JP2011012427A - Initial displacement-imparted tmd vibration control system for building - Google Patents

Initial displacement-imparted tmd vibration control system for building Download PDF

Info

Publication number
JP2011012427A
JP2011012427A JP2009156526A JP2009156526A JP2011012427A JP 2011012427 A JP2011012427 A JP 2011012427A JP 2009156526 A JP2009156526 A JP 2009156526A JP 2009156526 A JP2009156526 A JP 2009156526A JP 2011012427 A JP2011012427 A JP 2011012427A
Authority
JP
Japan
Prior art keywords
tmd
building
initial displacement
vibration
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009156526A
Other languages
Japanese (ja)
Inventor
Susumu Yoshinaka
進 吉中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka City University PUC
Original Assignee
Osaka University NUC
Osaka City University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka City University PUC filed Critical Osaka University NUC
Priority to JP2009156526A priority Critical patent/JP2011012427A/en
Publication of JP2011012427A publication Critical patent/JP2011012427A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive and easy-to-mount TMD vibration control system for a building, which enhances a response reducing effect at the initial stage of transient response of a vibration control device (TMD) installed on the rooftop of the building and on its indoor side, and which exerts a great vibration control effect.SOLUTION: This vibration control system includes: the vibration control device (TMD) which comprises a weight acting in the direction of canceling seismic-ground-motion input into the building during earthquakes, and a spring and a damper, interposed between the weight and the building; and a trigger device 4 which keeps the vibration control device in a locked state, and which puts the vibration control device into an unlocked state during the earthquakes. The spring of the TMD is preliminarily expanded/contracted by a predetermined length; and initial displacement, which is set using a change in the phase of an envelope curve of "beat" generated by the superposition of a plurality of vibration modes having natural frequencies set close to one another and generated near a vibration mode in the case of the single building, is imparted by the addition of the TMD, maintained by the trigger device 4, and released from the initial displacement by releasing the locked state during the earthquake.

Description

本発明は、建物に過渡応答初期の制振効果を高めることが可能な初期変位付与型TMDを設けた制振システムに関する。 The present invention relates to a vibration damping system provided with an initial displacement imparting type TMD capable of enhancing the vibration damping effect at the beginning of transient response in a building.

建物に地震動が作用したときの振動制御手法として、アクティブ型の振動制御手法とパッシブ型の振動制御手法が取られる。アクティブ型の振動制御手法は、アクチュエーターを用いて外乱を打ち消すように重錘を強制的に運動させて外乱による建物の振動を制御する手法である。しかし、この制御手法では、アクチュエーターを作動させるために別途外部からの大きなエネルギーが必要であり、振動制御装置が長大になるだけでなく、低次元化によるスピルオーバーのような危険な不安定現象が生じる可能性もあることから、アクチュエーターを制御するための複雑な制御則も必要となる。 As a vibration control method when earthquake motion is applied to a building, an active vibration control method and a passive vibration control method are taken. The active vibration control method is a method of controlling the vibration of a building due to a disturbance by forcibly moving a weight so as to cancel the disturbance using an actuator. However, this control method requires a large amount of external energy to operate the actuator, which not only lengthens the vibration control device, but also creates a dangerous instability phenomenon such as spillover due to lower dimensions. Since there is a possibility, a complicated control law for controlling the actuator is also required.

パッシブ型の振動制御手法としては、建物にTMDを設けるものがある。このTMDは、重錘とバネとダンパーで構成され、構造物に取り付け共振させ大きく振動させることにより構造物の振動エネルギーを重錘の運動エネルギーとして吸収し、ダンパーの減衰力によりエネルギーを消散する振動制御手法である。このTMDは支点を必要としないため設計の自由度が高く、吊り橋や斜張橋の主塔の強風振動に対する制振対策、スレンダーな高層ビルや鉄塔の強風や地震に対する制振対策、最近多く見られる大スパン床スラブの環境振動に対する対策など多くの分野で実績がある。 As a passive type vibration control method, there is one in which a TMD is provided in a building. This TMD is composed of a weight, a spring, and a damper, and is attached to the structure to resonate and vibrate greatly to absorb the vibration energy of the structure as the kinetic energy of the weight and to dissipate the energy by the damping force of the damper. It is a control method. Since this TMD does not require a fulcrum, it has a high degree of freedom in designing. Has a proven track record in many fields, including measures against environmental vibration of large span floor slabs.

しかしながら、TMDの制振効果は定常状態を基本としているため、非定常な地震動に対するTMDの制振効果はあまり大きくないことが分かっている。特に地震動を受けた場合には、応答の初期におけるTMDを取り付けた建物の制振効果はあまり期待できない。これは、パッシブ型のTMDでは、重錘を強制的に運動させる外部エネルギーがないため、重錘が外乱(地震動)により自ら動きだして安定した振動状態に至るまでは、制振効果が発現されないためである。このことがTMDを地震動に対して適用を難しくする大きな課題となっている。 However, since the damping effect of TMD is based on a steady state, it is known that the damping effect of TMD against unsteady ground motion is not so great. In particular, when subjected to earthquake motion, the vibration control effect of the building to which the TMD is attached in the early response cannot be expected. This is because in passive TMD, there is no external energy to force the weight to move, so the damping effect does not appear until the weight starts to move itself by disturbance (seismic motion) and reaches a stable vibration state. It is. This is a major issue that makes it difficult to apply TMD to earthquake motion.

パッシブ型のTMDを建物に組み込んで地震力に対する応答制御に利用した特許文献は多々あるが、TMDに初期変位を与えることにより代表的な過渡応答である衝撃力を受けたときの応答低減効果を高める先行技術としては、次の非特許文献1と非特許文献2に記述されているだけである。これら2件の文献には、建物にTMDを取り付けることにより生じる近接した2つの(若しくはそれ以上)の振動モードが重畳することにより生じる“うなり”の包絡線の位相変化を利用して、TMDの初期変位の大きさでコントロールすることにより、過渡応答初期の応答低減効果を大きく高める方法については開示されていない。 There are many patent documents that use passive type TMD in buildings to control response to seismic force, but by applying initial displacement to TMD, the response reduction effect when receiving impact force that is a typical transient response Prior art to be improved is only described in Non-Patent Document 1 and Non-Patent Document 2 below. These two documents use TMD's phase change of the “beat” envelope generated by the superposition of two (or more) adjacent vibration modes generated by attaching a TMD to a building. There is no disclosure of a method for greatly increasing the response reduction effect in the initial transient response by controlling the magnitude of the initial displacement.

M.Abe and T.Igusa:Semi-Active Dynamic Vibration Absorbers for Controlling Transient Response, Journal of Sound and Vibration, Vol.198(5), pp.547-569, 1996.M.Abe and T.Igusa: Semi-Active Dynamic Vibration Absorbers for Controlling Transient Response, Journal of Sound and Vibration, Vol.198 (5), pp.547-569, 1996. 田中信雄著「振動制御」養賢堂 2008Nobuo Tanaka “Vibration Control” Yokendo 2008

本発明は、建築物の屋上又は屋内に設置される制振装置(TMD)のバネに、予め所定長さ伸縮させて初期変位を与えると共に該初期変位をトリガー装置で維持しておき、地震時にロック状態を解除して初期変位を解放し、その際にTMDの初期変位を適切に与えることにより過渡応答初期の応答低減効果を大きく高め、安価で取り付け容易で制振効果の高い建築物のTMD制振システムを提供することを目的とする。 The present invention applies an initial displacement to a spring of a vibration damping device (TMD) installed on the roof of a building or indoors by a predetermined length in advance and maintains the initial displacement with a trigger device. Releasing the locked state to release the initial displacement, and giving the initial displacement of the TMD appropriately at that time greatly enhances the response reduction effect at the initial stage of the transient response. The purpose is to provide a vibration control system.

本発明の請求項1に係る建物の初期変位付与型TMD制振システムは、建築物の屋上又は屋内に設置される制振システムであって、該制振システムは、地震時に建物への入力地震動を打ち消す方向に作用する重錘と、該重水と建物との間に介装されるバネ及びダンパーとから成る制振装置(TMD)と、該制振装置をロック状態に維持し、地震時にロック解除にするトリガー装置を備え、前記TMDのバネは、予め所定長さ伸縮させてTMDの付加により建築物単体のときの振動モードの近傍に生じる固有振動数の近接した複数の振動モードが重畳することにより生じる“うなり”の包絡線の位相変化を利用して設定した初期変位が与えられると共に該初期変位がトリガー装置で維持されており、地震時にロック状態が解除されて該初期変位が解放されることを特徴としている。 A building initial displacement imparting TMD vibration damping system according to claim 1 of the present invention is a vibration damping system installed on the roof of a building or indoors, and the vibration damping system receives an input seismic motion to the building during an earthquake. A damping device (TMD) comprising a weight acting in a direction to cancel out the vibration, a spring and a damper interposed between the heavy water and the building, and maintaining the damping device in a locked state so that it locks in the event of an earthquake The TMD spring includes a trigger device to be released, and a plurality of vibration modes having close natural frequencies generated in the vicinity of the vibration mode of a single building by the addition of TMD are superimposed on the TMD spring in advance. The initial displacement set by using the phase change of the “beat” envelope generated by this is given and the initial displacement is maintained by the trigger device, and the locked state is released at the time of the earthquake and the initial displacement It is characterized by being released.

従来の制振建築物に設けたTMDは、制振効果は定常状態を基本としているため、非定常な地震動に対するTMDの制振効果はあまり大きくないことが分かっている。特に地震動を受けた場合には、応答の初期におけるTMDを取り付けた建物の制振効果はあまり期待できない。これは、パッシブ型のTMDでは、重錘を強制的に運動させる外部エネルギーがないため、重錘が外乱(地震動)により自ら動きだして安定した振動状態に至るまでは、制振効果が発現されないためである。このことがTMDを地震動に対して適用を難しくする大きな問題となっている。 Since TMD provided in conventional vibration-damping buildings is based on steady-state vibration damping effects, it has been found that TMD vibration-damping effects against unsteady ground motion are not very large. In particular, when subjected to earthquake motion, the vibration control effect of the building to which the TMD is attached in the early response cannot be expected. This is because in passive TMD, there is no external energy to force the weight to move, so the damping effect does not appear until the weight starts to move itself by disturbance (seismic motion) and reaches a stable vibration state. It is. This is a major problem that makes it difficult to apply TMD to earthquake motion.

しかし、本発明のTMDは、単に初期変位を与えることによる減衰効果の向上を狙ったものではなく、固有振動数の近接した複数の振動モードが重畳することにより生じる“うなり”の包絡線の位相変化を利用するものである。具体的には、建築物にTMDを1つ取り付けることにより、建築物単体のときの振動モードの近傍に固有振動数の近接した2つの振動モードが新たに生じる。これら2つの振動モードが時刻歴で重畳すると“うなり”が発生する。この場合、建物に複数個のTMDを取り付ければ、その個数に応じた振動モードが新たに生じる。TMDの初期変位の付与により“うなり”の包絡線の位相を変化させることが可能となり、時刻歴応答曲線をコントロールすることが可能となる。ここで、TMDの初期変位を大きく設定すると、衝撃力を受けた直後の応答低減効果を極めて大きくすることができる。初期変位を小さめに設定すると、初期変位の大きい場合に比較して衝撃力を受けた直後の応答低減効果は若干劣るものの、時刻歴全体に亘る応答低減効果を大きく高めることができる。そのため、設計者は設計目的に応じて初期変位の大きさを変えることで、時刻歴応答曲線を制御可能となる。 However, the TMD of the present invention is not intended to improve the damping effect simply by giving an initial displacement, but the phase of the “beat” envelope generated by the superposition of a plurality of vibration modes having close natural frequencies. It uses change. Specifically, by attaching one TMD to a building, two vibration modes having a natural frequency close to each other in the vicinity of the vibration mode for a single building are newly generated. When these two vibration modes are superimposed on the time history, a “beat” occurs. In this case, if a plurality of TMDs are attached to the building, a vibration mode corresponding to the number is newly generated. By applying the initial displacement of TMD, the phase of the “beat” envelope can be changed, and the time history response curve can be controlled. Here, if the initial displacement of the TMD is set large, the response reduction effect immediately after receiving the impact force can be greatly increased. When the initial displacement is set to be small, the response reduction effect immediately after receiving the impact force is slightly inferior to the case where the initial displacement is large, but the response reduction effect over the entire time history can be greatly enhanced. Therefore, the designer can control the time history response curve by changing the magnitude of the initial displacement according to the design purpose.

図1に構造物単体の場合と、構造物に1個のTMDを取り付けた場合の振動数応答曲線を比較する。図1に示すようにTMDを1つ取り付けることにより、AモードとBモードの2つの振動モードが構造物単体のときの振動モードの固有振動数の両脇に微小の振動数差を持って生じる。2個のTMDを取り付けた場合は、3個の振動モードが生じることとなる。これらAモードとBモードの2つの振動モードが応答の時刻歴で重畳することにより“うなり”が生じる。本発明は“うなり”の周期中で包絡線の振幅が徐々に小さくなる領域を利用して、振幅が小さくなる時刻をTMDの初期変位の大きさでコントロールすることにより、過渡応答初期の応答低減効果を大きく高めることができることに特徴を有し、そして、バネに予め“うなり”を考慮した初期変位(プレストレス)を与えておき、地震外力の入力の途中の適切な時刻に重錘を解放するという簡易な機構を用いることで、従来の制振建築物に設けたTMDに比べてより高い制振効果を奏する建物のTMD制振システムを提供するものである。 FIG. 1 compares the frequency response curves when the structure is a single body and when one TMD is attached to the structure. As shown in FIG. 1, by attaching one TMD, two vibration modes of A mode and B mode are generated with a small frequency difference on both sides of the natural frequency of the vibration mode when the structure is a single body. . When two TMDs are attached, three vibration modes are generated. These two vibration modes of the A mode and the B mode are superposed on the response time history, thereby generating a “beat”. The present invention uses the region where the amplitude of the envelope gradually decreases during the “beat” cycle, and controls the time when the amplitude decreases by the magnitude of the initial displacement of the TMD, thereby reducing the initial response of the transient response. It has the feature that the effect can be greatly enhanced, and the spring is given an initial displacement (pre-stress) in consideration of “beat” in advance, and the weight is released at an appropriate time during the input of the earthquake external force The present invention provides a TMD damping system for a building that exhibits a higher damping effect than a TMD provided in a conventional damping structure by using a simple mechanism.

本発明の請求項2に係る建物の初期変位付与型TMD制振システムは、請求項1において、前記初期変位が、うなりの包絡線の位相変化の大きさに係わる係数αの大きさで分けて、次の2つの近似式を用いて設定されることを特徴としている。

Figure 2011012427
ただし、y0は初期変位(m)、ωaは制振建物とTMDの固有円振動数の平均値、x0はトリガーを解放する閾値として設定した制振建物の応答速度である。式中の(−)は制振建物の振動方向と逆の向き(TMDの振幅が大きくなる向き)に初期変位y0を与えることを示す。初期変位の単位はm、速度の単位はm/secである。 The building initial displacement imparting type TMD vibration control system according to claim 2 of the present invention is the building according to claim 1, wherein the initial displacement is divided by the coefficient α relating to the magnitude of the phase change of the beat envelope. These are set using the following two approximate expressions.
Figure 2011012427
However, y 0 is the initial displacement (m), ω a is the average value of the natural circular frequencies of the damping building and TMD, and x 0 is the response speed of the damping building set as a threshold for releasing the trigger. (-) In the equation indicates that the initial displacement y 0 is applied in the direction opposite to the vibration direction of the damping building (the direction in which the amplitude of TMD increases). The unit of initial displacement is m, and the unit of velocity is m / sec.

上記構成によれば、うなりの包絡線の位相変化の大きさに係わる係数αの大きさで分けた式(1)を用いることにより、予めTMDのバネを所定長さ伸縮させる初期変位を容易に設定できる。 According to the above configuration, the initial displacement for expanding and contracting the TMD spring in advance by a predetermined length can be easily performed by using the expression (1) divided by the magnitude of the coefficient α related to the magnitude of the phase change of the beat envelope. Can be set.

本発明の請求項3に係る建物の初期変位付与型TMD制振システムは、請求項1乃至2において、前記トリガー装置が、地震時の振動を検知する地震感知装置からの信号を受けて、地震時にトリガー装置のロック状態を解除する制御装置を備えていることを特徴としている。 According to a third aspect of the present invention, there is provided an initial displacement imparting type TMD vibration control system according to a first aspect of the present invention, wherein the trigger device receives a signal from an earthquake detection device that detects vibration during an earthquake, It is characterized by a control device that sometimes releases the locked state of the trigger device.

上記構成によれば、前記トリガー装置が、地震時の振動を検知する地震感知装置からの信号を受けて、地震時にトリガー装置のロック状態を解除するので、地震時の振動の大きさに応じて、任意にトリガー装置のロック状態を解除するように調整できるだけでなく、地震発生時から任意の時間経過後にトリガー装置のロック状態を解除するように調整可能となる。 According to the above configuration, the trigger device receives a signal from the earthquake sensing device that detects the vibration at the time of the earthquake and releases the locked state of the trigger device at the time of the earthquake, so according to the magnitude of the vibration at the time of the earthquake. The trigger device can be adjusted not only to be unlocked but also to be unlocked after an arbitrary time has elapsed since the occurrence of the earthquake.

本発明の請求項4に係る建物の初期変位付与型TMD制振システムは、請求項1乃至3において、建築物内に前記制振装置(TMD)とトリガー装置を具備する初期変位付与型TMD制振システムが少なくとも2つ以上設けられていることを特徴としている。 According to a fourth aspect of the present invention, there is provided an initial displacement imparting type TMD vibration control system according to the first aspect, wherein the initial displacement imparting type TMD control system includes the vibration damping device (TMD) and the trigger device in a building. It is characterized in that at least two vibration systems are provided.

上記構成によれば、建築物内に前記制振装置(TMD)とトリガー装置を具備する初期変位付与型TMD制振システムが少なくとも2つ設けられるので、例えば、ビル等の多層式骨組構造の場合には、異なる層に分散して設けて各層毎の制振制御を可能とするのみならず、建築物内に設置した複数の初期変位付与型TMD制振システムの各トリガー装置の解放時期を調整することによって、本震に続いてやってくる複数回の余震に対しても対処可能となる。この場合、前記トリガー装置を、地震時の振動を検知する地震感知装置からの信号を受けて、地震時にトリガー装置のロック状態を解除するようにすれば、その制御も、もっと確実にできる。 According to the above configuration, since at least two initial displacement imparting TMD vibration control systems including the vibration control device (TMD) and the trigger device are provided in the building, for example, in the case of a multi-layered frame structure such as a building In addition to being distributed in different layers to enable vibration control for each layer, adjust the release timing of each trigger device of multiple initial displacement imparted TMD vibration control systems installed in the building By doing so, it is possible to cope with multiple aftershocks that come after the main shock. In this case, if the trigger device receives a signal from an earthquake sensing device that detects vibration during an earthquake and releases the locked state of the trigger device during an earthquake, the control can be performed more reliably.

本発明の建物の初期変位付与型TMD制振システムは、上記構成としたので、単にTMDのバネに予め初期変位を与えることによる減衰効果の向上を狙ったものではなく、建築物へのTMDの付加に起因して、固有振動数の近接した複数の振動モードが重畳することにより生じる“うなり”の包絡線の位相変化を利用して設定した初期変位を与えるものであることから、安価で取り付け容易な制振効果が高い建築物のTMD制振装置を提供できる。 Since the initial displacement imparting type TMD vibration control system of the building of the present invention has the above-described configuration, it is not intended to improve the damping effect by simply applying the initial displacement to the TMD spring in advance, but to the TMD to the building. Due to the addition, the initial displacement set using the phase change of the “beat” envelope generated by the superposition of multiple vibration modes with close natural frequencies is attached, so it is inexpensive to install. It is possible to provide a TMD vibration control device for a building having an easy and high vibration suppression effect.

構造物単体の場合と、構造物にTMDを取り付けた場合における振動数応答曲線の比較を示した概念図である。It is the conceptual diagram which showed the comparison of the frequency response curve in the case of a structure single-piece | unit, and the case where TMD is attached to a structure. 制振建物の構成を示した説明図である。It is explanatory drawing which showed the structure of the damping building. 制振装置の初期変位の与え方を示した説明図である。It is explanatory drawing which showed how to give the initial displacement of a damping device. 係数αとTMD初期変位の関係を示した説明図である。It is explanatory drawing which showed the relationship between coefficient (alpha) and TMD initial displacement. 初期変位付与型TMDの制御フローを示した説明図である。It is explanatory drawing which showed the control flow of initial displacement provision type | mold TMD. TMDを数個に分割する方法を示した説明図である。It is explanatory drawing which showed the method of dividing | segmenting TMD into several pieces. 分割したTMDを空間に分散式に配置する方法を示した説明図である。It is explanatory drawing which showed the method of arrange | positioning the divided | segmented TMD in the space | distribution type in space. TMDを2個に分割した場合の制御フローを示した説明図である。It is explanatory drawing which showed the control flow at the time of dividing | segmenting TMD into two. モーターを用いたTMD装置の構成を示した説明図である。It is explanatory drawing which showed the structure of the TMD apparatus using a motor. モーターを用いた場合の制御フローを示した説明図である。It is explanatory drawing which showed the control flow at the time of using a motor.

TMDの弱点である過渡応答初期における振動低減効果の向上を図るという目的を、バネに予め初期変位(プレストレス)を与えておき、地震入力の適切な時刻に重錘を解放するという簡易な機構を用いることにより実現した。 A simple mechanism that applies an initial displacement (pre-stress) to the spring in advance and releases the weight at an appropriate time of the earthquake input with the aim of improving the vibration reduction effect in the initial transient response, which is a weak point of TMD. It was realized by using.

図2は初期変位付与型TMDが設置された制振建物の構成を示したものである。初期変位付与型TMDの装置は、重錘1、バネ2、ダンパー3、トリガー装置4で構成される。バネ2とダンパー3は制振建物を支点とし、他端に重錘1が接続されている。重錘1の重さは建物重量の1〜2%程度である。バネ2の固有円振動数ωTおよびダンパー3の減衰比ξTは、一般的に用いられている調和地盤振動に対する最適化の計算式である式(3)、式(4)、式(5)で計算される。地震が発生して制振建物の振動が始まると、制振建物内に設置された地震センサー5により制振建物の応答を観測して制御装置6に入力される。地震センサー5は設計時に実施した解析の結果得られた建物内で最も応答が大きいと予想される箇所に設置するか、制振建物内の数ヶ所に分散式に設置する。制御装置6で制振建物の応答速度を出力する。地震センサー5を数ヶ所に設置する場合は、数ヶ所の応答速度の最大値または平均値を求めて制振建物の応答速度とする。制振建物の応答速度がある閾値以下のときはトリガー装置4はロックされた状態にあり制振装置は作動しない。設計時に設定した応答速度の閾値を超えたときにトリガー装置4のロックが解除されて重錘1が解放されて制振装置が作動し、制振建物の応答が制御される。なお、本実施例では、トリガー装置4のロック解除が、地震センサー5及び制御装置6で制御される構成となっているが、これを、地震センサー5及び制御装置6を用いずに、トリガー装置4を地震の負荷により破断する材料で形成して、当該地震による負荷がトリガー装置4に作用したときトリガー装置4が破断してロックが解除され、次いで重錘1が解放されて制振装置が作動する構成にしてもよい。 FIG. 2 shows a structure of a vibration control building where the initial displacement imparting type TMD is installed. The device of the initial displacement imparting type TMD includes a weight 1, a spring 2, a damper 3, and a trigger device 4. The spring 2 and the damper 3 have a vibration control building as a fulcrum, and a weight 1 is connected to the other end. The weight 1 is about 1-2% of the building weight. The natural circular frequency ω T of the spring 2 and the damping ratio ξ T of the damper 3 are formulas (3), (4), and (5) that are calculation formulas for optimization with respect to generally used harmonic ground vibration. ). When an earthquake occurs and the vibration of the damping building starts, the response of the damping building is observed by the earthquake sensor 5 installed in the damping building and input to the control device 6. The seismic sensor 5 is installed in a place where the response is expected to be greatest in the building obtained as a result of the analysis performed at the time of design, or is installed in a distributed manner in several places in the damping building. The control device 6 outputs the response speed of the damping building. When the seismic sensor 5 is installed at several places, the maximum or average value of the response speeds at several places is obtained and used as the response speed of the damping building. When the response speed of the damping building is below a certain threshold, the trigger device 4 is locked and the damping device does not operate. When the response speed threshold set at the time of design is exceeded, the trigger device 4 is unlocked, the weight 1 is released, the vibration control device is activated, and the response of the vibration control building is controlled. In this embodiment, the unlocking of the trigger device 4 is controlled by the seismic sensor 5 and the control device 6, but this is performed without using the seismic sensor 5 and the control device 6. 4 is made of a material that breaks due to an earthquake load, and when the load due to the earthquake acts on the trigger device 4, the trigger device 4 is broken and unlocked, and then the weight 1 is released and the vibration damping device is released. It may be configured to operate.

Figure 2011012427
ここで、ωsは制振建物の制御モードにおける固有円振動数、μは重錘1の質量比である。質量比μは重錘1の質量mの制振建物の制御モードにおける等価質量Mに対する比である。
Figure 2011012427
Here, ω s is the natural circular frequency in the control mode of the damping building, and μ is the mass ratio of the weight 1. The mass ratio μ is the ratio of the mass m of the weight 1 to the equivalent mass M in the control mode of the damping building.

制振装置の重錘1は、地震の無い平常時は図3に示すようにバネの伸縮が無い状態7から所定の長さにバネ2が伸縮されて初期変位y0が付与された状態8にあり、トリガー装置4でロックされている。 Weight 1 of the damping device, the state when no earthquake normal is spring 2 is stretchable from a state 7 stretching no spring to a predetermined length as shown in FIG. 3 the initial displacement y 0 granted 8 And is locked by the trigger device 4.

初期変位y0は、構造物にTMDを組み込んだことにより生じる2つの振動モードが応答の時刻歴で重畳する結果生じる“うなり”の包絡線の位相変化の大きさに係わる係数αを用いて設定する。αを大きくすると“うなり”の包絡線の振幅が小さい領域が時刻歴の前方に移動することにより、トリガーを解放した直後の応答制御効果は非常に優れるが、後期の応答は逆に大きくなる。αを小さくすると、トリガーを解放した直後の応答制御効果はαが大きい場合に比べて若干劣るものの、時刻歴全体に亘る応答はよく制御される。通常はα=0.2〜1.0の間に設定する。図4に建築物に設置されるTMDの一般的な質量比である2.0%のときの係数αと(ωa・y0/x0)の関係を示す。ωaは制振建物とTMDの固有円振動数の平均値、x0はトリガーを解放する閾値として設定した制振建物の応答速度である。実用上は図4を線形で近似した式を用いて計算するものとし、初期変位y0を“うなり”の包絡線の位相変化の大きさに係わる係数αの大きさで分けて、以下の2種類の式(1)又は式(2)を用いて設定する。

Figure 2011012427
ωaは制振建物とTMDの固有円振動数の平均値、x0はトリガーを解放する閾値として設定した制振建物の応答速度である。式中の(−)は制振建物の振動方向と逆の向き(TMDの振幅が大きくなる向き)に初期変位y0を与えることを示す。初期変位の単位はm、速度の単位はm/secである。 The initial displacement y 0 is set using a coefficient α related to the magnitude of the phase change of the “beat” envelope resulting from the superposition of the two vibration modes generated by incorporating TMD into the structure in response time history. To do. When α is increased, the region where the amplitude of the envelope of “growing” is small moves to the front of the time history, so that the response control effect immediately after releasing the trigger is very good, but the response in the latter period becomes larger. When α is small, the response control effect immediately after releasing the trigger is slightly inferior to that when α is large, but the response over the entire time history is well controlled. Normally, α is set between 0.2 and 1.0. FIG. 4 shows the relationship between the coefficient α and (ω a · y 0 / x 0 ) at 2.0%, which is a general mass ratio of TMD installed in a building. ω a is the average value of the natural circular frequencies of the damping building and the TMD, and x 0 is the response speed of the damping building set as a threshold for releasing the trigger. Practically, FIG. 4 is calculated using a linear approximation, and the initial displacement y 0 is divided by the coefficient α related to the magnitude of the phase change of the “beat” envelope, and the following 2 It sets using the type | formula (1) or (2).
Figure 2011012427
ω a is the average value of the natural circular frequencies of the damping building and the TMD, and x 0 is the response speed of the damping building set as a threshold for releasing the trigger. (-) In the equation indicates that the initial displacement y 0 is applied in the direction opposite to the vibration direction of the damping building (the direction in which the amplitude of TMD increases). The unit of initial displacement is m, and the unit of velocity is m / sec.

図5に本発明の初期変位付与型TMDの制御フローを示す。小さい地震動のように制振建物の応答速度が小さい場合にはトリガーは解放されずに維持された状態にあり、制振装置は作動しない。大地震を受けた場合のように、制振建物の応答速度が設計時に設定した閾値であるトリガー4を解除する制御目標速度を超えた場合は、時刻歴における応答速度のピーク時点でトリガー4を解放して制振装置を作動させる。 FIG. 5 shows a control flow of the initial displacement imparting type TMD of the present invention. When the response speed of the damping building is small, such as a small earthquake motion, the trigger is maintained without being released, and the damping device does not operate. When the response speed of the vibration-damped building exceeds the control target speed for releasing the trigger 4, which is the threshold set at the time of design, as in the case of a large earthquake, trigger 4 is set at the peak response speed in the time history. Release and activate the damping device.

継続時間の長い地震動を受けた場合のように、制振建物を加力時間の全体に亘って1回の初期変位の解放のみで制振建物の応答を完全に制御することが難しい場合には、2回またはそれ以上の複数回の初期変位の付与と解放の動作を行う。 When it is difficult to completely control the response of the damping building by releasing the initial displacement only once over the entire loading time, such as when receiving earthquake motion with a long duration. The operation of giving and releasing the initial displacement is performed two or more times.

複数回の初期変位の解放を行うための手段として、TMDを数個に分割する方法がある。図6に示すように、初期変位を与えた数個の小型のTMDを用意し、制振建物がトリガー装置4の閾値である制御目標速度に達した時点で、あらかじめ設定した順番で順次小型のTMDを1個ずつ解放する。 As a means for releasing the initial displacement a plurality of times, there is a method of dividing the TMD into several pieces. As shown in FIG. 6, several small TMDs having initial displacements are prepared, and when the damping building reaches a control target speed that is a threshold value of the trigger device 4, the small size is sequentially reduced in a preset order. Release one TMD at a time.

TMDは図7に示すように空間に分散式に配置してもよい。ビル等の重層式骨組構造の場合は同一階ではなく、異なる階に分散式に配置してもよい。 The TMDs may be arranged in a distributed manner in the space as shown in FIG. In the case of a multi-layered frame structure such as a building, it may be arranged in a distributed manner not on the same floor but on different floors.

図8にTMDを2個に分割した場合の制御フローを示す。 FIG. 8 shows a control flow when the TMD is divided into two.

他の実施例Other examples

複数回の初期変位の解放を行うための手段として、図9に示すように、重錘と支点の間にモーター9とワイヤー10を取り付けて、モーター9でバネを縮めて重錘1に初期変位を与えたロック状態と、モーター9のロックを解除した状態を繰り返す方法がある。本方式はモーターの動力源が必要であるが、初期変位の解放は何回でも実行することが可能である。 As a means for releasing the initial displacement a plurality of times, as shown in FIG. 9, a motor 9 and a wire 10 are attached between the weight and the fulcrum, and the spring is contracted by the motor 9 so that the initial displacement is applied to the weight 1. There is a method of repeating a locked state in which the motor 9 is locked and a state in which the motor 9 is unlocked. This method requires a motor power source, but the initial displacement can be released any number of times.

重錘1を解放してから所定の初期変位の位置まで重錘1を移動するためにはモーターの作業時間が必要となる。そこでTMDのロックを解除してからある設定時間Δtが経過した時点で重錘1を一度ロックし、制振建物がトリガー4の閾値となる制御目標速度に再び到達するまでの時間間隔をモーターの作業時間とし、構造物が制御目標速度に到達後に重錘1を再び解放する。Δtは初期変位の無い一般的なTMDよりも初期変位付与型TMDの制振効果が高い時間である。TMDの質量比μが2.0%で、係数αが1.0のとき、Δtは1.31秒に設定する。図10に本方式の制御フローを示す。 In order to move the weight 1 to the position of the predetermined initial displacement after releasing the weight 1, a working time of the motor is required. Therefore, when the set time Δt has elapsed after the TMD is unlocked, the weight 1 is locked once, and the time interval until the damping building reaches the control target speed that is the threshold value of the trigger 4 again is set to the time interval of the motor. The working time is set, and the weight 1 is released again after the structure reaches the control target speed. Δt is a time during which the damping effect of the initial displacement imparting TMD is higher than that of a general TMD having no initial displacement. When the TMD mass ratio μ is 2.0% and the coefficient α is 1.0, Δt is set to 1.31 seconds. FIG. 10 shows a control flow of this method.

制振効果が高く安価で取り付けが容易な制振装置を提供できることから、高層建築物や戸建て住宅などの地震に対する耐震補強、高層建築物での強風に対する制振補強全般への活用、さらに近年苦情が多発している大スパン床スラブの環境振動対策としての活用も期待できる。またTMDは支点を必要としないことから設計の自由度が高く、形状が複雑な大スパン屋根構造への適用も有効である。 Since it is possible to provide a vibration control device that has a high vibration control effect and is inexpensive and easy to install, it can be used for seismic reinforcement against earthquakes in high-rise buildings and detached houses, etc. The use of large-span floor slabs with frequent occurrence as a measure against environmental vibration is also expected. Since TMD does not require a fulcrum, it has a high degree of design freedom and is effective for application to a large span roof structure with a complicated shape.

1 重錘
2 バネ
3 ダンパー
4 トリガー装置
5 地震センサー
6 制御装置
7 初期変位付与前の重錘の位置
8 初期変位付与後の重錘の位置
9 モーター
10 ワイヤー






























DESCRIPTION OF SYMBOLS 1 Weight 2 Spring 3 Damper 4 Trigger device 5 Seismic sensor 6 Control device 7 Weight position before applying initial displacement 8 Weight position after applying initial displacement 9 Motor 10 Wire






























Claims (4)

建築物の屋上又は屋内に設置される制振システムであって該制振システムは、地震時に建物への入力地震動を打ち消す方向に作用する重錘と、該重錘と建物との間に介装されるバネ及びダンパーとから成る制振装置(TMD)と、該制振装置をロック状態に維持し、地震時にロック解除にするトリガー装置を備え、前記TMDのバネは、予め所定長さ伸縮させてTMDの付加により建築物単体のときの振動モードの近傍に生じる固有振動数の近接した複数の振動モードが重畳することにより生じる“うなり”の包絡線の位相変化を利用して設定した初期変位が与えられると共に該初期変位がトリガー装置で維持されており、地震時にロック状態が解除されて該初期変位が解放されることを特徴とする建物の初期変位付与型TMD制振システム A vibration damping system installed on the roof or indoors of a building, wherein the vibration damping system includes a weight acting in a direction to cancel an input ground motion to the building at the time of an earthquake, and an interposed between the weight and the building. A damping device (TMD) comprising a spring and a damper, and a trigger device for maintaining the damping device in a locked state and releasing the lock in the event of an earthquake. The initial displacement set by using the phase change of the “beat” envelope generated by the superposition of multiple vibration modes close to the natural frequency generated in the vicinity of the vibration mode of a single building due to the addition of TMD And the initial displacement is maintained by a trigger device, and the initial displacement is released by releasing the initial displacement in the event of an earthquake. 前記初期変位は、うなりの包絡線の位相変化の大きさに係わる係数αの大きさで分けて、次の2つの近似式を用いて設定されることを特徴とする請求項1に記載の建築物の初期変位付与型TMD制振システム。
Figure 2011012427
ただし、y0は初期変位(m)、ωaは制振建物とTMDの固有円振動数の平均値、x0はトリガーを解放する閾値として設定した制振建物の応答速度である。式中の(−)は制振建物の振動方向と逆の向き(TMDの振幅が大きくなる向き)に初期変位y0を与えることを示す。初期変位の単位はm、速度の単位はm/secである。
The building according to claim 1, wherein the initial displacement is set using the following two approximate expressions, divided by the magnitude of the coefficient α related to the magnitude of the phase change of the beat envelope. An initial displacement imparting type TMD vibration control system.
Figure 2011012427
However, y 0 is the initial displacement (m), ω a is the average value of the natural circular frequencies of the damping building and TMD, and x 0 is the response speed of the damping building set as a threshold for releasing the trigger. (-) In the equation indicates that the initial displacement y 0 is applied in the direction opposite to the vibration direction of the damping building (the direction in which the amplitude of TMD increases). The unit of initial displacement is m, and the unit of velocity is m / sec.
前記トリガー装置は、地震時の振動を検知する地震感知装置からの信号を受けて、地震時にトリガー装置のロック状態を解除する制御装置を備えていることを特徴とする請求項1乃至2に記載の建築物の初期変位付与型TMD制振システム。 The said trigger apparatus is provided with the control apparatus which receives the signal from the earthquake detection apparatus which detects the vibration at the time of an earthquake, and cancels | releases the locked state of a trigger apparatus at the time of an earthquake. TMD vibration control system with initial displacement for buildings. 建築物内に前記制振装置(TMD)とトリガー装置を具備する初期変位付与型TMD制振システムが少なくとも2つ以上設けられていることを特徴とする請求項1乃至3に記載の建築物の初期変位付与型TMD制振システム。

















The building according to any one of claims 1 to 3, wherein at least two or more initial displacement imparting TMD damping systems including the damping device (TMD) and the trigger device are provided in the building. Initial displacement imparted TMD vibration control system.

















JP2009156526A 2009-07-01 2009-07-01 Initial displacement-imparted tmd vibration control system for building Pending JP2011012427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009156526A JP2011012427A (en) 2009-07-01 2009-07-01 Initial displacement-imparted tmd vibration control system for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009156526A JP2011012427A (en) 2009-07-01 2009-07-01 Initial displacement-imparted tmd vibration control system for building

Publications (1)

Publication Number Publication Date
JP2011012427A true JP2011012427A (en) 2011-01-20

Family

ID=43591593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009156526A Pending JP2011012427A (en) 2009-07-01 2009-07-01 Initial displacement-imparted tmd vibration control system for building

Country Status (1)

Country Link
JP (1) JP2011012427A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106245970B (en) * 2016-08-04 2018-08-10 上海路博减振科技股份有限公司 A kind of self-adapting tuning mass damper
CN112922184A (en) * 2021-03-22 2021-06-08 大连理工大学 TMD vibration damper with working switch
CN115045554A (en) * 2022-06-16 2022-09-13 哈尔滨工业大学 Trigger device for structure passive adaptive control and working method
CN116764921A (en) * 2023-06-28 2023-09-19 安徽建筑大学 Self-vibration system based on conductive liquid crystal elastomer and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106245970B (en) * 2016-08-04 2018-08-10 上海路博减振科技股份有限公司 A kind of self-adapting tuning mass damper
CN112922184A (en) * 2021-03-22 2021-06-08 大连理工大学 TMD vibration damper with working switch
CN115045554A (en) * 2022-06-16 2022-09-13 哈尔滨工业大学 Trigger device for structure passive adaptive control and working method
CN116764921A (en) * 2023-06-28 2023-09-19 安徽建筑大学 Self-vibration system based on conductive liquid crystal elastomer and control method thereof
CN116764921B (en) * 2023-06-28 2024-03-12 安徽建筑大学 Self-vibration system based on conductive liquid crystal elastomer and control method thereof

Similar Documents

Publication Publication Date Title
Panchal et al. Variable friction pendulum system for near‐fault ground motions
Abd-Elhamed et al. Simulation analysis of TMD controlled building subjected to far-and near-fault records considering soil-structure interaction
Elias et al. Wind response control of 76-storey benchmark building with distributed multiple tuned mass dampers
JPH04360976A (en) Vibration controller
Kaur et al. Earthquake response of mid-rise to high-rise buildings with friction dampers
JP2011012427A (en) Initial displacement-imparted tmd vibration control system for building
Wierschem et al. Numerical study of nonlinear energy sinks for seismic response reduction
JP5574330B2 (en) Seismic isolation structure
Hiemenz et al. Seismic response of civil structures utilizing semi-active MR and ER bracing systems
Mitu et al. Passive and semi-active bracing systems for seismic protection: a comparative study
JP2009085362A (en) Vibration isolation mechanism
Chien et al. Analysis of single-degree-of-freedom systems containing multi-functional friction damper
KR100335072B1 (en) Restrained Stroke Active Tuned Mass Damper Device in Structures
Hwang et al. Control of floor vibration and noise using multiple tuned mass dampers
Minagawa et al. Research and development of viscous fluid dampers for improvement of seismic resistance of thermal power plants: part 3—evaluation of vibration control performance
JP2017180842A (en) Intermediate base isolation structure
Liang et al. Analysis of the TMD enhanced base isolation system (BIS) using clutching inerter damper
Ibrahim et al. Vibration Control of A Frames Structure Using Tuned Mass Damper
JP5743432B2 (en) Expansion joint structure
Elias et al. Tuned vibration absorbers for control of tall buildings under wind and earthquake loads
Patel et al. STUDY OF DYNAMIC RESISTANCE OF RC BUILDING BY USING TUNED MASS DAMPERS
Pisal et al. Dynamic response of structure with semi-active tuned mass friction damper
Ras et al. Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System
Tande et al. Optimal seismic response of adjacent coupled buildings with dampers
Jadhav et al. PERFORMANCE ANALYSIS OF HIGH RISE RCC FRAME STRUCTURE USING VARIOUS TYPES OF DAMPERS