JP3804408B2 - Method for producing heat-resistant and corrosion-resistant steel sheet containing Cr with excellent formability - Google Patents

Method for producing heat-resistant and corrosion-resistant steel sheet containing Cr with excellent formability Download PDF

Info

Publication number
JP3804408B2
JP3804408B2 JP2000212491A JP2000212491A JP3804408B2 JP 3804408 B2 JP3804408 B2 JP 3804408B2 JP 2000212491 A JP2000212491 A JP 2000212491A JP 2000212491 A JP2000212491 A JP 2000212491A JP 3804408 B2 JP3804408 B2 JP 3804408B2
Authority
JP
Japan
Prior art keywords
less
resistant
hot
formability
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000212491A
Other languages
Japanese (ja)
Other versions
JP2002030346A (en
Inventor
淳 宮崎
淳一郎 平沢
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000212491A priority Critical patent/JP3804408B2/en
Publication of JP2002030346A publication Critical patent/JP2002030346A/en
Application granted granted Critical
Publication of JP3804408B2 publication Critical patent/JP3804408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、オートバイ、発電プラントなどにおける耐熱部材、あるいはモール材、厨房品などにおける耐食部材として用いて好適な鋼板であって、とくに加工時の成形性に優れたCr含有耐熱耐食鋼板の製造方法に関する。
なお、本発明にいう鋼板は、鋼帯をも含む意味とする。
【0002】
【従来の技術】
自動車の排気部材(エキゾーストマニホールド、排気パイプ、コンバーターケース、マフラー等)などには、一般に、耐熱性と耐食性を向上させるためにNbやMoを添加したCr含有鋼板、例えば Type429 (15%Cr-0.8%Si-0.4%Nb) 、Type436J1L (18%Cr-0.4%Nb-0.5%Mo) が使用されている。これらの排気部材は車体の限られたスペースに収容するように製造されるため、その製造工程で過酷な深絞り加工が施される。このため、自動車の排気部材などに用いられる鋼板には、耐熱性のほかに、優れた成形性が求められる。この傾向は、最近、ますます強まり、鋼板にはより高度な成形性が要請されるようになってきた。
一方、モール材、厨房品などでは、特開昭56−123327号公報に示されているように、表面性状や耐食性が重視され、通常は、18Cr系のNb添加鋼、例えば、Type430J1L (18%Cr-0.4%Nb-0.5%Cu) 、Type444 (18 %Cr-0.4%Nb-2.0%Mo) が用いられている。この分野で用いられる鋼板にも、同時に優れた成形性が求められるようになって、従来のNb添加鋼では加工不良が多発していた。
【0003】
ところで、Cr含有鋼板の成形性を向上させるため、これまでにも幾つかの提案がなされてきた。例えば、特開昭56−123327号公報には、熱延終了温度(FDT)を規制することにより、成形性を高める技術が開示されている。しかし、この技術によっても、未だ今日の厳しい成形性へのニーズを満たすには至っていない。また、従来から、成形性の向上には、冷延圧下率を高める必要があることが知られており、前記特開昭56−123327号公報には、冷延圧下率を80%とした例示がある。
【0004】
【発明が解決しようとする課題】
しかしながら、上記冷延圧下率を高める技術においては、冷延原板である熱延鋼板(以下、熱延板と記すことがある)の板厚が必然的に大となるので、冷間圧延時に破断等が生じて製造困難になる危険性があった。それは例えば、冷延板の仕上げ厚が2mmと厚いような場合、圧下率80%を確保して冷間圧延するためには、熱延板の板厚は10mmにもなり、このような場合、熱延板連続焼鈍ラインなどの連続処理ライン内で、ブライドルロール箇所など、処理しようとする熱延板に曲げの力を作用させてしまう箇所に溶接点がきたときに、溶接部において熱延板表層に、曲げによる力が作用して亀裂が入り、さらに板厚方向に伝播してついには破断に至る、というようなメカニズムによる。
したがって、例えば、冷間圧延の仕上げ厚が2mmの場合に、熱延板の板厚を5mm(冷延圧下率にして60%)程度と低くした場合でも、十分な成形性改善効果が得られる製造方法の開発が強く望まれる。
【0005】
本発明は、従来技術が抱えている、かかる問題を解決するための新規な提案であり、冷延圧下率が80%未満であっても、Cr含有鋼板が有している耐熱性や耐食性を維持したまま、優れた成形性(主として、深絞り性)を得ることが可能なCr含有耐熱耐食鋼板の製造方法を提案することを目的とする。
【0006】
【課題を解決するための手段】
発明者らは、上記課題を解決するために、Cr含有鋼板の製造方法について詳細な検討を行った。その結果、従来はほとんど顧みられていなかった熱延開始温度(FET)に着目し、成形性の向上にはこのFETのほか、熱延終了温度(FDT)および鋼中Nb量と、焼鈍温度との関係が一定の範囲に入るような条件で製造することが重要であるとの結論に達した。具体的には、FET、FDTおよびNb量をパラメーターとして決まる所定の温度範囲で、熱延板を焼鈍することにより、冷延圧下率が80%未満でも優れた成形性を得ることを知見した。本発明は、上記知見に基づくものであり、その要旨構成は以下のとおりである。
【0007】
(1) 質量%で、
C:0.02%以下、
Si:1.5 %以下、
Mn:2.0 %以下、
P:0.06%以下、
S:0.02%以下、
Cr:6 〜30%、
N:0.02%以下、
Nb:10×{(%C)+(%N)}を超え、1.0 %以下、
V:0.01〜0.5 %
を含有し、残部はFeおよび不可避的不純物からなる組成の鋼を熱延終了温度 600〜850 ℃で熱間圧延し、次いで、Nb量、熱延開始温度(FET,℃)および熱延終了温度(FDT,℃)をパラメーターとする、
(90×K−80)℃〜(90×K+80)℃、
ただし、K=2×(Nb%)+( 0.3×FET + FDT)/100 、
の温度範囲で熱延板焼鈍を行い、その後、冷間圧延して、 950〜1100℃の温度範囲で仕上げ焼鈍を行うことを特徴とする成形性に優れたCr含有耐熱耐食鋼板の製造方法。
【0008】
(2) 上記 (1)において、鋼がさらに、質量%で、
Mo:3.0 %以下、Cu:1.0 %以下から選ばれる1種又は2種
を含有する組成からなることを特徴とする成形性に優れたCr含有耐熱耐食鋼板の製造方法。
【0009】
(3) 上記 (1)または (2)において、鋼がさらに、質量%で、
Ti:0.5 %以下、Al:0.5 %以下、B:0.005 %以下から選ばれる1種又は2種以上
を含有する組成からなることを特徴とする成形性に優れたCr含有耐熱耐食鋼板の製造方法。
【0010】
(4) 上記 (1)〜 (3)のいずれか1つにおいて、鋼がさらに、質量%で、
Ni:1.0 %以下、Co:1.0 %以下から選ばれる1種又は2種
を含有する組成からなることを特徴とする成形性に優れたCr含有耐熱耐食鋼板の製造方法。
【0011】
【発明の実施の形態】
以下に、鋼の組成および製造条件を上記範囲に限定した理由について説明する。なお、鋼組成の含有量は質量%(以下、単に%)で表す。
【0012】
C:0.02%以下
Cは、成形性および靱性を低下させる元素である。このような悪影響は、0.02%を超えたとき顕著に現れるので、C含有量は0.02%以下に制限する。なお、成形性を確保するうえでCは少ないほどよく、0.008 %以下にするのが望ましい。
【0013】
Si:1.5 %以下
Siは、耐酸化性および耐食性の向上に有用な元素である。しかし、1.5 %を超えて含有すると、加工硬化が増して、成形性が劣化する。このため、Si含有量は、1.5 %以下、好ましくは1.0 %の範囲とする。
【0014】
Mn:2.0 %以下
Mnは、脱酸剤として作用するが、過剰に添加するとMnSを形成して、成形性および耐食性を低下させるので、2.0 %以下とする。なお、Mnの好ましい含有量は0.75%以下、さらに好ましい含有量は0.3 %以下である。
【0015】
P:0.06%以下
Pは、靱性を劣化させる元素であるので、0.06%以下に制限する。P含有量は、この範囲で少ないほどよく、好ましくは0.03%以下、さらに好ましくは0.015%以下に抑制するのがよい。
【0016】
S:0.02%以下
Sは、伸びおよび深絞り性(r値)を劣化させるほか、鋼の耐食性を低下させる元素である。Sを0.02%以下に制限すれば、伸び、深絞り性 (r値) 、耐食性は満足できるレベルになる。ただし、Sを0.002 %未満に低下させるには、コストの上昇が問題となる。
【0017】
Cr:6〜30%
Crは、鋼の耐酸化性および耐熱性の向上に有用な元素であり、6%以上の添加でその効果を発揮するが、30%を超えて添加すると成形性を低下させる。よってCr添加量は6〜30%の範囲とする。なお、とくに成形性を重視し、耐酸化性、耐熱性についてもより好ましい添加範囲は9〜19%、より好ましい範囲は10〜17%である。
【0018】
N:0.02%以下
Nは、靱性および成形性を低下させる元素であり、0.02%を超えるとその悪影響が大きく現れるので、0.02%以下に制限する。なお、好ましいN含有量は0.01%以下である。
【0019】
Nb:10×{(%C)+(%N)}を超え、1.0 %以下
Nbは、高温強度、成形性、耐食性および溶接部の粒界耐食性のいずれをも高めるのに有効な元素である。これらの効果は10×{(%C)+(%N)}を超える量のNb添加で得られるが、1.0 %を超えて添加すると、FeNbラーベスが多量に析出し、鋼の靱性、表面性状を劣化させる。ここで、ラーベスとは、Feと他の金属が2:1の割合で結びついた化合物のことをさす。よって、Nbは、10×{(%C)+(%N)}を超え、1.0 %以下の範囲で添加するが、特に高温強度を必要とする場合には、0.3 %を超える範囲で添加するのが望ましい。
【0020】
V:0.01〜0.5 %
Vは、成形性の向上に有用な元素であり、0.01%以上の添加でその効果が得られる。一方、0.5 %を超えて添加すると、粗大なV炭化物や窒化物を析出して、表面性状を劣化させるので、0.5 %を上限として添加する。なお、好ましい添加量は、0.05%以上、20(C+N)%以下である。
【0021】
以上の添加元素のほか、必要な特性に応じて、Mo:3.0 %以下、Cu:1.0 %以下の群、Ti:0.5 %以下、Al:0.5 %以下、B:0.005 %以下の群、Ni:1.0 %以下、Co:1.0 %以下の群から選ばれる1種又は2種以上の元素を添加することができる。これら元素について、以下に説明する。
【0022】
Mo:3.0 %以下、Cu:1.0 %以下
Moは、耐食性の向上のほか、固溶強化作用により高温強度を高めるのに有用な元素である。しかしながら、3.0 %を超えて添加しても効果が飽和し、コスト上昇を招くのみとなるので、上限を3.0 %とする。
Cuは、微量の添加で耐食性を高め、また成形性を向上させる元素である。しかし、過剰に添加するとε−Cuの析出による脆化を招くので、上限を1.0 %とする。なお、好ましい添加量は0.1 %以上である。
【0023】
Ti:0.5 %以下、Al:0.5 %以下、B:0.005 %以下
Tiは、成形性を向上させる元素であるが、0.5 %を超えて添加すると粗大なTi炭化物や窒化物を析出して、表面性状を劣化させるので、上限を0.5 %とする。なお、Tiの好ましい添加量は、0.02%以上、15(C+N)%以下である。
Alは、脱酸剤として作用する。また、溶接時に、表面保護スケールを生成することにより、大気中からのC、N、Oの侵入を防止し、溶接部靱性を向上させる作用を有している。かかる効果を発揮させるには、0.02%以上のAl添加が望ましい。しかし、0.5 %を超えて添加すると、加工性の劣化が著しくなるので、Alの上限は0.5 %とする。なお、Alのより好ましい添加量は0.03%超え0.2 %以下である。
Bは、2次加工性の向上に有用な元素であるが、0.005 %を超えて添加すると、多量のBNを生成して加工性を劣化させるので、0.005 %を上限とする。なお、Bの好ましい添加量は0.0003〜0.0015%の範囲である。
【0024】
Ni:1.0 %以下、Co:1.0 %以下
Niは、靱性の向上に有効な元素であるが、過度な添加はコストの上昇を招くので、上限を1.0 %とする。なお、Niの好ましい添加量は0.05〜0.8 %、より好ましい添加量は0.5 〜0.8 %である。
Coは、溶接部の靱性向上に有効な元素であるが、過度な添加はコストの上昇を招くので、上限を1.0 %とする。なお、Coの好ましい添加量は0.03〜0.8 %、より好ましい添加量は0.05〜0.2 %である。
【0025】
熱延終了温度 600〜850 ℃
上述した組成の鋼を加熱した後、熱間圧延する。この熱間圧延においては、終了温度を 600〜850 ℃とすることが必要である。熱延終了温度が850 ℃を超える高温になると、熱間圧延中に転位が容易に再配列し、回復現象が生じるために、熱延板焼鈍時の再結晶駆動力が小さくなる。一方、熱延終了温度が600 ℃に満たない低温では、圧延ロ−ルと被圧延材との焼き付きが生じやすくなり、表面疵の原因となる。よって熱延終了温度は 600〜850 ℃の範囲とする。なお、好ましい熱延終了温度は700 〜800 ℃の範囲である。
なお、上記熱間圧延のためのスラブ加熱は1000℃から1200℃で、できるだけ低温の条件で行うのが望ましい。
【0026】
熱延板焼鈍
熱間圧延して得た熱延鋼板に、冷間圧延に先立って、熱延板焼鈍を施す。本発明では、とくにこの熱延板焼鈍の温度範囲を、Nb量、熱延開始温度(FET、℃)および熱延終了温度(FDT、℃)をパラメーターとして、(90×K−80)℃〜(90×K+80)℃、ただし、K=2×(Nb%)+( 0.3×FET + FDT)/100として行う。
なお、ここでいうFET,FDTは、圧延前後で長手方向全長での各対応位置での値を意味するものとする。一般に、FET,FDTは、被圧延材長手方向位置によって変わるが、本発明では長手方向のある特定の位置を取り出してみたときのFET,FDTにより、熱延板焼鈍温度として適した温度が定まることを意味し、その範囲に入るように実際に制御する。
Kは、発明者らが再結晶現象に及ぼす要因についての実験から解析して求めた式であるが、その意味は、熱間圧延により蓄積した歪の程度を表す指標と考えることができる。一般に、熱間圧延時に鋼中に導入された歪みは熱間圧延終了〜巻取りの間に一部回復によって消失し、巻取り後は殆ど変化しないが、焼鈍時に再結晶の駆動力となる有効歪み(回復せずに蓄積した歪み)は、熱間圧延により圧下する板厚量が同じとすると、熱間圧延温度 (熱延終了温度 (FDT)で代表する) が低いほど変形抵抗が大きく、圧延時の力が大きい分だけ効果的に歪みエネルギー (以下、単に「歪み」と称する) として鋼中に導入され蓄積されると言われている。
本発明は、熱延終了温度 (FDT) だけでなく、熱延開始温度 (FET) も、歪みの鋼中への蓄積の程度に寄与することを見出した。そして、上述のパラメータ式を見ると、有効歪み量に及ぼすFDTとFETの寄与の程度を比較したとき、FDTの方がより大きいものの、FETも相当の割合で寄与していることを示している。
【0027】
すなわち、発明者らの研究によれば、FET,FDTをパラメータとした指標Kの大小如何によって、熱延板焼鈍温度として適した温度範囲は変化することがわかった。たとえば、FET,FDTのいずれかが低下すれば、熱延板焼鈍温度として適した温度範囲は低下する。また、指標KにはNb添加量も影響し、Nb添加量によっても熱延板焼鈍温度として適した温度範囲は変化することもわかった。Nb添加量を増やすと熱延板焼鈍温度として適した範囲は上昇する。このようなことから、Kの式を決めた。FET,FDT,Nb含有量が熱延板焼鈍温度として適した温度範囲に対し与える影響の度合いは、上記指標Kにより包括的に定量化できることがわかったのである。
そして、このKを含む、(90×K−80)〜(90×K+80)の温度範囲で熱延板焼鈍を行うと成形性などの加工性を著しく改善できることがわかった。熱延板焼鈍の温度が、(90×K−80)に満たないと再結晶が不十分となり、一方、(90×K+80)を超えると粒成長が大きく、冷間圧延のあと仕上げ焼鈍した鋼板(冷延焼鈍板)の成形性が劣化する。
なお、熱延板焼鈍時間は、上記温度範囲で10分以内とすればよく、焼鈍設備はいかなるものであってもよい。
【0028】
冷間圧延および仕上げ焼鈍
熱延板焼鈍を行ったのち冷間圧延を行うが、この冷間圧延において、本発明はとくに冷延圧下率を80%未満とした場合でも良好な成形性を得ることができるものであるので、前記範囲の圧下率(ただし、好ましくは50%以上)で冷間圧延を行う場合に本発明の効果が一層発揮されるので好適である。なお、当然ながら、冷延圧下率が前記圧下率を超えて高くなれば、より良好な成形性が得られるのは言うまでもない。
冷間圧延に次いで、 950〜1100℃の温度範囲で仕上げ焼鈍を行うことによって優れた成形性を具えたCr含有耐熱耐食鋼板を製造することができる。すなわち、仕上げ焼鈍の温度が 950℃に満たないと再結晶不足となり、一方1100℃を超えると粒成長が著しく冷延板製品の成形性が劣る。なお、好ましい仕上げ焼鈍温度は1000℃超〜1050℃以下である。
【0029】
【実施例】
表1に示す組成からなる鋼を溶製した後、1100℃に加熱し、FDT、FETを種々変更した条件で熱間圧延して板厚5mmの熱延鋼板とした。この熱延鋼板を、種々の温度で熱延板焼鈍し、酸洗の後、成形性の上から一般には不利な圧下率60%で冷間圧延した。次いで、仕上げ焼鈍して、酸洗し、板厚2mmの冷延焼鈍板とした。これらの製造条件を表2、表3に示す。
以上の方法で得られた冷延焼鈍板の圧延方向(L方向)、圧延方向と45°の方向(D方向)および圧延方向と90°の方向(C方向)より試験片(JIS Z2201 に準拠した13号B)を採取し、該試験片長さ方向、長さ方向に対し面内で45°の方向、長さ方向とは面内で直角の方向にそれぞれr,r,rを測定して、次式により平均r値を求め成形性を評価した。
r=(r+2r+r)/4
なお、成形性の評価はr値の水準によりランクA〜Dの4段階で表すこととした。
ランクA: r≧1.5
ランクB: 1.5 >r≧1.3
ランクC: 1.3 >r≧1.1
ランクD: 1.1 >r
【0030】
得られた成形性の結果を併せて表2、表3に示す。
表2、表3において、成分組成、熱間圧延条件、熱延板焼鈍条件等のすべてが適正な範囲にある発明例は、いずれもランクB以上の優れた成形性を有している。これに対し、Nb無添加鋼を素材とするNo.27 〜29、またFDTおよび熱延板焼鈍温度の少なくとも一方が範囲外にあるNo. 2、3、20〜26は発明例に比べ成形性が劣っている。
なお、これら実施例のうち、No. 2、3、20〜22、28、29の例からわかるように、単に、FDTを低くくしただけでは良好な成形性が得られないことが明らかである。また、No1とNo.20 、21との比較から、鋼組成および熱延板仕上げ焼鈍の条件が同じであっても、(90×K−80)℃〜(90×K+80)℃の範囲内にない、No.20 、21は成形性が劣っていることもわかる。
【0031】
【表1】

Figure 0003804408
【0032】
【表2】
Figure 0003804408
【0033】
【表3】
Figure 0003804408
【0034】
【発明の効果】
以上説明したように、本発明によれば、冷間圧延における圧下率が比較的低い場合であっても、高いr値が得られ、自動車の排気部材やモール材、厨房品などに適用可能な成形性に優れたCr含有耐熱耐食鋼板を提供することができる。また、本発明によれば、自動車の排気部材と同様な特性が求められる火力発電システムの排気経路部材にも適用可能な鋼板を提供できるので、工業的価値は極めて高い。[0001]
BACKGROUND OF THE INVENTION
The present invention is a steel plate suitable for use as a heat-resistant member in automobiles, motorcycles, power plants, etc., or as a corrosion-resistant member in molding materials, kitchen products, etc. It relates to a manufacturing method.
In addition, the steel plate said to this invention shall mean also including a steel strip.
[0002]
[Prior art]
In general, exhaust parts (exhaust manifolds, exhaust pipes, converter cases, mufflers, etc.) of automobiles contain Cr-containing steel sheets with Nb or Mo added to improve heat resistance and corrosion resistance, such as Type429 (15% Cr-0.8 % Si-0.4% Nb) and Type436J1L (18% Cr-0.4% Nb-0.5% Mo) are used. Since these exhaust members are manufactured so as to be accommodated in a limited space of the vehicle body, severe deep drawing is performed in the manufacturing process. For this reason, the steel plate used for the exhaust member of a motor vehicle is required to have excellent formability in addition to heat resistance. This tendency has been strengthened recently, and higher formability has been required for steel sheets.
On the other hand, in molding materials and kitchen products, as shown in JP-A-56-123327, emphasis is placed on surface properties and corrosion resistance. Usually, 18Cr-based Nb-added steel, such as Type430J1L (18% Cr-0.4% Nb-0.5% Cu) and Type444 (18% Cr-0.4% Nb-2.0% Mo) are used. Steel sheets used in this field are also required to have excellent formability at the same time, and conventional Nb-added steels frequently suffer from processing defects.
[0003]
By the way, several proposals have been made so far in order to improve the formability of the Cr-containing steel sheet. For example, Japanese Patent Laid-Open No. 56-123327 discloses a technique for improving the formability by regulating the hot rolling end temperature (FDT). However, even this technology has not yet met the demand for today's demanding formability. Conventionally, it is known that it is necessary to increase the cold rolling reduction ratio in order to improve the formability, and the above-mentioned Japanese Patent Application Laid-Open No. 56-123327 discloses an example in which the cold rolling reduction ratio is 80%. There is.
[0004]
[Problems to be solved by the invention]
However, in the technique for increasing the cold rolling reduction ratio, the thickness of a hot rolled steel sheet (hereinafter, sometimes referred to as a hot rolled sheet) that is a cold rolled original sheet inevitably increases, and therefore breaks during cold rolling. There was a risk that manufacturing would be difficult due to the above. For example, if the finished thickness of the cold-rolled sheet is as thick as 2 mm, the hot-rolled sheet has a thickness of 10 mm in order to cold roll with a reduction rate of 80%. When a welding point comes to a location where a bending force is applied to a hot-rolled plate to be processed, such as a bridle roll location, in a continuous processing line such as a hot-rolled plate continuous annealing line, It is based on a mechanism in which a force due to bending acts on the surface layer to crack, and further propagates in the thickness direction and eventually breaks.
Therefore, for example, when the finished thickness of the cold rolling is 2 mm, even when the thickness of the hot-rolled sheet is reduced to about 5 mm (60% as the cold rolling reduction ratio), a sufficient formability improving effect can be obtained. Development of manufacturing methods is strongly desired.
[0005]
The present invention is a novel proposal for solving such problems that the prior art has, and even if the cold rolling reduction is less than 80%, the heat resistance and corrosion resistance of the Cr-containing steel sheet are possessed. An object is to propose a method for producing a Cr-containing heat-resistant and corrosion-resistant steel sheet capable of obtaining excellent formability (mainly deep drawability) while maintaining it.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors have conducted a detailed study on a method for producing a Cr-containing steel sheet. As a result, we focused on the hot rolling start temperature (FET), which was hardly considered in the past, and for improving the formability, in addition to this FET, the hot rolling end temperature (FDT), the amount of Nb in steel, the annealing temperature, It has been concluded that it is important to manufacture under the condition that the relationship in the range falls within a certain range. Specifically, it has been found that, by annealing a hot-rolled sheet in a predetermined temperature range determined using the amounts of FET, FDT and Nb as parameters, excellent formability can be obtained even if the cold rolling reduction is less than 80%. This invention is based on the said knowledge, The summary structure is as follows.
[0007]
(1) By mass%
C: 0.02% or less,
Si: 1.5% or less,
Mn: 2.0% or less,
P: 0.06% or less,
S: 0.02% or less,
Cr: 6-30%
N: 0.02% or less,
Nb: more than 10 × {(% C) + (% N)}, 1.0% or less,
V: 0.01-0.5%
And the remainder is hot-rolled at a hot rolling end temperature of 600 to 850 ° C., followed by Nb content, hot rolling start temperature (FET, ° C.), and hot rolling end temperature. (FDT, ° C) as a parameter
(90 × K−80) ° C. to (90 × K + 80) ° C.
However, K = 2 x (Nb%) + (0.3 x FET + FDT) / 100,
A method for producing a Cr-containing heat-resistant and corrosion-resistant steel sheet excellent in formability, characterized in that hot-rolled sheet annealing is performed in the temperature range, followed by cold rolling and finish annealing in a temperature range of 950 to 1100 ° C.
[0008]
(2) In the above (1), the steel is further in mass%,
The manufacturing method of the Cr containing heat-resistant corrosion-resistant steel plate excellent in the formability characterized by consisting of the composition containing 1 type or 2 types chosen from Mo: 3.0% or less and Cu: 1.0% or less.
[0009]
(3) In the above (1) or (2), the steel is further in mass%,
A method for producing a Cr-containing heat-resistant and corrosion-resistant steel sheet having excellent formability, comprising a composition containing one or more selected from Ti: 0.5% or less, Al: 0.5% or less, and B: 0.005% or less .
[0010]
(4) In any one of the above (1) to (3), the steel is further in mass%,
The manufacturing method of the Cr containing heat-resistant corrosion-resistant steel plate excellent in the formability characterized by consisting of the composition containing 1 type or 2 types chosen from Ni: 1.0% or less and Co: 1.0% or less.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The reason why the steel composition and production conditions are limited to the above ranges will be described below. The steel composition content is expressed in mass% (hereinafter simply referred to as%).
[0012]
C: 0.02% or less C is an element that reduces formability and toughness. Such an adverse effect appears remarkably when it exceeds 0.02%, so the C content is limited to 0.02% or less. In order to secure the moldability, the smaller the C, the better. It is desirable to make it 0.008% or less.
[0013]
Si: 1.5% or less
Si is an element useful for improving oxidation resistance and corrosion resistance. However, if it exceeds 1.5%, work hardening increases and moldability deteriorates. Therefore, the Si content is 1.5% or less, preferably 1.0%.
[0014]
Mn: 2.0% or less
Mn acts as a deoxidizer, but if added excessively, MnS is formed and the moldability and corrosion resistance are lowered, so the content is made 2.0% or less. A preferable content of Mn is 0.75% or less, and a more preferable content is 0.3% or less.
[0015]
P: 0.06% or less P is an element that deteriorates toughness, so is limited to 0.06% or less. The P content is preferably as low as possible within this range, preferably 0.03% or less, more preferably 0.015% or less.
[0016]
S: 0.02% or less S is an element that deteriorates the corrosion resistance of steel in addition to deteriorating elongation and deep drawability (r value). If S is limited to 0.02% or less, the elongation, deep drawability (r value), and corrosion resistance will be satisfactory levels. However, an increase in cost is a problem in reducing S to less than 0.002%.
[0017]
Cr: 6-30%
Cr is an element useful for improving the oxidation resistance and heat resistance of steel and exerts its effect when added in an amount of 6% or more. However, if added over 30%, the formability is lowered. Therefore, the Cr addition amount is in the range of 6 to 30%. In particular, emphasizing moldability, the more preferable addition range for oxidation resistance and heat resistance is 9 to 19%, and the more preferable range is 10 to 17%.
[0018]
N: 0.02% or less N is an element that deteriorates toughness and formability. If it exceeds 0.02%, its adverse effect appears greatly, so it is limited to 0.02% or less. A preferable N content is 0.01% or less.
[0019]
Nb: Over 10 x {(% C) + (% N)}, 1.0% or less
Nb is an element effective for enhancing all of high temperature strength, formability, corrosion resistance, and intergranular corrosion resistance of welds. These effects can be obtained by adding Nb in an amount exceeding 10 × {(% C) + (% N)}. However, when adding over 1.0%, a large amount of Fe 2 Nb Laves precipitates, and the toughness of steel, Deteriorate surface properties. Here, Laves refers to a compound in which Fe and other metals are combined at a ratio of 2: 1. Therefore, Nb exceeds 10 × {(% C) + (% N)} and is added in a range of 1.0% or less. However, particularly when high temperature strength is required, it is added in a range exceeding 0.3%. Is desirable.
[0020]
V: 0.01-0.5%
V is an element useful for improving moldability, and its effect can be obtained by adding 0.01% or more. On the other hand, if added over 0.5%, coarse V carbides and nitrides are precipitated and the surface properties are deteriorated, so 0.5% is added as the upper limit. A preferable addition amount is 0.05% or more and 20 (C + N)% or less.
[0021]
In addition to the above additive elements, Mo: 3.0% or less, Cu: 1.0% or less, Ti: 0.5% or less, Al: 0.5% or less, B: 0.005% or less, Ni: One or more elements selected from the group of 1.0% or less and Co: 1.0% or less can be added. These elements will be described below.
[0022]
Mo: 3.0% or less, Cu: 1.0% or less
Mo is an element useful for improving high-temperature strength by solid solution strengthening as well as improving corrosion resistance. However, even if added over 3.0%, the effect is saturated and only increases the cost, so the upper limit is made 3.0%.
Cu is an element that improves corrosion resistance and improves formability when added in a small amount. However, since excessive addition causes embrittlement due to precipitation of ε-Cu, the upper limit is made 1.0%. A preferable addition amount is 0.1% or more.
[0023]
Ti: 0.5% or less, Al: 0.5% or less, B: 0.005% or less
Ti is an element that improves formability, but if added over 0.5%, coarse Ti carbides and nitrides precipitate and deteriorate the surface properties, so the upper limit is made 0.5%. In addition, the preferable addition amount of Ti is 0.02% or more and 15 (C + N)% or less.
Al acts as a deoxidizer. Moreover, it has the effect | action which prevents the penetration | invasion of C, N, and O from air | atmosphere, and improves welded part toughness by producing | generating a surface protection scale at the time of welding. In order to exhibit such an effect, 0.02% or more of Al is desirable. However, if added over 0.5%, the workability deteriorates remarkably, so the upper limit of Al is 0.5%. A more preferable addition amount of Al is more than 0.03% and 0.2% or less.
B is an element useful for improving the secondary workability, but if added over 0.005%, a large amount of BN is generated and the workability is deteriorated, so 0.005% is made the upper limit. In addition, the preferable addition amount of B is 0.0003 to 0.0015% of range.
[0024]
Ni: 1.0% or less, Co: 1.0% or less
Ni is an element effective for improving toughness, but excessive addition causes an increase in cost, so the upper limit is made 1.0%. In addition, the preferable addition amount of Ni is 0.05 to 0.8%, and the more preferable addition amount is 0.5 to 0.8%.
Co is an element effective for improving the toughness of the weld zone. However, excessive addition causes an increase in cost, so the upper limit is made 1.0%. In addition, the preferable addition amount of Co is 0.03-0.8%, and a more preferable addition amount is 0.05-0.2%.
[0025]
Hot rolling end temperature 600 ~ 850 ℃
The steel having the above composition is heated and then hot rolled. In this hot rolling, it is necessary to set the end temperature to 600 to 850 ° C. When the hot rolling finish temperature is higher than 850 ° C., dislocations are easily rearranged during hot rolling, and a recovery phenomenon occurs, so that the recrystallization driving force during hot rolled sheet annealing is reduced. On the other hand, at a low temperature where the hot rolling end temperature is less than 600 ° C., seizure between the rolling roll and the material to be rolled tends to occur, which causes surface flaws. Therefore, the hot rolling end temperature is in the range of 600-850 ° C. The preferred hot rolling end temperature is in the range of 700 to 800 ° C.
Note that the slab heating for the hot rolling is desirably performed at a temperature as low as possible at 1000 to 1200 ° C.
[0026]
Prior to cold rolling, hot rolled sheet annealing is performed on the hot rolled steel sheet obtained by hot rolling. In the present invention, in particular, the temperature range of this hot-rolled sheet annealing is as follows: Nb amount, hot-rolling start temperature (FET, ° C) and hot-rolling end temperature (FDT, ° C) as parameters. (90 × K + 80) ° C. However, K = 2 × (Nb%) + (0.3 × FET + FDT) / 100.
In addition, FET and FDT here shall mean the value in each corresponding position in the longitudinal direction full length before and after rolling. In general, the FET and FDT vary depending on the position in the longitudinal direction of the material to be rolled. In the present invention, the temperature suitable for the hot-rolled sheet annealing temperature is determined by the FET and FDT when a specific position in the longitudinal direction is taken out. And actually control it to be in that range.
K is an expression obtained by the inventors from an analysis of factors affecting the recrystallization phenomenon, and its meaning can be considered as an index representing the degree of strain accumulated by hot rolling. Generally, the strain introduced into the steel during hot rolling disappears due to partial recovery between the end of hot rolling and winding, and hardly changes after winding, but it is effective as a driving force for recrystallization during annealing. Strain (strain accumulated without recovery) has the same deformation resistance as the hot rolling temperature (represented by hot rolling end temperature (FDT)) is lower, assuming the same amount of sheet thickness to be reduced by hot rolling. It is said that strain energy (hereinafter, simply referred to as “strain”) is effectively introduced and stored in steel as much as the rolling force increases.
The present invention has found that not only the hot rolling end temperature (FDT) but also the hot rolling start temperature (FET) contributes to the degree of strain accumulation in the steel. Then, looking at the above parameter equation, when comparing the degree of contribution of FDT and FET to the effective strain amount, it is shown that although FDT is larger, FET also contributes in a considerable proportion. .
[0027]
That is, according to the research by the inventors, it has been found that the temperature range suitable as the hot-rolled sheet annealing temperature varies depending on the magnitude of the index K using FET and FDT as parameters. For example, if either FET or FDT decreases, the temperature range suitable as the hot-rolled sheet annealing temperature decreases. It was also found that the index K is affected by the amount of Nb added, and the temperature range suitable as the hot-rolled sheet annealing temperature varies depending on the amount of Nb added. Increasing the amount of Nb added increases the range suitable for hot-rolled sheet annealing temperature. For this reason, the formula for K was decided. It has been found that the degree of influence of the FET, FDT, and Nb contents on the temperature range suitable as the hot-rolled sheet annealing temperature can be comprehensively quantified by the index K.
And it turned out that workability, such as a moldability, can be improved remarkably when hot-rolled sheet annealing is performed in a temperature range of (90 × K−80) to (90 × K + 80) including K. If the temperature of hot-rolled sheet annealing is less than (90 x K-80), recrystallization will be insufficient. On the other hand, if it exceeds (90 x K + 80), the grain growth will be large, and the steel sheet that has undergone finish annealing after cold rolling. The formability of (cold rolled annealed plate) deteriorates.
The hot-rolled sheet annealing time may be within 10 minutes within the above temperature range, and any annealing equipment may be used.
[0028]
Cold rolling is performed after cold rolling and finish annealing hot-rolled sheet annealing. In this cold rolling, the present invention can obtain good formability even when the cold rolling reduction is less than 80%. Therefore, when the cold rolling is performed at a rolling reduction in the above range (preferably 50% or more), the effect of the present invention is further exhibited, which is preferable. Needless to say, if the cold rolling reduction ratio is higher than the rolling reduction ratio, better moldability can be obtained.
Subsequent to cold rolling, by performing finish annealing in the temperature range of 950 to 1100 ° C., a Cr-containing heat and corrosion resistant steel sheet having excellent formability can be produced. That is, if the finish annealing temperature is less than 950 ° C., recrystallization is insufficient, while if it exceeds 1100 ° C., grain growth is remarkably inferior in the formability of cold-rolled sheet products. A preferable finish annealing temperature is more than 1000 ° C. to 1050 ° C. or less.
[0029]
【Example】
After melting the steel having the composition shown in Table 1, it was heated to 1100 ° C. and hot-rolled under various conditions of FDT and FET to obtain a hot-rolled steel sheet having a thickness of 5 mm. This hot-rolled steel sheet was hot-rolled sheet annealed at various temperatures, pickled, and then cold-rolled at 60%, which is generally a disadvantageous reduction from the viewpoint of formability. Subsequently, it was finish-annealed, pickled, and made into a cold-rolled annealed plate having a thickness of 2 mm. These production conditions are shown in Tables 2 and 3.
Specimens (in accordance with JIS Z2201) from the rolling direction (L direction), 45 ° direction (D direction), and 90 ° direction (C direction) of the cold-rolled annealed sheet obtained by the above method. No. 13 B) was collected, and r L , r D , r C were respectively measured in the length direction of the test piece, in the direction of 45 ° in the plane with respect to the length direction, and in the direction perpendicular to the length direction in the plane. Measurement was carried out to obtain an average r value according to the following formula, and the moldability was evaluated.
r = (r L + 2r D + r C ) / 4
It should be noted that the evaluation of formability was expressed in four stages of ranks A to D according to the level of the r value.
Rank A: r ≧ 1.5
Rank B: 1.5> r ≧ 1.3
Rank C: 1.3> r ≧ 1.1
Rank D: 1.1> r
[0030]
The obtained moldability results are also shown in Tables 2 and 3.
In Table 2 and Table 3, the invention examples in which all of the component composition, hot rolling conditions, hot rolled sheet annealing conditions, etc. are in an appropriate range all have excellent formability of rank B or higher. On the other hand, Nos. 27 to 29 made of Nb-free steel, and Nos. 2, 3, and 20 to 26 in which at least one of FDT and hot-rolled sheet annealing temperature is out of range are more formable than the inventive examples. Is inferior.
Of these examples, as can be seen from the examples of Nos. 2, 3, 20-22, 28 and 29, it is clear that good moldability cannot be obtained simply by lowering the FDT. . Moreover, even if the conditions of steel composition and hot-rolled sheet finish annealing are the same from the comparison of No1 and No.20, No.21, within the range of (90 x K-80) ° C to (90 x K + 80) ° C. It can also be seen that No. 20 and No. 21 are inferior in moldability.
[0031]
[Table 1]
Figure 0003804408
[0032]
[Table 2]
Figure 0003804408
[0033]
[Table 3]
Figure 0003804408
[0034]
【The invention's effect】
As described above, according to the present invention, a high r value can be obtained even when the rolling reduction in cold rolling is relatively low, and it can be applied to automobile exhaust members, molding materials, kitchen products, and the like. A Cr-containing heat-resistant and corrosion-resistant steel sheet having excellent formability can be provided. In addition, according to the present invention, a steel plate that can be applied to an exhaust path member of a thermal power generation system that requires characteristics similar to those of an exhaust member of an automobile can be provided, so that the industrial value is extremely high.

Claims (4)

質量%で、
C:0.02%以下、
Si:1.5 %以下、
Mn:2.0 %以下、
P:0.06%以下、
S:0.02%以下、
Cr:6 〜30%、
N:0.02%以下、
Nb:10×{(%C)+(%N)}を超え、1.0 %以下、
V:0.01〜0.5 %
を含有し、残部はFeおよび不可避的不純物からなる組成の鋼を熱延終了温度 600〜850 ℃で熱間圧延し、次いで、Nb量、熱延開始温度(FET,℃)および熱延終了温度(FDT,℃)をパラメーターとする、
(90×K−80)℃〜(90×K+80)℃、
ただし、K=2×(Nb%)+( 0.3×FET + FDT)/100 、
の温度範囲で熱延板焼鈍を行い、その後、冷間圧延して、 950〜1100℃の温度範囲で仕上げ焼鈍を行うことを特徴とする成形性に優れたCr含有耐熱耐食鋼板の製造方法。
% By mass
C: 0.02% or less,
Si: 1.5% or less,
Mn: 2.0% or less,
P: 0.06% or less,
S: 0.02% or less,
Cr: 6-30%
N: 0.02% or less,
Nb: more than 10 × {(% C) + (% N)}, 1.0% or less,
V: 0.01-0.5%
And the remainder is hot-rolled at a hot rolling end temperature of 600 to 850 ° C., followed by Nb content, hot rolling start temperature (FET, ° C.), and hot rolling end temperature. (FDT, ° C) as a parameter
(90 × K−80) ° C. to (90 × K + 80) ° C.
However, K = 2 x (Nb%) + (0.3 x FET + FDT) / 100,
A method for producing a Cr-containing heat-resistant and corrosion-resistant steel sheet excellent in formability, characterized in that hot-rolled sheet annealing is performed in the temperature range, followed by cold rolling and finish annealing in a temperature range of 950 to 1100 ° C.
請求項1において、鋼がさらに、質量%で、
Mo:3.0 %以下、Cu:1.0 %以下から選ばれる1種又は2種
を含有する組成からなることを特徴とする成形性に優れたCr含有耐熱耐食鋼板の製造方法。
In Claim 1, the steel is further in mass%,
The manufacturing method of the Cr containing heat-resistant corrosion-resistant steel plate excellent in the formability characterized by consisting of the composition containing 1 type or 2 types chosen from Mo: 3.0% or less and Cu: 1.0% or less.
請求項1または2において、鋼がさらに、質量%で、
Ti:0.5 %以下、Al:0.5 %以下、B:0.005 %以下から選ばれる1種又は2種以上
を含有する組成からなることを特徴とする成形性に優れたCr含有耐熱耐食鋼板の製造方法。
The steel according to claim 1 or 2, further comprising mass%,
A method for producing a Cr-containing heat-resistant and corrosion-resistant steel sheet having excellent formability, comprising a composition containing one or more selected from Ti: 0.5% or less, Al: 0.5% or less, and B: 0.005% or less .
請求項1〜3のいずれか1項において、鋼の組成が、さらに、質量%で、
Ni:1.0 %以下、Co:1.0 %以下から選ばれる1種又は2種
を含有することを特徴とする成形性に優れたCr含有耐熱耐食鋼板の製造方法。
In any one of Claims 1-3, the composition of steel is further the mass%,
A method for producing a Cr-containing heat-resistant and corrosion-resistant steel sheet having excellent formability, comprising one or two selected from Ni: 1.0% or less and Co: 1.0% or less.
JP2000212491A 2000-07-13 2000-07-13 Method for producing heat-resistant and corrosion-resistant steel sheet containing Cr with excellent formability Expired - Fee Related JP3804408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000212491A JP3804408B2 (en) 2000-07-13 2000-07-13 Method for producing heat-resistant and corrosion-resistant steel sheet containing Cr with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000212491A JP3804408B2 (en) 2000-07-13 2000-07-13 Method for producing heat-resistant and corrosion-resistant steel sheet containing Cr with excellent formability

Publications (2)

Publication Number Publication Date
JP2002030346A JP2002030346A (en) 2002-01-31
JP3804408B2 true JP3804408B2 (en) 2006-08-02

Family

ID=18708410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000212491A Expired - Fee Related JP3804408B2 (en) 2000-07-13 2000-07-13 Method for producing heat-resistant and corrosion-resistant steel sheet containing Cr with excellent formability

Country Status (1)

Country Link
JP (1) JP3804408B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225976B2 (en) 2002-12-12 2009-02-18 新日鐵住金ステンレス株式会社 Cr-containing heat-resistant steel sheet having excellent workability and method for producing the same
JP4519505B2 (en) 2004-04-07 2010-08-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent formability and method for producing the same
JP6071608B2 (en) 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent oxidation resistance
JP5793459B2 (en) 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
JP5885884B2 (en) 2013-03-27 2016-03-16 新日鐵住金ステンレス株式会社 Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip
MX2018009402A (en) 2016-02-02 2018-12-19 Nisshin Steel Co Ltd HOT ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COLD ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME.
EP3604588B1 (en) 2017-03-30 2021-03-03 JFE Steel Corporation Ferritic stainless steel
CN115449715B (en) * 2022-09-21 2023-08-11 马鞍山钢铁股份有限公司 Cold-rolled weather-resistant steel plate, production method thereof and method for producing cold-rolled weather-resistant steel plates of different grades under same components

Also Published As

Publication number Publication date
JP2002030346A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
CN108495944B (en) Hot-rolled Nb-containing ferritic stainless steel sheet and method for producing same, and cold-rolled Nb-containing ferritic stainless steel sheet and method for producing same
JP5274074B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
US9279172B2 (en) Heat-resistance ferritic stainless steel
JP4948998B2 (en) Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
JP5396752B2 (en) Ferritic stainless steel with excellent toughness and method for producing the same
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
US20050232805A1 (en) Austenitic stainless steel
JP5546922B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability and method for producing the same
WO2010110466A1 (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
KR101705135B1 (en) Ferritic stainless steel sheet
JPH11106875A (en) Ferritic stainless steel sheet excellent in deep drawability and ridging resistance and its production
KR20220073804A (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP3804408B2 (en) Method for producing heat-resistant and corrosion-resistant steel sheet containing Cr with excellent formability
JP5208450B2 (en) Cr-containing steel with excellent thermal fatigue properties
JP5677819B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
JP4281535B2 (en) Ferritic stainless steel plate with excellent surface strain resistance
JP4374701B2 (en) Manufacturing method of ferritic stainless steel sheet for automobile exhaust system with excellent deep drawability
WO2009066868A1 (en) Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JP3290598B2 (en) Ferritic stainless steel sheet excellent in formability and ridging resistance and method for producing the same
JP2000073147A (en) Chromium-containing steel excellent in high temperature strength workability and surface property
KR101463311B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP4740021B2 (en) Cr-containing thin steel sheet having excellent shape freezing property and method for producing the same
JP3042331B2 (en) Manufacturing method of ferritic stainless steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees