JP3802707B2 - Continuous production equipment line for wire - Google Patents

Continuous production equipment line for wire Download PDF

Info

Publication number
JP3802707B2
JP3802707B2 JP14315699A JP14315699A JP3802707B2 JP 3802707 B2 JP3802707 B2 JP 3802707B2 JP 14315699 A JP14315699 A JP 14315699A JP 14315699 A JP14315699 A JP 14315699A JP 3802707 B2 JP3802707 B2 JP 3802707B2
Authority
JP
Japan
Prior art keywords
wire
rolling
cooling
coil
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14315699A
Other languages
Japanese (ja)
Other versions
JP2000326001A (en
Inventor
鋼治 安達
孝治 田邉
喜一朗 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14315699A priority Critical patent/JP3802707B2/en
Priority to TW089109930A priority patent/TW458819B/en
Priority to US09/744,370 priority patent/US6634073B1/en
Priority to EP00931542A priority patent/EP1125650B1/en
Priority to CNB008009953A priority patent/CN1156348C/en
Priority to DE60035571T priority patent/DE60035571T2/en
Priority to KR10-2001-7000870A priority patent/KR100408489B1/en
Priority to CA002338413A priority patent/CA2338413C/en
Priority to PCT/JP2000/003317 priority patent/WO2000071274A1/en
Publication of JP2000326001A publication Critical patent/JP2000326001A/en
Application granted granted Critical
Publication of JP3802707B2 publication Critical patent/JP3802707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、線材の連続的製造設備列、特に、冷間加工性に優れた機械構造用炭素鋼或いは合金鋼線材の連続的製造設備列に関する。
【0002】
【従来の技術】
一般に、鋼線材の製造に際しては、加熱炉で所定温度に加熱したビレットを熱間圧延工程で所望のサイズに圧延した後、巻取り後、冷却して適宜の熱処理を施してからコイル状に集束し、結束する工程を経る。また、必要に応じてコイル状態で焼鈍等の処理を施し、2次加工工程に送る。このような鋼線材の製造においては、その熱間圧延工程及び熱処理工程について、従来から種々の提案がなされている。
【0003】
例えば、線材の熱間圧延について装置面からみると、特に高速圧延と設備のコンパクト化を図ることができかつ表面疵が少ないという利点を有する、線材の仕上圧延機としてブロックミルが開発されている。該ブロックミルは、8〜10台のロールスタンドを1個のフレーム内にタンデムに近接して配置し、圧延材にねじりを与えることなく圧延することが可能であり、近年多くの圧延ラインで採用されている。
【0004】
また、線材の熱間圧延を材質・組織面で考えると、熱間圧延工程をできるだけ低温、例えば800℃以下に維持し仕上温度も通常圧延よりも低温に仕上げる方法(以下、このような圧延を制御圧延と称する)を採用することで、γ組織の微細化を図ることができ、これを後工程の徐冷と組み合わせることで、パーライト組織の層状セメンタイトを分断、粒状化させることで、鋼線材の軟質化を達成する技術が知られている。しかし、鋼線材の通常圧延では、大体900℃以上の圧延仕上温度となるため、γ組織の微細化は望めず、鋼線材の軟質化を図るためには、オフラインで焼鈍処理を施す必要があった。
【0005】
本発明において採用する圧延機に近い従来例としては、特許第2857279号公報を挙げることができる。この特許公報には、その図1及び図2に、8スタンドの仕上ブロックミルの後面に4スタンドの後仕上ブロックミルを配置し、フリーサイズ圧延や精密圧延を可能とする態様が開示されており、しかも後仕上ブロックミルの入側には冷却装置を設けることも記載されている。
【0006】
一方、熱間圧延後の線材を巻取り後に、一旦非同心円リング状に展開した後、コイル状に集束する過程で、線材に直接熱処理を施す方式が多数提案されている(例えば、ステルモア方式など)。これらのうち、巻取り後の徐冷を目的に集束した線材コイルの状態で処理する従来例としては、実公平4−37898号公報に示すように、巻取り機(レイングコーン)、リング状コイルの搬送路及び保熱炉を、密閉保熱カバーで覆うように構成する手段、或いは特公平7−98977号公報に開示されるように、巻取り後に、通常熱処理ラインと徐冷ラインを切り替え可能にして、次工程コンベアに送るようにした技術が記載されている。
【0007】
【発明が解決しようとする課題】
しかしながら、上述したブロックミルのような仕上圧延機では、8スタンドでの総減面率が85%程度と高く、機械構造用鋼として主に使用されるC:0.4%以上の炭素鋼、合金鋼、ばね鋼、軸受鋼のような加工発熱の大きい硬い材料では、事実上制御圧延は不可能である。また、特許第2857279号公報では、確かに仕上圧延機として4スタンドのブロックミルを設けると共に、その入側に冷却装置を設置しているが、その狙いは結晶粒の異常成長の抑制であり、本発明の主旨とする制御圧延による組織微細化と、後工程の冷却手段と組み合わせてオンラインでの冷間加工性の優れた軟質の鋼線材の製造を目的としたものではない。
【0008】
また、実公平4−37898号公報では、巻取機を密閉カバーで覆った独自の構造となるため、巻取りから徐冷設備までが専用のものが必要となり、既設の線材製造ラインがほとんど利用できず、設備コスト面に問題があり、さらに、特公平7−98977号公報では、コイルでの徐冷処理がポット方式であり、個々の装置でそれぞれ温度制御を行うことが難しく、生産性が低く連続操業には適していない問題がある。加えて、これらの従来の徐冷ラインでは、比較的高い温度 (850℃以上)で徐冷を開始していたため、必然的にライン長が長くなるという不都合もあった。
なお、いずれにしろ従来のいかなる線材圧延・熱処理に関連する技術を検討しても、制御圧延と徐冷処理とを合わせて考慮した例は全く見受けられない。
【0009】
従って以上のことから、冷間加工性に優れた機械構造用炭素鋼或いは合金鋼線材を製造するに際し、1つの連続したラインでブロックミルによる制御圧延手段と徐冷手段とを合理的に組み合わせ、かつ圧延操業と徐冷操作のそれぞれを高レベルで達成し得ると共に、これらを既存のラインに容易に組み込むことができ、低コストで済む連続的製造設備列の実現が強く望まれているのが現状である。
【0010】
本発明は、このような現状に鑑みなされたもので、従来ブロックミルでは困難とされていた制御圧延(低温圧延)を容易に実現でき、かつ、この制御圧延設備とインラインで徐冷設備を効果的に組み合わせることで、効率的な制御圧延・徐冷を行うことが可能な線材の製造設備列を提供することを目的とする。また、本発明の他の目的は、あらゆるサイズの鋼線材の製造が容易にでき、しかも従来2次加工の際に必須とされていた焼鈍処理を省略することができると共に、可及的に短い徐冷ラインで済む製造設備列を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するための本発明請求項1に係る線材の連続的製造設備列は、機械構造用炭素鋼或いは合金鋼ビレットを所望径まで熱間圧延する、最終仕上圧延機として4ロールスタンド以下のブロックミルを用いた熱間圧延機と、圧延後の線材を巻取ってリング状に形成する巻取装置と、巻取り後の線材をコイルにして集束する集束装置と、集束した線材をコイル状態で徐冷を行うためのインライン連続熱処理炉を順次連接すると共に、前記ブロックミルは、減面率が25〜60%の範囲であり、前記集束装置は、落下してくるリング状線材を該リング状線材内径側に挿入する形で受け取る集束ステムを有し、該集束ステムは、コイルを保持した状態で前記インライン連続熱処理炉の中を搬送可能に構成し、前記インライン連続熱処理炉は、コイル外表層の温度がAr 変態点以下の変態域を通過するときの冷却速度が0.1℃/秒以下に制限可能に構成され、最大圧延能力で1時間に圧延されるコイル数の1/4〜1/1が在炉可能な大きさを有することを特徴とする。
このとき最終仕上圧延機のブロックミルが、上述の如く減面率25〜60%の範囲でかつ4ロールスタンド以下で構成されることにより、過大な加工発熱を起こすことなく、狙いとする制御圧延を可能とする。
また、集束装置にて集束される線材コイルは、コイル内径側に挿入するステムによりタイトな状態に集束され、次のインライン連続熱処理炉に送られることにより、線材コイルをルーズでなくタイトな状態に集束して熱処理炉に送ることになり、徐冷ラインの長さを冗長にせずに、上述した緩やかな冷却を効率的に達成するとともに搬送時の安定性も確保可能とするものである。
さらに、連続熱処理炉をこの大きさにしても、前述したパーライト組織の層状セメンタイトの分断、粒状化が起きる0.1℃ /sec 以下という非常に緩やかな冷却速度の徐冷を行うことが可能となり、徐冷ライン長も余り長くする必要がない。
【0012】
本発明請求項2の設備列は、上記請求項1において、巻取装置と集束装置との間に、線材を連続した非同心円リング状にして温度を低下させることなく保定して搬送する保温カバー付き調整冷却搬送装置を設けたことを特徴とする。この保定搬送装置により、巻取装置を密閉カバーで覆うといった特殊な巻取装置がなくとも、線材リングを常に安定した状態で徐冷ラインに供給することができるのである。また、既設のラインで巻取装置と集束装置間の距離が長すぎるといったレイアウト上の制約がある場合にも、本発明を容易にかつ安価に実施適用可能とするものである。
【0013】
本発明請求項3の設備列では、巻取装置で線材をAr 変態点以上で巻取り、保温カバー付き調整冷却搬送装置においてもAr 変態点を下回ることなく搬送して集束装置及び徐冷ラインに送ることを特徴とする。更に、保温カバー内で搬送させる際に、雰囲気温度を選定することで、後工程となる徐冷の開始温度に調整するとともに鋼材の温度バラツキを均温化するという機能も有する。
【0014】
また、本発明請求項4の設備列は、請求項1〜3のいずれかにおいて、最終仕上圧延機の入側に、最大圧延速度で1秒間に進行する距離の1/10以上の水冷・復熱帯を設けたことを特徴とする。この水冷・復熱帯により材質を劣化させることなく、所望の線材を最終仕上圧延機のブロックミルに送り込み、制御圧延を実施し得ることになる。
【0015】
【発明の実施の形態】
本発明者らは、ブロックミルによる制御圧延を可能にして仕上圧延機出側で750℃程度の温度で線材を出し、巻取り以後の工程、特に徐冷ラインに対してこの低温の線材リングを安定してそのまま供給でき、かつ、徐冷ラインにおいても目標とする0.1℃/sec以下の冷却速度を達成して、所望の材質の鋼線材を得ることができると共に、既存の線材圧延ラインを大幅に改造することのない、極めて生産性及び実用性の高い線材製造装置列の実現について種々研究・実験を重ねた結果、本発明を完成したものである。
【0016】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係る線材製造設備列の一例を示す概略図である。図において、1は仕上前ブロックミルであり、該仕上前ブロックミル1は、例えば総減面率が85%以上となる8〜10スタンドからなる公知の形式である。なお、該仕上前ブロックミル1の入側には水冷帯3aが設置されているが、その前には図示はしていないが、素材となるビレットを加熱する加熱炉、所定温度に加熱されたビレットを所望サイズに熱間圧延するための粗圧延機群及び中間圧延機群が配置されている。
【0017】
また、2は前記仕上前ブロックミル1の後面に設置される仕上ブロックミルであり、線材を最終的なサイズまで減面するものである。3bは仕上ブロックミル2の入側に設けた水冷帯、3cは仕上ブロックミル2の出側に設けた水冷帯、4は熱間圧延されてきた線材をレイングヘッドにて所定の径に巻き取るための巻取装置、5は巻き取られた線材コイルを非同心円リング状に展開して載置し搬送する調整冷却コンベア、6は該調整冷却コンベア5の搬送路を被覆する保温カバー、7はコンベア上を送られてきた線材リング10を垂直に落下させて下方に待機する集束ステム9上にコイル状に集束するための集束装置である。
さらに、8は前記集束装置7の位置に一端側が接続され、他端側が任意の方向及び距離だけ延びるインライン連続熱処理炉であり、該熱処理炉8はその底部には搬送コンベア12が敷設されており、ステム9に保持され集束された線材コイル11を所定の速度で搬送しながら徐冷する。なお、熱処理炉8は、実際のものと異なり便宜上内部を透視しうる状態で示している。
【0018】
図2は図1に示す全体装置を平面的に表した模式図であり、図1と同一符号は同一の装置を示している。ただし、図2では、徐冷を終えてインライン連続熱処理炉8から出たコイル集束ステムは、さらに搬送されて適当な位置でコイルだけを払い出された後、集束ステムだけが熱処理炉8の一端側から装入されて再度集束作業に供されるという循環路を形成するラインを示している。なお、水冷帯3b、3cは複数個から構成されることもある。
【0019】
また、図3は、巻取装置以降の調整冷却コンベア5、集束装置7及びインライン連続熱処理炉8の具体的な構造例を示す断面図である。リング状線材10を搬送する調整冷却コンベア5は、その全周を断熱性の保温カバー6で覆われており、これにより圧延から集束に至るまでの温度低下を防止し、制御圧延効果を最大限に発揮させると同時に、徐冷開始をAr変態点を下回ることのない所定温度で行わせる保定コンベアの役目を果たす。望ましくは保温カバー6内にはラジアントチューブ或いはヒータの如き加熱装置13が設置され、必要に応じてカバー内を加熱して温度低下を防ぐようになっている。なお、この調整冷却コンベア5は、その保定時間に応じた長さとすること、もしくは保定の必要がない場合には省略することもでき、巻取後に直ちに線材をコイル状に集束してもよい。
【0020】
調整冷却コンベア5の終端に配置する集束装置7は、落下してくる線材リングを下方に待機している集束ステム9をリング内径側に挿入する形で受け、一定量の線材コイルを形成するものである。この場合集束される線材コイルは、徐冷時の温度バラツキを抑えるために、できるだけタイトなコイルの状態で集束することが好ましい。なお、集束位置についても、保温カバー6と連接した断熱性の壁体で覆うことが望ましい。
【0021】
さらに、集束位置から設置されるインライン連続熱処理炉8の炉壁も連続した断熱性材料で構築される。該熱処理炉8の端部には集束ステム9の炉内への装入と炉外への排出を行うための扉(入側扉が14、出側扉が15)が設けられている。また、熱処理炉8内でのステムの搬送を行うコンベア12は、ローラコンベア或いはチェーンコンベアなど適宜の搬送手段を選べばよい。さらに、熱処理炉8内にもラジアントチューブの如き加熱装置16を設置しておき、温度低下を必要に応じて防止して、炉内において0.1℃/sec以下の非常に緩やかな冷却速度で徐冷し得るようにする。
【0022】
以下、本発明における圧延装置の好適な態様と、水冷・復熱帯(特に、仕上ブロックミル2入側の水冷・復熱帯)及びインライン熱処理炉の好適な長さについて説明する。
仕上ブロックミル2は、4ロールスタンド以下のブロックミルから形成され、その減面率は25〜60%の範囲とする。図4は、4ロールスタンドのブロックミルにおいて、仕上減面率と仕上ミル内温度上昇との関係を示すもので、仕上圧延での温度上昇を60℃を許容値とすれば、適正な減面率は25〜60%の範囲であることが分かる。なお、本発明者らの検討によれば、後述する水冷帯3bで過冷組織が発生しない範囲でできるだけ冷却した後、仕上圧延での温度上昇を60℃以下に抑制すれば、制御圧延の効果が十分得られることが知見されたことから、これを許容値とした。
【0023】
即ち、仕上圧延での減面率が25%未満であると、材料に加わる歪が十分でなく断面内で不均質な歪分布となり、局部的に結晶粒が成長し、粒径が不均一になって「粗大粒」と呼ばれる現象が発生してしまい、被削性等の加工性を著しく劣化させる。また、減面率が60%を超えると、加工発熱による温度上昇が急激に大きくなり、狙いとする制御圧延が不可能となる。しかも、仕上ブロックミルにおける各ロールでの最適な平均減面率が約15%であることを考慮すれば、ブロックミルのロールスタンド数は2以上、4以下とすることが好ましい。このロールスタンド数は圧延対象となる線材のサイズなどの条件により、4ロールスタンド以下の範囲で適宜変更することができる。
【0024】
次に、仕上ブロックミル2の入側に配置する水冷帯3bは、仕上前ブロックミル1出側の鋼材温度が900℃程度にまで達することから、これを次の仕上ブロックミル2で良好な制御圧延を行うための仕上入側温度である700℃程度に維持することが必須の役割となる。また、この水冷帯3bを含むミル間のゾーンは、水冷機能と共に水冷時に発生した断面内の温度分布を均等化する復熱機能を有することも合わせて要求され、これを果たすためには両ミル間の距離(図2のdで示す)を特定することが重要である。この場合、水冷は極短時間でよいが、復熱のためには、少なくとも0.1秒程度の時間が必要であり、この復熱時間を十分とらないと鋼材の断面内で過大な温度差を残存させることになり、仕上圧延での不均一な材質発生の原因となる。
【0025】
以上の理由により、仕上前ブロックミル1と仕上ブロックミル2間の水冷・復熱のためには、少なくとも最大圧延速度(仕上ブロックミル出側速度)で進行する距離の1/10以上の距離をとることが必要である。例えば、最大圧延速度が100m/sec であれば、最小でも10mの水冷・復熱ゾーンを設けることが要求される。このとき、仕上ブロックミル入側速度は、仕上ブロックミル内で鋼材が減面される割合に相当する分だけ最大圧延速度より遅くなり、上記の復熱のために必要な0.1秒より若干長い時間が確保でき、この時間帯で水冷が完了可能である。また、当該ゾーン長は、長いほど復熱を十分にできるという利点はあるものの全体の設備を長大にしてしまうばかりでなく、通材性を悪化させるという問題を引き起こすので、必要以上に長くすることは好ましくなく、最大圧延速度の1/2以下に抑えるのが望ましいが、本発明は、このゾーン長の上限を特に規定するものではない。
【0026】
さらに、制御圧延に引き続く徐冷を効果的に行うためにインライン熱処理炉8の長さ、換言すれば線材コイルの在炉時間についても特定することが望ましい。すなわち、目標とする軟質な線材を得るためには、変態温度域をコイル全体にわたって徐冷することが要求されることから、徐冷速度の目標の目安である0.1℃/sec以下という制約のもとで、熱処理炉への線材コイルの装入温度が決まれば在炉時間は求まる。
【0027】
図5は、線材コイルの在炉時間と温度との関係を示すものである。図の右上で模式的に示すように、線材コイルにはコイル外表層(斜線部で図の▲1▼と▲2▼の間)とコイル内部(図の▲2▼と▲3▼の間)に分けられるが、コイル外表層は炉外で放冷すると徐冷速度の目標を超える早い冷速で冷却される部分であり、熱処理炉内で変態温度域を下回る温度まで徐冷する必要がある。一方、コイル内部は炉外で放冷しても徐冷速度の目標以下で冷却される部分であり、変態未完了のまま炉外に排出しても十分な徐冷速度が得られる。
従って、コイル外表層の最大冷速部(図5の▲1▼)が目標冷速0.1℃/secになる如く炉温度を設定して徐冷を行うとき、コイル外表層の最も冷速が小さい部位(図5の▲2▼)は、コイル形状や線径にかかわらず、0.07℃/secであることを見出した。
【0028】
前記0.07℃/secで徐冷開始温度をAr1 点直上から変態が完了するまで徐冷必要温度域を下回るまでの大略60℃の区間を徐冷するには、少なくとも0.25hrが必要であり、熱処理炉の大きさを決定するにあたっての下限を示す指標である。このとき操業上の変動要素としてコイル内の温度バラツキを考慮すると、徐冷開始温度はAr1 点直上よりも若干高めに設定する必要があるため、在炉時間は望ましくは0.5hr以上の在炉時間を確保することで品質の安定化が図れる。但し、在炉時間を1.0hr以上に長くしても徐冷の効果は飽和して向上は見られず、単に冗長な設備となる。その結果、熱処理炉の大きさは、最大圧延能力で1hrに圧延されるコイル数の1/4〜1/1が在炉可能な大きさとする必要がある。
【0029】
以下、図1に示す本発明の線材製造設備列に基づいて一連の流れを説明する。まず、図示しない加熱炉で炭素鋼又は合金鋼ビレットを1000℃以上に加熱してから粗圧延機及び中間圧延機に装入して所定のサイズに圧延した後、水冷帯3aを経て仕上前ブロックミル1に装入する。この仕上前ブロックミル1で少なくとも85%の減面率で圧延された材料は、水冷帯3bで水冷・復熱されて仕上ブロックミル2に入り、そこで25〜60%の減面率で最終線径に仕上圧延された後、750℃〜800℃の仕上圧延温度で出され、水冷帯3cを経て巻取装置4により所望径の線材リング10として調整冷却コンベア5上に排出される。
【0030】
保温カバー6で覆った調整冷却コンベア5では、線材リングは非同心円状の形でかつAr変態点を下回ることのない温度を維持しながら搬送され、集束装置7に至って集束ステム9上に落下され、一定量の線材がタイトな状態で集束され、一個の線材コイル11が得られると共に、インライン連続熱処理炉8内を一定の速度で搬送されて徐冷される。炉内では順次集束された線材コイルを載置した集束ステムが一定間隔をおいて搬送されることになる。徐冷開始温度は大体710℃〜780℃であり、熱処理炉内では0.1℃/sec以下の冷却速度で徐冷され、約650℃程度で炉の出側扉から排出されて放冷される。放冷中に線材コイルは変態を終了し、任意の位置でコイルが払い出され結束工程に向かう。なお、前記保温カバー6内及び熱処理炉8内では、温度が低下するおそれがある場合には加熱装置を用いて適宜加熱することができる。
【0031】
【発明の効果】
以上説明した本発明に係る線材の製造設備列により得られる効果は次の通りである。
(1)線材圧延では困難とされていたブロックミルによる制御圧延装置と、線材をコイル状に集束した状態でインラインで徐冷する装置とを合理的に連接することを初めて実現した。
(2)上記の如く制御圧延と徐冷とを組み合わせることにより、冷間加工性に優れた機械構造用鋼線材を、オフラインで別途熱処理することなく、オンラインで製造することが可能となった。
(3)既設の線材製造ラインを大幅に改造することなく本発明を適用でき、かつ、オフラインでの焼鈍設備も省略できるので、設備費を低減することができる。
【0032】
(4)巻取装置の後に調整冷却搬送装置を設ける場合には、巻取り後の線材をリング状で安定して保定できるので、次の集束及び徐冷ラインに常に最善の状態で線材を供給できる。
(5)最終仕上圧延機のブロックミルの入側に一定長の水冷・復熱帯を設けることにより、ブロックミルに入る材料の温度・性質を調整でき、制御圧延をより良好な状態で達成することを可能とする。
【図面の簡単な説明】
【図1】本発明に係る線材の連続的製造設備列の一実施形態を示す全体概略斜視図である。
【図2】本発明に係る線材の連続的製造設備列の配置例を示す平面模式図である。
【図3】本発明に係る線材の連続的製造設備列における巻取り機以降の各装置を示す断面図である。
【図4】本発明で採用する4ロールスタンドのブロックミルを用いた場合の減面率とミル内温度上昇の関係を示す図である。
【図5】本発明で採用するインライン熱処理炉における在炉時間と線材コイル温度の関係を示す図である。
【符号の説明】
1 仕上前ブロックミル 2 仕上ブロックミル
3a、3b、3c 水冷装置 4 巻取装置(レイングヘッド)
5 調整冷却コンベア 6 保温カバー
7 集束装置 8 インライン連続熱処理炉
9 ステム 10 線材リング
11 線材コイル 12 搬送コンベア
13、16 加熱装置 14 炉の入側扉
15 炉の出側扉
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a continuous production equipment row of wire rods, and more particularly to a continuous production equipment row of carbon steel for machine structure or alloy steel wire rod excellent in cold workability.
[0002]
[Prior art]
In general, when manufacturing a steel wire rod, a billet heated to a predetermined temperature in a heating furnace is rolled to a desired size in a hot rolling process, wound, cooled, and subjected to an appropriate heat treatment before converging into a coil shape. And go through a binding process. Moreover, the process of annealing etc. is performed in a coil state as needed, and it sends to a secondary processing process. In the production of such a steel wire rod, various proposals have been conventionally made for the hot rolling process and the heat treatment process.
[0003]
For example, from the viewpoint of equipment for hot rolling of wire rods, a block mill has been developed as a finishing rod mill for wire rods, which has the advantage of being able to achieve particularly high-speed rolling and downsizing of equipment and having less surface flaws. . This block mill has 8-10 roll stands placed in tandem in one frame and can be rolled without twisting the rolled material, and has been adopted in many rolling lines in recent years. Has been.
[0004]
Considering the hot rolling of the wire in terms of material and structure, a method in which the hot rolling process is kept as low as possible, for example, 800 ° C. or less, and the finishing temperature is finished at a temperature lower than that of normal rolling (hereinafter referred to as such rolling). By adopting controlled rolling), it is possible to refine the γ structure, and by combining this with slow cooling in the subsequent process, the layered cementite of the pearlite structure is divided and granulated, thereby making the steel wire rod Techniques for achieving softening of the resin are known. However, in the normal rolling of steel wire, since the rolling finishing temperature is approximately 900 ° C. or higher, it is not possible to refine the γ structure. In order to soften the steel wire, it is necessary to perform an annealing treatment offline. It was.
[0005]
Japanese Patent No. 2857279 can be cited as a conventional example close to the rolling mill employed in the present invention. In this patent publication, in FIG. 1 and FIG. 2, a mode in which a 4-stand finishing block mill is arranged on the rear surface of an 8-stand finishing block mill to enable free size rolling and precision rolling is disclosed. Moreover, it is also described that a cooling device is provided on the entry side of the post-finish block mill.
[0006]
On the other hand, after winding the wire after hot rolling, a number of methods have been proposed in which heat treatment is directly applied to the wire in the process of concentrating it into a coil shape after being unfolded into a non-concentric ring (for example, a stealmore method) ). Among these, as a conventional example of processing in the state of a wire coil focused for the purpose of slow cooling after winding, as shown in Japanese Utility Model Publication No. 4-37898, a winding machine (a laying cone), a ring coil A means for covering the transport path and the heat-retaining furnace with a sealed heat-retaining cover, or switching between a normal heat treatment line and a slow cooling line after winding, as disclosed in Japanese Patent Publication No. 7-99877 Thus, a technique for sending to the next process conveyor is described.
[0007]
[Problems to be solved by the invention]
However, in the finishing mill such as the block mill described above, the total area reduction rate at 8 stands is as high as about 85%, and C: 0.4% or more carbon steel mainly used as steel for machine structural use, Controlling rolling is practically impossible with hard materials with large heat generation such as alloy steel, spring steel and bearing steel. In addition, in Japanese Patent No. 2857279, a 4-stand block mill is provided as a finishing mill and a cooling device is installed on the entry side, but the aim is to suppress abnormal growth of crystal grains, The purpose of the present invention is not to produce a soft steel wire rod excellent in on-line cold workability in combination with refinement of structure by controlled rolling and cooling means in a subsequent process.
[0008]
In addition, in Japanese Utility Model Publication No. 4-37898, since the winder has a unique structure covered with a hermetic cover, a dedicated one is required from the winding to the slow cooling equipment, and the existing wire production line is mostly used. In addition, there is a problem in equipment cost, and in Japanese Patent Publication No. 7-99877, the slow cooling process in the coil is a pot method, and it is difficult to control the temperature in each device, and the productivity is low. There is a problem that it is low and not suitable for continuous operation. In addition, in these conventional slow cooling lines, since slow cooling was started at a relatively high temperature (850 ° C. or higher), there was an inconvenience that the line length was inevitably long.
In any case, even if a technique related to any conventional wire rolling / heat treatment is examined, there is no example in which the control rolling and the slow cooling treatment are considered together.
[0009]
Therefore, from the above, when producing a carbon steel or alloy steel wire for machine structure excellent in cold workability, a control rolling means and a slow cooling means by a block mill are rationally combined in one continuous line, In addition, each of the rolling operation and the slow cooling operation can be achieved at a high level, and these can be easily incorporated into an existing line, and it is strongly desired to realize a continuous production equipment line that can be manufactured at low cost. Currently.
[0010]
The present invention has been made in view of such a current situation, and can easily realize controlled rolling (low temperature rolling), which has been difficult to achieve with a conventional block mill, and can effectively effect a slow cooling facility in-line with the controlled rolling facility. It is an object of the present invention to provide a manufacturing line of wire rods capable of performing efficient controlled rolling and slow cooling by combining them together. Another object of the present invention is to make it easy to manufacture steel wires of any size, and to omit the annealing process that has been essential in the conventional secondary processing, and as short as possible. The purpose is to provide a manufacturing facility line that only requires a slow cooling line.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the continuous manufacturing equipment line for wire according to claim 1 of the present invention is a four-roll stand or less as a final finish rolling mill for hot rolling a carbon steel or alloy steel billet for mechanical structure to a desired diameter. A hot rolling machine using a block mill, a winding device that winds the rolled wire into a ring shape, a converging device that focuses the coiled wire as a coil, and a coiled converging wire In-line continuous heat treatment furnaces for performing slow cooling in a state are sequentially connected, the block mill has a surface reduction rate in the range of 25 to 60%, and the converging device has a ring-shaped wire rod that falls. A converging stem that is received by being inserted into the inner diameter side of the ring-shaped wire, and the converging stem is configured to be transportable in the in-line continuous heat treatment furnace while holding a coil; Temperature of the coil outer surface is limited capable constructed cooling rate below 0.1 ° C. / sec as it passes through the following transformation range Ar 1 transformation point, the first number of coils to be rolled up to an hour rolling capacity / 4 to 1/1 has such a size that it can be in the furnace .
At this time, the block mill of the final finishing rolling mill is configured with a reduction in area of 25 to 60% as described above and a 4-roll stand or less, so that control rolling is aimed at without causing excessive heat generation. Is possible.
The wire coil focused by the focusing device is focused in a tight state by a stem inserted on the inner diameter side of the coil and sent to the next in-line continuous heat treatment furnace to make the wire coil tight rather than loose. It converges and sends to the heat treatment furnace, so that the above-mentioned gentle cooling can be achieved efficiently and the stability during transportation can be ensured without making the length of the slow cooling line redundant.
Furthermore, even if the continuous heat treatment furnace is of this size, it becomes possible to carry out slow cooling at a very slow cooling rate of 0.1 ° C./sec or less , at which the above-mentioned layered cementite with a pearlite structure is divided and granulated. The slow cooling line length does not need to be too long.
[0012]
The installation line of claim 2 of the present invention is the heat insulation cover according to claim 1, wherein the wire rod is kept in a continuous non-concentric ring shape between the winding device and the converging device and held without lowering the temperature. It is characterized in that an attached cooling and conveying device is provided. Even if there is no special winding device such as covering the winding device with a hermetic cover, this retaining conveying device can supply the wire ring to the slow cooling line in a stable state at all times. Further, the present invention can be easily and inexpensively applied even when there is a layout restriction such that the distance between the winding device and the focusing device is too long on the existing line.
[0013]
In the equipment row according to claim 3 of the present invention , the wire rod is wound up at the Ar 1 transformation point or higher by the winding device, and is transported without being below the Ar 1 transformation point even in the adjusted cooling conveyance device with a heat insulating cover, and the focusing device and the slow cooling are carried out. It is characterized by being sent to the line. Furthermore, when conveying in a heat insulation cover, it has the function to adjust temperature variation of steel materials while adjusting to the starting temperature of the slow cooling used as a post process by selecting atmospheric temperature.
[0014]
Moreover, the equipment row | line | column of this invention 4 is water cooling and recovery | restoration of 1/10 or more of the distance which progresses in 1 second at the maximum rolling speed in the entrance side of a final finishing mill in any one of Claims 1-3. It is characterized by a tropical setting. The desired wire rod can be fed to the block mill of the final finishing rolling mill and the controlled rolling can be performed without deteriorating the material due to the water cooling / retrotropy.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors enable controlled rolling with a block mill to take out a wire at a temperature of about 750 ° C. on the exit side of the finishing mill, and apply this low-temperature wire ring to the process after winding, particularly to the slow cooling line. It can be supplied stably as it is, and also achieves the target cooling rate of 0.1 ° C / sec or less in the slow cooling line to obtain a steel wire material of a desired material, and an existing wire rolling line The present invention has been completed as a result of various researches and experiments on the realization of an extremely high productivity and practical use wire manufacturing apparatus array without significantly remodeling the wire.
[0016]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an example of a wire manufacturing facility line according to the present invention. In the figure, reference numeral 1 denotes a pre-finishing block mill, and the pre-finishing block mill 1 is a known type comprising, for example, 8 to 10 stands having a total area reduction of 85% or more. In addition, although the water cooling zone 3a is installed in the entrance side of this pre-finish block mill 1, although not shown in the front, the heating furnace which heats the billet used as a raw material, it was heated to predetermined temperature A rough rolling mill group and an intermediate rolling mill group for hot rolling the billet to a desired size are arranged.
[0017]
Reference numeral 2 denotes a finishing block mill installed on the rear surface of the pre-finishing block mill 1, which reduces the surface of the wire to the final size. 3b is a water cooling zone provided on the entry side of the finishing block mill 2, 3c is a water cooling zone provided on the exit side of the finishing block mill 2, and 4 is a hot wire rolled up to a predetermined diameter by a laying head. Winding device 5 is an adjustment cooling conveyor that unwinds and places the wound wire rod coil in a non-concentric ring shape, 6 is a heat retaining cover that covers the conveyance path of the adjustment cooling conveyor 5, and 7 is This is a converging device for converging in a coiled manner on a converging stem 9 which drops the wire ring 10 sent on the conveyor vertically and waits downward.
Furthermore, 8 is an in-line continuous heat treatment furnace having one end connected to the position of the focusing device 7 and the other end extending in an arbitrary direction and distance. The heat treatment furnace 8 is provided with a conveyor 12 at its bottom. Then, the wire coil 11 held and focused on the stem 9 is gradually cooled while being conveyed at a predetermined speed. Note that the heat treatment furnace 8 is shown in a state where the inside can be seen through for convenience, unlike an actual one.
[0018]
FIG. 2 is a schematic diagram showing the overall apparatus shown in FIG. 1 in plan view, and the same reference numerals as those in FIG. 1 denote the same apparatuses. However, in FIG. 2, the coil converging stem that has exited the in-line continuous heat treatment furnace 8 after the slow cooling is further transported and only the coil is discharged at an appropriate position, and then only the converging stem is one end of the heat treatment furnace 8. It shows a line that forms a circulation path that is charged from the side and used again for the focusing operation. The water cooling zones 3b and 3c may be composed of a plurality.
[0019]
FIG. 3 is a cross-sectional view showing a specific structural example of the adjustment cooling conveyor 5, the focusing device 7, and the inline continuous heat treatment furnace 8 after the winding device . The adjustment cooling conveyor 5 that conveys the ring-shaped wire 10 is covered with a heat insulating heat insulating cover 6 on the entire circumference thereof, thereby preventing a temperature drop from rolling to converging and maximizing the control rolling effect. At the same time, it plays the role of a retaining conveyor that allows slow cooling to start at a predetermined temperature that does not fall below the Ar 1 transformation point. Desirably, a heating device 13 such as a radiant tube or a heater is installed in the heat retaining cover 6, and the inside of the cover is heated as necessary to prevent a temperature drop. In addition, this adjustment cooling conveyor 5 can be made into the length according to the holding time, or can be abbreviate | omitted when there is no need for holding, and you may converge a wire in a coil form immediately after winding.
[0020]
The focusing device 7 disposed at the end of the adjusting cooling conveyor 5 receives the falling wire ring in the form of inserting the focusing stem 9 waiting on the inner diameter side of the ring and forms a certain amount of wire coil. It is. In this case, it is preferable that the wire coil to be focused is focused in a tight coil state as much as possible in order to suppress temperature variation during slow cooling. In addition, it is desirable to cover the converging position with a heat insulating wall connected to the heat insulating cover 6.
[0021]
Furthermore, the furnace wall of the in-line continuous heat treatment furnace 8 installed from the converging position is also constructed of a continuous heat insulating material. At the end of the heat treatment furnace 8, there are provided doors (14 for the entrance door and 15 for the exit door) for charging the focusing stem 9 into and out of the furnace. Moreover, what is necessary is just to select the appropriate conveyance means, such as a roller conveyor or a chain conveyor, for the conveyor 12 which conveys the stem in the heat processing furnace 8. FIG. Furthermore, a heating device 16 such as a radiant tube is installed in the heat treatment furnace 8 to prevent a temperature drop as necessary, and at a very slow cooling rate of 0.1 ° C./sec or less in the furnace. Allow to cool slowly.
[0022]
Hereinafter, preferred embodiments of the rolling apparatus in the present invention, water cooling / retrotropy (particularly, water cooling / retrotropy on the entry side of the finishing block mill 2), and preferred lengths of the in-line heat treatment furnace will be described.
The finishing block mill 2 is formed of a block mill having a length of 4 rolls or less, and the area reduction rate is in the range of 25 to 60%. FIG. 4 shows the relationship between the finish area reduction rate and the temperature rise in the finish mill in a 4-roll stand block mill. If the temperature rise in the finish rolling is 60 ° C., an appropriate area reduction is shown. It can be seen that the rate is in the range of 25-60%. According to the study by the present inventors, the effect of controlled rolling can be achieved if the temperature rise in finish rolling is suppressed to 60 ° C. or less after cooling as much as possible within the range where the supercooled structure does not occur in the water cooling zone 3b described later. Since this was found to be sufficient, this was set as an allowable value.
[0023]
That is, if the area reduction ratio in finish rolling is less than 25%, the strain applied to the material is not sufficient and the strain distribution is non-homogeneous in the cross section, the crystal grains grow locally, and the grain size becomes uneven. As a result, a phenomenon called “coarse grains” occurs, and the machinability such as machinability is remarkably deteriorated. On the other hand, if the area reduction ratio exceeds 60%, the temperature rise due to processing heat generation becomes abrupt, and the targeted controlled rolling becomes impossible. In addition, considering that the optimum average area reduction rate for each roll in the finishing block mill is about 15%, the number of roll stands in the block mill is preferably 2 or more and 4 or less. The number of roll stands can be appropriately changed within a range of 4 roll stands or less depending on conditions such as the size of the wire to be rolled.
[0024]
Next, the water cooling zone 3b arranged on the entrance side of the finishing block mill 2 has a steel plate temperature on the exit side of the finishing block mill 1 reaching about 900 ° C., and this is controlled well by the next finishing block mill 2. It is an essential role to maintain at about 700 ° C., which is the finish entry temperature for rolling. In addition, the zone between the mills including the water cooling zone 3b is required to have a reheating function for equalizing the temperature distribution in the cross section generated during the water cooling as well as the water cooling function. It is important to specify the distance between them (indicated by d in FIG. 2). In this case, water cooling may be performed in a very short time, but at least about 0.1 second is required for recuperation. If this recuperation time is not sufficient, an excessive temperature difference will occur in the cross section of the steel material. This causes non-uniform material generation in finish rolling.
[0025]
For the above reasons, for water cooling / recuperation between the pre-finishing block mill 1 and the finishing block mill 2, at least a distance of 1/10 or more of the distance traveled at the maximum rolling speed (finishing block mill exit speed) is used. It is necessary to take. For example, if the maximum rolling speed is 100 m / sec, it is required to provide a water cooling / recuperation zone of 10 m at a minimum. At this time, the finishing block mill entry side speed is slower than the maximum rolling speed by an amount corresponding to the rate of reduction of the steel material in the finishing block mill, and is slightly longer than the 0.1 second required for the above reheating. A long time can be secured and the water cooling can be completed in this time zone. In addition, the longer the zone length is, the longer the length of the entire equipment becomes, but also the problem of worsening the material permeability. However, the upper limit of the zone length is not particularly specified in the present invention.
[0026]
Furthermore, it is desirable to specify the length of the in-line heat treatment furnace 8, in other words, the in-furnace time of the wire coil, in order to effectively perform the slow cooling following the controlled rolling. That is, in order to obtain a target soft wire rod, it is required to gradually cool the transformation temperature range over the entire coil, and therefore, the restriction of 0.1 ° C./sec or less, which is a target standard for the slow cooling rate. If the temperature of charging the wire coil into the heat treatment furnace is determined, the in-furnace time can be obtained.
[0027]
FIG. 5 shows the relationship between the in-furnace time of the wire coil and the temperature. As schematically shown in the upper right of the figure, the wire coil has a coil outer surface layer (between (1) and (2) in the figure in the shaded area) and the inside of the coil (between (2) and (3) in the figure). The outer surface of the coil is a part that is cooled at a fast cooling speed that exceeds the target of the slow cooling speed when it is cooled outside the furnace, and must be gradually cooled to a temperature below the transformation temperature range in the heat treatment furnace. . On the other hand, even if the inside of the coil is cooled outside the furnace, it is cooled below the target of the slow cooling rate, and a sufficient slow cooling rate can be obtained even if it is discharged outside the furnace without being transformed.
Therefore, when the furnace temperature is set so that the maximum cooling speed portion ((1) in FIG. 5) of the outer surface layer of the coil becomes the target cooling speed of 0.1 ° C./sec, and the slow cooling is performed, It was found that the portion with small ((2) in FIG. 5) was 0.07 ° C./sec regardless of the coil shape and wire diameter.
[0028]
At least 0.25 hr is required to gradually cool the section at about 60 ° C. until the transformation is completed from the point immediately above the Ar 1 point until the transformation is completed at 0.07 ° C./sec. It is an index indicating the lower limit in determining the size of the heat treatment furnace. At this time, considering the temperature variation in the coil as an operational variable, the annealing start temperature needs to be set slightly higher than just above the Ar 1 point, so the in-furnace time is desirably 0.5 hr or more. The quality can be stabilized by securing the furnace time. However, even if the in-furnace time is increased to 1.0 hr or more, the effect of slow cooling is saturated and no improvement is seen, and it simply becomes a redundant facility. As a result, the size of the heat treatment furnace needs to be such that 1/4 to 1/1 of the number of coils rolled to 1 hr with the maximum rolling capacity can be in the furnace.
[0029]
Hereinafter, a series of flows will be described based on the wire manufacturing equipment row of the present invention shown in FIG. First, after heating the carbon steel or alloy steel billet to 1000 ° C. or higher in a heating furnace (not shown), charging it into a roughing mill and an intermediate rolling mill, rolling it to a predetermined size, and then passing through a water cooling zone 3a before finishing. The mill 1 is charged. The material rolled in the pre-finishing block mill 1 with a reduction in area of at least 85% is water-cooled and reheated in the water cooling zone 3b and enters the finishing block mill 2, where the final line is reduced in an area reduction of 25-60%. After being finish-rolled to a diameter, it is delivered at a finish-rolling temperature of 750 ° C. to 800 ° C., and is discharged onto the adjustment cooling conveyor 5 as a wire rod 10 having a desired diameter by the winding device 4 through the water cooling zone 3c.
[0030]
In the adjustment cooling conveyor 5 covered with the heat insulating cover 6, the wire ring is conveyed while maintaining a temperature that is not concentric and does not fall below the Ar 1 transformation point, reaches the focusing device 7, and falls onto the focusing stem 9. Then, a certain amount of wire is focused in a tight state to obtain one wire coil 11, and is conveyed through the in-line continuous heat treatment furnace 8 at a constant speed and gradually cooled. In the furnace, the focusing stems on which the wire coils that are successively focused are placed are conveyed at regular intervals. The annealing start temperature is approximately 710 ° C. to 780 ° C., and is gradually cooled in the heat treatment furnace at a cooling rate of 0.1 ° C./sec or less , and is discharged from the exit door of the furnace at about 650 ° C. and allowed to cool. The During the cooling, the wire coil finishes the transformation, and the coil is discharged at an arbitrary position and goes to the binding process. In the heat insulating cover 6 and the heat treatment furnace 8, when there is a possibility that the temperature is lowered, it can be appropriately heated using a heating device.
[0031]
【The invention's effect】
The effects obtained by the above-described wire manufacturing facility line according to the present invention are as follows.
(1) For the first time, a control rolling device using a block mill, which has been considered difficult in wire rod rolling, and a device that slowly cools the wire rods in-line while converging them in a coil shape have been realized for the first time.
(2) By combining controlled rolling and gradual cooling as described above, it has become possible to produce a steel wire for mechanical structure having excellent cold workability online without separate heat treatment offline.
(3) Since the present invention can be applied without significantly remodeling the existing wire production line, and the offline annealing equipment can be omitted, the equipment cost can be reduced.
[0032]
(4) When an adjusted cooling and conveying device is provided after the winding device, the wound wire can be stably held in a ring shape, so that the wire is always supplied in the best condition to the next converging and annealing line. it can.
(5) By providing a fixed length of water cooling / retrotropy on the entrance side of the block mill of the final finishing mill, the temperature and properties of the material entering the block mill can be adjusted to achieve controlled rolling in a better state. Is possible.
[Brief description of the drawings]
FIG. 1 is an overall schematic perspective view showing an embodiment of a continuous manufacturing equipment line for wire according to the present invention.
FIG. 2 is a schematic plan view showing an arrangement example of a continuous production equipment row of wire rods according to the present invention.
FIG. 3 is a cross-sectional view showing each device after the winder in the continuous manufacturing equipment line for wire according to the present invention.
FIG. 4 is a diagram showing the relationship between the area reduction rate and the temperature rise in the mill when using a four-roll stand block mill employed in the present invention.
FIG. 5 is a diagram showing the relationship between the in-furnace time and the wire coil temperature in an in-line heat treatment furnace employed in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Block block before finishing 2 Finishing block mill 3a, 3b, 3c Water cooling device 4 Winding device (laying head)
DESCRIPTION OF SYMBOLS 5 Adjustment cooling conveyor 6 Heat insulation cover 7 Condensing apparatus 8 In-line continuous heat treatment furnace 9 Stem 10 Wire rod ring 11 Wire rod coil 12 Conveyor 13, 16 Heating device 14 Furnace entrance door 15 Furnace exit door

Claims (4)

機械構造用炭素鋼或いは合金鋼ビレットを所望径まで熱間圧延する、最終仕上圧延機として4ロールスタンド以下のブロックミルを用いた熱間圧延機と、圧延後の線材を巻取ってリング状に形成する巻取装置と、巻取り後の線材をコイルにして集束する集束装置と、集束した線材をコイル状態で徐冷を行うためのインライン連続熱処理炉を順次連接すると共に、前記ブロックミルは、減面率が25〜60%の範囲であり、前記集束装置は、落下してくるリング状線材を該リング状線材内径側に挿入する形で受け取る集束ステムを有し、該集束ステムは、コイルを保持した状態で前記インライン連続熱処理炉の中を搬送可能に構成し、前記インライン連続熱処理炉は、コイル外表層の温度がAr 変態点以下の変態域を通過するときの冷却速度が0.1℃/秒以下に制限可能に構成され、最大圧延能力で1時間に圧延されるコイル数の1/4〜1/1が在炉可能な大きさを有することを特徴とする線材の連続的製造設備列。Hot-rolling machine structure carbon steel or alloy steel billet to desired diameter , using a rolling mill with a block mill of 4 rolls or less as the final finishing mill , and winding the rolled wire into a ring shape A winding device to be formed, a converging device for converging the wound wire as a coil, and an in-line continuous heat treatment furnace for gradually cooling the converging wire in a coil state, and the block mill, The area reduction rate is in the range of 25 to 60%, and the focusing device has a focusing stem that receives the falling ring-shaped wire inserted into the inner diameter side of the ring-shaped wire, and the focusing stem is a coil. The in-line continuous heat treatment furnace is configured to be capable of being conveyed in the state where the temperature is maintained, and the in-line continuous heat treatment furnace has a cooling rate when the temperature of the outer surface layer of the coil passes through the transformation region below the Ar 1 transformation point. Is configured to be limited to 0.1 ° C./second or less, and 1/4 to 1/1 of the number of coils rolled per hour with a maximum rolling capacity has a size capable of being in the furnace. Continuous manufacturing equipment line. 巻取装置と集束装置との間に、線材を連続した非同心円リング状にして温度を低下させることなく保定して搬送する保温カバー付き調整冷却搬送装置を設けたことを特徴とする請求項1記載の製造設備列。2. An adjusting cooling and conveying device with a heat retaining cover is provided between the winding device and the converging device, wherein the wire is formed in a continuous non-concentric ring shape and held and conveyed without lowering the temperature. Manufacturing equipment column as described. 巻取装置で線材をArArrange the wire rod with the winding device 1 変態点以上で巻取り、保温カバー付き調整冷却搬送装置においてもArWinding above the transformation point, Ar also in the adjusted cooling and conveying device with heat insulation cover 1 変態点を下回ることなく搬送して集束装置に送ることを特徴とする請求項2記載の製造設備列。3. The manufacturing equipment row according to claim 2, wherein the production equipment row is conveyed and sent to the converging device without falling below the transformation point. 最終仕上圧延機の入側に、最大圧延速度で1秒間に進行する距離の1/10以上の水冷・復熱帯を設けたことを特徴とする請求項1〜3のいずれか1項記載の製造設備列。The manufacturing method according to any one of claims 1 to 3, wherein a water-cooling / retrotropy of 1/10 or more of a distance that travels in one second at a maximum rolling speed is provided on the entry side of the final finishing mill. Equipment column.
JP14315699A 1999-05-24 1999-05-24 Continuous production equipment line for wire Expired - Fee Related JP3802707B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP14315699A JP3802707B2 (en) 1999-05-24 1999-05-24 Continuous production equipment line for wire
TW089109930A TW458819B (en) 1999-05-24 2000-05-23 Apparatus for continuous production of steel wire
EP00931542A EP1125650B1 (en) 1999-05-24 2000-05-24 Continuous production facilities for wire
CNB008009953A CN1156348C (en) 1999-05-24 2000-05-24 Continuous production facilities for wire
US09/744,370 US6634073B1 (en) 1999-05-24 2000-05-24 Continuous production facilities for wire
DE60035571T DE60035571T2 (en) 1999-05-24 2000-05-24 CONTINUOUS MANUFACTURING EQUIPMENT FOR WIRE
KR10-2001-7000870A KR100408489B1 (en) 1999-05-24 2000-05-24 Continuous production facilities for wire
CA002338413A CA2338413C (en) 1999-05-24 2000-05-24 Continuous production facilities for wire
PCT/JP2000/003317 WO2000071274A1 (en) 1999-05-24 2000-05-24 Continuous production facilities for wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14315699A JP3802707B2 (en) 1999-05-24 1999-05-24 Continuous production equipment line for wire

Publications (2)

Publication Number Publication Date
JP2000326001A JP2000326001A (en) 2000-11-28
JP3802707B2 true JP3802707B2 (en) 2006-07-26

Family

ID=15332233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14315699A Expired - Fee Related JP3802707B2 (en) 1999-05-24 1999-05-24 Continuous production equipment line for wire

Country Status (1)

Country Link
JP (1) JP3802707B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241134A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Line for rolling and manufacturing steel wire rod and method of manufacturing steel wire rod
EP2143504A1 (en) * 2008-07-07 2010-01-13 Siemens Aktiengesellschaft Method for cooling a hot-rolled strip onto a hot-rolled strip coil, a device for cooling a hot-rolled strip coil, a control and/or regulating device and metal strip
CN111633436B (en) * 2020-07-08 2021-11-30 四川省富兴电力金具制造有限公司 Automatic processing equipment and method for flat iron channel steel combination
CN113198836A (en) * 2021-06-25 2021-08-03 西安盛日机电科技有限公司 Process for rolling small-specification deformed steel bar at high speed
CN113680813B (en) * 2021-08-24 2023-04-07 攀钢集团研究院有限公司 Stelmor method based high-carbon steel long material surface oxide control method
CN114054500B (en) * 2021-11-11 2024-04-23 南通开发区升阳金属制品有限公司 Preparation method of high-carbon steel high-strength filament
CN114789196A (en) * 2022-04-29 2022-07-26 合肥东方节能科技股份有限公司 Arrangement scheme of production process for cutting high-speed wire
CN114653762B (en) * 2022-05-10 2023-06-06 新余钢铁股份有限公司 Water-cooling and cooling control method and system for high-speed wire head

Also Published As

Publication number Publication date
JP2000326001A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
US8137485B2 (en) Process and device for producing strips of silicon steel or multiphase steel
US8408035B2 (en) Method of and apparatus for hot rolling a thin silicon-steel workpiece into sheet steel
NO176949B (en) Process and plant for obtaining steel strip rolls with cold rolled characteristics and obtained directly in a hot rolling line
EP0787541B1 (en) Method of manufacturing seamless steel pipes and manufacturing equipment therefor
KR100408489B1 (en) Continuous production facilities for wire
JP3881617B2 (en) Cooling control method for hot-rolled steel sheet
JP3802707B2 (en) Continuous production equipment line for wire
US3645805A (en) Production of patented steel wire
US3547421A (en) Adjustable length for production of patented steel wire
GB2055650A (en) Process for producing bars or wire rods by rolling billets or blooms
JP2006055884A (en) Method for manufacturing hot-rolled steel sheet and apparatus for controlling rolling
JP6015953B2 (en) Manufacturing method of hot rolled steel sheet
JP5626792B2 (en) Rolling method of high strength steel sheet
JP2002172401A (en) Equipment and method for continuously casting hot rolling
KR101490600B1 (en) Method for manufacturing wire rod
JP2005169454A (en) Steel strip manufacturing equipment and method
JP6350322B2 (en) Manufacturing method and processing facility for high-strength steel sheet
JPH10330847A (en) Method for directly softening hot rolled wire rod
JPH08117814A (en) Manufacture of seamless steel pipe and manufacturing equipment train for executing the same method
JP3686549B2 (en) Hot rolled wire temperature control device
JPS6343445B2 (en)
JP3698088B2 (en) Manufacturing method of hot-rolled steel strip
RU2686504C1 (en) Method for production of rolled strip on wide-band rolling mill
JP2002167619A (en) Ferritic stainless steel wire rod and its manufacturing method
JP2844924B6 (en) Manufacturing method of seamless steel pipe and its manufacturing equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R151 Written notification of patent or utility model registration

Ref document number: 3802707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees