液の調査のための更なる手法が、[2]によって知られている。この手法では、所望の配列を有するDNA鎖がマーキングされ、マーキングされた分子の反射特質に基づいてその存在が決定される。このため、可視波長領域の光が、電解液上に照射され、電解液から、特に実証されるべきマーキングされたDNA鎖から、反射された光が認識される。反射率に基づいて、つまり、特に、認識され、反射光ビームの照射に基づいて、事前に決定された対応する配列を有する実証されるべきDNA鎖が、電解液に含有されているかいないかが決定される。
【0009】
この手法は、大変経費がかかる。なぜなら、対応しているDNA鎖の反射率に関する正確な知識を必要とし、更に、この手法を始める前にDNA鎖をマーキングする必要があるためである。反射光ビームの全てを検知することができるように、更に、反射された光ビームを検知するための検知手段の極めて正確な整合が不可欠である。
【0010】
それゆえに、この手法は、コストが高く、複雑であり、また、妨害の影響を極めて受けやすい。このことから、測定結果は、大変容易に質の低いものとなる。
【0011】
更に、分析質において、例えば酵素のようなペプチドや蛋白質を特異的に結合するために、固着された低分子量の分子、特に高特異性および高親和性を有するリガンドを使用することが、アフィニティークロマトグラフィー([3]参照)から知られている。
【0012】
更に、巨大分子生体高分子認識のための還元酸化再生利用手順に関する原理が、[5]および[6]から知られている。
【0013】
還元酸化再生利用手順(以下、レドックス再生利用手順とも称す)を、以下に図4aから図4cを参考にして詳述する。
【0014】
図4aに、絶縁層としての基板403に形成されている第1電極401および第2電極402を備えるバイオセンサー400を示す。
【0015】
固定層404として形成された固定領域は、金から構成された第1電極401上に形成される。固定領域は、第1電極401条においてDNAプローブ分子405を固着させるために用いられる。
【0016】
第2電極上には、このような固定領域が備えられていない。
【0017】
バイオセンサー400を用いて、DNAプローブ分子405の配列に対して相補的な配列を有するDNA鎖を認識する場合、センサー400は、妥当な場合に調査される溶液406に含有されており、DNAプローブ分子405の配列に対して相補的な配列を有するDNA鎖がハイブリダイズされるように、調査する溶液406(例えば電解液に)接触される。
【0018】
図4bに、調査される溶液406中に、認識されるDNA鎖407が含有されており、DNAプローブ分子405とハイブリダイズする様子が示されている。
【0019】
調査される溶液中のDNA鎖407は、以下に記述する分子を部分分子(Teilmolekuele)に分解できる酵素408を用いてマーキングされている。
【0020】
通常、調査される溶液406中には、測定されるDNA鎖407の数よりも、著しく多い数のDNAプローブ分子405が含まれている。
【0021】
酵素408を含んでいる調査する溶液406に、場合によっては含有されているDNA鎖407が、固着されているDNAプローブ分子とハイブリダイズされた後、バイオセンサー400の洗浄が行われる。このことにより、ハイブリダイズされていないDNA鎖が除去され、バイオセンサー400から、調査する溶液406が洗い落とされる。
【0022】
洗浄に使用される洗浄液、または、他の段階で特に導入される他の溶液を、電気的に非伝導性の物質に添加する。この非伝導性の物質は、ハイブリダイズされたDNA鎖407の酵素によって、負の第1電荷である第1部分分子と、正の第2電荷である第2部分分子とに分解することができる分子を含有している。
【0023】
図4cに示すように負電荷の部分分子は、図4cの矢印411で示すように正電荷の陽極に引き寄せられる。
【0024】
負電荷の第1部分分子410は、アノードとして正の電位を有する第1電極401において酸化され、酸化された部分分子413は、負電荷のカソードに、すなわち第2電極402に引き寄せられ、再び還元される。
【0025】
還元された部分分子414は、もう一度第1電極401、すなわちアノードに移動する。
【0026】
このようにして、酵素408によって発生したそれぞれの荷電粒子数に比例した電気的な回路電流が発生する。
【0027】
本方法で評価される電気的パラメータは、図5の図表500に示すように、時間tの関数としての電流dI/dtの変化である。
【0028】
図5には、時間502の関数に対する電流501の関数が示されている。生じた曲線(Kurvenverlauf)503は、時間の経過の影響を受けないオフセット電流Ioffset504を示している。
【0029】
オフセット電流Ioffset504は、バイオセンサー400が理想型ではないために、寄生的な成分によって発生する。
【0030】
オフセット電流Ioffset504の主な原因は、第1電極401が、DNAプローブ分子405によって完全に被覆されていないからである。
【0031】
第1電極401が、DNAプローブ分子405によって十分に密集して被覆されている場合、第1電極と調査される電導性の溶液406との間には、固着したDNAプローブ分子405によって発生する、いわゆる2層キャパシタンス(Doppelschichtkapazitaet)に基づく、ただ1つの単なるキャパシタンスの電気的な連結が生じるはずである。
【0032】
しかし、十分に密集して被覆されていない場合、特に抵抗成分をも有する寄生的な電流経路が、第1電極401と調査される溶液406との間のにできてしまう。
【0033】
しかし、酸化還元手順を可能にするためには、DNAプローブ分子405を有する第1電極401のカバーは完全である必要はない。それは、電気を帯びた部分分子、すなわち負電荷の第1部分分子を、第1電極401に全体的に引き寄せるためである。
【0034】
他方では、このようなバイオセンサーの感度をできるだけよくするために、寄生的影響がわずかであることと相まって、DNAプローブ分子405を有する第1電極401のカバーは、できるだけ密集していなければならない。
【0035】
このようなバイオセンサー400によって決定された測定値の再現性(Reproduzierbarkeit)を高めるために、2つの電極401,402は、常に、レドックス再生利用工程において酸化還元手順を行うための十分に大きな面積を備える必要がある。
【0036】
従って、従来技術に基づいたバイオセンサーの場合、調査される溶液中のDNA鎖を検知する際の測定が、若干不確実なものとなる。
【0037】
従って、本発明の目的は、レドックス再生利用工程の範囲で巨大分子生体高分子をより高精度で検出することである。
【0038】
本課題は、独立特許請求項の特徴を有する、バイオセンサー、バイオセンサーアレイ、および、バイオセンサーを用いた巨大分子生体高分子の検出方法によって解決される。
【0039】
バイオセンサーは、巨大分子生体高分子を結合することができるプローブ分子を固定させるための固定領域を備えた第1電極を有している。更に、バイオセンサーは、第2電極および第3電極を備えている。第2電極および第3電極は、還元酸化再生利用工程の範囲の還元酸化手順が、第2電極および第3電極において行われるように形成されている。
【0040】
このようにして、プローブ分子によって被覆されている第1電極で、還元酸化手順行う必要はもはやない。
【0041】
このようにして、プローブ分子の著しく高い密度で第1電極を被覆することが可能となる。このことにより、バイオセンサーによって電流の変化を検知する際の上記の寄生効果を避けることができる。
【0042】
バイオセンサーアレイは、巨大分子生体高分子を結合することができるプローブ分子を固定させるための固定領域をそれぞれ備えている多数の第1電極を有することもある。更に、多数の第2電極と多数の第3電極とが備えられている。第2電極および第3電極は、還元酸化再生利用工程の範囲の還元酸化手順が、第2電極と第3電極とにおいて行われるようにそれぞれ形成されている。
【0043】
バイオセンサーを用いて巨大分子生体高分子を検出する方法では、第1電極、第2電極、および第3電極を有するバイオセンサーが使用される。この第1電極は、巨大分子生体高分子を結合することができるプローブ分子を固定させるための固定領域を備えている。
【0044】
調査する溶液が、バイオセンサーと接触される。認識される巨大分子生体高分子が溶液に含有されていることもある。調査される溶液に巨大分子生体高分子が含有されている場合、これら巨大分子生体高分子は、第1電極の固定領域に固着され、巨大分子生体高分子を結合することができる各プローブ分子と結合する。結合された巨大分子生体高分子は、例えば、結合の後、例えば、DNA鎖のハイブリダイズの後、酵素によってマーキングされている、あるいは、マーキングされる。
【0045】
バイオセンサーは、更なる工程で、洗浄液によって洗浄される。その結果、調査される溶液と、すなわちハイブリダイズされていない、つまり結合していない巨大分子生体高分子とが、バイオセンサーから除去される。
【0046】
更なる工程では、洗浄液に物質を加えることでも作ることができる他の溶液が、バイオセンサーと接触される。
【0047】
更なる溶液は、巨大分子生体高分子の酵素によって分解されることができる分子を含有している。
【0048】
分解できる分子は、第1電荷の第1部分分子と第2電荷の第2部分分子とにそれぞれ分解される。第1部分分子は、第3電極上で酸化または還元され、酸化または還元された第1部分分子は、第2電極上で還元または酸化される。その結果、レドックス再生利用工程が、第3電極と第2電極との間で行われる。
【0049】
レドックス再生利用工程によって、巨大分子生体高分子が検出される。つまり、例えば、従来技術のように、レドックス再生利用工程の回路電流の流れが検知され、これから、第1電極にある結合された巨大分子生体高分子の数が測定される。
【0050】
酵素によってマーキングされた、または、これからマーキングされる多数のDNA鎖が、固着されたDNAプローブ分子と、小さな領域でハイブリダイズされる場合、相当するこれら多数の酵素が、この領域に集約する。そして、生成された回路電流の上昇率は、酵素によってマーキングされたDNA鎖がより少なくハイブリダイズしている他の領域よりも高い。
センサーの様々な領域の間で上昇率を比較することによって、調査する溶液において、DNA鎖が、事前に決定された配列のDNAプローブ分子とハイブリダイズするかどうかだけではなく、どれほどよく、つまりどのような効率で、他のDNAプローブ分子に対するハイブリダイズが行われるかが測定される。
【0051】
言い換えると、このことは、このようなバイオセンサーが、調査される溶液のDNA内容に関する、質的かつ量的な情報を提供することを意味している。
【0052】
酵素として、例えばNADHに依存しない脱水素酵素の種類の酵素、または、フェノール酸化酵素の種類の酵素を使用することができる。
【0053】
第2電極および第3電極の還元酸化手順の集約は、例えば、第1電極が第1電位を有し、第2電極が第2電位を有し、第3電極が第3電位を有することによって保証される。この場合、レドックス再生利用工程の間に、還元または酸化を第2および第3電極においてのみ行うように、第3電位を選択することができる。
【0054】
本発明の形態に基づくと、このことは、第3電位が、第1電位よりも大きく、第1電位が第2電位よりも大きいことによって達成される。
【0055】
第1電極の固定領域は、プローブ分子を固着させることができる物質によって被膜されていることができる。
【0056】
従って、固定領域は、例えば以下の物質ヒドロキシル基、エポキシ基、アミン基、アセトキシ基、イソシアネート基、スクシニミドエステル基、チオール基、金、銀、プラチナ、チタンの1つを備えていてもよい。
【0057】
固定領域は、ペプチドまたは蛋白質を結合することができるリガンドを固定させるためにも形成されており、また、DNA分子を結合することができるDNAプローブ分子を固定させるためにも形成されている。
【0058】
電極は、例えば[4]に示すような、インターデジタル電極配置に配置されている。この場合、第3電極は、それぞれ、第1と第2電極との間に配置されている。
【0059】
本発明の他の形態では、電極が、同心円状に相互の周りにそれぞれ配置されている。この場合、第3電極は、それぞれ第1電極と第2電極との間に配置されている。
【0060】
更に、第1電極および第2電極および/または第3電極は、第1電極および第2電極および/または第3電極の間に生成された電場のほぼ湾曲していないフィールドラインを、第1電極および第2電極および/または第3電極の間に形成することができるように、相互に関連して配置されている。
【0061】
巨大分子生体高分子とは、例えば、蛋白質またはペプチドまたはそれぞれ事前に決定された配列のDNA鎖でもある。
【0062】
調査される溶液中において、巨大分子生体高分子のどの種類が認識されるかに関係なく、巨大分子生体高分子は、酵素によって事前にマーキングされている。
【0063】
巨大分子生体高分子として、蛋白質またはペプチドが認識される場合、固着された分子はリガンドである。リガンドは、例えば、相当するリガンドが配置されている各電極に、認識される蛋白質またはペプチドを結合できる結合作用を有する作用物質である。
【0064】
リガンドとしては、酵素作用物または酵素拮抗作用物、薬剤、糖または抗体、または、蛋白質またはペプチドを特異的に結合する性能を有するどんな分子でも考えられる。
【0065】
巨大分子生体高分子として、バイオセンサーによって認識される事前に決定された配列のDNA鎖が使用される場合、バイオセンサーによって、事前に決定された配列のDNA鎖は、固着されたDNA鎖の配列に対して相補的な配列を有するDNAプローブ分子に、分子として、第1電極上でハイブリダイズできる。
【0066】
本既述の範囲では、プローブ分子をリガンドともDNAプローブ分子とも把握できる。
【0067】
固定領域は、蛋白質またはペプチドを結合することができるプローブ分子を固定するために形成されている。
【0068】
あるいは、固定領域は、DNA分子を結合することができるDNAプローブ分子を固定するために形成されている。
【0069】
本発明の実施例を図によって示し、更に詳述する。
【0070】
図1は、本発明の実施例のバイオセンサー100を示す。
【0071】
バイオセンサー100は、第1電極101、第2電極102、および、第3電極103の3つの電極を備えている。
【0072】
電極101,102,103は、絶縁層104としての絶縁物質によって相互に電気的に絶縁されている。
【0073】
第1電極101上には、巨大分子生体高分子を結合することができるプローブ分子を固定させるための固定領域105が備えられている。
【0074】
本実施形態によれば、固定領域に固着しているプローブ分子106は、DNAプローブ分子である。このDNAプローブ分子106によって、DNAプローブ分子の配列に対して相補的な配列を有するDNA鎖を、ハイブリダイズすることができる。
【0075】
DNAプローブ分子106は、知られている金−硫黄−結合によって、金から構成されている第1電極101に固着される。他の物質をプローブ分子の結合に使用する場合、物質上にプローブ分子を固着することができる被覆物質が供給される。
【0076】
第1電極101におけるDNAプローブ分子の固着の間、電極には様々な電位が印加される。その結果、DNAプローブ分子の固着は、第1電極101上においてのみ可能であり、第2電極102および/または第3電極103上では阻害されるように、電場が電極の間に生じる。
【0077】
上記のような従来技術の方法と同様に、第1工程では、認識される巨大分子生体高分子(つまりDNAプローブ分子とハイブリダイズすることができるDNA鎖)がもし存在する場合に、それを有する調査される溶液(例えば電解液)が、バイオセンサー100(つまりDNAプローブ分子106を有する特に第1電極101)と接触される。これは、調査される溶液に存在するDNA鎖がDNAプローブ分子とハイブリダイズすることによって行われる。
【0078】
ハイブリダイズが行われた後、バイオセンサー100は、洗浄液(図示せず)によって、洗浄される。つまり、ハイブリダイズされていないDNA鎖および調査される溶液が除去される。
【0079】
更なる工程では、他の溶液109が、バイオセンサー100(特に、第1電極101)に接触される。
【0080】
図1は、DNA鎖107が既にDNAプローブ分子106とハイブリダイズした状態の、バイオセンサー100を示す。ハイブリダイズされたDNA鎖107は、酵素108によってそれぞれマーキングされている。他の溶液109中において、以下に述べる分子を、酵素によって分解することができる。
【0081】
酵素108として、本実施例では、例えば、a‐ガラクトシダーゼ、b‐ガラクトシダーゼ、b‐グルコシダーゼ、a‐マンノシダーゼ、アルカリ・ホスファターゼ、酸性ホスファターゼ、オリゴ糖デヒドロゲナーゼ、グルコース・デヒドロゲナーゼ、ラッカーゼ、チロシナーゼ、または、同種の酵素を使用することができる。
【0082】
低分子酵素が最高の変換効率を保証でき、したがって最高の感度を保証できることがわかる。
【0083】
従って、他の溶液109には、酵素108によって、負電荷を有する第1部分分子111と正電荷を有する第2部分分子とに分解することができる分子110が含有されている。
【0084】
分解可能な分子110として、とりわけ、例えば、p‐アミノフェニル‐ヘキソピラノシド、p‐アミノフェニル‐リン酸塩、p‐ニトロフェニル‐ヘキソピラノシド、p‐ニトロフェニル‐リン酸塩、または、a)ジアミン、b)カテコールアミン、c)
【0085】
【化1】
Figure 0003810688
【0086】
、d)フェロセン、e)ジカルボン酸、f)フェロセンリシン、g)オスミウムビピリジル‐NH、または、h)PEG‐フェロセン2に適した誘導体を用いることができる。
【0087】
電極101,102,103には、それぞれ電位が印加される。
【0088】
従って、第1電極101には第1電位V(E1)が、第2電極102には、第2電位V(E2)が、そして、第3電極103には第3電位V(E3)が印加される。
【0089】
上記のような従来技術の手法と基本的には同じ用に行われる実際の測定段階の間に、電荷の符号に応じた、それぞれ以下の電気的電位の電位高低差は、V(E3)>V(E1)>V(E2)が該当するように電極101,102,103に印加される。
【0090】
例えば、第3電極103が、正電位V(E3)を示す場合、第3電極103は、バイオセンサー100の電極101,102,103の最大電位を有している。
【0091】
このことは、負電荷を有する生成された第1部分分子111が、第3電極103にかかる最大の電位V(E3)が原因で、従来技術のように、もはや、第1電極101にではなく、正に電荷された第3電極に引き寄せられることに作用する。
【0092】
第1電極101は、本発明ではもはやプローブ分子の固定のための固定電極としても、各部分分子の酸化または還元のための測定電極としても使用されない。
【0093】
生成された部分分子の酸化もしくは還元が行われる電極の機能を、第3電極103がここでは明らかに引き継いでいる。
【0094】
このことは、第3電極103を用いて、第1電極101が、分解された部分分子から遮蔽されることを明らかに意味している。
【0095】
このようにして、DNAプローブ分子106による第1電極の被覆が極めて高くされる。
【0096】
第3電極103では、負に帯電した部分分子111の酸化が行われ、酸化された第1部分分子112は、第2電極102に引き寄せられる。なぜなら、第2電極102は、バイオセンサー100の全電極101,102,103のうち最小の電位V(E2)を備えているからである。
【0097】
第2電極102では、酸化された分子の還元が行われ、還元された部分分子113は、再度酸化を行う第3電極103にもう一度引き寄せられる。
【0098】
このようにして、同様に、知られている方法で認識される回路電流が生じる。このことにより、回路電流の流れの変化が時間を経て生じ、このことによって、同様に、酵素108によって生成された電荷キャリア数に対する回路電流の比例に基づいて、マーキングとしての酵素108を有し、ハイブリダイズされたDNA鎖107の数を検知することができる。
【0099】
図6に、バイオセンサー100の他の実施形態を示す。第2実施形態に基づいて、電極がインターデジタル電極としてバイオセンサー600に配置されている。この場合、それぞれ第1電極601と第2電極602との間に第3電極603が配置されている。
【0100】
第1電極601、第2電極602、および第3電極603は、それぞれ並列接続されており、それぞれ第1電気的端子604、第2電気的端子605、および第3電気的端子606と連結されている。
【0101】
このことは、インターデジタル電極配置600の場合でも、プローブ分子を固定するための固定領域がそれぞれ配置されている第1電極601は、レドックス再生利用工程に関しては遮蔽されていることを明らかに意味している。
【0102】
ただし、本発明は、DNA鎖の検出に制限されず、一般的に巨大分子生体高分子の検出も可能である。この際、蛋白質またはペプチドが検出される場合には、プローブ分子が蛋白質またはペプチドを結合することができるリガンドとして形成されている。
【0103】
更に、バイオセンサー100,600を、このようなタイプのバイオセンサーを多数有するバイオセンサーアレイに使用することもできる。
【0104】
バイオセンサーアレイの素子が電極として構成される各点は、上記の特徴を有している。各プローブ分子が固着されている、あるいは固着することができる第1電極は、分解された部分分子から電気的に遮蔽されることだけが保証される。
【0105】
従って、図1の実施例の第1電極101、第2電極102および第3電極103に相当する様々な数の電極を、レドックス再生利用工程の範囲で、第1電極が分解された部分分子から遮蔽されていることが保証されている条件で、バイオセンサー上に異なる密度で分散させることもできることがわかる。
【0106】
更に、バイオセンサーアレイの場合、測定は、局所的に変化する電極電位に応じて行われる。バイオセンサーアレイの範囲では、機能的に異なる電極の異なる密度分散が可能である。
【0107】
図7は、更なる電極配置を有するバイオセンサーチップ700を示す。
【0108】
このバイオセンサーチップ700は、第1電極701と第2電極702とを備えており、第1電極701と第2電極702とは、相互に電気的に絶縁されているように絶縁層703に配置されている。
【0109】
第1電極701は、第1電気的端子704と連結しており、第2電極702は、第2電気的端子705と連結している。
【0110】
電極701,702は、直方体形の構造を示し、この際、第1電極701の第1電極面706と第2電極702の第1電極面707とは、ほぼ平行に相互に向き合うようにして設置されている。
【0111】
このことは、この実施例では、電極701、702が、絶縁層703の表面708に対してほぼ垂直な、第1電極701の第1電極面706、もしくは、第2電極702の第1電極面707を構成する側壁706,707を備えていることによって達成される。
【0112】
第1電極701と第2電極702との間に電場が供給されると、相互にほぼ平行に設置された電極面706,707によって、表面706,707の間ではほぼ湾曲していないフィールドライン709を有するフィールドライン経路が生成される。
【0113】
湾曲したフィールドライン710は、それぞれ、電極701,702のための上部表面および電極701,702の間の縁領域713を構成する、第1電極701の第2電極面711と第2電極面702の第2電極面712との間にのみ生じている。
【0114】
電極701,702の第1電極面706,707は、プローブ分子を固定するための固定領域として、バイオセンサー700を用いて認識することができる巨大分子生体高分子を結合することができる。
【0115】
電極701、702は、本実施例では、金から形成されている。
【0116】
電極とプローブ分子との間に、共有結合が形成され、このとき、金−硫黄−結合を形成するための硫黄は、硫化物、またはチオールの形状で存在する。
【0117】
プローブ分子としてDNAプローブ分子が使用される場合、このような、硫黄機能性は、燐アミド化学を用いて、自動化されたDNA合成方法の間に、固着されるDNA鎖の3'末端または5'末端に組み込まれる調整ヌクレオチドの部分である。従って、DNAプローブ分子は、その3'末端またはその5'末端に固着される。
【0118】
プローブ分子としてリガンドが使用される場合、硫黄官能基は、アルキルリンカーまたはアルキレンリンカーの一末端によって構成され、その他方の末端は、リガンドの共有結合のために適切な化学的官能基、例えば、ヒドロキシ基、アセトキシ基、または、スクシニミドエステル基を備えている。
【0119】
電極、つまり、特に、固定領域は、測定を行う際に、電解液714、一般に調査する溶液によって被覆されている。
【0120】
調査する溶液714に、認識される巨大分子生体高分子、例えば、事前に決定された配列を有し、電極上に固着されたDNAプローブ分子をハイブリダイズすることができる認識されるDNA鎖が含まれている場合、DNA鎖は、DNAプローブ分子とハイブリダイズする。
【0121】
調査される溶液714に、DNAプローブ分子の配列に対して相補的な配列を有するDNA鎖が含有されていない場合、調査される溶液714に属するDNA鎖は、電極701,702上のDNAプローブ分子とハイブリダイズできない。
【0122】
電極701,702の間に、上に説明したように、レドックス再生利用工程が始められる。このことにより、マーキングされ、ハイブリダイズされたDNA鎖の数、一般的にはマーキングされ、結合された巨大分子生体高分子の数が検知される。
【0123】
図8は、本発明の更なる実施例に基づく更なる電極配置を有するバイオセンサー800を示す。
【0124】
バイオセンサー800の場合、図7に示された実施例のバイオセンサー700の場合と同様に、絶縁層703上に付与された2つの電極701,702が備えられている。
【0125】
ただ2つの直方体形の電極を有するバイオセンサー700と異なり、図8に示されたバイオセンサー800の2つの電極は、それぞれ交互に配置され、並列接続された多数の電極として、知られているインターデジタル電極配置の形状で配置されている。
【0126】
図8は、より具体的にするために、更に、バイオセンサー800の図に記入された概略の電気的等価回路図を示す。
【0127】
図7に示されたように、電極701,702の、ほぼ平行に対向して立っている電極面706,707の間に、ほぼ湾曲していないフィールドラインが、絶縁層703の表面708に対して生じるので、湾曲しているフィールドライン710によって生成される、第2キャパシタンス804と第2アドミタンス805に比較して、湾曲していないフィールドラインによって生成される第1キャパシタンス802と第1アドミタンス803の割合は大きい。
【0128】
第1キャパシタンス802および第2キャパシタンス804、ならびに、第1アドミタンス803および第2アドミタンス805の合計から生じる全アドミタンスにおける、第1キャパシタンス802と第1アドミタンス803との極めて大きな割合は、バイオセンサー800の状態が変化する際、つまり、調査される溶液714のDNA鎖が、電極面706,707上の固定領域に固着されたDNAプローブ分子801とハイブリダイズする際に、バイオセンサー800の感度が、著しく高められるということに繋がる。
【0129】
従って、電極701,702が同じ側面寸法の場合、および、以前に行われた活性領域が同じ寸法の場合、つまり、電極面上の固定領域が同じ面積の場合に、認識されるDNA鎖が調査される溶液714に含有されていると、プレーナ型電極配置の場合よりも、電極701,702の間における、供給された電場のフィールドラインの極めて大きな成分が、ハイブリダイズが生じているボリュームに含まれていることが明らかである。
【0130】
言い換えると、このことは、本発明による構造の1チップ面毎のキャパシタンスは、プレーナ型電極配置の場合の1チップ面毎のキャパシタンスよりも、明らかに大きいことを意味している。
【0131】
更に、ほぼ垂直の側壁を有する直方体形センサー電極の製造のための別の可能性のいくつかを詳述する。
【0132】
(プローブ分子を固着させることが可能な、ほぼ垂直な側壁を有する、金属電極の第1製造方法)
図9aは、知られているCMOSプロセスのために製造されるような、シリコン基板900を示す。
【0133】
形成する電極のために集積回路および/または電気的端子が既に存在するシリコン基板900上に、不動態化層としても機能する絶縁層901が、十分な厚さ、本実施例では、500nmの厚さに、CVD法を用いて付与される。
【0134】
絶縁層901を、酸化シリコンSiO2または窒化シリコンSi34から製造することも可能である。
【0135】
上述の実施例によるバイオセンサー800のインターデジタル電極配置は、フォトリソグラフィーを用いて、絶縁層901上に限定される。
【0136】
次に、ドライエッチング方法、例えば反応イオンエッチング(RIE)を用いて、絶縁層901に、本実施例では約100nmの最低限の高さ903の段902が生成、つまり、エッチングされる。
【0137】
段902の高さ903は、金属電極を形成するための後続の自己配列プロセスのために十分大きくなければならない。
【0138】
ただし、絶縁層901を形成させるために、蒸着方法もしくはスパッタ方法を使用することも可能である。
【0139】
段902のパターン化の際に、段902の横側が十分に傾斜しており、その結果、十分に鋭い角905を構成することに注意しなければならない。絶縁層901の表面に対してしかるべき段横側の角度906は、本実施例では少なくとも50°に達するべきである。
【0140】
更なる工程では、チタンから構成される約10nmの厚さの補助層904(図9b参照)が段状の絶縁層901に蒸着される。
【0141】
補助層904は、タングステン、および/またはニッケルクロム、および/またはモリブデンであることも可能である。
【0142】
他の工程において形成された金属層(本実施例では、金から構成される金属層907)は、段902の角905において多孔性を有して成長することが保証される。なお、このことは、他の方法工程において、段の移行面(Stufenuebergaengen)において、それぞれ1つの割れ目908を、全面的に形成された金の層907にエッチングできるように行われる。
【0143】
更なる方法工程では、バイオセンサー800用の金の層907が設けられる。
【0144】
本実施例では、金の層は、約500nmから2000nmの厚さを有する。
【0145】
金の層907の厚さに関しては、金の層907の厚さが十分であると、その結果、金の層907は多孔性の円柱に成長することだけが保証される。
【0146】
更なる工程では、開口部908が金の層907にエッチングされる。その結果、割れ目が形成される。
【0147】
開口部をウエットエッチングするために、1000mlの水H2O中に7.5gのスーパーストリップ100TM(Super Strip 100TM Firma Lea Ronal GmbH, Deutschlandの商標名)と20gのKCNとを含有するエッチング溶液が使用される。
【0148】
金、一般に金属が円柱状に成長することによって、付着層904上への蒸着の間、異方性エッチングが達成され、その結果、金の表面侵食は、約1:3の比に行われる。
【0149】
金の層907のエッチングによって、割れ目908が、エッチング工程の持続時間に応じて形成される。
【0150】
このことは、エッチングプロセスの持続時間が、ベース幅、つまり形成される金の電極910,911の間の間隔909を決定することを意味している。
【0151】
金属電極が十分な幅を有し、構成される金の電極910,911の間の間隔909に達成した後、ウエットエッチングは終了する。
【0152】
ただし、多孔性の蒸着が行われるので、絶縁層901の表面に対して平行な方向へは、絶縁層901の表面に対して垂直な方向へよりも、はるかにより速くエッチングされる。
【0153】
ただし、金の層の代わりに、例えばプラチナ、チタン、またはシルバーのような他の貴金属を使用することも可能である。なぜなら、これら材料は、固着されたDNAプローブ分子を固定するため、または、一般にプローブ分子を固定するために、同様に固定領域を備えることができ、もしくは、適切な材料によって被覆されることができ、蒸着の際に円柱状の成長を示すからである。
【0154】
金属電極910、911の間に開口された割れ目912の付着層904を除去する必要がある場合、このことは、同様に自己配列的に、金の電極910,911をエッチングマスクとして使用することによって行われる。
【0155】
知られているインターデジタル電極に対して、本実施例に基づく配置は、特に、以下の利点を備えている。すなわち、角905の上に位置する金の層907の自己配列された開口部によって、電極910,911の間の間隔は、製造工程の最小変位(minimale Aufloesung)に依存しない(gebunden ist)という点である。つまり、電極910、911の間の間隔909は、非常に狭いまま保持される。
【0156】
従って、適切な金属電極を有する、図8に示された実施例によるバイオセンサー800が、この方法によって得られる。
【0157】
(プローブ分子を固着することができるほぼ垂直な側壁を有する金属電極の第2製造方法)
図10aから図10cに示す製造方法の場合、基板1001、例えばシリコン基板ウエハー(図10a参照)から始まり、その上に金属被膜1002が電気的端子として既に備えられている。このとき、基板1001上には、窒化シリコンSi34から構成されるエッチストップ層1003が既に付与されている。
【0158】
基板上には金属層1004、本実施例では、金の層1004が、蒸着方法によって付与される。
【0159】
あるいは、スパッタ方法またはCVD方法を、金の層1004をエッチストップ層1003上に付与するために使用することも可能である。
【0160】
一般に、金属層1004は、形成されるべき電極が構成されるような金属を含んでいる。
【0161】
金の層1004上に、酸化シリコンSiO2からなり、電気的絶縁性の補助層1005が、CVD方法(あるいは、蒸着方法またはスパッタ方法)を用いて付与される。
【0162】
フォトリソグラフィー技術を使用することによって、レジスト層1006からレジストパターン、例えば、直方体形の構造が形成され、これは、形成するべき電極の形状に相当している。
【0163】
以下に説明する、多数の電極を有するバイオセンサーアレイが生成される場合、フォトリソグラフィーを用いて、レジストパターンが生成される。このレジストパターンの形状は、バイオセンサーアレイを構成する、形成されるべき電極に相当している。
【0164】
言い換えると、このことは、形成されたレジストパターンの横側の寸法は、生成されるべきセンサー電極の寸法に相当していることを具体的に意味している。
【0165】
レジスト層1006の塗布および適合するレジストパターンを定める適切な露光の後、「現像」されていない、つまり、露光されていない領域のレジスト層が、例えば、灰化によって、あるいは、湿式化学によって除去される。
【0166】
フォトレジスト層1006によって保護されていない領域の補助層1005も、ウエットエッチング方法またはドライエッチング方法を用いて除去される。
【0167】
更なる工程では、レジスト層1006の除去の後、残りの補助層1005の側面1008,1009を、電極材料によって、本実施例では金によって、被覆するように、電極層として更なる金属層1007が、余剰補助層1005上に一貫して付与される(図10b参照)。
【0168】
付与は、CVD方法またはスパッタ方法またはイオン金属プラズマ方法を用いて行うことが可能である。
【0169】
最終工程(図10c参照)では、スペーサーエッチングが行われる。このとき、金属層1004,1007の集中的なオーバーエッチングによって、電極1010の望ましい構造が形成される。
【0170】
従って、電極1010は、金属層1004,1007のエッチングのエッチング工程において、エッチングによって取り除かれていないスペーサー1011,1012、ならびに、残っている補助層1005の下に直接配置されており、エッチング工程を経てもエッチングによって取り除かれていない第1金属層1004の部分を備えている。
【0171】
電極1010は、電気的端子、つまり、金属被膜1002と電気的に連結している。
【0172】
酸化シリコンから構成される補助層1005を、必要に応じて、更なるエッチング、例えばプラズマによって、または、湿式化学的に、エッチストップ層1003に対する選択度が与えられている方法を用いて除去することが可能である。
【0173】
このことは、例えば、補助層1005が酸化シリコンから構成されており、エッチストップ層1003が窒化シリコンである場合に、保証されている。
【0174】
バイオセンサーチップ700,800にある電極の壁の傾斜は、スペーサー1011,1012とエッチストップ層1003の表面1014との間の角度1013によって表され、従って、残っている補助層1005の側面の傾斜、つまり、特に、パターン化されたレジスト層1006のレジスト側面1015,1016の傾斜によって決定される。
【0175】
(プローブ分子を固着することができる、ほぼ垂直な側壁を有する金属電極の第3製造方法)
図11aから図11cでは、ほぼ垂直な壁を有する電極を製造するための更なる可能性を示す。
【0176】
ここでも、電極を製造するための第2例の場合に示したように、基板1101から始まり、その上に金属被膜1102が、バイオセンサーの構成するべき電気的端子のために既に備えられている。
【0177】
シリコンから構成される基板1101上には、金属層1103が、電極層として蒸着される。この際、金属層1103は、電極のために使用されるべき材料であり、本実施例では金である。
【0178】
あるいは、金属層1103を蒸着させるために、金属層1103を、スパッタ方法を用いて、またはCVD方法を用いて、基板1101上に付与することも可能である。
【0179】
金属層1103上には、フォトレジスト層1104が塗布され、フォトリソグラフィー技術を用いて現像し、現像された領域を除去した後、形成されるべき電極、または、一般に、形成されるべきバイオセンサーアレイの横の寸法に相当するレジストパターンが生じるようにパターン化される。
【0180】
フォトレジスト層1104の厚さは、生成されるべき電極の高さにほぼ相当する。
【0181】
電極材料の反応に繋がらないプロセスガスを用いたプラズマ、特に、プロセスガスとして、例えば、アルゴンを用いる不活性ガスプラズマによるパターン化の際に、材料の侵食が、本実施例では物理的スパッタ侵食によって行われる。
【0182】
この場合、再析出工程において、電極材料を、金属層1103から、パターン化されたレジスト要素のほぼ垂直な側壁1105,1106にスパッタする。このレジスト要素は、現像されたレジスト構造を灰化した後も除去されず、この場所は、もはや更なるスパッタの影響にさらされることはない。
【0183】
レジストパターン上への電極材料の再析出は、レジストパターンが更に侵食されることを防ぐ。
【0184】
スパッタに基づき、レジストパターンの側壁1105,1106に、本実施例では金から構成される電極材料の側面層1107,1108が形成される。
【0185】
側面層1107,1108は、残っているレジスト構造1106の下部に直接存在しており、除去されていない金属層1103の部分1109と電気的に接続し、さらに、金属被膜1103と電気的に連結している(図11b参照)。
【0186】
最終工程(図11c参照)では、レジストパターン1106、つまり、側面層1107,1108および余剰金属層1109によって構成されたボリュームで見出されるフォトレジストが、灰化によって、または、湿式化学によって除去される。
【0187】
結果は、図11cに示す電極構造1110であり、これは、側壁1107,1108ならびに電極構造の底を構成し、金属被膜1103と電気的に連結されている除去されていない部分1109から構成される。
【0188】
既に示した製造方法の場合での様に、形成された電極の側壁1107,1108の傾斜は、本方法では、レジスト側面1105,1106の傾斜によって決定される。
【0189】
図12aから図12cに、基板上に垂直に突出している、シリンダー型の電極を有する本発明の更なる実施例を示す。
【0190】
酸化シリコンから構成される基板1201に対してほぼ垂直に配置されているシリンダー型の電極を有するバイオセンサー1200の製造のために、金属層1202が、望ましい電極材料、例示の実施例によれば金の電極層として蒸着方法により付与される。
【0191】
金属層1202上には、フォトレジスト層が塗布され、フォトレジスト層は、マスクを用いて、露光されていない領域を除去した後、図12aに示すシリンダー型の構造1203が金属層1202上に生じるように露光される。
【0192】
シリンダー型の構造1203は、フォトレジスト円環面1204およびフォトレジスト円環面1204を同心として配置されているシリンダー型のフォトレジスト環1205を備えている。
【0193】
フォトレジスト円環面1204とフォトレジスト環1205との間で、例えば、灰化によってまたは湿式化学的にフォトレジストが除去される。
【0194】
スパッタ方法を使用することによって、電極を製造するための上述の方法との関連でのように、再析出プロセスを用いて、フォトレジスト円環面1204の周りに金属層1206が付与される。
【0195】
同様に、内部金属層1207が、フォトレジスト環1205の周りに形成される(図12b参照)。
【0196】
更なる工程では、パターン化されたフォトレジスト材料が、灰化によって、または湿式化学的に除去され、その結果、2つのシリンダー型の電極1208,1209が形成される。
【0197】
基板1201は、最終工程で、例えば、電極材料に対して選択的なプラズマエッチングプロセスを用いて、基板の金属被膜が露出し、シリンダー型の電極と電気的に連結するまで除去される。
【0198】
内部シリンダー型電極1208は、従って、第1電気的端子1210と電気的に連結しており、外部シリンダー型電極1209は、第2電気的端子1211と電気的に連結している。
【0199】
シリンダー型の電極1208,1209の間のスパッタによってまだ除去されていなかった残りの金属層1202は、最終工程において、スパッタエッチングプロセスを用いて除去される。金属層1202もこの様に除去される。
【0200】
ただし、これに関しては、本実施例でも、電気的端子1210,1211用の金属被膜が、方法の始めに既に基板1201に備えられている。
【0201】
図13は、シリンダー型の電極1301,1302が含まれているバイオセンサーアレイ1300の平面図を示す。
【0202】
各第1電極1301は、正の電位を有している。
【0203】
バイオセンサーアレイ1300の各第2電極1302は、それぞれ隣り合う第1電極1301と相関して負の電位を備えている。
【0204】
電極1301,1302は、行1303と列1304とに配置されている。
【0205】
各行1303と、各列1304とには、それぞれ第1電極1301と、第2電極1302とが交互に配置されている。つまり、第1電極1301のすぐ傍には、それぞれ行1303または列1304に第2電極1302が配置されており、第2電極1302の傍には、それぞれ行1303または列1304に第1電極1301が配置されている。
【0206】
このようにして、シリンダー電極1301,1302の高さの方向にはほぼ湾曲していないフィールドラインを有する電場を、個々の電極の間に生成できる、ということが保証されている。
【0207】
電極上には、それぞれ、上記のように、多数のDNAプローブ分子が固着している。
【0208】
ここで、調査する溶液(図示せず)が、バイオセンサーアレイ1300上に塗布されると、DNA鎖は、電極に固着された、それと相補的なDNAプローブ分子とハイブリダイズする。
【0209】
このようにして、上記のレドックス再生利用工程によって、同様に、調査される溶液中に、事前に決定された配列を有するDNA鎖が存在しているか、存在していないかを、バイオセンサーアレイ1300を用いて認識することができる。
【0210】
図14は、多数の直方体形の電極1401,1402を有するバイオセンサーアレイ1400の更なる実施例を示す。
【0211】
直方体形の電極1401,1402の配置は、図13に示し、上記で説明したようなシリンダー型の電極1301,1302の配置に相当している。
【0212】
図15は、本発明の更なる実施例によるバイオセンサーチップ1500の電極配置を示す。
【0213】
絶縁層703上には、第1電極701が付与され、第1電気的端子704と電気的に連結されている。
【0214】
第2電極702は、同様に絶縁層703上に付与され、第2電気的端子705と電気的に連結されている。
【0215】
図15に示すように、本実施例の第2電極は、既に説明した第2電極とは形状が異なっている。
【0216】
第1電極は、図15から明らかなように、プレーナ型電極であり、第2電極はT型に設計されている。
【0217】
各T型第2電極は、絶縁層903の表面1507に対してほぼ垂直に配置されている第1辺1501を備えている。
【0218】
更に、第2電極702は、第1辺1501に対して垂直に配置されている第2辺1502を備えている。これらは、各第1電極701の表面1503上に少なくとも部分的に配置されている。
【0219】
図15から分かるように、複数の第1電極701と複数の第2電極702とは、並列接続されている。その結果、第2電極702のT型構造に基づき、ホール1504が形成される。これは、2つの相互に並んで配置されている第2電極702および第1電極701、ならびに、絶縁層703によって構成される。
【0220】
個々の第1および第2電極701,702は、絶縁層703を用いることにより、互いに電気的に絶縁されている。
【0221】
第2電極702の個々の第2辺1502の間に、各ホール1504のために開口部1505が備えられている。この開口部は、十分に大きいので、その結果、電解液1506をバイオセンサー1500上に塗布する際に、電解液と、場合によっては調査される溶液1506(例えば、電解液)に含有されているDNA鎖とが、開口部1505を通過して、ホール1504に到達することができる。
【0222】
第1および第2電極の固定領域上には、DNAプローブ分子1509が固着されており、これらは、事前に設定された配列を有する検出されるDNA鎖とハイブリダイズすることができる。
【0223】
図15から分かるように、互いに向き合っており、ほぼ相互に平行に設置されており、DNAプローブ分子1509を固定するための固定領域が備えられている、第2電極1508もしくは第1電極1503の表面に基づいて、ほぼ湾曲していないフィールドラインが、第1電極701と第2電極702との間に電場を供給する際に構成される。
【0224】
図16は、本発明の更なる実施例に基づくバイオセンサー1600を示す。
【0225】
更なる実施例に基づくバイオセンサー1600は、上記で既述され、図15に示したバイオセンサー1500にほぼ相当するが、異なる点は、第2電極702の第1辺1501の側壁では、固定領域にDNAプローブ分子1509が固着されておらず、第2電極702の第1辺1501の表面1601が、絶縁層703の絶縁材料または更なる絶縁層によって被覆されていることである。
【0226】
それゆえ、図16に示す実施例では、第1および第2電極701,702上の固定領域は、直接向き合っている電極の表面、つまり、第2電極702の第2辺の表面1602および第1電極701の表面1603のみである。
【0227】
図17aから図17gに、バイオセンサー1500,1600の第1電極701と第2電極702を製造するための各方法工程を示す。
【0228】
本実施例では、酸化シリコンから構成される基板としての絶縁層703に、例えば、フォトレジストから構成されるマスク層を使用して、形状が形成するべき第1電極701に相当しているパターンが、絶縁層703にエッチングされる。
【0229】
灰化または湿式化学方法によってマスク層を除去した後、望ましい電極材料から構成される層は、あらかじめエッチングされたパターン1701(図17a参照)が、少なくとも全面的に充填されるように、絶縁層703上に全面的に付与される。このとき、パターン1701は、過剰に充填されていることも可能である(図17b参照)。
【0230】
更なる工程では、化学機械研磨方法を用いて(図17c参照)あらかじめ形成されているパターン1701の外側に存在する電極材料1702、好ましくは金が除去される。
【0231】
従って、化学機械研磨方法の終了の後、第1電極701は、絶縁層703と同じ高さに埋設される。
【0232】
電極材料1702は、つまり、更なる第2電極702の間、もしくは第1電極701の間以外に残留しないように除去される。
【0233】
第1電極701上には、例えば窒化シリコンから構成される被覆層1703を、例えば、CVD方法、スパッタ方法または蒸着方法のような適切な被覆方法を用いて更に付与することができる(図17d参照)。
【0234】
図17eは、並行して絶縁層703に埋設されており、金から構成される複数の第1電極1701およびその上に存在する被覆層1703を示す。
【0235】
更なる工程(図17f参照)では、被覆層1703上に、第2電極層1704が付与される。
【0236】
第2電極層1704から構成される、第2電極間の望ましい開口部1705を考慮したマスキングが行われた後、望ましい開口部1705が形成され、プラズマ分離型のドライエッチング法によって、第2電極層1704は、望ましいホール1504が、図15または図16に示すバイオセンサー1500,1600に基づいて構成されるようにエッチングされる(図17g参照)。
【0237】
ただし、この関連では、必ずしも被覆層1703が必要ではないが、ホール1504の形成の際に、第1電極701を表層エッチングから保護するためには有効である。
【0238】
他の実施形態では、第2電極702のT型構造は次のように形成される。上述の方法により第1電極701を形成した後に、CVD方法またはその他の適切な被覆方法を用いて、第1絶縁層上、または、被覆層1703が存在する場合は被覆層1703の上に絶縁層を形成する。続いて、被覆層1703に、対応するトレンチを形成する。なお、このトレンチは、第2電極702のT型構造の第1辺1501を受け入れることに役立つものである。これらトレンチを、電極材料である金を用いて充填し、ダマスク方法(Damascene-Verfahren)にしたがって、化学機械研磨を用いて、トレンチおよび第2絶縁層の上方に形成された電極材料を除去する。なお、この除去は、T型の第2電極702の第2辺1502の高さに相当する、事前に設定された高さまで行われる。
【0239】
フォトリソグラフィーを用いて、開口部1505が、第2電極702の間に形成され、続いて、絶縁材料が、プラズマ分離型のドライエッチング方法を用いて、ホール1504として形成されるべきボリュームから、少なくとも部分的に除去される。
【0240】
更に、ただし、上記に記述された実施形態は、固定領域が金によって実現されている電極に制限されない。あるいは、電極が、材料、例えば、一酸化シリコンまたは二酸化シリコンによって固定領域に被膜されていることも可能である。これら材料は、プローブ分子を固着させるため、本変形では特にリガンドを固着させるために、上記に記述されたアミン残基、アセトキシ残基、イソシアネート残基、アルキシラン残基と共有結合を形成することが可能である。
【0241】
図18は、複数のプローブ分子を固着させるための固定領域を備えているそれぞれ環状の第1電極1801、環状の第2電極1802、環状の第3電極1803を備えた他の電極配置1800を示す。
【0242】
これらの電極は、第3電極が、第1電極と第2電極との間に配置されるように、中心を同じくして交互にそれぞれの周りに配置されている。
【0243】
電極は、プレーナ型電極としても、ほぼ垂直な側壁を有するシリンダー型電極としても形成することができ、上記の方法に基づいて製造される。
【0244】
図19は、本発明の他の実施例に基づく、それぞれ電極に割り当てられている電位が提供されている。シリンダー型電極1901,1902,1903を有するバイオセンサー1900の平面図を示す。
【0245】
上記実施例に関連して説明したように、同様に、各第1電極1901には、第1電位V1が印加されている。各第2電極1902には、第2電位V2が印加されている。各第3電極1903には、第3電位V3が印加されている。
【0246】
代替としてまたは更に加えて、バイオセンサーアレイ1900は、直方体形電極を備えることも可能である。
【0247】
本書類では以下の刊行物を引用した:
[1] R. Hintsche 他, Si技術による電極を用いるマイクロバイオセンサー, 最先端のバイオセンサー学, 基本原理, F. W. Scheller 他編集, Dirk Hauser 出版, バーゼル, 267−283頁, 1997年 (R. Hintsche et al., Microbiosensors Using Electrodes Made in Si-Technology, Frontiers in Biosensorics, Fundamental Aspects, edited by F. W. Scheller et al., Dirk Hauser Verlag, Basel, S. 267-283, 1997)
[2] N.L. Thompson, B.C. Lagerholm, 全反射蛍光: 細胞生物物理学への応用, 生物工学の最新見解, 8巻, 58−64頁,1997年(N.L. Thompson, B.C. Lagerholm, Total Internal Reflection Fluorescence: Applications in Cellular Biophysics, Current Opinion in Biotechnology, Vol. 8, S.58-64, 1997)
[3] P. Cuatrecasas, 高分子のアフィニティークロマトグラフィー、酵素学の進歩:36巻、 頁29−89、1972年((P. Cuatrecasas, Affinity Chromatography of Macromolecules, Advances in Enzymology, Vol. 36, S. 29-89, 1972)
[4] P. van Gerwen, バイオセンサー用のナノスケールインターデジタル化電極アレイ、半導体センサーと駆動装置に関するIEEE国際会議:頁907−910、1997年6月16日から19日(P. van Gerwen, Nanoscaled Interdigitated Electrode Arrays for Biochemical Sensore, IEEE, International Conference on Solid-State Sensors and Actuators, Chicago, S.907 - 910, 16. - 19. Juni 1997)
[5] M. Paeschke他、シリコン製マイクロ電極アレイを用いるボルタンメトリック多重チャネル測定、電子分析、7巻、1号、頁1−8、1996年(M. Paeschke et al, Voltammetric Multichannel Measurements Using Silicon Fabricated Microelectrode Arrays, Electroanalysis, Vol. 7, Nr. 1, S. 1 - 8, 1996)
[6] R. Hintsche 他, Si技術による電極を用いるマイクロバイオセンサー, 最先端のバイオセンサー学, 基本原理, F. W. Scheller 他編集, Dirk Hauser 出版, バーゼル, スイス, 1997年(R. Hintsche et al, Microbiosensors using electrodes made in Si-technology, Frontiers in Biosensorics, Fundamental Aspects, edited by F. W. Scheller et al, Birkhauser Verlag, Basel, Schweiz, 1997)
【図面の簡単な説明】
【図1】 本発明の実施例のバイオセンサーの略図である。
【図2】 a−bは、電解液中の認識されるDNA鎖の存在(図2a)もしくはその不在(図2b)を実証することができる、2つのプレーナ型電極の略図である。
【図3】 従来技術のインターデジタル電極を示す図である。
【図4】 a−cは、従来技術におけるレドックス再生利用工程の範囲の各状態を示すバイオセンサーの略図である。
【図5】 従来技術におけるレドックス再生利用工程の範囲の回路電流の関数曲線示す図である。
【図6】 本発明の実施例のインターデジタル電極配置を示す図である。
【図7】 本発明の実施例のバイオセンサーを示す図である。
【図8】 インターデジタル電極配置として配置されている2つの電極を有するバイオセンサーの断面図である。
【図9】 a−dは、本発明の実施例に基づくバイオセンサーの製造方法における4つの方法状態のインターデジタル電極の断面図である。
【図10】 a−cは、本発明の更なる実施例に基づくバイオセンサーの電極の製造方法の個々の方法工程の間のバイオセンサーの断面図である。
【図11】 a−cは、本発明の更なる実施例に基づくバイオセンサーの電極の製造方法の個々の方法工程の間のバイオセンサーの断面図である。
【図12】 a−cは、本発明の更なる実施例に基づく製造方法の間の様々な時点でのバイオセンサーの各断面図である。
【図13】 シリンダー型の電極を有する本発明の実施例に基づくバイオセンサーアレイの平面図である。
【図14】 直方体形の電極を有する本発明の実施例に基づくバイオセンサーアレイの平面図である。
【図15】 本発明の更なる実施例に基づくバイオセンサーの断面図である。
【図16】 本発明の更なる実施例に基づくバイオセンサーの断面図である。
【図17】 a−gは、本発明の更なる実施例に基づく製造方法の個々の方法工程の間のバイオセンサーの断面図である。
【図18】 本発明の他の実施例の電極配置を示す図である。
【図19】 電極が、各電極に割り当てられた電位が説明された直方体形電極を有する本発明の実施形態におけるバイオセンサーアレイの平面図である。

Claims (13)

  1. 巨大分子生体高分子と結合することができるプローブ分子を固定させるための固定領域を有する第1電極と、
    第2電極と、
    第3電極とを備え、
    上記第2電極および第3電極は、還元酸化再生利用工程において還元酸化手順が、第2電極と第3電極とにおいて行われるように形成されているバイオセンサーであって、
    上記第1電極は第1電位を有し、
    上記第2電極は第2電位を有し、
    上記第3電極は第3電位を有し、
    上記還元酸化再生利用工程の間に、還元または酸化が、第2電極および第3電極においてのみ行われるように、第3電位が選択される、バイオセンサー
  2. 上記第3電位が、第1電位よりも大きく、
    上記第1電位が、第2電位よりも大きい、請求項に記載のバイオセンサー。
  3. 上記第1電極の固定領域が、プローブ分子を固着させることが可能な物質によって被覆されている、請求項1または2に記載のバイオセンサー。
  4. 上記第1電極の固定領域が、ペプチドまたは蛋白質と結合することができるリガンドを固定するために形成されている、請求項1ないしのいずれかに記載のバイオセンサー。
  5. 上記第1電極の固定領域が、DNA分子と結合可能なDNAプローブ分子を固定するために形成されている、請求項1ないしのいずれかに記載のバイオセンサー。
  6. 上記第1固定領域および第2固定領域が、ヒドロキシル基、エポキシ基、アミン基、アセトキシ基、イソシアネート基、スクシニミドエステル基、チオール基、金、銀、プラチナ、チタンのという材料のうちの少なくとも1つを含有する、請求項1ないしのいずれかに記載のバイオセンサー。
  7. 上記電極が、インターデジタル電極配置に配置され、第3電極が、第1電極と第2電極との間にそれぞれ配置されている、請求項1ないしのいずれかに記載のバイオセンサー。
  8. 上記電極は、相互の周りを同心円状に配置され、第3電極は、それぞれ第1電極と第2電極との間に配置されている、請求項1ないしのいずれかに記載のバイオセンサー。
  9. 上記第1電極および第2電極および/または第3電極の間に生成された電場の実質的に湾曲していないフィールドラインを、第1電極および第2電極および/または第3電極の間に形成することができるように、第1電極および第2電極および/または第3電極が、相互に関連して配置されている、請求項1ないしのいずれかに記載のバイオセンサー。
  10. 巨大分子生体高分子と結合することができるプローブ分子を固定するための固定領域を有する多数の第1電極と、
    多数の第2電極と、
    多数の第3電極とを備え、
    上記第2電極および第3電極は、還元酸化再生利用工程において還元酸化工程が、第2電極と第3電極とにおいて行われるように備えられているバイオセンサーアレイであって、
    上記第1電極は第1電位を有し、
    上記第2電極は第2電位を有し、
    上記第3電極は第3電位を有し、
    上記還元酸化再生利用工程の間に、還元または酸化が、第2電極および第3電極においてのみ行われるように、第3電位が選択される、バイオセンサーアレイ
  11. 巨大分子生体高分子と結合することができるプローブ分子を固定するための固定領域を有する第1電極と、
    第2電極と、
    第3電極とを備えるバイオセンサーを用いて巨大分子生体高分子を検出する検出方法であって
    a)調査する溶液がバイオセンサーと接触することによって、検出される巨大分子生体高分子が、溶液中に含有され、
    b)調査する溶液中に含有されている巨大分子生体高分子が、第1電極上のプローブ分子に結合され、結合された巨大分子生体高分子は、酵素によってマーキングされ、
    c)洗浄液を用いて上記バイオセンサーを洗浄することにより、調査される溶液を除去し、
    d)上記酵素によって分解可能な分子を有する他の溶液が、バイオセンサーと接触し、
    e)1つの分解可能な分子が、それぞれ第1電荷を有する第1部分分子と第2電荷を有する第2部分分子とに分解され、
    f)第1部分分子が、第3電極において酸化または還元され、
    g)酸化または還元された第1部分分子が、第2電極において還元もしくは酸化され、その結果、還元酸化再生利用工程が、第3電極と第2電極との間で行われ、
    h)還元酸化再生利用工程に応じて巨大分子生体高分子が検出され、
    i)上記第1電極には、第1電位が印加され、
    上記第2電極には、第2電位が印加され、
    上記第3電極には、第3電位が印加され、
    還元酸化再生利用工程の間に、還元または酸化が、第2電極と第3電極とにおいてのみ行われるように第3電位が選択されている、方法
  12. 酵素として、
    NADHに依存しない脱水素酵素、
    フェノール酸化酵素
    の分類に属する酵素が使用される、請求項11に記載の方法。
  13. 上記第3電位が、第1電位よりも大きく選択され、
    上記第1電位が、第2電位よりも大きく選択される、請求項11または12に記載の方法。
JP2001573023A 2000-03-30 2001-03-29 バイオセンサー、バイオセンサーアレイ、および、バイオセンサーを用いた巨大分子生体高分子の検出方法 Expired - Fee Related JP3810688B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10015959 2000-03-30
DE10015959.1 2000-03-30
PCT/DE2001/001240 WO2001075149A2 (de) 2000-03-30 2001-03-29 Biosensor, biosensor-array und verfahren zum ermitteln makromolekularer biopolymere mit einem biosensor

Publications (2)

Publication Number Publication Date
JP2003529771A JP2003529771A (ja) 2003-10-07
JP3810688B2 true JP3810688B2 (ja) 2006-08-16

Family

ID=7637060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001573023A Expired - Fee Related JP3810688B2 (ja) 2000-03-30 2001-03-29 バイオセンサー、バイオセンサーアレイ、および、バイオセンサーを用いた巨大分子生体高分子の検出方法

Country Status (4)

Country Link
US (1) US7223330B2 (ja)
EP (1) EP1272849A2 (ja)
JP (1) JP3810688B2 (ja)
WO (1) WO2001075149A2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50107312D1 (de) * 2000-10-16 2005-10-06 Infineon Technologies Ag Elektronische schaltung, sensoranordnung und verfahren zum verarbeiten eines sensorsignals
DE10220935B3 (de) * 2002-05-10 2004-02-05 Siemens Ag Verfahren für die biochemische Analytik von DNA und zugehörige Anordnung
DE102004031370B4 (de) * 2004-06-29 2022-03-24 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Emulation einer Gegenelektrode in einem monolithisch integrierten elektrochemischen Analysesystem
DE102004031672A1 (de) * 2004-06-30 2006-01-19 Infineon Technologies Ag Planar-Sensor-Anordnung, Sensor-Array und Verfahren zum Herstellen einer Planar-Sensor-Anordnung
US20140042038A1 (en) * 2008-04-14 2014-02-13 University Of South Florida Microfluidic electrochemical genotyping system
KR20100025328A (ko) * 2008-08-27 2010-03-09 삼성전자주식회사 이중가닥 영역과 말단 단일가닥 영역을 포함하는 이중가닥 핵산 프로브가 고정된 마이크로어레이를 제조하는 방법
EP2642291B1 (en) * 2009-08-07 2015-10-07 Ohmx Corporation Enzyme triggered redox altering chemical elimination (E-trace) immunoassay
EP3128000B1 (en) * 2014-03-31 2018-05-16 Panasonic Intellectual Property Management Co., Ltd. Electrochemical measurement device
JP6116080B1 (ja) * 2016-04-26 2017-04-19 日本航空電子工業株式会社 電気化学測定方法、電気化学測定装置及びトランスデューサ
TWI745392B (zh) * 2017-06-29 2021-11-11 瑞禾生物科技股份有限公司 生物感測元件及其製造方法以及生物分子檢測方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128987A (ja) 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd バイオセンサー及びその製造方法
US6440662B1 (en) * 1995-12-01 2002-08-27 Innogenetics N.V. Impedimetric detection system and method of production thereof
IL116921A (en) 1996-01-26 2000-11-21 Yissum Res Dev Co Electrochemical system for determination of an analyte in a liquid medium
AU8903998A (en) 1997-08-12 1999-03-01 Fraunhofer Institut Siliziumtechnologie Electrochemical reporter system for detecting analytical immunoassay and mol ecular biology procedures
US6682648B1 (en) * 1997-08-12 2004-01-27 University Of Southern California Electrochemical reporter system for detecting analytical immunoassay and molecular biology procedures
DE69932428T2 (de) 1998-05-21 2007-02-08 Cornell Research Foundation, Inc. Mittels liposomen verbesserte testvorrichtung sowie verfahren
CA2333686C (en) 1998-06-01 2005-01-18 Roche Diagnostics Corporation Method and device for electrochemical immunoassay of multiple analytes

Also Published As

Publication number Publication date
US7223330B2 (en) 2007-05-29
US20040045839A1 (en) 2004-03-11
WO2001075149A3 (de) 2002-05-23
WO2001075149A2 (de) 2001-10-11
EP1272849A2 (de) 2003-01-08
JP2003529771A (ja) 2003-10-07

Similar Documents

Publication Publication Date Title
JP3725478B2 (ja) バイオセンサー、および、バイオセンサーを用いた巨大分子生体高分子の検出方法
US20050100938A1 (en) Vertical impedance sensor arrangement and method for producing a vertical impedance sensor arrangement
JP5027296B2 (ja) バイオセンサチップ
US20090194415A1 (en) Pair of measuring electrodes, biosensor comprising a pair of measuring electrodes of this type, and production process
JP2003529773A (ja) 電極配置を用いた巨大分子生体高分子の検出方法
US20020028441A1 (en) Detection of molecules and molecule complexes
JP3810688B2 (ja) バイオセンサー、バイオセンサーアレイ、および、バイオセンサーを用いた巨大分子生体高分子の検出方法
JP2003536059A (ja) 電気化学的近接場顕微鏡測定およびトポグラフ的近接場顕微鏡測定を同時に行うためのデバイス
JP3806037B2 (ja) バイオセンサチップ
JP2003529772A (ja) バイオセンサー、バイオセンサーアレイ、バイオセンサーの電極の製造方法、バイオセンサーの製造方法
EP0948744A1 (fr) Microsysteme pour analyses biologiques et son procede de fabrication
JP2005527799A (ja) 垂直インピーダンスセンサ構造および垂直インピーダンスセンサ構造の製造方法
US20220106187A1 (en) Stable lipid bilayers on nanopore arrays
JP4082142B2 (ja) 溶液測定用微小電極、電気化学測定用装置、電極の製造方法、及び溶液測定方法
JP2590004B2 (ja) くし形修飾微小電極セルおよびその製造方法
JP5947795B2 (ja) 個別にアドレス可能なバンド電極アレイ及びそれを製造する方法
US10612125B2 (en) Layered structures for the protection of molecules
JPH08327579A (ja) 微小櫛形電極およびその製造方法ならびに溶液系電気化学的測定用電極ユニット

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees