JP3802586B2 - Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients - Google Patents

Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients Download PDF

Info

Publication number
JP3802586B2
JP3802586B2 JP16881195A JP16881195A JP3802586B2 JP 3802586 B2 JP3802586 B2 JP 3802586B2 JP 16881195 A JP16881195 A JP 16881195A JP 16881195 A JP16881195 A JP 16881195A JP 3802586 B2 JP3802586 B2 JP 3802586B2
Authority
JP
Japan
Prior art keywords
thermal expansion
plate
brazing material
insert
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16881195A
Other languages
Japanese (ja)
Other versions
JPH0919789A (en
Inventor
光矢 細江
直正 木村
勝敏 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP16881195A priority Critical patent/JP3802586B2/en
Publication of JPH0919789A publication Critical patent/JPH0919789A/en
Application granted granted Critical
Publication of JP3802586B2 publication Critical patent/JP3802586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱膨脹率を異にする二種の部材の加熱接合方法、特に希土類元素を含む永久磁石よりなる第1部材とその第1部材よりも熱膨脹率が大きいFe合金よりなる第2部材とを、ろう材を用いて加熱下で接合する方法に関する。
【0002】
【従来の技術】
従来、例えば、第1部材としての希土類元素を含む永久磁石と、第2部材としての鋼製取付台とを接合する場合、合成樹脂接着剤が用いられている(例えば、特公昭61−33339号公報参照)。
【0003】
このように合成樹脂接着剤を用いる理由は、希土類元素を含む永久磁石は、非常に脆いため機械加工性が悪く、また高温下に曝されると、金属組織が変化するのでそれに伴い磁気特性が影響を受ける、といった性質を有し、そのため鋼製取付台に永久磁石を取付ける場合、あり差し構造、ねじ止め、溶接等の取付手段を採用することができないからである。
【0004】
【発明が解決しようとする課題】
しかしながら、合成樹脂接着剤による接合では、その永久磁石の昇温に伴い接合強度が著しく低下し、また接合強度のばらつきが大きいため品質管理が難しい、といった問題がある。
【0005】
本発明は前記に鑑み、希土類元素を含む永久磁石よりなる第1部材と、その第1部材よりも熱膨脹率が大きいFe合金よりなる第2部材とを、ろう材を用いて加熱下で強固に接合すると共に両部材の接合部に発生する熱応力を緩和して、熱膨脹率が小さい方の部材が脆くても、冷却工程でその部材に割れが発生するのを回避することができる前記加熱接合方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、希土類元素を含む永久磁石よりなる第1部材と、その第1部材よりも熱膨脹率が大きいFe合金よりなる第2部材とを加熱下で接合するに当り、板状インサートであって、一方の平坦面側から他方の平坦面側に向って熱膨脹率が小から大に変化し、且つ一方の平坦面側の熱膨脹率は前記第1部材の熱膨脹率よりも大きく、また他方の平坦面側の熱膨脹率は前記第2部材の熱膨脹率よりも小さいものを用意し、前記板状インサートにおいて、前記一方の平坦面を前記第1部材の接合面に向けると共にそれら平坦面および接合面間に第1のろう材を介在させ、また前記他方の平坦面を前記第2部材の接合面に向けると共にそれら平坦面および接合面間に第2のろう材を介在させて、第1部材、第1のろう材、板状インサート、第2のろう材および第2部材よりなる積層体を作製し、次いで前記積層体を加熱して前記第1部材と前記板状インサートとを前記第1のろう材よりなる第1の接合層を介して接合し、また前記第2部材と前記板状インサートとを前記第2のろう材よりなる第2の接合層を介して接合する、熱膨脹率を異にする二種の部材の、ろう材を用いた加熱接合方法であって、前記第1,第2のろう材が、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される少なくとも一種である希土類元素と、Cu、Al、Ga、Co、Fe、Ag、Ni、Au、Mn、Zn、Pd、Sn、Sb、Pb、Bi、GeおよびInから選択される少なくとも一種である合金元素AEとからなる希土類元素系合金よりなり、前記第1,第2のろう材において前記合金元素AEの含有量が5原子%≦AE≦50原子%であることを徴とする。
【0007】
前記手段を採用することにより、希土類元素を含む永久磁石よりなる第1部材と板状インサートとを、希土類元素系合金より構成された高活性な第1のろう材よりなる第1の接合層を介して強固に接合(即ちろう接)し得ると共に、その第1部材よりも熱膨脹率が大きいFe合金よりなる第2部材と板状インサートとを、同じく希土類元素系合金より構成された高活性な第2のろう材よりなる第2の接合層を介して固に接合(即ちろう接)し得るので、第1,第2部材間の接合強度の高い接合体を得ることができる。また特に第1,第2のろう材において前記合金元素AEの含有量が5原子%≦AE≦50原子%であるため、各ろう材の活性が損なわれず、しかも固液共存状態において液相を確保可能となる。
【0008】
一方の平坦面側から他方の平坦面側に向って熱膨脹率が小から大に変化し、且つ一方の平坦面側の熱膨脹率は第1部材の熱膨脹率よりも大きく、また他方の平坦面側の熱膨脹率は第2部材の熱膨脹率よりも小さい板状インサートを第1,第2部材間に在させると、それらの熱膨脹率が第1部材から第2部材に至るに従って漸次大きくなるように変化する。これにより、冷却工程で、第1,第2部材の熱膨脹率差に起因して両部材の接合部に生じる熱応力を緩和し得るので、熱膨脹率が小さい方の第1部材が希土類元素を含む永久磁石であって脆くても、それに割れが発生するのを回避することができる。
【0009】
なお、第1,第2のろう材の熱膨脹率は、それらの縦弾性係数Eを小さくし得ると共にそれらの厚さを考慮すると、無視しても差支えない。
【0010】
【発明の実施の形態】
図1は接合体1の一例を示す。この接合体1においては第1部材が、NdFeB系永久磁石、SmCo系永久磁石等の希土類元素を含む永久磁石2であり、また第2部材が、永久磁石2よりも熱膨脹率が大きい炭素鋼(Fe系合金)よりなる鋼製ブロック体3である。
【0011】
永久磁石2と鋼製ブロック体3との間に接合部4が存在する。その接合部4は、中間に存する板状インサート5と、永久磁石2および板状インサート5間に存する第1の接合層6と、鋼製ブロック体3および板状インサート5間に存する第2の接合層7とよりなる。
【0012】
板状インサート5は、永久磁石2側の一方の平坦面a側から他方の平坦面b側に向って熱膨脹率が小から大に変化し、且つ一方の平坦面a側の熱膨脹率は永久磁石2の熱膨脹率よりも大きく、また他方の平坦面b側の熱膨脹率は鋼製ブロック体3の熱膨脹率よりも小さい。
【0013】
第1,第2の接合層6,7は、箔状(または薄板状)をなす第1,第2のろう材が加熱下で液相を生じる、つまり両ろう材が完全な液相状態になるか、または固相と液相とが共存する固液共存状態になることによって形成されたものである。
【0014】
接合処理に当っては、図2に示すように、板状インサート5において、一方の平坦面aを永久磁石2の接合面cに向けると共にそれら平坦面aおよび接合面c間に第1の箔状ろう材8を介在させ、また他方の平坦面bを鋼製ブロック体3の接合面dに向けると共にそれら平坦面bおよび接合面d間に第2の箔状ろう材9を介在させて、図3に示すように永久磁石2、第1のろう材8、板状インサート5、第2のろう材9および鋼製ブロック体3よりなる積層体10を作製する。次いで積層体10を、真空加熱炉内に設置して加熱することにより、第1,第2のろう材8,9を液相状態または固液共存状態にし、これにより、永久磁石2と板状インサート5とを第1のろう材8よりなる第1の接合層6を介して接合し、また鋼製ブロック体3と板状インサート5とを第2のろう材9よりなる第2の接合層7を介して接合する。その後、炉冷を行って接合体1を得る。
【0015】
前記接合処理における加熱時間hは、それが長過ぎる場合には永久磁石2および鋼製ブロック体3の特性に影響を与えるので、h≦10時間であることが望ましく、生産性向上の観点からはh≦1時間である。
【0016】
前記手段を採用することにより、永久磁石2と板状インサート5とを第1の接合層6を介して、また鋼製ブロック体3と板状インサート5とを第2の接合層7を介してそれぞれ強固に接合し得るので、永久磁石2および鋼製ブロック体3間の接合強度の高い接合体1を得ることができる。
【0017】
永久磁石2および鋼製ブロック体3間に板状インサート5を存在させると、それら2,3,5の熱膨脹率が永久磁石2から鋼製ブロック体3に至るに従って漸次大きくなるように変化する。これにより、冷却工程で、永久磁石2および鋼製ブロック体3の熱膨脹率差に起因して接合部4に生じる熱応力を緩和し得るので、熱膨脹率が小さい方の永久磁石2が脆い場合にもそれに割れが発生するのを回避することができる。
【0018】
なお、第1,第2のろう材8,9の熱膨脹率は、それら8,9の縦弾性係数Eを小さくし得ると共にそれらの厚さを考慮すると、無視しても差支えない。
【0019】
板状インサート5としては、例えば、図4に示すように、複数、図示例では第1〜第4Fe−Ni合金板111 〜114 よりなるクラッド板が用いられる。各Fe−Ni合金板111 〜114 におけるNi含有量は永久磁石2より離れるに従って漸減している。この場合、Ni含有量の最大値Ni(max)は第1Fe−Ni合金板111 のNi(max)=36原子%であり、また最小値Ni(min)は第4Fe−Ni合金板114 のNi(min)=10原子%である。
【0020】
表1は板状インサート5の各部の組成および熱膨脹係数を示す。
【0021】
【表1】

Figure 0003802586
【0022】
図4、表1から明らかなように、板状インサート5において、第1Fe−Ni合金板111 が一方の平坦面aを備え、また第4Fe−Ni合金板114 が他方の平坦面bを備える。そして一方の平坦面a側から他方の平坦面b側に向って熱膨脹率が小から大に変化する。
【0023】
第1,第2のろう材8,9としては、希土類元素系合金より構成された高活性なものが用いられる。これらのろう材8,9においては、非晶質相の体積分率Vfが50%≦Vf≦100%であることが望ましい。その理由は次の通りである。即ち、非晶質相は、酸化の起点となるような粒界層が存在しないので耐酸化性が著しく高く、また酸化物の混在も僅少であり、その上偏析がなく組成が均一である、といった特性を有するので、第1,第2の接合層6,7の強度向上を図る上で有効であるからである。
【0024】
両ろう材8,9において、希土類元素にはY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される少なくとも一種が該当し、それらは単体、または混合物であるMm(ミッシュメタル)、Di(ジジミウム)の形態で用いられる。また合金元素AEは希土類元素と共晶反応を行うもので、その合金元素AEには、Cu、Al、Ga、Co、Fe、Ag、Ni、Au、Mn、Zn、Pd、Sn、Sb、Pb、Bi、GeおよびInから選択される少なくとも一種が該当する。合金元素AEの含有量は5原子%≦AE≦50原子%に設定される。二種以上の合金元素AEを含有する場合には、それらの合計含有量が5原子%≦AE≦50原子%となる。ただし、合金元素AEの含有量がAE>50原子%ではろう材8,9の活性が損われ、一方、AE<5原子%では固液共存状態において液相を確保することが難しくなる。
【0025】
表2,3は、ろう材8,9を構成する各種希土類元素系共晶合金およびそれらの縦弾性係数Eを示す。
【0026】
【表2】
Figure 0003802586
【0027】
【表3】
Figure 0003802586
【0028】
また希土類元素系亜、過共晶合金としては以下のものを挙げることができる。各化学式において、数値の単位は原子%である(これは以下同じ)。Eは縦弾性係数を意味する。
(a) Nd60Cu40合金(E=4500kgf/mm2 )、Nd75Cu25合金(E=4000kgf/mm2 )、Nd80Cu20合金(E=3950kgf/mm2 )、Nd50Cu50合金(E=9000kgf/mm2 )……液相発生温度520℃(図5参照)
(b) Sm75Cu25合金(E=4000kgf/mm2 )、Sm65Cu35合金(E=4300kgf/mm2 )……液相発生温度597℃
(c) Nd90Al10合金(E=3850kgf/mm2 、液相発生温度634℃)、Nd80Co20合金(E=4000kgf/mm2 、液相発生温度599℃)、La85Ga15合金(E=4000kgf/mm2 、液相発生温度550℃)
さらに三元系合金としては、Nd65Fe5 Cu30合金(E=4200kgf/mm2 、液相発生温度501℃)およびNd70Cu25Al5 合金(E=4000kgf/mm2 、液相発生温度474℃)を挙げることができる。
〔実施例1〕
純度99.9%のNdと、純度99.9%のCuと、純度99.9%のAlとを、Nd70Cu25Al5 合金が得られるように秤量し、次いでその秤量物を真空溶解炉を用いて溶解し、その後鋳造を行ってインゴットを得た。
【0029】
このインゴットから約50gの原料を採取し、これを石英ノズルで高周波溶解して溶湯を調製し、次いで溶湯を石英ノズルのスリットから、その下方で高速回転するCu製冷却ロール外周面にアルゴンガス圧により噴出させて超急冷し、幅30mm、厚さ20μmのNd70Cu25Al5 合金よりなる薄帯を得た。この薄帯は均質であると共に連続性も良く、したがって前記組成の合金は薄帯形成性が良好である。
【0030】
この場合の製造条件は次の通りである。即ち、石英ノズルの内径 40mm、スリットの寸法 幅 0.25mm、長さ 30mm、アルゴンガス圧 1.0kgf/cm2 、溶湯温度 800℃、スリットと冷却ロールとの距離 1.0mm、冷却ロールの周速 33m/sec 、溶湯の冷却速度 約105 K/sec である。
【0031】
図6は薄帯のX線回折結果を示し、この薄帯においては2θ≒32°に幅広のハローパターンが観察され、このことから薄帯の金属組織は非晶質単相組織であることが判明し、その結晶化温度TxはTx=129.8℃であった。また薄帯の液相発生温度TmはTm=474℃であって易融化が図られており、さらに薄帯は、高い靱性を有するので、180°密着曲げが可能であり、また変色もなく優れた耐酸化性を備えていた。さらにまた前記製造条件において、冷却ロールの周速のみを変えて薄帯の厚さを20μmから400μmまで変化させ、非晶質単相組織が得られる薄帯の臨界厚さを求めたところ、その臨界厚さは270μmであることが判明した。
【0032】
次に、厚さ100μmの薄帯に打抜き加工を施して、図2に示すように縦100mm、横20mmで箔状をなし、且つ非晶質の第1,第2のろう材8,9を作製した。
【0033】
第1部材として、縦100mm、横20mm、厚さ5mmのNdFeB系永久磁石(住友特殊金属社製、商品名NEOMAX−28UH、キュリー点310℃)2を選定し、また第2部材として、炭素鋼(JIS S35C)よりなり、且つ縦20mm、横20mm、長さ100mmの直方体状の鋼製ブロック体3を選定した。
【0034】
NdFeB系永久磁石2の熱膨脹係数は約1.0×10-6/℃(平均値)であり、また鋼製ブロック体3の熱膨脹係数は約12.2×10-6/℃であった。
【0035】
図7は、NdFeB系永久磁石2および鋼製ブロック体3の温度と熱膨脹率との関係を示す。図7から明らかなように、NdFeB系永久磁石2は、約310℃にて熱膨脹率が逆転し、また約310℃以下の温度域における熱膨脹率変化が小さいといった特異性を持つこと、および加熱工程後の冷却工程において、その温度降下に伴いNdFeB系永久磁石2の熱膨脹率と鋼製ブロック体3の熱膨脹率との差が急激に増大することが判る。
【0036】
さらに板状インサート5として、表1および図4に示した構造を有し、縦100mm、横20mm、厚さ1.5mmのものを用意した。
【0037】
図2,4に示すように、鋼製ブロック体3の長方形をなす上向きの接合面d上に第2のろう材9を、また第2のろう材9上に、第4Fe−Ni合金板114 (他方の平坦面b)を下向きにした板状インサート5を、さらに板状インサート5の第1Fe−Ni合金板111 (一方の平坦面a)上に第1のろう材8を、さらにまた第1のろう材8上に長方形の接合面cを下向きにしたNdFeB系永久磁石2をそれぞれ重ね合せて、図3に示す積層体10を作製した。
【0038】
次いで、その積層体10を真空加熱炉内に設置し、加熱温度T=540℃、加熱時間h=20分間の加熱工程、それに次ぐ炉冷よりなる冷却工程を行って、図1に示すようにNdFeB系永久磁石2と、第1のろう材8より形成された結晶質の第1の接合層6と、板状インサート5と、第2のろう材9より形成された結晶質の第2の接合層7と、鋼製ブロック体3とよりなる接合体1を得た。この接合処理においては、加熱温度TがT=540℃であって、両ろう材8,9の液相発生温度Tm=474℃を超えているので、両ろう材8,9は完全な液相状態となる。
【0039】
このようにして得られた接合体1を目視にて観察したところ、NdFeB系永久磁石2と板状インサート5とが第1の接合層6を介して十分に接合しており、また鋼製ブロック体3と板状インサート5とが第2の接合層7を介して十分に接合していることが判明した。
【0040】
またNdFeB系永久磁石2において割れの発生は全然認められなかった。これは、図7に示したように、NdFeB系永久磁石2と鋼製ブロック体3の熱膨脹率が冷却工程において大きく異なるにも拘らず、板状インサート5を使用したことにより、冷却工程において接合部4に発生する熱応力が緩和されたことに起因する。特に、板状インサート5において、NdFeB系永久磁石2に最も近い第1Fe−Ni合金板111 の組成をインバー(invar)組成にして、約310℃以下の温度域における第1Fe−Ni合金板111 の熱的挙動をNdFeB系永久磁石2のそれに近似させたことが、NdFeB系永久磁石2の割れ発生を回避する上に大きな要因となっている。
【0041】
NdFeB系永久磁石2、SmCo系永久磁石等の希土類元素を含む永久磁石は、接合処理時の加熱温度TがT>650℃になると、その磁気特性、特に保磁力 IC (磁化の強さI=0)が低下傾向となる。ただし、残留磁束密度Brおよび保磁力 BC (磁束密度B=0)は殆ど変わらず、したがって最大磁気エネルギ積(BH)maxは略一定である。両ろう材8,9を用いた接合処理において、その加熱温度TはT=540℃であってT≦650℃であるから、NdFeB系永久磁石2の磁気特性を変化させるようなことはない。
〔実施例2〕
箔状をなす非晶質の第1,第2のろう材8,9として、実施例1で述べたものと同一組成で、且つ縦20mm、横20mm、厚さ100μmのものを各ろう材8,9について2つ宛用意した。
【0042】
またNdFeB系永久磁石2として、実施例1で述べたものと同一構造で、且つ縦20mm、横20mm、厚さ5mmのものを用意した。
【0043】
さらに鋼製ブロック体3として、実施例1で述べたものと同一材質で、且つ縦20mm、横20mm、長さ40mmのものを2つ用意した。
【0044】
さらにまた、板状インサート5として、実施例1で述べたものと同一構造で、且つ縦20mm、横20mm、厚さ1.5mmのものを2つ用意した。
【0045】
図8(図4も参照)に示すように、1つの鋼製ブロック体3の正方形をなす上向きの接合面d上に第2のろう材9を、第2のろう材9上に、第4Fe−Ni合金板114 (他方の接合面b)を下向きにした板状インサート5を、板状インサート5の第1Fe−Ni合金板111 (一方の平坦面a)上に第1のろう材8を、第1のろう材8上に正方形をなす一方の接合面cを下向きにしたNdFeB系永久磁石2を、NdFeB系永久磁石2の正方形をなす他方の上向きの接合面c上に第1のろう材8を、第1のろう材8上に、第1Fe−Ni合金板111 (一方の平坦面a)を下向きにした板状インサート5を、板状インサート5の第4Fe−Ni合金板114 (他方の平坦面b)上に第2のろう材9を、第2のろう材9上に接合面dを下向きにしたもう1つの鋼製ブロック体3をそれぞれ重ね合せて積層体を作製し、同様の手順で合計20個の積層体を作製した。両鋼製ブロック体3に存する貫通孔13は引張り試験においてチャックとの連結に用いられる。
【0046】
次いで、各積層体を真空加熱炉内に設置し、加熱温度T=540℃、加熱時間h=20分間の加熱工程、それに次ぐ炉冷よりなる冷却工程を行って、図9に示す20個のサンドイッチ状物14を得た。各サンドイッチ状物14は、1つのNdFeB系永久磁石2を共用する2つの接合体1よりなる。
【0047】
この接合処理においては、実施例1同様に、加熱温度TがT=540℃に設定されているので、液相発生温度TmがTm=474℃の各ろう材8,9は完全な液相状態となる。
【0048】
このようにして得られた各サンドイッチ状物14を目視にて観察したところ、NdFeB系永久磁石2と各板状インサート5とが第1の接合層6を介して十分に接合しており、また鋼製ブロック体3と各板状インサート5とが第2の接合層7を介して十分に接合していることが判った。またNdFeB系永久磁石2において割れの発生は全然認められなかった。
【0049】
比較のため、前記同様のNdFeB系永久磁石2と前記同様の2つの鋼製ブロック体3とを、それら鋼製ブロック体3により、エポキシ樹脂系接着剤(日本チバガイギ社製、商品名アラルダイト)を介しNdFeB系永久磁石2を挟むように重ね合せて積層体を作製し、同様の手順で合計20個の積層体を作製した。次いで、これら積層体を乾燥炉内に設置して、加熱温度200℃、加熱時間60分間の加熱工程、それに次ぐ炉冷よりなる冷却工程を行って、2つの鋼製ブロック体3と永久磁石2とをそれぞれエポキシ樹脂系接着剤を介して接合した20個のサンドイッチ状物を得た。
【0050】
ろう材8,9および板状インサート5を用いたサンドイッチ状物14およびエポキシ樹脂系接着剤を用いたサンドイッチ状物の各10個について室温下で引張り試験を行い、また残りの各10個について150℃の加熱下で引張り試験を行ったところ、表4の結果を得た。
【0051】
【表4】
Figure 0003802586
【0052】
表4から明らかなように、ろう材8,9および板状インサート5を用いたサンドイッチ状物14は、室温下および150℃の加熱下において、エポキシ樹脂系接着剤を用いたサンドイッチ状物に比べて接合強度が高く、またその接合強度は両環境下において殆ど変わらず、さらにそのばらつきも小さい。エポキシ系接着剤を用いたサンドイッチ状物は室温下における接合強度が低い上にそのばらつきが大きく、また150℃の加熱下ではその接合強度が室温下のそれの3分の1に低下する。
【0053】
NdFeB系永久磁石2、SmCo系永久磁石等の希土類元素を含む永久磁石の濡れ性の悪さは、その結晶粒界に希土類元素濃度、この実施例ではNd濃度の高い相が存在していることに起因する。前記ろう材8,9を用いた接合処理において、それらろう材8,9は液相状態となっており、Ndを主成分とするNd70Cu25Al5 合金より生じた液相は、高活性であると共に前記結晶粒界に存するNd濃度の高い相と主成分を共通にすることからNdFeB系永久磁石2に対して優れた濡れ性を発揮し、また前記高活性化に伴い鋼製ブロック体3および板状インサート5に対する濡れ性も極めて良好である。
【0054】
前記接合技術は、回転機としてのモータ用ロータにおいて、そのロータ本体に対するNdFeB系永久磁石2の接合に適用され、回転数が10000rpm 以上である高速回転モータの実現を可能にするものである。
【0055】
【発明の効果】
本発明によれば、希土類元素を含む永久磁石よりなる第1部材と、板状インサートとを、希土類元素系合金より構成された高活性な第1のろう材よりなる第1の接合層を介して強固に接合(即ちろう接)し得ると共に、その第1部材よりも熱膨脹率が大きいFe合金よりなる第2部材と、板状インサートとを、同じく希土類元素系合金より構成された高活性な第2のろう材よりなる第2の接合層を介して強固に接合(即ちろう接)し得るので、熱膨張率を異にする第1,第2部材を強固に接合することができる。また特に第1,第2のろう材において前記合金元素AEの含有量が5原子%≦AE≦50原子%であるため、各ろう材の活性が損なわれず、しかも固液共存状態において液相を確保可能となる。
また一方の平坦面側から他方の平坦面側に向って熱膨脹率が小から大に変化し、且つ一方の平坦面側の熱膨脹率は第1部材の熱膨脹率よりも大きく、また他方の平坦面側の熱膨脹率は第2部材の熱膨脹率よりも小さい板状インサートを第1,第2部材間に介在させるので、それらの熱膨脹率が第1部材から第2部材に至るに従って漸次大きくなるように変化し、これにより、冷却工程で、第1,第2部材の熱膨脹率差に起因して両部材の接合部に生じる熱応力を緩和し得るので、熱膨脹率が小さい第1部材が希土類元素を含む永久磁石であって脆くても、それに冷却工程割れが発生するのを回避することができる。
【図面の簡単な説明】
【図1】接合体の一部拡大正面図である。
【図2】永久磁石、ろう材、板状インサートおよび鋼製ブロック体の重ね合せ関係の一例を示す斜視図である。
【図3】積層体の側面図である。
【図4】板状インサートの構造説明図である。
【図5】Cu−Nd系状態図である。
【図6】Nd70Cu25Al5 合金のX線回折図である。
【図7】温度と熱膨脹率との関係を示すグラフである。
【図8】永久磁石、ろう材、板状インサートおよび鋼製ブロック体の重ね合せ関係の他例を示す斜視図である。
【図9】サンドイッチ状物の斜視図である。
【符号の説明】
1 接合体
2 永久磁石(第1部材)
3 鋼製ブロック体(第2部材)
5 板状インサート
6,7 第1,第2の接合層
8,9 第1,第2のろう材
10 積層体
111 〜114 第1〜第4Fe−Ni合金板
a 一方の接合面
b 他方の接合面
c,d 接合面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for heating and joining two members having different thermal expansion rates, particularly a first member made of a permanent magnet containing a rare earth element, and a second member made of an Fe alloy having a higher thermal expansion rate than the first member. And a method of joining under heat using a brazing material .
[0002]
[Prior art]
Conventionally, for example, when a permanent magnet containing a rare earth element as a first member and a steel mounting base as a second member are joined, a synthetic resin adhesive has been used (for example, Japanese Patent Publication No. 61-33339). See the official gazette).
[0003]
The reason why synthetic resin adhesives are used in this way is that permanent magnets containing rare earth elements are very brittle and thus have poor machinability. Also, when exposed to high temperatures, the metal structure changes, and magnetic properties change accordingly. This is because it has a property of being affected, and therefore, when a permanent magnet is attached to a steel mounting base, it is not possible to employ attachment means such as a bayonet structure, screwing, or welding.
[0004]
[Problems to be solved by the invention]
However, the joining with the synthetic resin adhesive has a problem that the joining strength is remarkably lowered with the temperature rise of the permanent magnet, and the quality control is difficult due to the large variation in joining strength.
[0005]
In view of the above, the present invention provides a first member made of a permanent magnet containing a rare earth element and a second member made of an Fe alloy having a thermal expansion coefficient larger than that of the first member. The above-mentioned heat-bonding that relaxes the thermal stress generated at the joint between the two members and avoids cracking of the member in the cooling step even if the member with the smaller coefficient of thermal expansion is brittle It aims to provide a method.
[0006]
[Means for Solving the Problems]
The present invention provides a plate-like insert for joining a first member made of a permanent magnet containing a rare earth element and a second member made of an Fe alloy having a higher thermal expansion coefficient than the first member under heating. The coefficient of thermal expansion changes from small to large from one flat surface side to the other flat surface side, and the thermal expansion coefficient on one flat surface side is larger than the thermal expansion coefficient of the first member, and the other flat surface side. A thermal expansion coefficient on the surface side is smaller than the thermal expansion coefficient of the second member, and in the plate-like insert, the one flat surface is directed to the bonding surface of the first member, and between the flat surface and the bonding surface. The first brazing material is interposed between the first brazing material and the other flat surface is directed to the joint surface of the second member, and the second brazing material is interposed between the flat surface and the joint surface. 1 brazing material, plate insert, second filter A laminated body made of a material and a second member is manufactured, and then the laminated body is heated to join the first member and the plate-like insert through the first joining layer made of the first brazing material. Further, heating using the brazing material of the two members having different thermal expansion rates, which joins the second member and the plate-like insert through the second joining layer made of the second brazing material. In the joining method, the first and second brazing materials are selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. At least one rare earth element and at least one alloy selected from Cu, Al, Ga, Co, Fe, Ag, Ni, Au, Mn, Zn, Pd, Sn, Sb, Pb, Bi, Ge, and In It consists of a rare earth element-based alloy consisting of elements AE Before SL first, the feature that the content of the alloy element AE in the second brazing material is 5 atomic% ≦ AE ≦ 50 atomic%.
[0007]
By adopting the above-described means, the first member made of a permanent magnet containing a rare earth element, and the plate-like insert, the first bonding layer made of a highly active first brazing material made of a rare earth element-based alloy. The second member made of an Fe alloy having a higher thermal expansion coefficient than that of the first member and the plate-like insert are also made of a rare earth element-based alloy. because active may second second bonding strength solid through a bonding layer made of a brazing material (i.e. brazing), it is possible to obtain the first, high joining body of the bonding strength between the second member. In particular, since the content of the alloy element AE in the first and second brazing materials is 5 atomic% ≦ AE ≦ 50 atomic%, the activity of each brazing material is not impaired, and the liquid phase is maintained in a solid-liquid coexistence state. It can be secured.
[0008]
The thermal expansion coefficient changes from small to large from one flat surface side to the other flat surface side, and the thermal expansion coefficient of one flat surface side is larger than the thermal expansion coefficient of the first member, and the other flat surface side the coefficient of thermal expansion is small plate insert than the thermal expansion coefficient the first second member, when the Zaisa through between the second member, so that their thermal expansion rate becomes gradually larger as reaching the second member from the first member Change. Thereby, in the cooling process, the thermal stress generated at the joint portion between the two members due to the difference between the thermal expansion coefficients of the first and second members can be relieved, so the first member with the smaller thermal expansion coefficient contains the rare earth element. Even if it is a permanent magnet and is brittle, it can be avoided that cracking occurs.
[0009]
Note that the thermal expansion coefficients of the first and second brazing materials can be ignored if their longitudinal elastic modulus E can be reduced and their thickness is taken into consideration.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of a joined body 1. In this joined body 1, the first member is a permanent magnet 2 containing a rare earth element such as an NdFeB-based permanent magnet or an SmCo-based permanent magnet, and the second member is a carbon steel having a higher thermal expansion coefficient than the permanent magnet 2 ( This is a steel block body 3 made of an Fe-based alloy.
[0011]
There is a joint 4 between the permanent magnet 2 and the steel block body 3. The joint 4 includes a plate-like insert 5 that exists in the middle, a first joining layer 6 that exists between the permanent magnet 2 and the plate-like insert 5, and a second that exists between the steel block body 3 and the plate-like insert 5. It consists of the joining layer 7.
[0012]
The plate-like insert 5 has a coefficient of thermal expansion changing from small to large from one flat surface a side on the permanent magnet 2 side to the other flat surface b side, and the thermal expansion coefficient on the one flat surface a side is permanent magnet. 2 is larger than that of the other flat surface b, and is smaller than that of the steel block 3.
[0013]
The first and second bonding layers 6 and 7 have a foil-like (or thin-plate-like) first and second brazing filler metal that generate a liquid phase under heating, that is, both brazing filler metals are in a completely liquid phase state. Or a solid-liquid coexistence state in which a solid phase and a liquid phase coexist.
[0014]
In the joining process, as shown in FIG. 2, in the plate-like insert 5, one flat surface a is directed to the joining surface c of the permanent magnet 2 and the first foil is provided between the flat surface a and the joining surface c. The brazing filler metal 8 is interposed, the other flat surface b is directed to the joint surface d of the steel block body 3, and the second foil brazing material 9 is interposed between the flat surface b and the joint surface d. As shown in FIG. 3, a laminated body 10 including the permanent magnet 2, the first brazing material 8, the plate-like insert 5, the second brazing material 9, and the steel block body 3 is produced. Next, the laminated body 10 is placed in a vacuum heating furnace and heated to bring the first and second brazing materials 8 and 9 into a liquid phase state or a solid-liquid coexistence state. The insert 5 is joined via the first joining layer 6 made of the first brazing material 8, and the steel block body 3 and the plate-like insert 5 are joined by the second joining material 9. 7 is joined. Thereafter, furnace bonding is performed to obtain the joined body 1.
[0015]
When the heating time h in the joining process is too long, it affects the characteristics of the permanent magnet 2 and the steel block body 3, so h ≦ 10 hours is desirable. From the viewpoint of improving productivity, h ≦ 1 hour.
[0016]
By adopting the above-described means, the permanent magnet 2 and the plate-like insert 5 are connected via the first bonding layer 6, and the steel block body 3 and the plate-like insert 5 are connected via the second bonding layer 7. Since each can be firmly joined, the joined body 1 having high joining strength between the permanent magnet 2 and the steel block body 3 can be obtained.
[0017]
When the plate-like insert 5 is present between the permanent magnet 2 and the steel block body 3, the thermal expansion coefficients of these 2, 3, and 5 change so as to gradually increase from the permanent magnet 2 to the steel block body 3. Thereby, in the cooling process, the thermal stress generated in the joint portion 4 due to the difference in thermal expansion coefficient between the permanent magnet 2 and the steel block body 3 can be relieved, so that the permanent magnet 2 having a smaller thermal expansion coefficient is brittle. It is also possible to avoid the occurrence of cracks in it.
[0018]
The thermal expansion coefficients of the first and second brazing materials 8 and 9 can be ignored if the longitudinal elastic modulus E of those 8 and 9 can be reduced and their thickness is taken into consideration.
[0019]
As the plate-like insert 5, for example, as shown in FIG. 4, a plurality of clad plates made of first to fourth Fe—Ni alloy plates 11 1 to 11 4 are used in the illustrated example. The Ni content in each of the Fe—Ni alloy plates 11 1 to 11 4 gradually decreases as the distance from the permanent magnet 2 increases. In this case, the maximum value Ni (max) of the Ni content is Ni (max) = 36 atomic% of the first Fe—Ni alloy plate 11 1 , and the minimum value Ni (min) is the fourth Fe—Ni alloy plate 11 4. Ni (min) = 10 atomic%.
[0020]
Table 1 shows the composition and thermal expansion coefficient of each part of the plate-like insert 5.
[0021]
[Table 1]
Figure 0003802586
[0022]
4, as is clear from Table 1, the plate-shaped insert 5, the 1Fe-Ni alloy plate 11 1 is provided with one flat surface a, also the first 4Fe-Ni alloy plate 11 4 the other flat surface b Prepare. The coefficient of thermal expansion changes from small to large from one flat surface a side to the other flat surface b side.
[0023]
As the first and second brazing materials 8 and 9, highly active materials composed of rare earth element based alloys are used. In these brazing materials 8 and 9, the volume fraction Vf of the amorphous phase is desirably 50% ≦ Vf ≦ 100%. The reason is as follows. In other words, the amorphous phase has a very high oxidation resistance because there is no grain boundary layer as a starting point of oxidation, and there is little oxide mixing, and there is no segregation and the composition is uniform. This is because it is effective in improving the strength of the first and second bonding layers 6 and 7.
[0024]
In both brazing materials 8 and 9, the rare earth element corresponds to at least one selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. , They are used in the form of Mm (Misch metal) or Di (Didimium) which is a simple substance or a mixture. The alloy element AE performs a eutectic reaction with a rare earth element. The alloy element AE includes Cu, Al, Ga, Co, Fe, Ag, Ni, Au, Mn, Zn, Pd, Sn, Sb, Pb. At least one selected from Bi, Ge, and In is applicable. The content of the alloy element AE is set to 5 atomic% ≦ AE ≦ 50 atomic%. When two or more kinds of alloy elements AE are contained, the total content thereof is 5 atomic% ≦ AE ≦ 50 atomic%. However, when the content of the alloy element AE is AE> 50 atomic%, the activity of the brazing materials 8 and 9 is impaired. On the other hand, when AE <5 atomic%, it is difficult to secure a liquid phase in a solid-liquid coexistence state.
[0025]
Tables 2 and 3 show various rare earth element type eutectic alloys constituting the brazing materials 8 and 9 and their longitudinal elastic modulus E.
[0026]
[Table 2]
Figure 0003802586
[0027]
[Table 3]
Figure 0003802586
[0028]
Examples of rare earth element-based sub- and hypereutectic alloys include the following. In each chemical formula, the unit of numerical values is atomic% (the same applies hereinafter). E means the longitudinal elastic modulus.
(A) Nd 60 Cu 40 alloy (E = 4500 kgf / mm 2 ), Nd 75 Cu 25 alloy (E = 4000 kgf / mm 2 ), Nd 80 Cu 20 alloy (E = 3950 kgf / mm 2 ), Nd 50 Cu 50 alloy (E = 9000 kgf / mm 2 ) …… Liquid phase generation temperature 520 ° C. (see FIG. 5)
(B) Sm 75 Cu 25 alloy (E = 4000 kgf / mm 2 ), Sm 65 Cu 35 alloy (E = 4300 kgf / mm 2 ) …… Liquid phase generation temperature 597 ° C.
(C) Nd 90 Al 10 alloy (E = 3850 kgf / mm 2 , liquid phase generation temperature 634 ° C.), Nd 80 Co 20 alloy (E = 4000 kgf / mm 2 , liquid phase generation temperature 599 ° C.), La 85 Ga 15 alloy (E = 4000kgf / mm 2 , liquid phase generation temperature 550 ° C)
Further, as ternary alloys, Nd 65 Fe 5 Cu 30 alloy (E = 4200 kgf / mm 2 , liquid phase generation temperature 501 ° C.) and Nd 70 Cu 25 Al 5 alloy (E = 4000 kgf / mm 2) , liquid phase generation temperature 474 ° C.).
[Example 1]
Nd with a purity of 99.9%, Cu with a purity of 99.9%, and Al with a purity of 99.9% are weighed to obtain an Nd 70 Cu 25 Al 5 alloy, and then the weighed product is vacuum-dissolved. It melt | dissolved using the furnace and casted after that and obtained the ingot.
[0029]
About 50 g of raw material is sampled from this ingot, and this is melted at a high frequency with a quartz nozzle to prepare a molten metal, and then the molten metal is discharged from the slit of the quartz nozzle to the outer peripheral surface of a Cu cooling roll that rotates at a high speed below it. And a thin ribbon made of an Nd 70 Cu 25 Al 5 alloy having a width of 30 mm and a thickness of 20 μm was obtained. The ribbon is homogeneous and has good continuity, so an alloy of the above composition has good ribbon formation.
[0030]
The manufacturing conditions in this case are as follows. That is, the inner diameter of the quartz nozzle is 40 mm, the slit width is 0.25 mm, the length is 30 mm, the argon gas pressure is 1.0 kgf / cm 2 , the molten metal temperature is 800 ° C., the distance between the slit and the cooling roll is 1.0 mm, the circumference of the cooling roll The speed is 33 m / sec and the molten metal cooling rate is about 10 5 K / sec.
[0031]
FIG. 6 shows the X-ray diffraction result of the ribbon. In this ribbon, a wide halo pattern of 2θ≈32 ° is observed, and this indicates that the metal structure of the ribbon is an amorphous single-phase structure. As a result, the crystallization temperature Tx was Tx = 129.8 ° C. Moreover, the liquid phase generation temperature Tm of the ribbon is Tm = 474 ° C. and easy melting is achieved. Further, since the ribbon has high toughness, it can be bent 180 ° and is excellent without discoloration. It had high oxidation resistance. Furthermore, in the manufacturing conditions, the thickness of the ribbon was changed from 20 μm to 400 μm by changing only the peripheral speed of the cooling roll, and the critical thickness of the ribbon for obtaining an amorphous single phase structure was determined. The critical thickness was found to be 270 μm.
[0032]
Next, a thin ribbon having a thickness of 100 μm is punched into a foil shape having a length of 100 mm and a width of 20 mm as shown in FIG. 2, and amorphous first and second brazing materials 8 and 9 are formed. Produced.
[0033]
NdFeB permanent magnet (Sumitomo Special Metal Co., Ltd., trade name NEOMAX-28UH, Curie point 310 ° C.) 2 having a length of 100 mm, a width of 20 mm, and a thickness of 5 mm is selected as the first member, and carbon steel is selected as the second member. A rectangular steel block 3 made of (JIS S35C) and having a length of 20 mm, a width of 20 mm, and a length of 100 mm was selected.
[0034]
The thermal expansion coefficient of the NdFeB permanent magnet 2 was about 1.0 × 10 −6 / ° C. (average value), and the thermal expansion coefficient of the steel block body 3 was about 12.2 × 10 −6 / ° C.
[0035]
FIG. 7 shows the relationship between the temperature of the NdFeB-based permanent magnet 2 and the steel block body 3 and the coefficient of thermal expansion. As is apparent from FIG. 7, the NdFeB permanent magnet 2 has a peculiarity that the coefficient of thermal expansion is reversed at about 310 ° C. and the change in the coefficient of thermal expansion is small in a temperature range of about 310 ° C. or less, and the heating process. In the subsequent cooling step, it can be seen that the difference between the thermal expansion coefficient of the NdFeB permanent magnet 2 and the thermal expansion coefficient of the steel block 3 increases rapidly as the temperature drops.
[0036]
Further, a plate-like insert 5 having a structure shown in Table 1 and FIG. 4 and having a length of 100 mm, a width of 20 mm, and a thickness of 1.5 mm was prepared.
[0037]
As shown in FIGS. 2 and 4, the second brazing material 9 is placed on the upward joint surface d forming the rectangle of the steel block body 3, and the fourth Fe—Ni alloy plate 11 is placed on the second brazing material 9. 4 A plate-like insert 5 with the other flat surface b facing downward, and further a first brazing material 8 on the first Fe—Ni alloy plate 11 1 (one flat surface a) of the plate-like insert 5 Moreover, the laminated body 10 shown in FIG. 3 was produced by superimposing the NdFeB permanent magnet 2 with the rectangular joint surface c facing downward on the first brazing material 8.
[0038]
Next, the laminated body 10 is placed in a vacuum heating furnace, and a heating process of heating temperature T = 540 ° C., heating time h = 20 minutes, and subsequent cooling process including furnace cooling are performed, as shown in FIG. A crystalline second bonding layer 6 formed from the NdFeB-based permanent magnet 2, the first brazing material 8, a plate-like insert 5, and a crystalline second layer formed from the second brazing material 9. A joined body 1 including the joining layer 7 and the steel block body 3 was obtained. In this joining process, since the heating temperature T is T = 540 ° C. and exceeds the liquid phase generation temperature Tm = 474 ° C. of both brazing materials 8 and 9, both brazing materials 8 and 9 are in a complete liquid phase. It becomes a state.
[0039]
When the joined body 1 obtained in this way was visually observed, the NdFeB permanent magnet 2 and the plate-like insert 5 were sufficiently joined via the first joining layer 6, and the steel block It has been found that the body 3 and the plate-like insert 5 are sufficiently joined via the second joining layer 7.
[0040]
Further, no cracking was observed in the NdFeB permanent magnet 2. As shown in FIG. 7, this is because the plate-like insert 5 is used in spite of the fact that the thermal expansion coefficients of the NdFeB permanent magnet 2 and the steel block 3 are greatly different in the cooling process. This is because the thermal stress generated in the portion 4 is relaxed. In particular, in the plate-like insert 5, the composition of the first Fe—Ni alloy plate 11 1 closest to the NdFeB permanent magnet 2 is an invar composition, and the first Fe—Ni alloy plate 11 in a temperature range of about 310 ° C. or less. Approximating the thermal behavior of 1 to that of the NdFeB permanent magnet 2 is a major factor in avoiding the occurrence of cracks in the NdFeB permanent magnet 2.
[0041]
A permanent magnet containing rare earth elements such as the NdFeB permanent magnet 2 and the SmCo permanent magnet has a magnetic property, particularly a coercive force I H C (magnetization strength), when the heating temperature T during the joining process reaches T> 650 ° C. I = 0) tends to decrease. However, the residual magnetic flux density Br and the coercive force B H C (magnetic flux density B = 0) are hardly changed, and therefore the maximum magnetic energy product (BH) max is substantially constant. In the joining process using both brazing materials 8 and 9, the heating temperature T is T = 540 ° C. and T ≦ 650 ° C. Therefore, the magnetic characteristics of the NdFeB permanent magnet 2 are not changed.
[Example 2]
As the amorphous first and second brazing filler metals 8 and 9 having a foil shape, each brazing filler metal 8 having the same composition as that described in Example 1, 20 mm in length, 20 mm in width, and 100 μm in thickness is used. , 9 were prepared for two.
[0042]
Further, as the NdFeB permanent magnet 2, one having the same structure as that described in Example 1, 20 mm in length, 20 mm in width, and 5 mm in thickness was prepared.
[0043]
Further, two steel blocks 3 having the same material as that described in Example 1, 20 mm in length, 20 mm in width, and 40 mm in length were prepared.
[0044]
Furthermore, two plate-like inserts 5 having the same structure as described in Example 1, 20 mm long, 20 mm wide, and 1.5 mm thick were prepared.
[0045]
As shown in FIG. 8 (see also FIG. 4), the second brazing material 9 is formed on the upward joint surface d forming the square of one steel block body 3, and the fourth Fe material is formed on the second brazing material 9. The plate-like insert 5 with the Ni alloy plate 11 4 (the other joining surface b) facing downward is placed on the first Fe—Ni alloy plate 11 1 (one flat surface a) of the plate-like insert 5 with the first brazing material. 8, the NdFeB-based permanent magnet 2 with one joining surface c forming a square on the first brazing material 8 facing down, and the first NdFeB-based permanent magnet 2 on the other upward joining surface c forming the square of the NdFeB-based permanent magnet 2. The brazing filler metal 8 is placed on the first brazing filler metal 8 with the first Fe—Ni alloy plate 11 1 (one flat surface a) facing downward, and the fourth Fe—Ni alloy of the platy insert 5. plate 11 4 a second brazing material 9 (the other flat surface b) above, downward joint surfaces d on the second brazing material 9 Another steel block body 3 to form a combined in laminates overlaid each you to prepare a total of 20 pieces of laminate in the same procedure. The through-hole 13 existing in both steel block bodies 3 is used for connection with the chuck in the tensile test.
[0046]
Next, each laminated body was placed in a vacuum heating furnace, and a heating step of heating temperature T = 540 ° C., a heating time h = 20 minutes was performed, followed by a cooling step consisting of furnace cooling. A sandwich 14 was obtained. Each sandwich 14 is composed of two joined bodies 1 sharing one NdFeB permanent magnet 2.
[0047]
In this joining process, as in Example 1, the heating temperature T is set to T = 540 ° C., so that the brazing materials 8 and 9 whose liquid phase generation temperature Tm is Tm = 474 ° C. are in a completely liquid phase state. It becomes.
[0048]
When each sandwich-like product 14 thus obtained was visually observed, the NdFeB-based permanent magnet 2 and each plate-like insert 5 were sufficiently joined via the first joining layer 6, and It was found that the steel block body 3 and each plate-like insert 5 were sufficiently joined via the second joining layer 7. Further, no cracking was observed in the NdFeB permanent magnet 2.
[0049]
For comparison, an NdFeB permanent magnet 2 similar to the above and two steel block bodies 3 similar to those described above are bonded with an epoxy resin adhesive (trade name Araldite, manufactured by Ciba Gaigi Co., Ltd.) using the steel block bodies 3. Thus, a laminate was prepared by sandwiching the NdFeB permanent magnets 2 therebetween, and a total of 20 laminates were produced in the same procedure. Then, these laminated bodies are installed in a drying furnace, a heating step of heating temperature of 200 ° C. and a heating time of 60 minutes, and a cooling step consisting of furnace cooling are performed, followed by two steel block bodies 3 and permanent magnets 2. 20 sandwich-like products were obtained, each of which was bonded via an epoxy resin adhesive.
[0050]
Tens of each of the sandwich-like product 14 using the brazing materials 8 and 9 and the plate-like insert 5 and the sandwich-like product using the epoxy resin adhesive are subjected to a tensile test at room temperature. When a tensile test was performed under heating at 0 ° C., the results shown in Table 4 were obtained.
[0051]
[Table 4]
Figure 0003802586
[0052]
As is apparent from Table 4, the sandwich 14 using the brazing filler metals 8 and 9 and the plate-like insert 5 is compared with the sandwich using the epoxy resin adhesive at room temperature and under heating at 150 ° C. Therefore, the bonding strength is high, the bonding strength hardly changes in both environments, and the variation is small. A sandwich using an epoxy adhesive has a low bonding strength at room temperature and a large variation, and when heated at 150 ° C., the bonding strength decreases to one third of that at room temperature.
[0053]
The poor wettability of permanent magnets containing rare earth elements, such as NdFeB permanent magnet 2 and SmCo permanent magnet, is that a phase with a high rare earth element concentration, in this embodiment, a high Nd concentration exists at the crystal grain boundary. to cause. In the joining process using the brazing materials 8 and 9, the brazing materials 8 and 9 are in a liquid phase state, and the liquid phase produced from the Nd 70 Cu 25 Al 5 alloy containing Nd as a main component is highly active. And a high Nd concentration phase present in the crystal grain boundary and a main component in common, so that excellent wettability is exhibited with respect to the NdFeB permanent magnet 2, and the steel block body with the high activation. The wettability with respect to 3 and the plate-like insert 5 is also very good.
[0054]
The joining technique is applied to the joining of the NdFeB permanent magnet 2 to the rotor body in a motor rotor as a rotating machine, and enables the realization of a high-speed rotating motor having a rotational speed of 10,000 rpm or more.
[0055]
【The invention's effect】
According to the present invention, the first member made of a permanent magnet containing a rare earth element and the plate-like insert are interposed via the first bonding layer made of the first highly brazing material made of a rare earth element-based alloy. The second member made of an Fe alloy having a higher thermal expansion coefficient than that of the first member and the plate-like insert are also made of a rare earth element-based alloy. because it can firmly bonded (i.e. brazing) through the second bonding layer made of the second brazing material, the first having different thermal expansion coefficients, Ru can be firmly bonded to the second member. In particular, since the content of the alloy element AE in the first and second brazing materials is 5 atomic% ≦ AE ≦ 50 atomic%, the activity of each brazing material is not impaired and the liquid phase is maintained in a solid-liquid coexistence state. It can be secured.
Also, the thermal expansion coefficient changes from small to large from one flat surface side to the other flat surface side, and the thermal expansion coefficient on one flat surface side is larger than the thermal expansion coefficient of the first member, and the other flat surface Since the plate-like insert having a lower thermal expansion coefficient than the second member is interposed between the first and second members, the thermal expansion coefficient gradually increases from the first member to the second member. changes, thereby, the cooling step, first, since the thermal stress generated at the junction of due to the members in thermal expansion coefficient difference between the second member may alleviate, first member coefficient of thermal expansion is small and rare earth elements Even if the permanent magnet is fragile , it is possible to avoid the occurrence of cracks in the cooling process.
[Brief description of the drawings]
FIG. 1 is a partially enlarged front view of a joined body.
FIG. 2 is a perspective view showing an example of a superposition relationship of a permanent magnet, a brazing material, a plate-like insert, and a steel block body.
FIG. 3 is a side view of a laminated body.
FIG. 4 is a diagram illustrating the structure of a plate-like insert.
FIG. 5 is a Cu—Nd system phase diagram.
FIG. 6 is an X-ray diffraction pattern of an Nd 70 Cu 25 Al 5 alloy.
FIG. 7 is a graph showing the relationship between temperature and coefficient of thermal expansion.
FIG. 8 is a perspective view showing another example of the superposition relationship of the permanent magnet, the brazing material, the plate-like insert, and the steel block body.
FIG. 9 is a perspective view of a sandwich-like object.
[Explanation of symbols]
1 Bonded body 2 Permanent magnet (first member)
3 Steel block body (second member)
DESCRIPTION OF SYMBOLS 5 Plate-like insert 6,7 1st, 2nd joining layer 8,9 1st, 2nd brazing material 10 Laminated body 11 1-11 4 1st- 4th Fe-Ni alloy board a One joining surface b The other Bonding surfaces c and d

Claims (3)

希土類元素を含む永久磁石よりなる第1部材(2)と、その第1部材(2)よりも熱膨脹率が大きいFe合金よりなる第2部材(3)とを加熱下で接合するに当り、板状インサート(5)であって、一方の平坦面(a)側から他方の平坦面(b)側に向って熱膨脹率が小から大に変化し、且つ一方の平坦面(a)側の熱膨脹率は前記第1部材(2)の熱膨脹率よりも大きく、また他方の平坦面(b)側の熱膨脹率は前記第2部材(3)の熱膨脹率よりも小さいものを用意し、
前記板状インサート(5)において、前記一方の平坦面(a)を前記第1部材(2)の接合面(c)に向けると共にそれら平坦面(a)および接合面(c)間に第1のろう材(8)を介在させ、また前記他方の平坦面(b)を前記第2部材(3)の接合面(d)に向けると共にそれら平坦面(b)および接合面(d)間に第2のろう材(9)を介在させて、第1部材(2)、第1のろう材(8)、板状インサート(5)、第2のろう材(9)および第2部材(3)よりなる積層体(10)を作製し、
次いで前記積層体(10)を加熱して前記第1部材(2)と前記板状インサート(5)とを前記第1のろう材(8)よりなる第1の接合層(6)を介して接合し、また前記第2部材(3)と前記板状インサート(5)とを前記第2のろう材(9)よりなる第2の接合層(7)を介して接合する、熱膨脹率を異にする二種の部材の、ろう材を用いた加熱接合方法であって、
前記第1,第2のろう材(8,9)は、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される少なくとも一種である希土類元素と、Cu、Al、Ga、Co、Fe、Ag、Ni、Au、Mn、Zn、Pd、Sn、Sb、Pb、Bi、GeおよびInから選択される少なくとも一種である合金元素AEとからなる希土類元素系合金よりなり、
前記第1,第2のろう材(8,9)において前記合金元素AEの含有量が5原子%≦AE≦50原子%であることを特徴とする、熱膨脹率を異にする二種の部材の、ろう材を用いた加熱接合方法。
In joining the first member (2) made of a permanent magnet containing a rare earth element and the second member (3) made of an Fe alloy having a higher thermal expansion coefficient than the first member (2) under heating, -Like insert (5), the coefficient of thermal expansion changes from small to large from one flat surface (a) side to the other flat surface (b) side, and the thermal expansion of one flat surface (a) side The rate is larger than the thermal expansion rate of the first member (2), and the thermal expansion rate on the other flat surface (b) side is smaller than the thermal expansion rate of the second member (3).
In the plate-like insert (5), the one flat surface (a) is directed to the joint surface (c) of the first member (2) and the first between the flat surface (a) and the joint surface (c). And the other flat surface (b) is directed to the joint surface (d) of the second member (3) and between the flat surface (b) and the joint surface (d). With the second brazing material (9) interposed, the first member (2), the first brazing material (8), the plate-like insert (5), the second brazing material (9) and the second member (3) ) To produce a laminate (10),
Next, the laminate (10) is heated so that the first member (2) and the plate-like insert (5) are interposed through the first bonding layer (6) made of the first brazing material (8). The second member (3) and the plate-like insert (5) are joined via a second joining layer (7) made of the second brazing material (9) , and have different thermal expansion coefficients. It is a heat bonding method using a brazing material of two types of members,
The first and second brazing materials (8, 9) are at least selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. One kind of rare earth element and at least one kind of alloy element selected from Cu, Al, Ga, Co, Fe, Ag, Ni, Au, Mn, Zn, Pd, Sn, Sb, Pb, Bi, Ge and In It is made of a rare earth element alloy composed of AE,
Two kinds of members having different thermal expansion rates , wherein the content of the alloy element AE in the first and second brazing materials (8, 9) is 5 atomic% ≦ AE ≦ 50 atomic% Heat-joining method using brazing material .
前記板状インサート(5)は、複数のFe−Ni合金板(111 〜114 )よりなるクラッド板であり、各Fe−Ni合金板(111 〜114 )におけるNi含有量は前記第1部材(2)より離れるに従って漸減している、請求項記載の熱膨脹率を異にする二種の部材の、ろう材を用いた加熱接合方法。The plate-like insert (5) is a clad plate comprising a plurality of Fe-Ni alloy plate (11 1 to 11 4), Ni content in the Fe-Ni alloy plate (11 1 to 11 4) is the first gradually decreases with increasing distance from the first member (2), according to claim 1 thermal expansion rate differing two members according, heat-bonding method using the brazing material. 前記Ni含有量の最小値Ni(min)がNi(min)=10原子%であり、また最大値Ni(max)がNi(max)=36原子%である、請求項記載の熱膨脹率を異にする二種の部材の、ろう材を用いた加熱接合方法。The thermal expansion coefficient according to claim 2 , wherein the minimum value Ni (min) of the Ni content is Ni (min) = 10 atomic% and the maximum value Ni (max) is Ni (max) = 36 atomic%. Heat joining method using two kinds of different members using brazing material .
JP16881195A 1995-07-04 1995-07-04 Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients Expired - Fee Related JP3802586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16881195A JP3802586B2 (en) 1995-07-04 1995-07-04 Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16881195A JP3802586B2 (en) 1995-07-04 1995-07-04 Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients

Publications (2)

Publication Number Publication Date
JPH0919789A JPH0919789A (en) 1997-01-21
JP3802586B2 true JP3802586B2 (en) 2006-07-26

Family

ID=15874937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16881195A Expired - Fee Related JP3802586B2 (en) 1995-07-04 1995-07-04 Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients

Country Status (1)

Country Link
JP (1) JP3802586B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184620A (en) * 2000-12-19 2002-06-28 Honda Motor Co Ltd Rare earth magnet unit
JP2004112849A (en) * 2002-09-13 2004-04-08 Honda Motor Co Ltd Permanent magnet rotor
CN102470505B (en) 2009-07-16 2014-07-30 圣戈班磨料磨具有限公司 Abrasive tool with flat and consistent surface topography for conditioning a CMP pad and method for making

Also Published As

Publication number Publication date
JPH0919789A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
US5830585A (en) Article made by joining two members together, and a brazing filler metal
EP0786854B1 (en) Rotor for rotating machine, method of manufacturing same, and magnet unit
KR960010166B1 (en) Diffusion-bonded sputtering target assembly and method of manufacturing the same
EP0921533B1 (en) Method of producing laminated permanent magnet
JP3802586B2 (en) Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients
JP3592425B2 (en) Rare earth alloy brazing filler metal
JP3592397B2 (en) Heat bonding method for two kinds of members having different thermal expansion rates
JP3441197B2 (en) Paste joining material for brazing
JP3373950B2 (en) Heat bonding method of two kinds of members having different thermal expansion coefficients
JP3645925B2 (en) Joined body and joining method of permanent magnet and different kind of member
JP3382392B2 (en) Brazing material
JP3759198B2 (en) Joining method of workpieces
JPH08309581A (en) Joined body comprising two members to be joined
JP3631809B2 (en) Joining method of workpieces
JPH06158296A (en) Diffusion-bonded sputtering target assembly and its production
JP3382383B2 (en) Bonding material for metal members
JP3631808B2 (en) Rotor for rotating machine, method for manufacturing the rotor, and magnet unit
JP3759186B2 (en) Brazing method for joined members
JPH08118066A (en) Production of joined body consisting of permanent magnet having rust preventability and member of different material kind
JPH01171215A (en) Manufacture of rare earth-fe-b magnet lamination member
JPH06172993A (en) Diffusion bonded sputtering target assembled body and its production
JPH08138920A (en) Permanent magnet for heat junction and manufacture thereof
JP3007561B2 (en) Method of joining R-Fe-B permanent magnet and yoke
JP2004040973A (en) Rotor device
JPH08215861A (en) Joining method for amorphous alloy thin strip

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees