JP3804008B2 - Attenuator for base-isolated houses - Google Patents

Attenuator for base-isolated houses Download PDF

Info

Publication number
JP3804008B2
JP3804008B2 JP2001288141A JP2001288141A JP3804008B2 JP 3804008 B2 JP3804008 B2 JP 3804008B2 JP 2001288141 A JP2001288141 A JP 2001288141A JP 2001288141 A JP2001288141 A JP 2001288141A JP 3804008 B2 JP3804008 B2 JP 3804008B2
Authority
JP
Japan
Prior art keywords
seismic isolation
damping device
house
base
isolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001288141A
Other languages
Japanese (ja)
Other versions
JP2003097088A (en
Inventor
武宏 高橋
一範 穴原
美英 深堀
Original Assignee
株式会社一条住宅研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社一条住宅研究所 filed Critical 株式会社一条住宅研究所
Priority to JP2001288141A priority Critical patent/JP3804008B2/en
Publication of JP2003097088A publication Critical patent/JP2003097088A/en
Application granted granted Critical
Publication of JP3804008B2 publication Critical patent/JP3804008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、建物と基礎の両方に連結され、地震時やその他の時に建物が設定値以上に変位するのを阻止するために使用される免震住宅用減衰装置に関するものである。
【0002】
【従来の技術】
従来、地震から建物を守るために、鋼板等の硬質板と、ゴム等の軟質板とを複数個、交互に積層した積層ゴムを構成要素とする免震構造体がビルと基礎との間に挿入されて用いられている。ここで用いられる積層ゴムで建物を支えることにより、建物の固有振動数の長周期化を図り、地震波との共振を防いで振幅は大きいがゆっくりした振動となし、その揺れをダンパー(減衰装置)を併設することにより短時間で収束させる方法を適用した免震システムが一般的に用いられている。その際、設計的にはある具体的な大きさの地震を想定し、ビルの規模や質量,地盤の強さ,求められる免震性能などを考慮して、積層ゴムのバネ剛性とダンパーの減衰能力を決定する。しかしながら、想定した大きさ以上の大型地震が発生した場合、ビルの安全性はどう守られるかについては、ある程度の安全率を見て設計されてはいるものの、厳密には不明のままになっている。これは想定される地震の大きさを非常に大きなものとすることにより安全性は向上するものの、免震システム全体が大型になり、コスト的にも極めて高額のものになるためである。
【0003】
一方、住宅の免震では、住宅を建てる地盤を考慮すれば、その住宅が市街地に近ければ近い程、軟弱な不良地盤になりがちであり、免震された住宅では長周期成分を多く含む地震波によって大きく変位する上に、不等沈下等により建物が免震システムの許容変形限界を超えて落下してしまうことも懸念される。小規模の宅地開発の場合には、住宅の価格を上昇させる要因となるため、必要な地盤改良等がなされている場合も多い。更に都市の密集した住宅事情を考えると、隣接住宅との間隔が狭く、地震時に免震住宅が大きく変位するような場合、隣接住宅と衝突する危険性がある。
【0004】
このような特殊な事情を考慮して、戸建住宅用免震システムについては、非常に大きな地震が発生した時、何らかのストップ機能が働いて免震システム全体を設計変位以上に変位させないという考え方が提案されている。例えば、特願平8−130076号において提案されている、大きな剪断力を受けた建物全体をフェ―ルセーフ上に乗り上げさせる技術、あるいは、特開平10−231888号公報に記載の如き、金属材料等を取り付けてある大きさの変位以上には動けなくする技術等である。しかしながら、上記の変位防止機能を持つ装置(以下、適宜、ストッパーと称する。)を付設した場合、そのストッパーと住宅との衝突時又はストッパーが機能し始めた時点に発生する衝撃力が、免震装置を用いず建物を直接基礎にボルトで固定した従来の非免震建物が地震時に受ける衝撃力より大きくなる懸念もあり、そのようなストップ機構を設けた実用に適する免震システムは未だ実現されていない。
【0005】
実際、衝突や大きな剪断力の付加時の建造物に対する衝撃を緩和する際に最も重要なことは、出来るだけ衝突時の物体(建物)の速度を落とす(つまり住宅の持つ運動量,運動エネルギーを小さくする)ことにより、一方被衝突物(例えば、壁や隣接する建物等)との接触を出来るだけソフトに(つまり衝撃力を小さく)することである。この場合接触する被衝撃物が硬い剛体であればある程、建物の受ける衝撃力は大きくなり破損し易くなる。例えば、船と岸壁が衝突する場合を考えると、この衝撃力を小さくする為に、衝突物と被衝突物との間にゴム製の緩衝材を設置し、船を岸壁に直接衝突させるよりもはるかに小さい衝撃力で衝突させることを可能としている。同じような原理により建物の動きをストッパーで止めようとする場合、ストッパーにとって最も重要な因子は、衝撃力を軽減する為にどのような減衰性を持っているか、どのようなバネ剛性を持っているかということになる。
【0006】
【発明が解決しようとする課題】
即ち、本発明の目的は、戸建住宅のような軽量の建物などにも有効で、且つ、建物に大きな剪断力がかかった場合にも、免震システムの免震効果を損なうことなく、建物の大きな変位を防止することができる免震構造体全体に対して適切な免震住宅用減衰装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明においては、免震住宅用減衰装置が持つべき減衰性能やバネ剛性を見出し、そのような特性を有する材料とその形状構造を決定した。続いて、本発明の減衰装置を用いた振動台実験を行い、その優れた特性を実証した。
【0008】
以下、本発明を詳細に説明する。本発明に係る免震住宅用減衰装置において、住宅に対して減衰機能を付与する時の基本的な考え方は以下の通りである。
【0009】
想定された地震に対して免震システムが(したがって免震住宅全体が)水平方向に動く距離は最初の設計の段階で予測されている。したがって、ある大きさの地震に対して、免震システムが水平方向に距離「R」だけ変位しうることによって免震効果が発揮できると設計されている場合、「R」より小さい範囲の動きに対して減衰装置が停止機能を作動させる場合、免震システムのスムーズな動きを阻害することになる。
【0010】
ところで、世の中には衝突時の衝撃力を小さくする機構を利用した商品が数多く見られる。例えば、船の接岸時の衝撃力を吸収する防舷材,エアバッグ,運動シューズ等は、その商品の持つ減衰力を上手く利用することにより、衝撃力を大幅に低減させている良い例である。つまり、動こうとする建物(免震住宅)を、衝撃力を増大させることなく停止させようとする減衰装置に求められる2大機能は、適切な減衰性能と適切なバネ剛性である。
【0011】
そこで、以下、本発明に係る免震住宅用減衰装置の特性を、具体的数値を挙げて説明する。
【0012】
本発明に係る免震住宅用減衰装置(請求項1記載の免震住宅用減衰装置)の減衰性能の大きさを与えるヒステリシス比「h」の求め方は、図1に示されている。即ち、加荷曲線下の面積(OABCO)を入力エネルギー,加荷曲線と除荷曲線とに挟まれた面積(OABDO),をヒステリシスエネルギーとする時、ヒステリシス「h」は、ヒステリシスエネルギーと入力エネルギーの比として定義される。本発明に係る免震住宅用減衰装置に求められるヒステリシス比の値としては、摂氏25度,500mm/minの引張試験において、破断伸びの90%変形時におけるヒステリシス「h」は、好ましくは0.2≦h≦0.8、より好ましくは0.3≦h≦0.7、最も好ましくは0.4≦h≦0.6である。この場合、「h」が0.2より小さいと減衰効果が小さすぎることになり、一方、これが0.8を超える場合には、系の剛性が高くなり、何れの場合にも衝撃力が大きくなる。
【0013】
また、本発明(請求項2記載の発明)に係る免震住宅用減衰装置に求められるバネ定数「k」の値としては、摂氏25度,500mm/minの引張試験において、10≦k≦300(Kgf/mm)、より好ましくは、20≦k≦200(Kgf/mm)、最も好ましくは、30≦k≦150(Kgf/mm)である。「k」が10(Kgf/mm)以下である場合には、衝突後の変位が大きくなりすぎ、所定の位置で建物を停止させることが出来ない。一方、「k」が300(Kgf/mm)を超える場合、衝撃力が大きくなりすぎる。
【0014】
また、本発明に係る免震住宅用減衰装置は、その形状が断面積に対して長さが長い長尺体であれば、特に制限はなく、モノフィラメントのロープ状のものであってもよいが、切断強度が高いという観点からは、複数の長尺体、あるいは繊維状材料からなる紐状、縄状、鎖状等に編んだものが望ましい。
【0015】
また、図2は、このような本発明に係る免震住宅用減衰装置1を建物(免震住宅)2と基礎3との間に付設した状態を示す模式図である。図2では、免震構造体の設計変位(R−r,後述の実施例参照)まではストップ機能が働かないようにするため、減衰装置にその分の弛み1aが与えられている。また、この図2に示す態様では、免震構造体として積層ゴム4とスライダー5との組合せが建物(免震住宅)2と基礎3との間に付設されたものを図示しているが、本発明に係る免震住宅用減衰装置1は、どのような免震構造体、或いは免震システムにも好適に適用できる。例えば、積層ゴムのみからなる免震構造体、或いは、積層ゴムとオイルダンパー,摩擦ダンパー等の組合せからなる免震構造体,内部の中空部に摩擦板等を封入した積層ゴムを用いる免震構造体等の公知の免震構造体として用いることができる。
【0016】
なお、実際の免震住宅では、本発明に係る免震住宅用減衰装置1を、1棟当り複数本使用することによって、建物(免震住宅)2全体の動きを止める。当然、建物(免震住宅)2の重量が重いほど多数本の免震住宅用減衰装置1が必要となる。
【0017】
そして、本発明(請求項3記載の発明)に係る免震住宅用減衰装置の素材であるプラスチックの室温における曲げ弾性率「E」は、1,000≦E≦5,000(MPa)が好ましく、1,000≦E≦4,000(MPa)は更に好ましく、最も好ましいのは、1,000≦E≦3,000(MPa)である。
【0018】
また、本発明(請求項4記載の発明)に係る免震住宅用減衰装置の素材であるプラスチックとしては、特に制限はないが、ポリアミド,不飽和ポリエステル,ビニルエステル,ポリエチレン,ポリプロピレン,ポリスチレン,ポリ塩化ビニル,ポリエチレンテレフタレート,ポリカーボネートが適している。更に好ましくは、ポリアミド及び不飽和ポリエステルである。最も好ましいのは、ナイロン6,ナイロン66,ナイロン12,ナイロン11,ナイロン610,ナイロン612等のポリアミドである。
【0019】
【発明の実施の形態】
以下、本発明の実施例1及び実施例2について詳細に説明する。
【0020】
【実施例】
「実施例1」
以下に説明する実験例は、実物大の免震住宅を振動台上に設置し、これにsin波(全実験に対して入力は一定)を入力して、該免震住宅の1階の応答加速度を測定したものである。
【0021】
1.実験用免震住宅の特性
本実験に使用した免震住宅に対して、4基のスベリ支承(スライダー)と2基の積層ゴムを配置した免震システムを採用した(図2参照)。その際、上記免震住宅の重量は全て上記4基のスベリ支承で支え、上記2基の積層ゴムは水平方向のバネ剛性と引戻し力としての役割を与えた。また、本免震住宅には、2ヶ所に本発明に係る免震住宅用減衰装置を配置した。なお、本実験で用いた上記各積層ゴムの水平バネとしての周期「T」は免震住宅の重量を考え、T=2.5秒に設計した。また、用いた各スベリ支承の摩擦係数「μ」は、μ=0.04であった。
【0022】
2.実験結果
先ず最初に、本発明に係る免震住宅用減衰装置を取り付けず、且つ、上記免震住宅と上記振動台(実際には、基礎に相当)とを固定した状態(即ち、非免震状態:比較例1)にて、該振動台に上述した振動(sin波)を入力した結果、以下の表1に示すように、非免震住宅の加速度は600ガルであった。次に、上述した状態から、免震住宅と上記振動台とを切り離して(即ち、本発明に係る免震住宅用減衰装置を取り付けず、完全免震状態)にて、振動台に上述した振動と同一の振動を入力結果、免震住宅の加速度は180ガルとなり、上記非免震状態での実験結果に比べ、加速度が1/3〜1/4に低減した。なお、この時、免震住宅は、水平方向に距離が220mm変位した(これを最大変位Rと呼ぶ。)。
【0023】
【表1】

Figure 0003804008
【0024】
したがって、若し、免震住宅に何らかのストッパーを取り付けることにより、該免震住宅の変位が220mm(R)に達しない前に、該免震住宅がストッパーに衝突する(即ち、ストッパーが働き始める)と仮定すれば、免震住宅にはこの衝突に伴う加速度(衝撃力)が余分に発生するはずである。言うまでも無く、入力された振動に伴う免震住宅の変位が、Rに達する点よりも短い距離で衝突させればさせる程、該免震住宅に発生する衝撃力(加速度)は大きくなる。そこで、最大変位Rに対してどれ位手前で(どれ位短い距離で)ストッパーに衝突させるかの指標として、変位rを定義する。即ち、r=0の時は、免震住宅とストッパーとが衝突しないので、完全免震状態、rが大きくなるにつれて免震住宅が変位している途中でストッパーに衝突し、やがてr=Rになると、免震住宅は略基礎に固定された(略非免震状態)になる。
【0025】
「実施例2」
1.本実験に用いた免震住宅用減衰装置の特性
前述した実施例1と同一の免震住宅で、且つ、同一の加振条件により、次の加振実験を行った。免震住宅に2種類のストッパー(免震住宅用減衰装置、以下同様)を用意し、Rよりも短い距離で免震住宅とそれぞれのストッパーとが衝突するように各種のr値を設定し、その時に免震住宅に発生する加速度(衝撃)をストッパー毎に測定した。
【0026】
また、この実施例2の実験で用いた本発明に係る免震住宅用減衰装置は、ナイロン66(ポリアミド)を素材としてエンドレスに織られたリング状(以下、ナイロンリングと言う。)となされ、引き伸ばしたときの形状は、幅が25mm,厚さ4mm,有効長285mmとされている。一方、上記ナイロンリングと比較するための比較例2として、素材がステンレススチールとなされリング状に成形された網組ロープ(以下、ステンレスリングと言う。)を用いた。なお、このステンレスリングの直径は、10mmであり、有効長は285mmである。以下の表2は、上述した実験で用いたナイロンリングとステンレスリングとの物性値の一覧を示すものであるが、ナイロンリングの方が、ステンレスリングに比べて大幅にバネ剛性が低く、ヒステリシス比(破断伸びの90%変形時)が大きいことが解る。
【0027】
【表2】
Figure 0003804008
【0028】
2.実験結果
以下に示す表3は、r値をパラメータとして変化させた時に免震住宅に発生する応答加速度を、上記ナイロンリング(実施例2)の場合と、上記ステンレスリング(比較例2)の場合とに分けて示すものである。
【0029】
【表3】
Figure 0003804008
【0030】
そこで、先ず、比較例2を見ると、r=40mmになると、520ガルの応答加速度が発生し、更に、r=80mmになると、1600ガルの応答加速度が発生し、この値は、非免震状態において住宅に発生する応答加速度(600ガル:表1参照)を遥かに超えたものであることが解る。一方、実施例2を見ると、r=40mmの時はもとより、r=100mm,160mmになっても、非免震状態における応答加速度よりも低下することが解る。即ち、実施例2と比較例2とを比較した場合、実施例2で発生する応答加速度が如何に小さくなっているかは一目瞭然である。
【0031】
【発明の効果】
前述した本発明の実施例の説明からも明らかなように、本発明に係る免震住宅用減衰装置によれば、免震住宅のような軽負荷免震構造体に大きな剪断力が加わった場合にも、免震住宅の免震効果を殆ど損なうことなく免震住宅の変位を自由に制御することができる。
【図面の簡単な説明】
【図1】免震住宅の加重と変位との関係を示すグラフである。
【図2】免震住宅用減衰装置を建物(免震住宅)と基礎との間に付設した状態を示す模式図である。
【符号の説明】
1 免震住宅用減衰装置
2 免震住宅
3 基礎
4 積層ゴム(免震構造体)[0001]
[Technical field to which the invention belongs]
The present invention relates to a damping device for a seismic isolation house that is connected to both a building and a foundation and is used to prevent the building from being displaced more than a set value during an earthquake or at other times.
[0002]
[Prior art]
Conventionally, in order to protect a building from an earthquake, a seismic isolation structure composed of laminated rubber composed of a plurality of hard plates such as steel plates and soft plates such as rubber alternately laminated between the building and the foundation. Inserted and used. By supporting the building with the laminated rubber used here, the natural frequency of the building is lengthened, preventing resonance with the seismic wave, large amplitude but slow vibration, and the vibration is a damper (damping device) In general, seismic isolation systems that use a method of converging in a short time by installing a sash are used. At that time, assuming a certain magnitude of earthquake in design, considering the scale and mass of the building, the strength of the ground, the required seismic isolation performance, etc., the spring rigidity of the laminated rubber and the damping of the damper Determine ability. However, in the event of a large-scale earthquake that exceeds the expected size, the safety of the building is designed with a certain degree of safety, but it remains strictly unknown. Yes. This is because, although the safety is improved by making the magnitude of the assumed earthquake very large, the entire seismic isolation system becomes large and extremely expensive in terms of cost.
[0003]
On the other hand, in the seismic isolation of a house, considering the ground on which the house is built, the closer the house is to the urban area, the more likely it is to become a weak and poor ground. In addition, the building may be greatly displaced due to unequal subsidence, and the building may fall beyond the allowable deformation limit of the seismic isolation system. In the case of small-scale residential land development, it is a factor that raises the price of the house, so the necessary ground improvement is often made. Furthermore, considering the dense housing situation in the city, there is a risk of colliding with neighboring houses when the distance between neighboring houses is narrow and the base-isolated houses are greatly displaced during an earthquake.
[0004]
Considering such special circumstances, the concept of seismic isolation systems for detached houses is that when a very large earthquake occurs, some kind of stop function works to prevent the entire seismic isolation system from being displaced more than the design displacement. Proposed. For example, a technique proposed in Japanese Patent Application No. Hei 8-130076 for causing the entire building subjected to a large shear force to ride on the fail safe, or a metal material as described in JP-A-10-231888, etc. This is a technique that makes it impossible to move beyond a certain amount of displacement. However, when a device having the above-described displacement prevention function (hereinafter referred to as a stopper as appropriate) is attached, the impact force generated at the time of collision between the stopper and the house or when the stopper starts to function is seismic isolation. There is a concern that a conventional non-base-isolated building that is bolted directly to the foundation without using a device may be larger than the impact force experienced during an earthquake, and a seismic isolation system suitable for practical use with such a stop mechanism has not yet been realized. Not.
[0005]
In fact, the most important thing to mitigate the impact on the building when a collision or a large shear force is applied is to reduce the speed of the object (building) during the collision as much as possible (that is, to reduce the momentum and kinetic energy of the house). By doing so, the contact with the object to be collided (for example, a wall or an adjacent building) is made as soft as possible (that is, the impact force is reduced). In this case, the harder the object to be touched, the greater the impact force the building receives and the more likely it is to break. For example, considering the case where a ship collides with a quay, in order to reduce this impact force, rubber cushioning material is installed between the colliding object and the colliding object, and the ship collides directly with the quay. It is possible to make it collide with a much smaller impact force. When trying to stop the movement of a building with a stopper based on the same principle, the most important factor for the stopper is what kind of damping it has to reduce the impact force and what kind of spring rigidity it has. It will be.
[0006]
[Problems to be solved by the invention]
That is, the object of the present invention is effective for a lightweight building such as a detached house, and even when a large shearing force is applied to the building, the building does not impair the seismic isolation effect of the seismic isolation system. It is an object of the present invention to provide a damping device for a seismic isolation house suitable for the entire seismic isolation structure capable of preventing a large displacement of the seismic isolation.
[0007]
[Means for Solving the Problems]
In the present invention, the damping performance and spring rigidity that the damping device for a base-isolated house should have were found, and the material having such characteristics and its shape structure were determined. Subsequently, a shaking table experiment using the damping device of the present invention was conducted to demonstrate its excellent characteristics.
[0008]
Hereinafter, the present invention will be described in detail. In the damping device for a seismic isolation house according to the present invention, the basic concept when the damping function is given to the house is as follows.
[0009]
The distance that the seismic isolation system (and thus the entire seismic isolation house) moves in the horizontal direction with respect to the assumed earthquake is predicted at the initial design stage. Therefore, if the seismic isolation system is designed to exhibit a seismic isolation effect by being able to be displaced by a distance “R 0 ” in the horizontal direction for an earthquake of a certain magnitude, the range is smaller than “R 0 ”. If the damping device activates the stop function with respect to movement, it will inhibit the smooth movement of the seismic isolation system.
[0010]
By the way, there are many products in the world that use a mechanism that reduces the impact force at the time of collision. For example, fenders, airbags, and athletic shoes that absorb the impact force at the time of ship berthing are good examples of significantly reducing the impact force by making good use of the damping force of the product. . That is, the two major functions required for a damping device that attempts to stop a building to be moved (a base-isolated house) without increasing the impact force are an appropriate damping performance and an appropriate spring rigidity.
[0011]
Accordingly, the characteristics of the damping device for a base-isolated house according to the present invention will be described below with specific numerical values.
[0012]
FIG. 1 shows how to determine the hysteresis ratio “h” that gives the magnitude of the damping performance of the damping device for a base- isolated house according to the present invention (the damping device for a base-isolated house according to claim 1). That is, when the area under the loading curve (OABCO) is the input energy and the area sandwiched between the loading curve and the unloading curve (OABDO) is the hysteresis energy, the hysteresis “h” is the hysteresis energy and the input energy. Defined as the ratio of As a value of the hysteresis ratio required for the damping device for a base-isolated house according to the present invention, in a tensile test of 25 degrees Celsius and 500 mm / min, the hysteresis “h” at 90% deformation of elongation at break is preferably 0. 2 ≦ h ≦ 0.8, more preferably 0.3 ≦ h ≦ 0.7, and most preferably 0.4 ≦ h ≦ 0.6. In this case, if “h” is smaller than 0.2, the damping effect is too small. On the other hand, if it exceeds 0.8, the rigidity of the system is increased, and in any case, the impact force is large. Become.
[0013]
Further, the value of the spring constant “k” required for the damping device for a base-isolated house according to the present invention (the invention according to claim 2) is 10 ≦ k ≦ 300 in a tensile test of 25 degrees Celsius and 500 mm / min. (Kgf / mm), more preferably 20 ≦ k ≦ 200 (Kgf / mm), and most preferably 30 ≦ k ≦ 150 (Kgf / mm). When “k” is 10 (Kgf / mm) or less, the displacement after the collision becomes too large, and the building cannot be stopped at a predetermined position. On the other hand, when “k” exceeds 300 (Kgf / mm), the impact force becomes too large.
[0014]
Further, the damping device for a seismic isolation house according to the present invention is not particularly limited as long as the shape thereof is a long body having a long length with respect to the cross-sectional area, and may be a monofilament rope-like one. From the viewpoint of high cutting strength, it is desirable to use a plurality of elongated bodies or those knitted in a string, rope, chain, or the like made of a fibrous material.
[0015]
FIG. 2 is a schematic view showing a state in which the seismic isolation house damping device 1 according to the present invention is attached between the building (base isolation house) 2 and the foundation 3. In FIG. 2, in order to prevent the stop function from working until the design displacement of the seismic isolation structure (R 0 -r, see examples described later), a corresponding amount of slack 1a is given to the damping device. Moreover, in the aspect shown in FIG. 2, although the combination of the laminated rubber 4 and the slider 5 is attached between the building (base-isolated house) 2 and the foundation 3 as a seismic isolation structure, The damping device 1 for seismic isolation houses according to the present invention can be suitably applied to any seismic isolation structure or seismic isolation system. For example, a base-isolated structure consisting only of laminated rubber, or a base-isolated structure consisting of a combination of laminated rubber and oil dampers, friction dampers, etc. It can be used as a known seismic isolation structure such as a body.
[0016]
In an actual base-isolated house, the movement of the entire building (base-isolated house) 2 is stopped by using a plurality of the base-equipment damping devices 1 according to the present invention. Naturally, as the weight of the building (base-isolated house) 2 is heavier, the number of damping devices 1 for base-isolated houses is required.
[0017]
And, the bending elastic modulus “E” at room temperature of the plastic that is the material of the damping device for a base-isolated house according to the present invention (the invention according to claim 3) is preferably 1,000 ≦ E ≦ 5,000 (MPa). 1,000 ≦ E ≦ 4,000 (MPa) is more preferable, and 1,000 ≦ E ≦ 3,000 (MPa) is most preferable.
[0018]
In addition, the plastic that is a material of the damping device for a base-isolated house according to the present invention (the invention described in claim 4) is not particularly limited, but polyamide, unsaturated polyester, vinyl ester, polyethylene, polypropylene, polystyrene, poly Vinyl chloride, polyethylene terephthalate, and polycarbonate are suitable. More preferred are polyamides and unsaturated polyesters. Most preferred are polyamides such as nylon 6, nylon 66, nylon 12, nylon 11, nylon 610, nylon 612 and the like.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, Example 1 and Example 2 of the present invention will be described in detail.
[0020]
【Example】
"Example 1"
In the experimental example described below, a full-scale seismic isolation house is installed on a shaking table, and a sine wave (the input is constant for all experiments) is input to this, and the response on the first floor of the seismic isolation house. Measured acceleration.
[0021]
1. Characteristics of the experimental base-isolated house For the base-isolated house used in this experiment, we adopted a base-isolated system with four sliding bearings (sliders) and two laminated rubbers (see Fig. 2). At that time, the weight of the base-isolated house was all supported by the four sliding bearings, and the two laminated rubbers provided roles as horizontal spring rigidity and pull-back force. Moreover, the damping device for a seismic isolation house according to the present invention was arranged at two locations in the seismic isolation house. The period “T” as the horizontal spring of each laminated rubber used in this experiment was designed to be T = 2.5 seconds considering the weight of the base-isolated house. Further, the friction coefficient “μ” of each sliding bearing used was μ = 0.04.
[0022]
2. Experimental Results First of all, the damping device for a base-isolated house according to the present invention is not attached, and the base-isolated house and the shaking table (actually equivalent to the foundation) are fixed (that is, non-base-isolated) State: As a result of inputting the vibration (sin wave) described above to the shaking table in Comparative Example 1), the acceleration of the non-base-isolated house was 600 gal as shown in Table 1 below. Next, in the state described above, the seismic isolation house and the shaking table are separated from each other (that is, the seismic isolation house damping device according to the present invention is not attached and is completely seismically isolated), and the vibration table described above is vibrated. As a result, the acceleration of the base-isolated house was 180 gal, and the acceleration was reduced to 1/3 to 1/4 compared to the experimental result in the non-base-isolated state. At this time, the distance of the base-isolated house was displaced by 220 mm in the horizontal direction (this is called the maximum displacement R0 ).
[0023]
[Table 1]
Figure 0003804008
[0024]
Therefore, by attaching a stopper to the base-isolated house, the base-isolated house collides with the stopper before the displacement of the base-isolated house does not reach 220 mm (R 0 ) (ie, the stopper starts to work). Assuming that, the acceleration (impact force) associated with this collision should occur in the base-isolated house. Needless to say, the displacement of the seismic isolation housing associated with the inputted vibration, extent to be caused to collide in a shorter distance than a point to reach R 0, the impact force generated該免seismic housing (acceleration) increases . Therefore, the displacement r is defined as an index of how far the maximum displacement R0 is made to collide with the stopper (with a short distance). That is, when r = 0, the base-isolated house and the stopper do not collide, so that the base-isolated state collides with the stopper while the base-isolated house is displaced as r increases, and eventually r = R 0. Then, the base-isolated house is fixed to the base (substantially non-base-isolated state).
[0025]
"Example 2"
1. Characteristics of damping device for base-isolated house used in this experiment The following vibration test was performed in the same base-isolated house as in Example 1 described above and under the same excitation conditions. Two types of stoppers are prepared for the base-isolated houses (base-damping devices, the same applies below), and various r values are set so that the base-isolated houses and the respective stoppers collide at a distance shorter than R0. The acceleration (impact) generated in the base-isolated house at that time was measured for each stopper.
[0026]
Further, the damping device for a base-isolated house according to the present invention used in the experiment of Example 2 is formed into a ring shape (hereinafter referred to as a nylon ring) woven endlessly from nylon 66 (polyamide). The stretched shape has a width of 25 mm, a thickness of 4 mm, and an effective length of 285 mm. On the other hand, as Comparative Example 2 for comparison with the nylon ring, a netting rope (hereinafter referred to as a stainless steel ring) made of a stainless steel material and formed into a ring shape was used. The diameter of this stainless steel ring is 10 mm, and the effective length is 285 mm. Table 2 below shows a list of physical property values of the nylon ring and the stainless steel ring used in the above-described experiment. The nylon ring has a significantly lower spring rigidity than the stainless steel ring, and the hysteresis ratio. It can be seen that (at 90% deformation of elongation at break) is large.
[0027]
[Table 2]
Figure 0003804008
[0028]
2. Experimental results Table 3 below shows the response acceleration generated in the base-isolated house when the r value is changed as a parameter in the case of the nylon ring (Example 2) and the stainless ring (Comparative Example 2). These are shown separately.
[0029]
[Table 3]
Figure 0003804008
[0030]
Therefore, first, in Comparative Example 2, when r = 40 mm, a response acceleration of 520 gal occurs, and when r = 80 mm, a response acceleration of 1600 gal occurs, and this value is not seismically isolated. It can be seen that the response acceleration (600 gal: see Table 1) generated in the house in the state far exceeds. On the other hand, when Example 2 is seen, it turns out that it becomes lower than the response acceleration in a non-seismic isolation state not only when r = 40 mm but also when r = 100 mm and 160 mm. That is, when Example 2 is compared with Comparative Example 2, it is obvious how the response acceleration generated in Example 2 is small.
[0031]
【The invention's effect】
As is clear from the above description of the embodiments of the present invention, according to the damping device for a base-isolated house according to the present invention, when a large shear force is applied to a light load base-isolated structure such as a base-isolated house. In addition, the displacement of the seismic isolation house can be freely controlled without substantially damaging the seismic isolation effect of the seismic isolation house.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the weight and displacement of a base-isolated house.
FIG. 2 is a schematic view showing a state in which a damping device for a seismic isolation house is attached between a building (a seismic isolation house) and a foundation.
[Explanation of symbols]
1 Attenuator for base-isolated houses 2 Base-isolated house 3 Foundation 4 Laminated rubber (base-isolated structure)

Claims (6)

基礎と建物又は建物の支持基板との間に設けられる免震住宅用減衰装置であって、プラスチックを素材とし、断面積に対して長さが長い長尺体からなり、摂氏25度,500mm/minの引張試験において破断伸びの90%変形時におけるヒステリシス比hが、0.4≦h≦0.6であることを特徴とする免震住宅用減衰装置。A seismic isolation dampening device provided between a foundation and a building or a supporting board of a building, which is made of plastic and made of a long body having a long length with respect to a cross-sectional area, 25 degrees Celsius, 500 mm / A damping device for a base-isolated house, wherein a hysteresis ratio h at the time of 90% deformation of elongation at break is 0.4 ≦ h ≦ 0.6 in a min tensile test. 前記免震住宅用減衰装置は、摂氏25度,500mm/minの引張試験において、バネ定数kが、20≦k≦300(Kgf/mm)であることを特徴とする請求項1記載の免震住宅用減衰装置。2. The seismic isolation device according to claim 1, wherein the damping device for a seismic isolation housing has a spring constant k of 20 ≦ k ≦ 300 (Kgf / mm) in a tensile test at 25 degrees Celsius and 500 mm / min. Residential damping device. 前記免震住宅用減衰装置の素材とされるプラスチックの室温における曲げ弾性率Eが、1,000≦E≦5,000(MPa)であることを特徴とする請求項1又は2記載の免震住宅用減衰装置。 3. The base isolation system according to claim 1, wherein a bending elastic modulus E at room temperature of a plastic used as a material of the damping device for the base isolation house is 1,000 ≦ E ≦ 5,000 (MPa). Residential damping device. 前記免震住宅用減衰装置の素材とされるプラスチックは、ポリアミド,不飽和ポリエステル,ビニルエステル,ポリエチレン,ポリプロピレン,ポリスチレン,ポリ塩化ビニル,ポリエチレンテレフタレート又はポリカーボネートであることを特徴とする請求項1,2又は3記載の免震住宅用減衰装置。 The plastic used as a material of the damping device for seismic isolation houses is polyamide, unsaturated polyester, vinyl ester, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate or polycarbonate. Or the damping device for seismic isolation houses of 3 description. 前記免震住宅用減衰装置の素材とされるプラスチックは、ポリアミド,不飽和ポリエステルであることを特徴とする請求項1,2又は3記載の免震住宅用減衰装置。 4. The damping device for a seismic isolation house according to claim 1, wherein the plastic used as a material of the damping device for a seismic isolation house is polyamide or unsaturated polyester. 前記免震住宅用減衰装置の素材とされるプラスチックは、ポリアミドであることを特徴とする請求項1,2又は3記載の免震住宅用減衰装置。 The damping device for a seismic isolation house according to claim 1, 2 or 3, wherein the plastic used as the material of the damping device for a seismic isolation house is polyamide.
JP2001288141A 2001-09-21 2001-09-21 Attenuator for base-isolated houses Expired - Lifetime JP3804008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001288141A JP3804008B2 (en) 2001-09-21 2001-09-21 Attenuator for base-isolated houses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288141A JP3804008B2 (en) 2001-09-21 2001-09-21 Attenuator for base-isolated houses

Publications (2)

Publication Number Publication Date
JP2003097088A JP2003097088A (en) 2003-04-03
JP3804008B2 true JP3804008B2 (en) 2006-08-02

Family

ID=19110838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288141A Expired - Lifetime JP3804008B2 (en) 2001-09-21 2001-09-21 Attenuator for base-isolated houses

Country Status (1)

Country Link
JP (1) JP3804008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8925342B2 (en) 2011-09-16 2015-01-06 Lg Electronics Inc. Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8925342B2 (en) 2011-09-16 2015-01-06 Lg Electronics Inc. Refrigerator

Also Published As

Publication number Publication date
JP2003097088A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
Patil et al. State of art review-base isolation systems for structures
EP2783057B1 (en) Seismic dissipation module made up of compression-resistant spheres immersed in a variable low density material
Tagel-Din et al. Applied element simulation for collapse analysis of structures
JP3804008B2 (en) Attenuator for base-isolated houses
Robinson Seismic isolation of civil buildings in New Zealand
Fang et al. Full‐scale shaking table test and numerical analysis of structural frames with SMA cable‐restrained base isolation
JP6494054B1 (en) Seismic isolation structure
Hameed et al. Seismic performance of low to medium rise reinforced concrete buildings using passive energy dissipation devices
JP2022161982A (en) Multistory base insulation building
JP2001140976A (en) Base isolation system for lightweight structure
JP4156736B2 (en) Seismic isolation structure stopper
Sohel et al. Analysis and design of steel-concrete composite sandwich systems subjected to extreme loads
JP2011012427A (en) Initial displacement-imparted tmd vibration control system for building
Choi et al. A method of calculating the non‐linear seismic response of a building braced with viscoelastic dampers
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
Kelly et al. Testing of a wind restraint for aseismic based isolation
JP2022132844A (en) Base isolation stopper and base isolated building
JP2016199910A (en) Seismic isolation structure and seismic isolation repair method of existing building
Rofooei et al. Numerical study of an innovative SMA based beam-column connection in reducing the seismic response of steel MRF structures
KR100335072B1 (en) Restrained Stroke Active Tuned Mass Damper Device in Structures
JP2016000932A (en) Means and method for resuming to home position of base isolation structure, and improved ground provided with the means
CN215367949U (en) Damper is connected to adjacent building based on shape memory alloy
Mazza Nonlinear analysis of rc framed buildings retrofitted with elastomeric and friction bearings under near-fault earthquakes
Vakilazadsarabi et al. Seismic analyses of a five-story residential building supported by T-BAGS base isolation and vibration control system
JP2022185213A (en) Displacement suppression device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3804008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term