JP3801100B2 - Photo-curing modeling apparatus, photo-curing modeling method, and photo-curing modeling system - Google Patents

Photo-curing modeling apparatus, photo-curing modeling method, and photo-curing modeling system Download PDF

Info

Publication number
JP3801100B2
JP3801100B2 JP2002166904A JP2002166904A JP3801100B2 JP 3801100 B2 JP3801100 B2 JP 3801100B2 JP 2002166904 A JP2002166904 A JP 2002166904A JP 2002166904 A JP2002166904 A JP 2002166904A JP 3801100 B2 JP3801100 B2 JP 3801100B2
Authority
JP
Japan
Prior art keywords
photo
curing
modeling
abnormality
modeling apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002166904A
Other languages
Japanese (ja)
Other versions
JP2004009574A (en
Inventor
公貴 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2002166904A priority Critical patent/JP3801100B2/en
Publication of JP2004009574A publication Critical patent/JP2004009574A/en
Application granted granted Critical
Publication of JP3801100B2 publication Critical patent/JP3801100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、光硬化性樹脂液の液面に光線を照射し走査することにより造形を行なう光硬化造形装置、光硬化造形方法及び光硬化造形システムに関する。
【0002】
【従来の技術】
光硬化造形方法では、造形しようとする立体モデルを複数の層にスライスする断面群のデータに基づいて造形する。通常、最初に最下段の断面に相当する領域において、光硬化性樹脂液の液面に光線を照射する。すると光照射された液面部分の光硬化性樹脂液は光硬化し、立体モデルの断面の一硬化層が造形される。次いで、この断面硬化層の表面に未硬化状態の光硬化性樹脂液を所定の厚みでコートする。このとき、断面硬化層を所定の厚み分樹脂液に沈めてコートすることが一般的である。そして、この表面に所定パターンに沿ってレーザ光線走査を行ない、コートした部分を硬化させる。硬化した部分は、下部の断面硬化層に積層一体化される。以後、光照射工程で扱う断面を隣接する断面に切り替えながら、光照射と樹脂液コートを繰り返すことによって、所望の立体モデルを造形する。光硬化造形方法の基本構成は、例えば特開昭56−144478号公報、特開昭62−35966号公報に開示されている。
光硬化造形方法では、まず、立体モデルの形状データをコンピュータに入力し、これに基づいて、立体モデルをスライスした各断面の形状データを算出する。さらに、断面毎にレーザ光線を照射しながらこれを走査する基準となる位置データ及び走査順路を算出し、この結果に従って光硬化性樹脂液の表面にレーザ光線走査を行なう。
また、レーザ光以外の光源を用いて、一括に光線を照射し、2次元パターンを露光する場合もある。
【0003】
近年の光硬化造形装置は、樹脂の改良や装置の改良により造形物が完成するまでの時間が短くなり、寸法精度が向上し、機能面での発展が目まぐるしく進んでいる。その一方で、さらに造形物を短時間に多く製造するための更なる改善が求められている。
このためには、光硬化造形装置が安定的であり、かつ失敗や不良を引き起こすことなく稼動を続けるという絶対的な信頼性が要求される。そして、そのためにインテリジェント化された自動システムの構築が最大の目標とされている。
【0004】
【発明が解決しようとする課題】
ここで、光硬化造形装置が正常に稼動しているかどうかの状況は、光線の照射エネルギー、硬化樹脂量、発光装置の安定性をモニタリングし、異常の有無を把握することが可能である。しかしながら、失敗、不良の発現については、ある一定以上完成した状態において把握することができる。光硬化造形装置自体は安定的に動作しているが、光硬化物が所望の形状に形成されていないような状況は、目視によって把握することができる場合もある。しかしながら、これらの状況の把握は、光硬化造形装置自体では行うことができなかった。
特に、造形物が完了した後に、その不良箇所が判明したとしてもこの不良箇所を修正するためには多大な労力と時間を要する。
本発明は、このような課題を解決するためになされたものであり、高精度の造形を行なうための労力を軽減し時間を短縮化することが可能な光硬化造形装置、光硬化造形方法及び光硬化システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明にかかる光硬化造形装置は、光硬化性樹脂液の液面に光を照射することにより造形を行なう光硬化造形装置であって、前記光硬化性樹脂液に対して光硬化を生じさせる領域と光硬化を生じさせない領域の位置情報を記憶する記憶手段と、前記光硬化性樹脂液の表面の状況を測定する測定手段と、前記測定手段の測定結果と前記記憶手段に記憶された位置情報に基づき、異常の発生を監視する監視手段とを備えたものである。このような構成により、高精度の造形を行なうための労力を軽減し時間を短縮化することができる。
この測定手段は、光硬化性樹脂液に対する光の照射によって発生する重合熱を検出する温度センサであることが望ましい。このような手段により、光硬化の状況を正確に把握することができる。
また、測定手段は、光硬化性樹脂の表面に生じる凹凸を検出する光センサであってもよい。このような手段により、光硬化の状況を正確に把握することができる。
さらに、測定手段は、光硬化性樹脂の表面に生じる空間周波数特性を測定するものであってもよい。この空間周波数特性は、例えば、蛍光発色である。
また、光の照射領域を予め複数の領域に分割するとともに、分割された領域毎に識別情報を付して前記記憶手段に記憶し、異常が発生した位置を特定するために、前記識別情報が用いられるようにしてもよい。これにより、異常位置を正確に特定できる。
【0006】
さらに、前記監視手段により異常が発生したと判定された場合には、当該光硬化造形装置の運転の中断、警報の出力又は異常情報の格納のいずれか1以上の措置をとることが望ましい。
また、前記監視手段により硬化すべき領域が硬化していない又は不十分であるとする異常が検出された場合には、異常が生じた部分について再度光を照射するとよい。
本発明にかかる光硬化造形システムは、上述の光硬化造形装置を複数備えるとともに、これらの光硬化造形装置を制御する単一の制御システムを備えたものである。
他方、本発明にかかる光硬化造形方法は、光硬化性樹脂液の液面に光を照射することにより造形を行なう光硬化造形方法であって、前記光硬化性樹脂液に対して光硬化を生じさせる領域と光硬化を生じさせない領域の位置情報を記憶手段に記憶するステップと、前記光硬化性樹脂液の表面の状況を測定するステップと、前記測定の結果と前記記憶手段に記憶された位置情報に基づき異常部分の発生を監視するステップとを備えたものである。このような方法により、高精度の造形を行なうための労力を軽減し時間を短縮化することができる。
【0007】
【発明の実施の形態】
発明の実施の形態1.
まず、図1を用いて、本発明にかかる光硬化造形装置の構成例について説明する。この光硬化造形装置は、制御データ生成部100、主制御部200、記憶部300、通信制御部400、警報出力部500、監視部600及び造形部700により構成される。
制御データ生成部100は、造形部700における造形動作を制御する制御データを生成する。この制御データには、光硬化を生じさせる領域と光硬化を生じさせない領域の位置情報が含まれる。
主制御部200は、制御データ生成部100によって生成された制御データを入力し、造形部700における造形動作を制御する。また、主制御部500は、監視部600に対して制御データを出力する。さらに、主制御部500は、異常通知を入力し、警報出力部500に出力したり、通信制御部400を介してこの異常通知を外部ネットワーク経由で他の制御装置に伝送したりする。
記憶部300は、メモリ、ハードディスク等の内部又は外部の記憶手段によって構成される。この記憶部300は、制御データ生成部100によって生成された制御データ、監視部600より入力された測定情報や異常通知情報等を記憶する。この制御データには、光硬化を生じさせる領域と光硬化を生じさせない領域の位置情報が含まれる。
通信制御部400は、外部ネットワークを介して接続された外部機器との間の通信を制御する機能を有する。
警報出力部500は、主制御部200から出力された異常通知に応じて警報を出力する。警報出力部500は、音声による警報や視覚的な警報、さらには振動による警報等、さまざまな態様により警報を出力するようにしてもよい。
【0008】
監視部600は、検出素子601より検出された測定データを取得する。また、監視部600は、主制御部200を介して記憶部300に格納された制御データを入力する。そして、監視部600は、制御データに基づきレーザ光の照射位置情報を得て、このレーザ光の照射位置情報と測定データに基づき、光硬化性樹脂の硬化状況が所望のものであるかどうかを判定する。例えば、レーザ光の照射位置情報によれば光硬化しているべき領域であるにも関わらず、測定データによれば光硬化していない又は不十分であると判断される場合には、異常であると判定する。また、レーザ光の照射位置情報によれば光硬化させない領域であるにも関わらず、測定データによれば光硬化していると判断される場合にも異常であると判定する。
尚、監視部600における異常判定においては、例えば、樹脂種や、未硬化樹脂で、ある厚み分の樹脂下にある物の成分や、樹脂のみ、硬化反応部分の状態、状況に応じて変わる特徴を解析する。
【0009】
検出素子601は、光硬化性樹脂の表面に生じる硬化状況を検出する素子である。この検出素子601は、例えば、光硬化性樹脂に光を照射することによって発生する反応熱や蛍光発色等の光線エネルギーを空間周波数として認識するものである。検出素子601は、基本的に、光硬化性樹脂に対して非接触式であることが望まれる。例えば、この検出素子601には、光硬化性樹脂に対してレーザ光等の光線を照射した際に生じる反応熱、即ち重合熱を検出する温度センサ、光硬化性樹脂において硬化した部分に生じる凹凸、透過度や蛍光発色を検出する光学センサ等が含まれる。温度センサは、例えば、焦電型温度センサや量子型温度センサである。光学センサは、例えば、カラーセンサやCCD素子固体イメージセンサである。検出素子601を光学センサにより構成する場合には、レンズ等の光学部材と共に構成してもよい。
【0010】
検出素子601が温度センサの場合には、光硬化性樹脂が重合反応するときに発生する重合熱に基づき温度変化を検出し、この温度データを測定データとして監視部600に出力する。監視部600は、温度が予め定められた値以上であれば、重合反応が適切に行なわれているものと判断する。他方、温度が予め定められた値より低ければ、この監視部600は、重合反応が適切に行なわれていないと判断する。
検出素子601が光学センサの場合には、光硬化性樹脂の表面の変化を検出し、特にその凹凸につき検出する。例えば、光硬化性樹脂が液体の状態において多く発現する、液体から固体に変化する際の収縮やそれらを残留応力として残した場合の反りあがり等の起伏症状が光学センサである検出素子601によって観察された場合には、監視部600は、光硬化性樹脂が液体の状態にあると判断する。また、周囲が硬化形状で内側が未反応樹脂である場合に生じるボリュームドトラップ現象による液体の凹凸が観察される場合にも監視部600は、光硬化性樹脂が液体の状態にあると判断する。ここで、光硬化性樹脂の表面張力のバランスによっても凹凸の大きさ、深さに違いが生じるため、光硬化性樹脂の表面に凹凸が生じたとしても、その凹凸の形状は様々である。特に、光線エネルギーの変化を空間周波数として認識し、その変化を検出することによって、光硬化性樹脂が液体、固体のいずれの状態にあるかを判別することが可能である。特に空間周波数に関し、その変化の境目が微妙な傾斜を持つことから、空間周波数より表面の状態を立体的に認識することができる。
検出素子601が光学センサである場合には、図2に示されるように、複数の検出素子601a、602bにより凹凸705aを観察することが好ましい。この場合には、複数の検出素子601a、601bからの測定データを監視部600にて分析し、凹凸705aを観察する。
また、検出素子601は、発光装置706と共に走査方向に移動することが可能である。このとき、検出素子601と発光装置706とは一体化され、同じ駆動系により移動するものであってもよく、別の駆動系により移動するものであってもよい。検出素子601と発光装置706とが別の駆動系により移動する場合には、必ずしも発光装置706と共に移動するものでなくともよく、独立して別の位置を移動するものであってもよい。
【0011】
造形部700は、主制御部200による制御に応じて造形を実行する。造形部700は、容器701、造形台703、造形台駆動部704、発光装置706によって構成される。容器701は、光硬化性樹脂液702を収容するための容器である。造形台703は、硬化させた樹脂を順次堆積させ、載置する平板状の台である。この造形台703は、造形台駆動部704によって駆動され、容器701内において昇降する。造形台駆動部704は、主制御部200より入力される制御信号に基づいて造形台703を昇降させる。
発光装置706は、主制御部200より入力される制御信号に基づいて所定の強度のレーザ光707を容器701内に収容された光硬化性樹脂液702の液面に照射し、さらにその液面上を走査して任意の軌跡を描く。発光装置706は、例えば、レーザ光を発射するレーザ発振器と、そのレーザ光を透過又は遮断するための音響光学素子と、光線の方向を任意の方向に変動させるガルバノミラー及び電圧印加器を備えている。
【0012】
ここで、造形部700における造形動作について説明する。まず、容器701に光硬化性樹脂液702を収容する。そして、造形台703をその光硬化性樹脂液702の表面より例えば0.05〜0.1mmの深さの位置に上昇させておく。そして、発光装置706によりレーザ707を光硬化性樹脂液702の表面に照射し、ガルバノミラーにより走査する。この走査位置は、記憶部300に格納された制御データに基づき特定される。このようにレーザ707を走査することにより、光硬化性樹脂液702の表面と、造形台703との間の光硬化性樹脂液702が硬化し、第1層目の硬化層が形成される。次にこの造形台703をさらに0.05〜0.1mm降下させて、第2層目の硬化層を第1層目の硬化層の上にコートすることにより形成する。以下同様にして第3層目以降の硬化層を順次堆積させる。そして、最終層の堆積が終了すると、造形台703を上昇させ、その造形台703上に形成されて造形物705を取り出す。
【0013】
本発明にかかる光硬化造形装置においては、さらに検出素子601によって、光硬化性樹脂液702における光硬化状況が測定される。測定データは、監視部600に入力される。一方で、監視部600は、主制御部200を介して記憶部300に格納された制御データを入力する。監視部600は、制御データに基づきレーザ光の照射位置情報を得て、このレーザ光の照射位置情報と測定データに基づき、光硬化性樹脂の硬化状況が所望のものであるかどうかを判定する。
例えば、第N−1層目の硬化層は、図3(a)に示す形状を有し、また、第N番目に硬化層は、図3(b)に示す形状を有するものとする。このとき、図3(a)に示す形状になるように、中央部ではレーザ光の照射を停止する。従って、中央部において光硬化していれば、それは異常と判定される。図3(b)に示す形状を作成する場合には、全体に亘って、光硬化する必要がある。この場合に、内部領域のうちいずれか一部に光硬化が不十分な領域があれば、それは異常と判定される。
そして、監視部600は、異常であると判定した場合には、主制御部200に対して、異常があることを通知する。主制御部200は、この異常通知に基づいて、警報出力部500に対して異常通知を出力する。警報出力部500は、この異常通知に従い、警報を出力する。
尚、監視部600が異常と判定した場合には、光硬化造形装置の運転を中断するようにしてもよい。
監視部600が異常と判定した場合には、その情報は、主制御部200によって異常と判定された位置情報と関連付けられて記憶部300に格納される。このようにして、監視部600による判定結果が記憶される。この位置情報は、例えば、図4に示されるように、レーザ光の照射領域をブロック化し、それぞれのブロックに割り当てられた数字等の識別情報により表すようにしてもよい。図4では、レーザ光の照射領域20中の照射軌跡10に沿って、複数のブロック30に分割されている。そして、各ブロック30には、1乃至36の数字が割り振られている。この例では、各ブロック30に割り振られた数字は、レーザ光の照射軌跡10に沿って、1から36に順に増えている。また、位置情報は、XY座標情報により表すようにしてもよい。
【0014】
硬化すべき領域であるにも関わらず未硬化が検出された場合には、次の層に対するレーザ光の照射を行わず、異常の検出された層の異常領域に対して、再度レーザ光を照射するよう主制御部200によって発光装置706を制御する。その後、異常領域が正常化されたことが検出素子601及び監視部600により確認された場合には、次の層に対するレーザ光の照射を再開する。また、不必要な凹みが生じた場合には、ディスペンサーによりこの凹みを埋めるように樹脂を供給してもよい。また、硬化すべきでない領域であるにも関わらず硬化してしまい、不必要な凸部が生じた場合には、処理を継続するかどうかを判断するようにしてもよい。また、コートする樹脂量を調節したり、コートするための機構を制御することにより、異常領域を正常化することもできる。未硬化状態の光硬化樹脂液の一部が盛り上がっているような場合には、その部分をディスペンサーにより除去してもよい。
【0015】
その他の実施の形態.
上述の例では、検出素子を1つ、或いは同種類の検出素子を複数設ける例について説明したが、図5に示されるように、異なる種類の検出素子を複数設けるようにしてもよい。図5において、検出素子601aは、光センサであり、光の変化602を検出する。また、検出素子601cは、温度センサであり、温度の変化603を検出する。このように異なる種類の検出素子を複数設けることによって、光硬化の状況をより正確にかつ総合的に判断することが可能となる。
また、検出素子は、光硬化性樹脂を硬化させるためのレーザ光の照射に応じて発生する空間周波数を認識することとしているが、これに限らず、光硬化性樹脂の状態を観察するために別途設けられたレーザ光の照射に応じて発生する空間周波数を認識し、光硬化性樹脂の硬化状況に関する情報を取得するようにしてもよい。このとき照射するレーザ光は、光硬化性樹脂に硬化反応が生じない程度の周波数、強度を有する必要がある。他方、光硬化性樹脂の状態を観察するためには、必ずしもレーザ光を照射しなくてもよい。
【0016】
また、図6に示されるように、複数の光硬化造形装置1a、1b、1c、1dを1つの制御システム800により制御するようにしてもよい。このような構成を有する場合には、一の光硬化造形装置1aでは、異常部分の正常化が困難でときに、他の光硬化造形装置1b、1c、1dのいずれかによって最初から全てを作りなおすこともできる。また、これら光硬化造形装置1b、1c、1dのいずれかによって、異常部分が発生した箇所から造形を行なうこともできる。また、これらの装置をインテリジェント化し、CIM化すれば、ワークプレートを自動的に取り替えることを可能にし、一台の装置で作り直し等の指示を遠隔的に実行できる。また、プログラムにより判断するようにすれば、連続的に造形を複数の装置により実行することができ、装置可動を妨げずに安定した造形を行なうことができる。
【0017】
【発明の効果】
本発明により、高精度の造形を行なうための労力を軽減し、時間を短縮化することが可能な光硬化造形装置、光硬化造形方法及び光硬化システムを提供することができる。
【図面の簡単な説明】
【図1】本発明にかかる光硬化造形装置の構成を示す図である。
【図2】本発明にかかる光硬化造形装置における検査素子の他の例を示す図である。
【図3】本発明にかかる光硬化造形装置によるレーザ光の走査を説明するための図である。
【図4】本発明にかかる光硬化造形装置における領域のブロック化を説明するための図である。
【図5】本発明にかかる光硬化造形装置における検査素子の他の例を示す図である。
【図6】本発明にかかる光硬化システムの構成を示す図である。
【符号の説明】
1 輪郭線
2 走査線
100 制御データ生成部
200 制御部
300 記憶部
400 通信制御部
500 警報出力部
600 監視部
700 造形部
[0001]
[Technical field to which the invention belongs]
The present invention relates to a photo-curing modeling apparatus, a photo-curing modeling method, and a photo-curing modeling system that perform modeling by irradiating and scanning a light surface of a photocurable resin liquid.
[0002]
[Prior art]
In the photocuring modeling method, modeling is performed based on data of a cross-sectional group in which a three-dimensional model to be modeled is sliced into a plurality of layers. Usually, light is first applied to the surface of the photocurable resin liquid in a region corresponding to the lowermost cross section. Then, the photocurable resin liquid on the liquid surface portion irradiated with light is photocured, and a single cured layer of the cross section of the three-dimensional model is formed. Next, an uncured photocurable resin liquid is coated with a predetermined thickness on the surface of the cross-section cured layer. At this time, it is common to coat the cross-section cured layer by immersing it in a resin solution by a predetermined thickness. The surface is scanned with a laser beam along a predetermined pattern to cure the coated portion. The cured portion is laminated and integrated with the lower cross-section cured layer. Thereafter, a desired three-dimensional model is formed by repeating light irradiation and resin liquid coating while switching the cross section handled in the light irradiation process to an adjacent cross section. The basic structure of the photo-curing modeling method is disclosed in, for example, Japanese Patent Laid-Open Nos. 56-144478 and 62-35966.
In the photo-curing modeling method, first, shape data of a three-dimensional model is input to a computer, and based on this, shape data of each cross section obtained by slicing the three-dimensional model is calculated. Further, position data and a scanning route as a reference for scanning the cross section while irradiating a laser beam are calculated for each cross section, and laser beam scanning is performed on the surface of the photocurable resin liquid according to the result.
In some cases, a two-dimensional pattern is exposed by irradiating a light beam in a lump using a light source other than laser light.
[0003]
Recent photo-curing modeling apparatuses have shortened the time until the modeled product is completed by improving the resin and improving the apparatus, improving the dimensional accuracy, and progressing rapidly in terms of functions. On the other hand, further improvements for producing a large number of shaped articles in a short time are required.
For this purpose, the optical curing modeling apparatus is required to be stable and to be absolutely reliable so as to continue operation without causing failure or failure. For that purpose, the biggest goal is to build an intelligent automated system.
[0004]
[Problems to be solved by the invention]
Here, as to whether or not the photo-curing modeling apparatus is operating normally, it is possible to monitor the irradiation energy of the light beam, the amount of the cured resin, and the stability of the light-emitting device to determine whether there is an abnormality. However, the occurrence of failure or failure can be grasped in a state in which a certain level or more has been completed. Although the photo-curing modeling apparatus itself operates stably, there are cases where the situation where the photo-cured product is not formed into a desired shape can be grasped visually. However, these situations cannot be grasped by the photo-curing modeling apparatus itself.
In particular, even if the defective part is found after the modeled object is completed, it takes a lot of labor and time to correct the defective part.
The present invention has been made to solve such a problem, and is a photo-curing modeling apparatus, a photo-curing modeling method and a photo-curing modeling method capable of reducing labor and time for performing highly accurate modeling. An object is to provide a photocuring system.
[0005]
[Means for Solving the Problems]
The photo-curing modeling apparatus according to the present invention is a photo-curing modeling apparatus that performs modeling by irradiating light to the liquid surface of the photo-curable resin liquid, and causes the photo-curing resin liquid to undergo photo-curing. Storage means for storing position information of the area and the area that does not cause photocuring, measuring means for measuring the surface condition of the photocurable resin liquid, measurement results of the measuring means, and positions stored in the storage means And monitoring means for monitoring the occurrence of abnormality based on the information. With such a configuration, it is possible to reduce labor and time for high-precision modeling.
The measuring means is preferably a temperature sensor that detects polymerization heat generated by light irradiation to the photocurable resin liquid. By such means, it is possible to accurately grasp the state of photocuring.
Further, the measuring means may be an optical sensor that detects irregularities generated on the surface of the photocurable resin. By such means, it is possible to accurately grasp the state of photocuring.
Further, the measuring means may measure a spatial frequency characteristic generated on the surface of the photocurable resin. This spatial frequency characteristic is, for example, fluorescence coloring.
In addition, the light irradiation area is divided into a plurality of areas in advance, and identification information is attached to each divided area and stored in the storage means, and the identification information is used to identify the position where the abnormality has occurred. It may be used. Thereby, an abnormal position can be specified accurately.
[0006]
Furthermore, when it is determined by the monitoring means that an abnormality has occurred, it is desirable to take one or more measures of interrupting the operation of the photo-curing modeling apparatus, outputting an alarm, or storing abnormality information.
Moreover, when the abnormality which the area | region which should be hardened by the said monitoring means is not hardened | cured or it is inadequate is detected, it is good to irradiate light again about the part which abnormality occurred.
The photo-curing modeling system according to the present invention includes a plurality of the above-described photo-curing modeling apparatuses and a single control system for controlling these photo-curing modeling apparatuses.
On the other hand, the photo-curing modeling method according to the present invention is a photo-curing modeling method in which modeling is performed by irradiating light to the liquid surface of the photo-curable resin liquid, and the photo-curing resin liquid is photo-cured. The step of storing the position information of the region to be generated and the region not to cause photocuring in the storage means, the step of measuring the surface condition of the photocurable resin liquid, the result of the measurement, and the storage means stored in the storage means And monitoring the occurrence of an abnormal part based on the position information. By such a method, it is possible to reduce the labor for performing high-precision modeling and to shorten the time.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 of the Invention
First, the structural example of the photocuring modeling apparatus concerning this invention is demonstrated using FIG. This photo-curing modeling apparatus includes a control data generation unit 100, a main control unit 200, a storage unit 300, a communication control unit 400, an alarm output unit 500, a monitoring unit 600, and a modeling unit 700.
The control data generation unit 100 generates control data for controlling the modeling operation in the modeling unit 700. This control data includes position information of a region that causes photocuring and a region that does not cause photocuring.
The main control unit 200 inputs the control data generated by the control data generation unit 100 and controls the modeling operation in the modeling unit 700. The main control unit 500 outputs control data to the monitoring unit 600. Furthermore, the main control unit 500 inputs an abnormality notification and outputs it to the alarm output unit 500, or transmits the abnormality notification to another control device via the external network via the communication control unit 400.
The storage unit 300 includes an internal or external storage unit such as a memory or a hard disk. The storage unit 300 stores control data generated by the control data generation unit 100, measurement information input from the monitoring unit 600, abnormality notification information, and the like. This control data includes position information of a region that causes photocuring and a region that does not cause photocuring.
The communication control unit 400 has a function of controlling communication with an external device connected via an external network.
The alarm output unit 500 outputs an alarm in response to the abnormality notification output from the main control unit 200. The alarm output unit 500 may output the alarm in various modes such as an audio alarm, a visual alarm, and an alarm due to vibration.
[0008]
The monitoring unit 600 acquires measurement data detected by the detection element 601. Further, the monitoring unit 600 inputs control data stored in the storage unit 300 via the main control unit 200. Then, the monitoring unit 600 obtains the irradiation position information of the laser beam based on the control data, and determines whether the curing state of the photocurable resin is desired based on the irradiation position information of the laser beam and the measurement data. judge. For example, if it is determined that the photocuring is not or insufficient according to the measurement data even though the region should be photocured according to the irradiation position information of the laser beam, it is abnormal. Judge that there is. Further, even if it is a region that is not photocured according to the irradiation position information of the laser beam, even if it is determined that it is photocured according to the measurement data, it is determined to be abnormal.
In the abnormality determination in the monitoring unit 600, for example, a resin type, an uncured resin, a component of an object under a certain thickness of resin, a resin alone, a characteristic that varies depending on the state and situation of the curing reaction portion. Is analyzed.
[0009]
The detection element 601 is an element that detects a curing state generated on the surface of the photocurable resin. The detection element 601 recognizes, as a spatial frequency, light energy such as reaction heat and fluorescent color generated by irradiating light to a photocurable resin, for example. The detection element 601 is basically desired to be non-contact with the photocurable resin. For example, the detection element 601 includes a reaction heat generated when a photocurable resin is irradiated with a light beam such as a laser beam, that is, a temperature sensor that detects polymerization heat, and unevenness generated in a cured portion of the photocurable resin. In addition, an optical sensor or the like for detecting transmittance or fluorescent color development is included. The temperature sensor is, for example, a pyroelectric temperature sensor or a quantum temperature sensor. The optical sensor is, for example, a color sensor or a CCD element solid-state image sensor. When the detection element 601 is configured by an optical sensor, it may be configured with an optical member such as a lens.
[0010]
When the detection element 601 is a temperature sensor, a temperature change is detected based on the polymerization heat generated when the photocurable resin undergoes a polymerization reaction, and this temperature data is output to the monitoring unit 600 as measurement data. If the temperature is equal to or higher than a predetermined value, the monitoring unit 600 determines that the polymerization reaction is appropriately performed. On the other hand, if the temperature is lower than a predetermined value, the monitoring unit 600 determines that the polymerization reaction is not properly performed.
When the detection element 601 is an optical sensor, a change in the surface of the photocurable resin is detected, and in particular, the unevenness is detected. For example, the detection element 601 that is an optical sensor observes undulation symptoms such as shrinkage when the photocurable resin changes in a liquid state and changes when the photocurable resin changes from a liquid to a solid or leaves them as residual stress. If it is determined, the monitoring unit 600 determines that the photocurable resin is in a liquid state. The monitoring unit 600 also determines that the photocurable resin is in a liquid state even when liquid irregularities due to a volumed trap phenomenon that occurs when the periphery is a cured shape and the inside is an unreacted resin. . Here, since the size and depth of the unevenness differ depending on the balance of the surface tension of the photocurable resin, even if unevenness occurs on the surface of the photocurable resin, the shape of the unevenness varies. In particular, it is possible to determine whether the photocurable resin is in a liquid state or a solid state by recognizing a change in light energy as a spatial frequency and detecting the change. In particular, regarding the spatial frequency, since the boundary of the change has a subtle slope, the surface state can be recognized in three dimensions from the spatial frequency.
When the detection element 601 is an optical sensor, it is preferable to observe the unevenness 705a by a plurality of detection elements 601a and 602b as shown in FIG. In this case, measurement data from the plurality of detection elements 601a and 601b is analyzed by the monitoring unit 600, and the unevenness 705a is observed.
Further, the detection element 601 can move in the scanning direction together with the light emitting device 706. At this time, the detection element 601 and the light emitting device 706 may be integrated and moved by the same drive system, or may be moved by another drive system. When the detection element 601 and the light emitting device 706 are moved by different drive systems, the detection element 601 and the light emitting device 706 may not necessarily move together with the light emitting device 706, and may move independently at different positions.
[0011]
The modeling unit 700 executes modeling in accordance with control by the main control unit 200. The modeling unit 700 includes a container 701, a modeling table 703, a modeling table driving unit 704, and a light emitting device 706. The container 701 is a container for housing the photocurable resin liquid 702. The modeling table 703 is a flat table on which cured resins are sequentially deposited and placed. The modeling table 703 is driven by the modeling table driving unit 704 and moves up and down in the container 701. The modeling table driving unit 704 moves the modeling table 703 up and down based on a control signal input from the main control unit 200.
The light emitting device 706 irradiates the liquid surface of the photocurable resin liquid 702 contained in the container 701 with a laser beam 707 having a predetermined intensity based on a control signal input from the main control unit 200, and further the liquid surface thereof. Scan up and draw an arbitrary trajectory. The light emitting device 706 includes, for example, a laser oscillator that emits laser light, an acoustooptic device that transmits or blocks the laser light, a galvanometer mirror that changes the direction of the light beam, and a voltage applicator. Yes.
[0012]
Here, a modeling operation in the modeling unit 700 will be described. First, the photocurable resin liquid 702 is accommodated in the container 701. Then, the modeling table 703 is raised from the surface of the photocurable resin liquid 702 to a position having a depth of 0.05 to 0.1 mm, for example. Then, the light emitting device 706 irradiates the surface of the photocurable resin liquid 702 with a laser 707 and scans it with a galvanometer mirror. This scanning position is specified based on the control data stored in the storage unit 300. By scanning the laser 707 in this manner, the photocurable resin liquid 702 between the surface of the photocurable resin liquid 702 and the modeling table 703 is cured, and a first cured layer is formed. Next, the modeling table 703 is further lowered by 0.05 to 0.1 mm, and a second hardened layer is formed on the first hardened layer. Thereafter, the third and subsequent hard layers are sequentially deposited in the same manner. When the deposition of the final layer is completed, the modeling table 703 is raised, and the modeling object 705 is formed on the modeling table 703.
[0013]
In the photo-curing modeling apparatus according to the present invention, the photo-curing state in the photo-curing resin liquid 702 is further measured by the detection element 601. The measurement data is input to the monitoring unit 600. On the other hand, the monitoring unit 600 inputs control data stored in the storage unit 300 via the main control unit 200. The monitoring unit 600 obtains laser beam irradiation position information based on the control data, and determines whether the curing state of the photocurable resin is desired based on the laser light irradiation position information and measurement data. .
For example, the (N-1) th cured layer has the shape shown in FIG. 3A, and the Nth cured layer has the shape shown in FIG. 3B. At this time, the irradiation of the laser beam is stopped at the center so that the shape shown in FIG. Therefore, if it is photocured at the center, it is determined to be abnormal. In the case of creating the shape shown in FIG. 3B, it is necessary to photocure all over. In this case, if there is a region where photocuring is insufficient in any part of the internal region, it is determined as abnormal.
If the monitoring unit 600 determines that there is an abnormality, the monitoring unit 600 notifies the main control unit 200 that there is an abnormality. The main control unit 200 outputs an abnormality notification to the alarm output unit 500 based on the abnormality notification. The alarm output unit 500 outputs an alarm according to the abnormality notification.
In addition, when the monitoring part 600 determines with abnormality, you may make it interrupt the driving | operation of a photocuring modeling apparatus.
When the monitoring unit 600 determines that an abnormality has occurred, the information is stored in the storage unit 300 in association with the position information determined to be abnormal by the main control unit 200. In this way, the determination result by the monitoring unit 600 is stored. For example, as shown in FIG. 4, the position information may be expressed by identifying information such as numbers assigned to the respective blocks by blocking the irradiation region of the laser beam. In FIG. 4, the light beam is divided into a plurality of blocks 30 along the irradiation locus 10 in the laser light irradiation region 20. Each block 30 is assigned a number from 1 to 36. In this example, the numbers assigned to each block 30 increase sequentially from 1 to 36 along the laser beam irradiation locus 10. The position information may be expressed by XY coordinate information.
[0014]
If uncured is detected in spite of the region to be cured, the next layer is not irradiated with laser light, and the abnormal region of the detected layer is irradiated again with laser light. The light emitting device 706 is controlled by the main control unit 200. Thereafter, when the detection element 601 and the monitoring unit 600 confirm that the abnormal region has been normalized, the irradiation of the laser beam to the next layer is resumed. Moreover, when an unnecessary dent arises, you may supply resin so that this dent may be filled up with a dispenser. In addition, when the area is not to be cured but is cured and an unnecessary convex portion is generated, it may be determined whether or not to continue the process. Also, the abnormal region can be normalized by adjusting the amount of resin to be coated or by controlling the mechanism for coating. When a part of the uncured photo-curing resin liquid is raised, the part may be removed by a dispenser.
[0015]
Other embodiments.
In the above-described example, an example in which one detection element or a plurality of detection elements of the same type is provided has been described. However, as shown in FIG. 5, a plurality of detection elements of different types may be provided. In FIG. 5, a detection element 601 a is an optical sensor and detects a light change 602. The detection element 601c is a temperature sensor and detects a change 603 in temperature. By providing a plurality of different types of detection elements in this manner, it is possible to more accurately and comprehensively determine the state of photocuring.
In addition, the detection element recognizes the spatial frequency generated in response to the irradiation of the laser beam for curing the photocurable resin, but not limited to this, in order to observe the state of the photocurable resin Information regarding the curing status of the photo-curable resin may be acquired by recognizing a spatial frequency generated in response to irradiation of a separately provided laser beam. The laser beam irradiated at this time needs to have a frequency and intensity that do not cause a curing reaction in the photocurable resin. On the other hand, in order to observe the state of the photocurable resin, it is not always necessary to irradiate the laser beam.
[0016]
Further, as shown in FIG. 6, a plurality of photo-curing modeling apparatuses 1 a, 1 b, 1 c, 1 d may be controlled by a single control system 800. In the case of having such a configuration, when it is difficult to normalize the abnormal part in one photo-curing modeling apparatus 1a, all of the light-curing modeling apparatuses 1b, 1c, and 1d are used to make everything from the beginning. It can also be corrected. Moreover, modeling can also be performed from the location where the abnormal part has occurred by any of these photo-curing modeling apparatuses 1b, 1c, and 1d. In addition, if these devices are made intelligent and converted to CIM, the work plate can be automatically replaced, and instructions such as re-creation can be executed remotely with a single device. Moreover, if it judges by a program, modeling can be continuously performed with a some apparatus, and stable modeling can be performed, without disturbing apparatus movement.
[0017]
【The invention's effect】
According to the present invention, it is possible to provide a photo-curing modeling apparatus, a photo-curing modeling method, and a photo-curing system capable of reducing labor for performing highly accurate modeling and shortening time.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a photo-curing modeling apparatus according to the present invention.
FIG. 2 is a view showing another example of an inspection element in the photo-curing modeling apparatus according to the present invention.
FIG. 3 is a view for explaining scanning of laser light by the photo-curing modeling apparatus according to the present invention.
FIG. 4 is a diagram for explaining block formation of a region in the photo-curing modeling apparatus according to the present invention.
FIG. 5 is a view showing another example of an inspection element in the photo-curing modeling apparatus according to the present invention.
FIG. 6 is a diagram showing a configuration of a photocuring system according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Contour line 2 Scan line 100 Control data generation part 200 Control part 300 Storage part 400 Communication control part 500 Alarm output part 600 Monitoring part 700 Modeling part

Claims (10)

光硬化性樹脂液の液面に光を照射することにより造形を行なう光硬化造形装置であって、
前記光硬化性樹脂液に対して光硬化を生じさせる領域と光硬化を生じさせない領域の位置情報を記憶する記憶手段と、
前記光硬化性樹脂液の表面の状況を測定する測定手段と、
前記測定手段の測定結果と前記記憶手段に記憶された位置情報に基づき、異常の発生を監視する監視手段とを備えた光硬化造形装置。
A photo-curing modeling apparatus that performs modeling by irradiating light to the liquid surface of the photo-curable resin liquid,
Storage means for storing position information of a region that causes photocuring and a region that does not cause photocuring with respect to the photocurable resin liquid;
Measuring means for measuring the surface condition of the photocurable resin liquid;
A photo-curing modeling apparatus comprising: a monitoring unit that monitors occurrence of abnormality based on a measurement result of the measuring unit and position information stored in the storage unit.
前記測定手段は、光硬化性樹脂液に対する光の照射によって発生する重合熱を検出する温度センサであることを特徴とする請求項1記載の光硬化造形装置。  The photo-curing modeling apparatus according to claim 1, wherein the measuring unit is a temperature sensor that detects polymerization heat generated by light irradiation to the photo-curable resin liquid. 前記測定手段は、光硬化性樹脂の表面に生じる凹凸を検出する光センサであることを特徴とする請求項1記載の光硬化造形装置。  The photo-curing modeling apparatus according to claim 1, wherein the measuring unit is an optical sensor that detects irregularities generated on the surface of the photo-curing resin. 前記測定手段は、光硬化性樹脂の表面に生じる空間周波数特性を測定することを特徴とする請求項1記載の光硬化造形装置。  The photo-curing modeling apparatus according to claim 1, wherein the measuring unit measures a spatial frequency characteristic generated on a surface of the photo-curing resin. 前記空間周波数特性は、蛍光発色であることを特徴とする請求項4記載の光硬化造形装置。  The photocuring modeling apparatus according to claim 4, wherein the spatial frequency characteristic is fluorescence coloring. 光の照射領域を予め複数の領域に分割するとともに、分割された領域毎に識別情報を付して前記記憶手段に記憶し、
異常が発生した位置を特定するために、前記識別情報が用いられることを特徴とする請求項1記載の光硬化造形装置。
The light irradiation area is divided into a plurality of areas in advance, and identification information is attached to each divided area and stored in the storage means,
The photo-curing modeling apparatus according to claim 1, wherein the identification information is used to identify a position where an abnormality has occurred.
前記監視手段により異常が発生したと判定された場合には、当該光硬化造形装置の運転の中断、警報の出力又は異常情報の格納のいずれか1以上の措置をとることを特徴とする請求項1記載の光硬化造形装置。  If the monitoring means determines that an abnormality has occurred, the operation of the photo-curing modeling apparatus is interrupted, an alarm is output, or abnormality information is stored. The photo-curing modeling apparatus according to 1. 前記監視手段により硬化すべき領域が硬化していない又は不十分であるとする異常が検出された場合には、異常が生じた部分について再度光を照射することを特徴とする請求項1記載の光硬化造形装置。  2. The light according to claim 1, wherein when the abnormality that the region to be cured is not cured or insufficient is detected by the monitoring unit, light is irradiated again on a portion where the abnormality has occurred. Photo-curing modeling device. 請求項1乃至8のいずれかに記載の光硬化造形装置を複数備えるとともに、これらの光硬化造形装置を制御する単一の制御システムを備えた光硬化造形システム。Together they comprise a plurality of photocurable molding apparatus according to any one of claims 1 to 8, photocurable molding system with a single control system for controlling these photocurable molding apparatus. 光硬化性樹脂液の液面に光を照射することにより造形を行なう光硬化造形方法であって、
前記光硬化性樹脂液に対して光硬化を生じさせる領域と光硬化を生じさせない領域の位置情報を記憶手段に記憶するステップと、
前記光硬化性樹脂液の表面の状況を測定するステップと、
前記測定の結果と前記記憶手段に記憶された位置情報に基づき、異常部分の発生を監視するステップとを備えた光硬化造形方法。
A photo-curing modeling method for modeling by irradiating light on the liquid surface of the photo-curable resin liquid,
Storing in the storage means position information of a region that causes photocuring and a region that does not cause photocuring with respect to the photocurable resin liquid;
Measuring the surface condition of the photocurable resin liquid;
A photocuring modeling method comprising: a step of monitoring the occurrence of an abnormal portion based on the measurement result and the positional information stored in the storage means.
JP2002166904A 2002-06-07 2002-06-07 Photo-curing modeling apparatus, photo-curing modeling method, and photo-curing modeling system Expired - Fee Related JP3801100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166904A JP3801100B2 (en) 2002-06-07 2002-06-07 Photo-curing modeling apparatus, photo-curing modeling method, and photo-curing modeling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166904A JP3801100B2 (en) 2002-06-07 2002-06-07 Photo-curing modeling apparatus, photo-curing modeling method, and photo-curing modeling system

Publications (2)

Publication Number Publication Date
JP2004009574A JP2004009574A (en) 2004-01-15
JP3801100B2 true JP3801100B2 (en) 2006-07-26

Family

ID=30434308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166904A Expired - Fee Related JP3801100B2 (en) 2002-06-07 2002-06-07 Photo-curing modeling apparatus, photo-curing modeling method, and photo-curing modeling system

Country Status (1)

Country Link
JP (1) JP3801100B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10384330B2 (en) 2014-10-17 2019-08-20 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US10596763B2 (en) 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11964359B2 (en) 2015-10-30 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US11980992B2 (en) 2022-09-16 2024-05-14 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009108543A2 (en) 2008-02-26 2009-09-03 3M Innovative Properties Company Multi-photon exposure system
WO2010043275A1 (en) * 2008-10-17 2010-04-22 Huntsman Advanced Materials (Switzerland) Gmbh Improvements for rapid prototyping apparatus
CN104423325B (en) * 2013-08-21 2017-09-12 北京数码视讯科技股份有限公司 Fault determination method and device
WO2016026663A1 (en) * 2014-08-20 2016-02-25 Arcam Ab Energy beam deflection speed verification
JP5905060B1 (en) * 2014-09-16 2016-04-20 株式会社東芝 Additive manufacturing apparatus and additive manufacturing method
JP6203704B2 (en) * 2014-12-18 2017-09-27 株式会社ソディック Control system for additive manufacturing equipment
CN109789692A (en) * 2016-09-26 2019-05-21 福姆实验室公司 For reducing the technology and related system and method for the differential curing artifact for being used for increasing material manufacturing
JP6961968B2 (en) * 2017-03-22 2021-11-05 日本電気株式会社 Laminated modeling inspection device, laminated modeling device and laminated modeling method
US20210178698A1 (en) * 2017-12-20 2021-06-17 Mitsui Chemicals, Inc. Stereolithography device, stereolithography program and stereolithography method
JP2019151012A (en) * 2018-03-02 2019-09-12 株式会社リコー Three-dimensional object manufacturing apparatus, three-dimensional object manufacturing method, and three-dimensional object manufacturing program
CN110948854A (en) * 2019-12-24 2020-04-03 广东丽格科技股份有限公司 Monitoring method and system for photocuring 3D printing
US11945155B2 (en) 2020-09-21 2024-04-02 Formlabs, Inc. Techniques for reducing peel forces in additive fabrication and related systems and methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3349508B2 (en) * 1988-04-18 2002-11-25 スリーディー、システムズ、インコーポレーテッド Calibration device and calibration method for three-dimensional modeling device
JP3155168B2 (en) * 1995-05-26 2001-04-09 松下電工株式会社 3D shape forming method
JPH11254542A (en) * 1998-03-11 1999-09-21 Sanyo Electric Co Ltd Monitoring system for stereo lithographic apparatus
JP3515419B2 (en) * 1999-04-30 2004-04-05 ティーエスコーポレーション株式会社 Optical three-dimensional molding method and apparatus
JP2002067171A (en) * 2000-08-25 2002-03-05 Canon Inc Object article forming device, object article forming method, and storage medium
JP2002103459A (en) * 2000-09-29 2002-04-09 Sanyo Electric Co Ltd Stereo lithographic device and method for producing stereo lithographic product

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11724362B2 (en) 2014-10-17 2023-08-15 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US10537974B2 (en) 2014-10-17 2020-01-21 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10384330B2 (en) 2014-10-17 2019-08-20 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11958162B2 (en) 2014-10-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10953515B2 (en) 2014-10-17 2021-03-23 Applied Materials, Inc. Apparatus and method of forming a polishing pads by use of an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US11446788B2 (en) 2014-10-17 2022-09-20 Applied Materials, Inc. Precursor formulations for polishing pads produced by an additive manufacturing process
US11964359B2 (en) 2015-10-30 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US10596763B2 (en) 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11980992B2 (en) 2022-09-16 2024-05-14 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods

Also Published As

Publication number Publication date
JP2004009574A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3801100B2 (en) Photo-curing modeling apparatus, photo-curing modeling method, and photo-curing modeling system
TWI444287B (en) Imprint apparatus and method of manufacturing article
US10933468B2 (en) Additive manufacturing method and apparatus
TWI411521B (en) Imprint apparatus and method of manufacturing article
KR101741611B1 (en) Imprinting method, imprinting apparatus, and device manufacturing method
US11185925B2 (en) Process abnormality detection system for three-dimensional additive manufacturing device, three-dimensional additive manufacturing device, process abnormality detection method for three-dimensional additive manufacturing device, method for manufacturing three-dimensional additive manufactured product, and three-dimensional additive manufactured product
CN107116790A (en) The Multivariable Statistical Process Control of laser powder bed additivity manufacture
WO2018062002A1 (en) Device for three-dimensional modeling, method for manufacturing three-dimensional object, and program for three-dimensional modeling
US20070228592A1 (en) Auto tip calibration in an extrusion apparatus
US6553275B1 (en) In-situ stress monitoring during direct material deposition process
KR102004578B1 (en) Imprint system and method of manufacturing article
CN113382846B (en) Method and apparatus for process monitoring in additive manufacturing
JP2014241398A (en) Imprint device, device manufacturing method, and imprint method
JP6335948B2 (en) Imprint apparatus and article manufacturing method
CN105563823A (en) Three-dimensional printing device and three-dimensional printing method
US11667076B2 (en) Method and devices for rapid detection and calibration of a 3D printer using a viscous material
JP2011222705A (en) Method for manufacturing imprint device and imprint substrate
CN113508026B (en) Method and apparatus for build thickness control in additive manufacturing
KR200457399Y1 (en) Injection molding die
JP2019212673A (en) Imprint apparatus and article manufacturing method
KR102010817B1 (en) 3D printer capable of monitoring output using ultrasound and 3D printing method thereof
JPH07304104A (en) Method and apparatus for forming optically shaped product
US20230067468A1 (en) 3d printing system and method
US11759994B2 (en) Imprint apparatus, imprint method, and article manufacturing method
WO2024042793A1 (en) Image generation control device and optical shaping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3801100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees