JP3803701B2 - Photocatalyst for removing organic halogen compounds contained in water and method for removing organic halogen compounds contained in water - Google Patents

Photocatalyst for removing organic halogen compounds contained in water and method for removing organic halogen compounds contained in water Download PDF

Info

Publication number
JP3803701B2
JP3803701B2 JP17240196A JP17240196A JP3803701B2 JP 3803701 B2 JP3803701 B2 JP 3803701B2 JP 17240196 A JP17240196 A JP 17240196A JP 17240196 A JP17240196 A JP 17240196A JP 3803701 B2 JP3803701 B2 JP 3803701B2
Authority
JP
Japan
Prior art keywords
water
organic halogen
titanium oxide
catalyst
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17240196A
Other languages
Japanese (ja)
Other versions
JPH1015392A (en
Inventor
高義 佐々木
遵 渡辺
利之 森
正一 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Tosoh Corp
Original Assignee
National Institute for Materials Science
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Tosoh Corp filed Critical National Institute for Materials Science
Priority to JP17240196A priority Critical patent/JP3803701B2/en
Publication of JPH1015392A publication Critical patent/JPH1015392A/en
Application granted granted Critical
Publication of JP3803701B2 publication Critical patent/JP3803701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、地下水、河川水、上下水道水、工業廃水などに含まれるトリクロロメタン等の有機ハロゲン化合物を除去することを目的とした酸化チタン光触媒および水中に含まれる有機ハロゲン化合物の除去方法に関するものである。
【0002】
【従来の技術】
水道水の塩素消毒により発生するトリハロメタンや、工業用溶媒として用いられるトリクロロエチレン等の有機ハロゲン化合物は発ガン性を有するため、地下水、河川水、上下水道水、工業廃水などに含まれる有機ハロゲン化合物を水中から除去する必要がある。
【0003】
従来、水中に含まれる有機ハロゲン化合物を除去する方法としては、触媒による方法、微生物による方法、酸化剤による方法、紫外線による光分解法および吸着剤による方法などがある。
【0004】
触媒による方法は、とくにPtやPdなどの貴金属元素を担持したアルミナやシリカなどの触媒を使用して、加熱した触媒層に水分をストリッピングにより気化させたのちのガスなどを導入して、接触酸化分解する方法が一般的である。
【0005】
微生物による方法は、上下水道などでは、微生物により有機ハロゲン化合物を代謝分解して除去する方法である。
【0006】
酸化剤による方法は、オゾンや過酸化水素などの酸化剤を用いて水中の有機ハロゲン化合物を酸化分解して除去する方法である。
【0007】
光分解法としては、波長が250nm以下の紫外線を照射し、有機ハロゲン化合物を光分解する方法である。
【0008】
吸着剤による方法は、吸着剤の吸着力を利用して有機ハロゲン化合物を吸着剤に吸着して回収する方法である。
【0009】
また近年になり、光触媒を取り入れたシステムとして、半導体物質の存在下に光照射により廃水処理をする方法が提案されている(例えば、特開平5−337469号)。
【0010】
【発明が解決しようとする課題】
しかし、触媒による方法では、一度水分を気化させる必要があることから、おのずと処理量が小さく、十分な処理量を確保するためには、水処理装置が大掛かりになる点に問題があった。
【0011】
微生物や酸化剤を使用する方法では有機ハロゲン化合物の種類により分解できる物質とできない物質があり、完全な除去ができず、また、微生物の生存に適した環境を維持することが困難であり、他の方法との組み合わせが必要で、必然的に処理装置が大型化するなどの問題点があった。
【0012】
波長が250nm以下の紫外線を照射して、光分解反応により処理する方法では、使用する紫外線が波長が極めて短いために、処理に際し、多量のエネルギーが必要であり、また、250nm以下の紫外線は人体に有害であり、取扱いに注意が必要であった。
【0013】
吸着剤を使用する場合は吸着剤の再生処理が必要であり、また、あくまで有機ハロゲン化合物を物理的に吸着させるだけであり、本質的に有機ハロゲン化合物を分解除去できないという問題点があった。
【0014】
光触媒を用いる方法では、光触媒の酸化分解力が弱いために有機ハロゲン化合物を含む廃水をあらかじめオゾンや過酸化水素などの酸化剤と接触させる前処理過程が必要であり、迅速な完全分解処理が困難であった。
【0015】
なお、半導体光触媒としては酸化チタンが知られている(A.Fujishima,K.Honda,Nature,238,37(1972))。酸化チタンの形状としては粉末状、薄膜状などが用いられている(藤島ら,用水と廃水,36,(2),6-11(1994))。しかし、従来の酸化チタンでは酸化力が十分に強くないために上記のように酸化剤による前処理過程が必要であるなどの問題点があった。
【0016】
本発明が解決しようとする課題は、上記の従来法の問題点を解消し、例えば地下水、河川水、上下水道水、工業廃水などに含まれる有機ハロゲン化合物を微量の光エネルギーにより効率よく除去する水中に含まれる有機ハロゲン化合物除去用の光触媒および有機ハロゲン化合物の除去方法を提供するものである。
【0017】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、酸化チタンを触媒とし、その触媒形状が薄片状である酸化チタンが、水中に含まれる有機ハロゲン化合物を微量の光によるエネルギーで除去する水中有機ハロゲン化合物除去能力が高く、耐久性にも優れるものであることを見出し、本発明を完成するに至った。
【0018】
すなわち、本発明は、触媒形状が薄片状である酸化チタンからなることを特徴とする水中に含まれる有機ハロゲン化合物除去用の光触媒および薄触媒形状が薄片状である酸化チタンからなる光触媒の存在下、250〜400nmの光を照射することを特徴とする水中に含まれる有機ハロゲン化合物の除去方法に関するものである。
【0019】
【発明の実施の形態】
本発明の水中での有機ハロゲン化合物除去用の光触媒は、触媒形状が薄片状である酸化チタンでなければならない。触媒形状が薄片上である場合、触媒がきれいに分散して、水中に含まれる有機ハロゲン化合物を除去する。薄片状とは厚さが1nmから10μm、好ましくは1nm〜100nmであり、長さが10nmから500μmの薄片である。酸化チタン光触媒の厚さと長さが上記範囲外の場合は、水中に含まれる有機ハロゲン化合物の除去率が低く好ましくない。
【0020】
この薄片状の酸化チタン触媒の結晶相はアナターゼ型でもルチル型、あるいは双方の混合相であっても構わないが、触媒の形状が薄片状であることが必須である。
【0021】
触媒形状が薄片状である酸化チタンは種々の方法により合成できることが知られているが、本発明の光触媒を構成する薄片状の酸化チタンの製造方法は特に限定されるものではない。
【0022】
例えば、層状構造を有するチタン酸化物であるNa2Ti37やK2Ti49や層・トンネル互層物質であるK6Ti1635などを固相法や液相法またはアルコキシド法などにより合成する。これらの層状または層・トンネル互層物質を塩酸などの酸水溶液中または溶融塩中でイオン交換を行うことにより酸型の層状または層・トンネル互層のチタン酸化物を得る。この酸型の層状または層・トンネル互層のチタン酸化物とテンプレート剤であるアルキルアミンとを溶液中で混合し、ホスト層を1枚1枚のレベルまで剥離分散する。得られたゾル溶液を乾燥後、酸化雰囲気中で400℃から1200℃までの温度で焼成することにより、酸化チタンが結晶化し、薄片状の酸化チタンを得ることができる。焼成温度が400℃より低いと層間のアルキルアミンが分解除去することができず、薄片状の酸化チタンが得ることができない。また、焼成温度が1200℃より高いと一度生成した薄片状の酸化チタンがさらに反応、焼結してしまい、薄片の状態を維持することができないので好ましくない。
【0023】
また、この薄片状の酸化チタンにPtなどの金属やCuなどの金属酸化物を担持したり、混合したりして使用することもできる。
【0024】
また、この触媒は薄片状の鱗片末として用いる他に、多孔質の触媒担体や石英ガラス管または石英ガラス基板上などにこの薄片状の酸化チタンをコーティングして酸化チタン膜として用いることができる。膜として用いる場合は、薄片状の酸化チタンを分散させた水溶液または非水溶液に多孔質の触媒担体や石英ガラス管または石英ガラス基板を漬けた後、焼成する方法などが取られる。
【0025】
本発明の光触媒を用いて、水中に含まれる有機ハロゲン化合物を除去するには、触媒形状が薄片状の酸化チタンからなる光触媒の存在下、250〜400nmの光を照射し、有機ハロゲン化合物を含む水と本発明の薄片状の酸化チタン光触媒を接触させることにより行うことができる。
【0026】
水中の有機ハロゲン化合物を除去するために照射される250〜400nmの光としては、太陽光や360nm付近の長い紫外線が挙げられるが、360nm付近の紫外線が酸化チタンの光の吸収率が急激に増加するので好ましい。
【0027】
本発明が対象とする有機ハロゲン化合物は例えば、卜リハロメタン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン、クロロフェノール、ポリ塩化ビフェニールなどである。有機ハロゲン化合物の濃度については特に制限はないが、水中での含有量が100ppm以下の領域で本発明の光触媒を使用することが実用上好ましい。
【0028】
【実施例】
以下、本発明を実施例および比較例により、更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0029】
実施例1
炭酸セシウム(Cs2CO3)と酸化チタン(TiO2)を1:5.3のモル比に混合し、800℃で24時間焼成して、チタン酸セシウム(CsxTi2-x/44)を合成した。チタン酸セシウムの粉末を1規定の塩酸水溶液中で36時間攪拌後、ろ過、風乾して層状酸化チタン酸(HxTi2-x/44・nH2O)を得た。このチタン酸粉末1gをテトラブチルアンモニウム水酸化物水溶液200cm3に加えシェーカーで150rpm程度の振盪を行うことによリチタニアゾルを得た。このゾルを冷凍庫中(−30℃)で凍結せしめ、真空凍結乾燥を行うと綿状のゲルが生成した。次に得られたゲルを500℃で焼成することにより層状チタン酸の層間に存在した水やアミンが脱離し、層状構造が崩壊し、薄片状(平均厚さ100nm、平均長さ100μm)の酸化チタンを得た。
【0030】
この触媒のX線回折結果を図1に、また、走査電子顕微鏡(SEM)の測定結果を図2に示す。X線回折結果からこの触媒の結晶系はアナターゼ型であった。触媒活性評価試験はバッチ式の反応装置を用いて行った。10ppmの卜リクロロエチレンを含んだ蒸留水1リットル中に触媒を1g入れ、攪拌しながら15W、360nmの紫外線を照射し、一定時間ごとの水溶液中の卜リクロロエチレンの濃度を測定した。ただし、水中での有機ハロゲン化合物除去活性は次式で示されるように有機ハロゲン化合物除去率として算出した。
【0031】
有機ハロゲン化合物除去率(%)=[(TCE0−TCEt)/TCE0]×100
ここでTCE0:卜リクロロエチレンの初期濃度(ppm)
TCEt:一定時間光照射後の卜リクロロエチレン濃度(ppm)
トリクロロエチレンの濃度はPIDガスクロマトグラフにより測定した。
【0032】
測定結果を表1に示す。
【0033】
実施例2
炭酸セシウム(Cs2CO3)と酸化チタン(TiO2)を1:5.3のモル比に混合し、800℃で24時間焼成することにより、チタン酸セシウム(CsxTi2-x/44)を合成した。チタン酸セシウムの粉末を1規定の塩酸水溶液中で36時間攪拌後、ろ過、風乾して層状酸化チタン酸(HxTi2-x/44・nH2O)を得た。このチタン酸粉末1gをテトラブチルアンモニウム水酸化物水溶液200cm3に加えシェーカーで150rpm程度の振盪を行うことによリチタニアゾルを得た。このゾルを冷凍庫中(−30℃)で凍結せしめ、真空凍結乾燥を行うと綿状のゲルが生成した。次に得られたゲルを700℃で焼成することにより層状チタン酸の層間に存在した水やアミンが脱離し、層状構造が崩壊し、薄片状(平均厚さ100nm、平均長さ100μm)の酸化チタンを得た。
【0034】
この触媒のX線回折結果を図1に、また走査電子顕微鏡(SEM)の測定結果を図2に示す。X線回折結果からこの触媒はアナターゼとルチル型の混相であった。
【0035】
触媒の活性の評価は実施例1に隼拠して行った。結果を表1に示す。
【0036】
実施例3
炭酸セシウム(Cs2CO3)と酸化チタン(TiO2)を1:5.3のモル比に混合し、800℃で24時間焼成することにより、チタン酸セシウム(CsXTi2-X/44)を合成した。チタン酸セシウムの粉末を1規定の塩酸水溶液中で36時間攪拌後、ろ過、風乾して層状酸化チタン酸(HxTi2-x/44・nH2O)を得た。このチタン酸粉末1gをテトラブチルアンモニウム水酸化物水溶液200cm3に加えシェーカーで150rpm程度の振握を行うことによリチタニアゾルを得る。このゾルを冷凍庫中(−30℃)で凍結せしめ、真空凍結乾燥を行うと綿状のゲルが生成した。次に得られたゲルを900℃で焼成することにより層状チタン酸の層間に存在した水やアミンが脱離し、層状構造が崩壊し、薄片状(平均厚さ100nm、平均長さ100μm)の酸化チタンを得た。
【0037】
この触媒のX線回折結果を図1に、また走査電子顕微鏡(SEM)の測定結果を図2に示す。X線回折結果からこの触媒の結晶系はルチル型であった。
【0038】
触媒の活性の評価は実施例1に準拠して行った。結果を表1に示す。
【0039】
比較例1
ブランクテストとして触媒を何も使用しないで、実施例1に準拠して活性評価を行い、360nmの紫外線の照射だけでは卜リクロロエチレンがほとんど分解しないことを確認した。
【0040】
比較例2
酸化チタンとして触媒学会参照触媒である酸化チタン、JRC―TIO−2を使用した。この触媒はアナターゼ型の結晶粉末で、比表面積は18m2/gであった。触媒の活性評価は実施例1に準拠して行った。結果を表1に示す。
【0041】
比較例3
酸化チタンとして触媒学会参照触媒である酸化チタン、JRC一TIO―3を使用した。この触媒はルチル型の結晶粉末で、比表面積は40m2/gであった。触媒の活性評価は実施例1に準拠して行った。結果を表1に示す。
【0042】
【表1】

Figure 0003803701
【0043】
表1に示した結果から明らかなように、実施例1〜3に示した本発明の薄片状の酸化チタン光触媒は、比較例2および3に示した従来の粉末状結晶の酸化チタン光触媒に比べて、水中に含まれる有機ハロゲン化合物の除去率が高いことが分かる。
【0044】
【発明の効果】
本発明の酸化チタン光触媒は、従来の酸化チタンにない高い有機ハロゲン化合物除去率を示し、効率的に有機ハロゲン化合物の除去を行うことができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の光触媒のX線回折図。
【図2】本発明の光触媒の走査電子顕微鏡写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a titanium oxide photocatalyst for removing organic halogen compounds such as trichloromethane contained in, for example, groundwater, river water, water and sewage water, industrial wastewater, and the like, and a method for removing organic halogen compounds contained in water It is about.
[0002]
[Prior art]
Organic halogen compounds such as trihalomethane generated by chlorine disinfection of tap water and trichlorethylene used as industrial solvents are carcinogenic, so organic halogen compounds contained in groundwater, river water, water and sewage water, industrial wastewater, etc. Need to be removed from the water.
[0003]
Conventionally, methods for removing organic halogen compounds contained in water include a method using a catalyst, a method using a microorganism, a method using an oxidizing agent, a photodecomposition method using ultraviolet rays, and a method using an adsorbent.
[0004]
The catalyst method uses a catalyst such as alumina or silica carrying a precious metal element such as Pt or Pd, and introduces a gas after vaporizing water by stripping the heated catalyst layer. A method of oxidative decomposition is common.
[0005]
The method using microorganisms is a method in which organic halogen compounds are metabolized and removed by microorganisms in water and sewage systems.
[0006]
The method using an oxidizing agent is a method in which an organic halogen compound in water is removed by oxidative decomposition using an oxidizing agent such as ozone or hydrogen peroxide.
[0007]
The photolysis method is a method in which an organic halogen compound is photolyzed by irradiating with an ultraviolet ray having a wavelength of 250 nm or less.
[0008]
The method using an adsorbent is a method in which an organic halogen compound is adsorbed on an adsorbent and recovered using the adsorbing power of the adsorbent.
[0009]
Recently, as a system incorporating a photocatalyst, a method of treating wastewater by light irradiation in the presence of a semiconductor material has been proposed (for example, JP-A-5-337469).
[0010]
[Problems to be solved by the invention]
However, in the method using a catalyst, since it is necessary to vaporize the water once, there is a problem in that the amount of water treatment is naturally large in order to ensure a small amount of treatment and a sufficient amount of treatment.
[0011]
There are substances that can be decomposed and cannot be decomposed depending on the type of organohalogen compound in the method using microorganisms and oxidizing agents, and cannot be completely removed, and it is difficult to maintain an environment suitable for the survival of microorganisms. In combination with this method, there is a problem that the processing apparatus is inevitably enlarged.
[0012]
In the method of irradiating ultraviolet rays having a wavelength of 250 nm or less and treating by photolysis reaction, since the ultraviolet rays to be used are extremely short, a large amount of energy is required for the treatment, and ultraviolet rays having a wavelength of 250 nm or less It was harmful to handling, and handling was necessary.
[0013]
When the adsorbent is used, it is necessary to regenerate the adsorbent, and only the organic halogen compound is physically adsorbed, and the organic halogen compound cannot be essentially decomposed and removed.
[0014]
In the method using photocatalyst, since the oxidative decomposition ability of the photocatalyst is weak, a pretreatment process in which wastewater containing an organic halogen compound is contacted with an oxidizing agent such as ozone or hydrogen peroxide in advance is necessary, and rapid complete decomposition treatment is difficult. Met.
[0015]
In addition, titanium oxide is known as a semiconductor photocatalyst (A. Fujishima, K. Honda, Nature, 238, 37 (1972)). As the shape of titanium oxide, powder, thin film, etc. are used (Fujishima et al., Water and wastewater, 36, (2), 6-11 (1994)). However, the conventional titanium oxide has a problem that the oxidizing power is not sufficiently strong, so that a pretreatment process with an oxidizing agent is necessary as described above.
[0016]
The problem to be solved by the present invention is to solve the problems of the above-mentioned conventional methods, and efficiently remove organic halogen compounds contained in, for example, groundwater, river water, water and sewage water, industrial wastewater, etc. with a small amount of light energy. A photocatalyst for removing an organic halogen compound contained in water and a method for removing the organic halogen compound are provided.
[0017]
[Means for Solving the Problems]
As a result of intensive research to solve the above problems, the present inventors have made titanium oxide as a catalyst, and the titanium oxide that has a flake shape of the catalyst is capable of converting an organic halogen compound contained in water into a small amount of light energy. The present inventors have found that the organic halogen compound removal ability in water is high and the durability is excellent, and the present invention has been completed.
[0018]
That is, the present invention is the presence of a photocatalyst for removing an organic halogen compound contained in water and a photocatalyst comprising a titanium oxide having a thin flake shape, characterized by comprising a titanium oxide having a flake-like catalyst shape. The present invention relates to a method for removing an organic halogen compound contained in water, which is characterized by irradiating light of 250 to 400 nm.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The photocatalyst for removing an organic halogen compound in water of the present invention must be a titanium oxide having a flake-like catalyst shape. When the catalyst shape is on a flake, the catalyst is finely dispersed to remove organic halogen compounds contained in water. The flaky shape is a thin piece having a thickness of 1 nm to 10 μm, preferably 1 nm to 100 nm, and a length of 10 nm to 500 μm. When the thickness and length of the titanium oxide photocatalyst are outside the above ranges, the removal rate of the organic halogen compound contained in the water is low, which is not preferable.
[0020]
The crystal phase of the flaky titanium oxide catalyst may be anatase type, rutile type, or a mixed phase of both, but it is essential that the shape of the catalyst is flaky.
[0021]
Although it is known that titanium oxide having a flaky catalyst shape can be synthesized by various methods, the method for producing the flaky titanium oxide constituting the photocatalyst of the present invention is not particularly limited.
[0022]
For example, Na 2 Ti 3 O 7 and K 2 Ti 4 O 9 which are titanium oxides having a layered structure, and K 6 Ti 16 O 35 which is a layer / tunnel alternate layer material are used in a solid phase method, a liquid phase method or an alkoxide method. Synthesize by. These layered or layer-tunnel alternating layers are subjected to ion exchange in an aqueous acid solution such as hydrochloric acid or in a molten salt to obtain an acid-type layered or layer-tunnel alternating layer titanium oxide. The acid-type layered or layer-tunnel alternating layer titanium oxide and the template amine alkylamine are mixed in a solution, and the host layers are peeled and dispersed one by one. The obtained sol solution is dried and then baked at a temperature from 400 ° C. to 1200 ° C. in an oxidizing atmosphere, whereby the titanium oxide is crystallized, and a flaky titanium oxide can be obtained. If the firing temperature is lower than 400 ° C., the alkylamine between layers cannot be decomposed and removed, and flaky titanium oxide cannot be obtained. On the other hand, if the firing temperature is higher than 1200 ° C., the flaky titanium oxide once produced is further reacted and sintered, and the flake state cannot be maintained, which is not preferable.
[0023]
Further, the flaky titanium oxide can be used by supporting or mixing a metal such as Pt or a metal oxide such as Cu.
[0024]
In addition to using the catalyst as a flaky scale powder, the flaky titanium oxide can be coated on a porous catalyst carrier, a quartz glass tube or a quartz glass substrate, and used as a titanium oxide film. When used as a film, a porous catalyst carrier, a quartz glass tube or a quartz glass substrate is immersed in an aqueous solution or non-aqueous solution in which flaky titanium oxide is dispersed, and then fired.
[0025]
In order to remove an organic halogen compound contained in water using the photocatalyst of the present invention, the catalyst is irradiated with light of 250 to 400 nm in the presence of a photocatalyst composed of flaky titanium oxide, and contains an organic halogen compound. It can be performed by bringing water into contact with the flaky titanium oxide photocatalyst of the present invention.
[0026]
Examples of the 250 to 400 nm light irradiated to remove organic halogen compounds in water include sunlight and long ultraviolet light near 360 nm, but ultraviolet light near 360 nm rapidly increases the light absorption rate of titanium oxide. This is preferable.
[0027]
Examples of the organic halogen compound targeted by the present invention include trihalomethane, trichloroethylene, tetrachloroethylene, chlorobenzene, chlorophenol, and polychlorinated biphenyl. Although there is no restriction | limiting in particular about the density | concentration of an organic halogen compound, It is practically preferable to use the photocatalyst of this invention in the area | region whose content in water is 100 ppm or less.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
[0029]
Example 1
Cesium carbonate (Cs 2 CO 3 ) and titanium oxide (TiO 2 ) were mixed at a molar ratio of 1: 5.3, and calcined at 800 ° C. for 24 hours to obtain cesium titanate (Cs x Ti 2-x / 4 O 4 ) was synthesized. After stirring for 36 hours the powder in 1 N hydrochloric acid aqueous solution of cesium titanate, filtered to give the air-dried in a layered titanium oxide acid (H x Ti 2-x / 4 O 4 · nH 2 O). 1 g of this titanic acid powder was added to 200 cm 3 of an aqueous tetrabutylammonium hydroxide solution and shaken at about 150 rpm with a shaker to obtain a lithitania sol. When this sol was frozen in a freezer (−30 ° C.) and vacuum lyophilized, a cotton-like gel was formed. Next, by baking the obtained gel at 500 ° C., water and amine existing between the layers of the layered titanic acid are eliminated, the layered structure is destroyed, and flaky (average thickness 100 nm, average length 100 μm) oxidation Titanium was obtained.
[0030]
The X-ray diffraction result of this catalyst is shown in FIG. 1, and the measurement result of a scanning electron microscope (SEM) is shown in FIG. From the result of X-ray diffraction, the crystal system of this catalyst was anatase type. The catalytic activity evaluation test was conducted using a batch type reactor. 1 g of the catalyst was put in 1 liter of distilled water containing 10 ppm of polychlorethylene, and irradiated with 15 W and 360 nm ultraviolet light while stirring, and the concentration of polychlorethylene in the aqueous solution was measured at regular intervals. However, the organic halogen compound removal activity in water was calculated as the organic halogen compound removal rate as shown by the following formula.
[0031]
Organic halogen compound removal rate (%) = [(TCE 0 −TCE t ) / TCE 0 ] × 100
Where TCE 0 : initial concentration of trichlorethylene (ppm)
TCE t : Polychlorethylene concentration (ppm) after light irradiation for a certain time
The concentration of trichlorethylene was measured by a PID gas chromatograph.
[0032]
The measurement results are shown in Table 1.
[0033]
Example 2
Cesium carbonate (Cs 2 CO 3 ) and titanium oxide (TiO 2 ) were mixed at a molar ratio of 1: 5.3, and calcined at 800 ° C. for 24 hours, whereby cesium titanate (Cs x Ti 2-x / 4 O 4) was synthesized. After stirring for 36 hours the powder in 1 N hydrochloric acid aqueous solution of cesium titanate, filtered to give the air-dried in a layered titanium oxide acid (H x Ti 2-x / 4 O 4 · nH 2 O). 1 g of this titanic acid powder was added to 200 cm 3 of an aqueous tetrabutylammonium hydroxide solution and shaken at about 150 rpm with a shaker to obtain a lithitania sol. When this sol was frozen in a freezer (−30 ° C.) and vacuum lyophilized, a cotton-like gel was formed. Next, by baking the obtained gel at 700 ° C., water and amines existing between the layers of the layered titanic acid are eliminated, the layered structure is destroyed, and flaky (average thickness 100 nm, average length 100 μm) oxidation Titanium was obtained.
[0034]
The X-ray diffraction result of this catalyst is shown in FIG. 1, and the measurement result of a scanning electron microscope (SEM) is shown in FIG. From the X-ray diffraction results, this catalyst was a mixed phase of anatase and rutile type.
[0035]
The activity of the catalyst was evaluated based on Example 1. The results are shown in Table 1.
[0036]
Example 3
Cesium carbonate (Cs 2 CO 3 ) and titanium oxide (TiO 2 ) were mixed at a molar ratio of 1: 5.3 and baked at 800 ° C. for 24 hours, whereby cesium titanate (Cs X Ti 2-X / 4 O 4) was synthesized. After stirring for 36 hours the powder in 1 N hydrochloric acid aqueous solution of cesium titanate, filtered to give the air-dried in a layered titanium oxide acid (H x Ti 2-x / 4 O 4 · nH 2 O). 1 g of this titanic acid powder is added to 200 cm 3 of an aqueous tetrabutylammonium hydroxide solution and shaken at about 150 rpm with a shaker to obtain a lithitania sol. When this sol was frozen in a freezer (−30 ° C.) and vacuum lyophilized, a cotton-like gel was formed. Next, by baking the obtained gel at 900 ° C., water and amine existing between the layers of the layered titanate are eliminated, the layered structure is destroyed, and flaky (average thickness 100 nm, average length 100 μm) oxidation Titanium was obtained.
[0037]
The X-ray diffraction result of this catalyst is shown in FIG. 1, and the measurement result of a scanning electron microscope (SEM) is shown in FIG. From the X-ray diffraction results, the crystal system of this catalyst was rutile type.
[0038]
The activity of the catalyst was evaluated according to Example 1. The results are shown in Table 1.
[0039]
Comparative Example 1
Activity was evaluated according to Example 1 without using any catalyst as a blank test, and it was confirmed that trichloroethylene was hardly decomposed only by irradiation with ultraviolet rays at 360 nm.
[0040]
Comparative Example 2
As titanium oxide, titanium oxide, JRC-TIO-2, which is a reference catalyst of the Catalysis Society of Japan, was used. This catalyst was anatase type crystal powder, and the specific surface area was 18 m 2 / g. The activity evaluation of the catalyst was performed according to Example 1. The results are shown in Table 1.
[0041]
Comparative Example 3
Titanium oxide, JRC I TIO-3, which is a reference catalyst for the Catalysis Society of Japan, was used as titanium oxide. This catalyst was a rutile crystal powder, and the specific surface area was 40 m 2 / g. The activity evaluation of the catalyst was performed according to Example 1. The results are shown in Table 1.
[0042]
[Table 1]
Figure 0003803701
[0043]
As is apparent from the results shown in Table 1, the flaky titanium oxide photocatalysts of the present invention shown in Examples 1 to 3 are compared with the conventional powdery crystalline titanium oxide photocatalysts shown in Comparative Examples 2 and 3. Thus, it can be seen that the removal rate of organic halogen compounds contained in water is high.
[0044]
【The invention's effect】
The titanium oxide photocatalyst of the present invention exhibits a high organic halogen compound removal rate that is not found in conventional titanium oxide, and an effect that the organic halogen compound can be efficiently removed is obtained.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of the photocatalyst of the present invention.
FIG. 2 is a scanning electron micrograph of the photocatalyst of the present invention.

Claims (4)

触媒形状が薄片状である酸化チタンからなることを特徴とする水中に含まれる有機ハロゲン化合物除去用の光触媒。A photocatalyst for removing an organic halogen compound contained in water, characterized by comprising a titanium oxide having a flake-like catalyst shape. 触媒形状が、厚さが1nm〜10μmで、長さが10nm〜500μmの薄片状であることを特徴とする請求項1に記載の水中に含まれる有機ハロゲン化合物除去用の光触媒。2. The photocatalyst for removing an organic halogen compound contained in water according to claim 1, wherein the catalyst has a flake shape having a thickness of 1 nm to 10 [mu] m and a length of 10 nm to 500 [mu] m. 触媒形状が薄片状である酸化チタンからなる光触媒の存在下、250〜400nmの光を照射することを特徴とする水中に含まれる有機ハロゲン化合物の除去方法。A method for removing an organic halogen compound contained in water, which comprises irradiating light having a wavelength of 250 to 400 nm in the presence of a photocatalyst comprising titanium oxide having a flaky catalyst shape. 触媒形状が、厚さが1nm〜10μmで、長さが10nm〜500μmの薄片状であることを特徴とする請求項3に記載の水中に含まれる有機ハロゲン化合物の除去方法。The method for removing an organic halogen compound contained in water according to claim 3, wherein the catalyst has a flake shape having a thickness of 1 nm to 10 µm and a length of 10 nm to 500 µm.
JP17240196A 1996-07-02 1996-07-02 Photocatalyst for removing organic halogen compounds contained in water and method for removing organic halogen compounds contained in water Expired - Fee Related JP3803701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17240196A JP3803701B2 (en) 1996-07-02 1996-07-02 Photocatalyst for removing organic halogen compounds contained in water and method for removing organic halogen compounds contained in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17240196A JP3803701B2 (en) 1996-07-02 1996-07-02 Photocatalyst for removing organic halogen compounds contained in water and method for removing organic halogen compounds contained in water

Publications (2)

Publication Number Publication Date
JPH1015392A JPH1015392A (en) 1998-01-20
JP3803701B2 true JP3803701B2 (en) 2006-08-02

Family

ID=15941272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17240196A Expired - Fee Related JP3803701B2 (en) 1996-07-02 1996-07-02 Photocatalyst for removing organic halogen compounds contained in water and method for removing organic halogen compounds contained in water

Country Status (1)

Country Link
JP (1) JP3803701B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570637B2 (en) * 2007-04-06 2010-10-27 石原産業株式会社 Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same

Also Published As

Publication number Publication date
JPH1015392A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
JP5582545B2 (en) Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
EP0818239B1 (en) Photocatalyst, method of producing the photocatalyst, and photocatalytic reaction method
Addamo et al. Photocatalytic thin films of TiO2 formed by a sol–gel process using titanium tetraisopropoxide as the precursor
JP2008504957A (en) Catalyst material and method for producing the same
JP5150883B2 (en) Carbon nanosheet / titanate nanotube composite, carbon nanosheet / titania nanorod composite, production method thereof and use thereof
JP2007528454A (en) Large surface area ceramic coated fiber
EP1738827A1 (en) Novel photocatalyst and method for producing same
JP4863290B2 (en) Method for producing carbon nanosheet composite, and organic pollutant removal method and remover using composite obtained by the method
JPH11197512A (en) Thin photocatalyst film, photocatalytic reaction method and production of thin photocatalyst film
JP4135907B2 (en) Visible light active photocatalyst particles
JP3803701B2 (en) Photocatalyst for removing organic halogen compounds contained in water and method for removing organic halogen compounds contained in water
KR101817855B1 (en) Photocatalyst for water treatment containing graphene oxide supported with Ag doped zinc oxide, preparation method thereof and using thereof
JP2001259436A (en) Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR
JP2001276615A (en) Titanium oxide powder for photocatalyst
JPH0857323A (en) Catalyst for decomposition of volatile organic halogen compound and production thereof
JP3721430B2 (en) Underwater organochlorine purification catalyst
JP3752552B2 (en) Photocatalyst for removal of organochlorine compounds in water
JPH08252461A (en) Preparation of photocatalyst
JP4858988B2 (en) Method for producing carbon nanosheet composite without firing, and organic pollutant removal method and remover using composite obtained by the method
JP3579709B2 (en) Hollandite-type photocatalyst and method for removing phenol in water using the catalyst
JP4089989B2 (en) Method of treating harmful substances in water with titanium oxide photocatalyst
JP2001246261A (en) Photocatalyst
JP2001269671A (en) Method for fast decomposition and removal of organic chlorine compound by hollandite type photocatalyst
JP3062740B2 (en) Photocatalyst for reductive decomposition and removal of nitric oxide in gas phase and purification method using the catalyst
CN115090304B (en) F-TiO 2-x Preparation method of Pt nano photocatalyst film and application of Pt nano photocatalyst film in air purification

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees