JP3800391B2 - Phase loss detection method and circuit of voltage source inverter device. - Google Patents

Phase loss detection method and circuit of voltage source inverter device. Download PDF

Info

Publication number
JP3800391B2
JP3800391B2 JP2000118828A JP2000118828A JP3800391B2 JP 3800391 B2 JP3800391 B2 JP 3800391B2 JP 2000118828 A JP2000118828 A JP 2000118828A JP 2000118828 A JP2000118828 A JP 2000118828A JP 3800391 B2 JP3800391 B2 JP 3800391B2
Authority
JP
Japan
Prior art keywords
circuits
output
phase
circuit
inverter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000118828A
Other languages
Japanese (ja)
Other versions
JP2001309669A (en
Inventor
新一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2000118828A priority Critical patent/JP3800391B2/en
Publication of JP2001309669A publication Critical patent/JP2001309669A/en
Application granted granted Critical
Publication of JP3800391B2 publication Critical patent/JP3800391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、半導体電力変換回路などで形成される三相出力の電圧形インバータ装置の出力欠相状態を検出する欠相検出方法とその回路に関する。
【0002】
【従来の技術】
図15は、三相出力のインバータ装置におけるこの種の欠相検出回路の従来例を示す回路構成図である。
【0003】
図15において、1は整流電源などの直流電源、2はトランジスタとダイオードとの逆並列回路を3相ブリッジ接続してなるインバータ主回路、3〜5はインバータ主回路2の各相の出力電流を検出するCT、6は負荷としての電動機、11はインバータ主回路2の出力周波数指令値ω* を指令する周波数設定器、12は前記出力周波数指令値ω* に基づくインバータ主回路2の出力電圧指令値(直流量)V* を導出するF/V変換器、13は前記出力周波数指令値ω* と出力電圧指令値V* とから各相のPWM電圧指令(交流量)を演算するPWM電圧指令演算器、14は前記各相のPWM電圧指令を信号波とするPWM演算を行ない
、この演算結果に基づきインバータ主回路2を構成するそれぞれの前記トランジスタをオン,オフさせるPWMパルス演算器である。
【0004】
以下に、全波整流器,コンパレータ素子などからなる比較演算回路21〜23と、OR回路24と、AND回路25と、判定演算回路26とからなる従来の欠相検出回路の動作を、図16に示した波形図を参照しつつ、説明する。
【0005】
図16において、(イ)はCT3〜5が検出した各相の出力電流波形を示し、(ロ)はCT3の検出値の絶対値がしきい値以下になったときに論理「H」レベルを出力する比較演算回路21の出力波形を示し、(ハ)はCT4の検出値の絶対値がしきい値以下になったときに論理「H」レベルを出力する比較演算回路22の出力波形を示し、(ニ)はCT5の検出値の絶対値がしきい値以下になったときに論理「H」レベルを出力する比較演算回路23の出力波形を示し、(ホ)はAND回路25の論理レベルでの出力波形を示している。
【0006】
すなわち、図16(イ)に示す如き太実線の検出電流では比較演算回路21〜23,AND回路25それぞれの出力も図16(ロ)〜(ホ)の太実線の如くになり、従って、判定演算回路26を構成するパルス幅計測回路26aではAND回路25の論理「H」レベルの期間を計測し、この計測時間と、判定演算回路26を構成する判定値設定器26bの設定時間とを判定演算回路26を構成する比較回路26cで比較し、前記計測時間≧設定時間ならば、欠相信号を出力する。
【0007】
このとき、AND回路25に入力されている前記出力周波数指令値ω* と出力電圧指令値V* とはこの電圧形インバータ装置が動作可能な最小値以上であること、すなわち、この電圧形インバータ装置が運転中には双方共に論理「H」レベルにある。また、前記設定時間は前記出力周波数指令値ω* の可変範囲に基づく値とし、さらに、比較演算回路21〜23における前記しきい値は、可能な限り零に近いことが望ましい。
【0008】
図16では図示しないがインバータ主回路2を構成する前記逆並列回路の不具合,負荷6への接続線の断線などにより、いずれか1相が欠相状態になると、この相に基づくAND回路25の出力の論理「H」レベルの期間が長くなり、その結果、前記計測時間≧設定時間の条件が成立し、欠相信号を出力する。
【0009】
【発明が解決しようとする課題】
上述の従来の欠相検出回路によると、CT3〜5の検出電流が小さいとき、例えば図16(イ)における正弦波状の破線の場合に、比較演算回路21〜23,AND回路25それぞれの出力も図16(ロ)〜(ホ)の破線の如くになり、従って、AND回路25の出力は論理「H」レベルの期間を継続し、その結果、判定演算回路26は、この電圧形インバータ装置が正常動作にも係わらず、欠相信号を出力することとなる。
【0010】
従来は上述の誤動作の対策として、比較演算回路21〜23における前記しきい値を、上述の如く可能な限り零に近づけることが行われているが、例えば、インバータ主回路2がPWM制御されていることなどからそれぞれの出力電流にリプル成分が重畳し、このリプル成分を低減するフィルタをCT3〜5の検出値に介しても、限界があった。
【0011】
また、インバータ主回路2が出力する周波数が高いときに、先述のPWM演算の際に前記周波数の正弦波に対する分解能が粗くなって、出力電流のリプル成分が増大し、本来の出力電流の零点通過時以外の区間でも該出力電流が零に近い値となることがあり、その結果、この電圧形インバータ装置が正常動作にも係わらず、欠相信号を出力することがあった。
【0012】
この発明の目的は、上述の低電流領域及び高い出力周波数領域での誤動作を解消した電圧形インバータ装置の欠相検出方法とその回路を提供することにある。
【0013】
【課題を解決するための手段】
この第1の発明は、三相出力の電圧形インバータ装置の出力欠相状態を検出する欠相検出方法において、
前記電圧形インバータ装置の各相の出力電流それぞれの絶対値を監視し、この絶対値を監視している相それぞれに対応した残りの相の前記出力電流が互いに異なる極性のときに、該監視している相の絶対値がしきい値以下の期間をそれぞれ計測し、この計測値に基づいて、前記電圧形インバータ装置の各相出力の内、いずれか1相が欠相したか否かを判定することを特徴とする。
【0014】
第2の発明は、三相出力の電圧形インバータ装置の出力欠相状態を検出する欠相検出回路において、
前記電圧形インバータ装置の各相の出力電流それぞれの絶対値がしきい値以下になったときに出力する3組の比較演算回路と、前記各相の出力電流の内、いずれか2つの相の出力電流が互いに異なる極性のときに出力する3組の極性監視回路と、前記各相の比較演算回路のいずれか1つの出力と、この比較演算回路とは異なった相の極性監視回路の出力とが入力される3組の主AND回路と、前記主AND回路それぞれの出力値に基づき前記電圧形インバータ装置の各相出力の内、いずれか1相が欠相したことを判定し、欠相信号を出力する判定演算回路とを備えたことを特徴とする。
【0015】
第3の発明は、三相出力の電圧形インバータ装置の出力欠相状態を検出する欠相検出回路において、
前記電圧形インバータ装置の各相の出力電流それぞれの絶対値がしきい値以下になったときに出力する3組の比較演算回路と、前記各相の出力電流の内、いずれか2つの相の出力電流が互いに異なる極性のときに出力する3組の極性監視回路と、前記各相の比較演算回路のいずれか1つの出力と、この比較演算回路とは異なった相の極性監視回路の出力とが入力される3組の従AND回路と、前記従AND回路の出力値それぞれを反転する3組のINV回路と、前記従AND回路のいずれか1つの出力と、この従AND回路とは異なった従AND回路に接続された前記INV回路それぞれの出力とが入力される3組の主AND回路と、前記主AND回路それぞれの出力値に基づき前記電圧形インバータ装置の各相出力の内、いずれか1相が欠相したことを判定し、欠相信号を出力する判定演算回路とを備えたことを特徴とする。
【0016】
第4の発明は、前記第2又は第3の発明の電圧形インバータ装置の欠相検出回路において、
前記判定演算回路には、前記主AND回路それぞれの出力パルス幅を計測する3組のパルス幅計測回路と、予め定める計測時間判定値を設定する判定値設定器と、前記それぞれの出力パルス幅の計測値が前記計測時間判定値を越えたか否かを判定する3組の比較回路とを備えたことを特徴とする。
【0017】
第5の発明は、前記第2又は第3の発明の電圧形インバータ装置の欠相検出回路において、
前記判定演算回路には、前記主AND回路それぞれの出力パルス幅を計測する3組のパルス幅計測回路と、前記インバータ装置の出力周波数指令値に基づく計測時間判定値を設定する判定値設定器と、前記それぞれの出力パルス幅の計測値が前記計測時間判定値を越えたか否かを判定する3組の比較回路とを備えたことを特徴とする。
【0018】
第6の発明は、前記第2又は第3の発明の電圧形インバータ装置の欠相検出回路において、
前記判定演算回路には、前記主AND回路それぞれの出力パルス幅を計測する3組のパルス幅計測回路と、予め定める計測時間判定値を設定する第1判定値設定器と、前記それぞれの出力パルス幅の計測値が前記計測時間判定値を越えたときに出力する3組の第1比較回路と、前記第1比較回路それぞれが出力した回数を積算する3組の積算回路と、予め定める積算回数判定値を設定する第2判定値設定器と、前記積算回路それぞれの積算値が前記積算回数判定値を越えたか否かを判定する3組の第2比較回路とを備えたことを特徴とする。
【0019】
第7の発明は、前記第2又は第3の発明の電圧形インバータ装置の欠相検出回路において、
前記判定演算回路には、前記主AND回路それぞれの出力パルス幅を計測する3組のパルス幅計測回路と、前記インバータ装置の出力周波数指令値に基づく計測時間判定値を設定する第1判定値設定器と、前記それぞれの出力パルス幅の計測値が前記計測時間判定値を越えたときに出力する3組の第1比較回路と、前記第1比較回路それぞれが出力した回数を積算する3組の積算回路と、前記インバータ装置におけるPWM演算の際の分解能に基づく積算回数判定値を設定する第2判定値設定器と、前記積算回路それぞれの積算値が前記積算回数判定値を越えたか否かを判定する3組の第2比較回路とを備えたことを特徴とする。
【0020】
【発明の実施の形態】
図1は、この発明の第1の実施の形態を示す電圧形インバータ装置の欠相検出回路の回路構成図であり、図15に示した従来例回路と同一機能を有するものには同一符号を付している。
【0021】
すなわち、図1に示した欠相検出回路には比較演算回路21〜23と、極性演算回路31〜33と、主AND回路としてのAND回路34〜36と、判定演算回路50又は判定演算回路60のいずれかとを備えている
先ず、コンパレータ素子,排他的OR素子などからなる極性演算回路31〜33の動作を、図2に示す動作特性図を参照しつつ、以下に説明する。
【0022】
図2において、縦軸と横軸とはCT3〜5のいずれか2つの検出値に対応し、それぞれの極性演算回路は縦軸,横軸の双方が同極性のとき、又は双方の絶対値が零点近傍のときに論理「L」レベルを出力し、双方の極性が互いに異なるときに論理「H」レベルを出力する。
【0023】
次に、比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36におけるこの電圧形インバータ装置の通常時の動作を、図3に示す動作波形図を参照しつつ、以下に説明する。
【0024】
図3において、(イ)はこの電圧形インバータ装置の各相の出力電流を示し、また、(ロ)〜(ヌ)は比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36それぞれの論理レベルの出力波形を示す。
【0025】
すなわち、図3(イ)に示す如き太実線の検出電流では比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36それぞれの出力も図3(ロ)〜(ヌ)の太実線の如くになり、また、CT3〜5の検出電流が小さいとき、例えば図3(イ)における正弦波状の破線の場合に、比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36それぞれの出力も図3(ロ)〜(ヌ)の破線の如くになる。
【0026】
図3の波形図からも明らかなように、CT3〜5の検出電流が図3(イ)の破線より小さいときには、例えば、比較演算回路21の出力の論理「H」レベルの期間が広がるが、極性演算回路32の出力の論理「H」レベルの期間が狭くなり、AND回路34の出力もこのときの比較演算回路21の論理「H」レベルの期間より狭くなる。また、CT3〜5の検出電流が更に小さくなると、極性演算回路32の図2に示した特性により、AND回路34の論理「H」レベルの期間がやがて消滅する。
【0027】
すなわち、この電圧形インバータ装置の通常動作時には、AND回路34〜36それぞれの論理「H」レベルの期間は60°(電気角)以下である。
【0028】
更に、比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36におけるこの電圧形インバータ装置の出力欠相状態の動作を、図4に示す動作波形図を参照しつつ、以下に説明する。
【0029】
図4はCT5が設置されている相が欠相状態の波形図を示し、従って、CT3とCT4とには互いに逆極性に電流が流れ、図4(イ)に示す如き太実線の検出電流では比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36それぞれの出力も図4(ロ)〜(ヌ)の太実線の如くになり、また、CT3〜5の検出電流が小さいとき、例えば図4(イ)における正弦波状の破線の場合に、比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36それぞれの出力も図4(ロ)〜(ヌ)の破線の如くになる。
【0030】
図4の波形図からも明らかなように、CT3,4の検出電流が図4(イ)の破線より小さいときには、極性演算回路31の出力の論理「H」レベルの期間が狭くなり、従って、AND回路36の出力の論理「H」レベルの期間も狭くなる。また、CT3,4の検出電流が更に小さくなると、極性演算回路31の図2に示した特性により、AND回路36の論理「H」レベルの期間がやがて消滅する。
【0031】
図5は判定演算回路50の詳細回路構成図であり、51〜53はパルス幅計測回路、54は判定値設定器、55〜57は比較回路、58はOR素子を示す。
【0032】
この判定演算回路50において、図3に示したAND回路34〜36の波形では不動作、図4に示したAND回路34〜36の波形では動作するためには、パルス幅計測回路51〜53それぞれの計測値が60°(電気角)を越えた値(例えば、120°)を判定値設定回路54で設定し、これを計測時間判定値として比較回路55〜57でそれぞれ比較し、いずれかの比較回路が動作し論理「H」レベルとなったときに、OR素子58を介して欠相信号を出力する。
【0033】
図6は判定演算回路60の詳細回路構成図であり、この判定演算回路60が図5に示した判定演算回路50と異なる点は、比較回路51〜53それぞれを第1比較回路とし、判定値設定器54とOR素子58とが削除され、代わりに、判定値設定器54と同一機能の第1判定値設定器61と、積算回路62〜64と、第2判定値設定器65と、第2比較回路としての比較回路66〜68と、OR素子69とを備えている。
【0034】
この判定演算回路60において、図3に示したAND回路34〜36の波形では不動作、図4に示したAND回路34〜36の波形では動作するためには、パルス幅計測回路51〜53それぞれの計測値が60°(電気角)を越えた値(例えば、120°)を第1判定値設定回路61で設定し、これを計測時間判定値として比較回路55〜57でそれぞれ比較し、この電圧形インバータ装置の出力周波数の1サイクルの間に前記計測値≧前記計測時間判定値になった回数を積算回路62〜64で積算し、積算回路62〜64それぞれの積算値が第2判定値設定回路65で設定される積算回数判定値(例えば、出力周波数の3サイクル間に5回)を越えたか否かを比較回路66〜68でそれぞれ判定し、比較回路66〜68のいずれかが動作し論理「H」レベルになったときに、OR素子69を介して欠相信号を出力する。
【0035】
図7は、この発明の第2の実施の形態を示す電圧形インバータ装置の欠相検出回路の回路構成図であり、図1に示した第1実施形態回路と同一機能を有するものには同一符号を付している。
【0036】
すなわち、図7に示した欠相検出回路には比較演算回路21〜23と、極性演算回路31〜33と、主AND回路としてのAND回路34〜36と、判定演算回路70とを備えている
図8は判定演算回路70の詳細回路構成図であり、図5に示した判定演算回路50と同一機能を有するものには同一符号を付している。
【0037】
すなわち図8において、51〜53はパルス幅計測回路、55〜57は比較回路、58はOR素子、71は判定値設定器を示す。
【0038】
この判定演算回路70において、図3に示したAND回路34〜36の波形では不動作、図4に示したAND回路34〜36の波形では動作するためには、パルス幅計測回路51〜53それぞれの計測値が120°(電気角)に相当する値をこの電圧形インバータ装置の出力周波数指令値ω* に連動して、判定値設定回路71で設定し、これを計測時間判定値として比較回路55〜57でそれぞれ比較し、いずれかの比較回路が動作し論理「H」レベルとなったときに、OR素子58を介して欠相信号を出力する。
【0039】
すなわち、図7に示した回路構成では、この電圧形インバータ装置の出力周波数指令値ω* に連動して欠相検出回路70が動作するので、欠相状態の発生を遅滞なく検出することができる。
【0040】
図9は、この発明の第3の実施の形態を示す電圧形インバータ装置の欠相検出回路の回路構成図であり、図1に示した第1実施形態回路と同一機能を有するものには同一符号を付している。
【0041】
すなわち、図9に示した欠相検出回路には比較演算回路21〜23と、極性演算回路31〜33と、従AND回路としてのAND回路34〜36と、INV回路37〜39と、主AND回路としてのAND回路40〜42と、判定演算回路50又は判定演算回路60のいずれかとを備えている
先ず、比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36,INV回路37〜39,AND回路40〜42におけるこの電圧形インバータ装置の通常時の動作を、図10に示す動作波形図を参照しつつ、以下に説明する。
【0042】
図10において、(イ)はこの電圧形インバータ装置の各相の出力電流を示し、また、(ロ)〜(ワ)は比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36,AND回路40〜42それぞれの論理レベルの出力波形を示す。
【0043】
すなわち、図10(イ)に示す如き太実線の検出電流では比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36,AND回路40〜42それぞれの出力も図10(ロ)〜(ワ)の太実線の如くになり、また、CT3〜5の検出電流が小さいとき、例えば図10(イ)における正弦波状の破線の場合に、比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36,AND回路40〜42それぞれの出力も図10(ロ)〜(ワ)の破線の如くになる。
【0044】
図10の波形図からも明らかなように、CT3〜5の検出電流が図10(イ)の破線より小さいときには、例えば、比較演算回路21の出力の論理「H」レベルの期間が広がるが、極性演算回路32の出力の論理「H」レベルの期間が狭くなり、AND回路40の出力もこのときの比較演算回路21の論理「H」レベルの期間より狭くなる。また、CT3〜5の検出電流が更に小さくなると、極性演算回路32の図2に示した特性により、AND回路40の論理「H」レベルの期間がやがて消滅する。
【0045】
すなわち、この電圧形インバータ装置の通常動作時には、AND回路40〜42それぞれの論理「H」レベルの期間は60°(電気角)以下である。
【0046】
更に、比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36,AND回路40〜42におけるこの電圧形インバータ装置の出力欠相状態の動作を、図11に示す動作波形図を参照しつつ、以下に説明する。
【0047】
図11はCT5が設置されている相が欠相状態の波形図を示し、従って、CT3とCT4とには互いに逆極性に電流が流れ、図11(イ)に示す如き太実線の検出電流では比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36,AND回路それぞれの出力も図11(ロ)〜(ワ)の太実線の如くになり、また、CT3〜5の検出電流が小さいとき、例えば図11(イ)における正弦波状の破線の場合に、比較演算回路21〜23,極性演算回路31〜33,AND回路34〜36,AND回路40〜42それぞれの出力も図11(ロ)〜(ワ)の破線の如くになる。
【0048】
図11の波形図からも明らかなように、CT3,4の検出電流が図11(イ)の破線より小さいときには、極性演算回路31の出力の論理「H」レベルの期間が狭くなり、AND回路42の出力の論理「H」レベルの期間も狭くなる。また、CT3,4の検出電流が更に小さくなると、極性演算回路31の図2に示した特性により、AND回路42の論理「H」レベルの期間がやがて消滅する。
【0049】
また、図10,11の動作波形は周波数指令値ω* が一定状態では図3,4の波形と主AND回路それぞれの波形と同様であるが、周波数指令値ω* が変化している途中(電動機6を加速中又は減速中)では、INV回路37〜39とAND回路40〜42を付加したことにより、判定演算回路それぞれでの誤検出を防止する機能を有している。
【0050】
図10,11の動作波形図による図9に示した判定値演算回路50又は判定値演算回路60の動作は、先述の図3,図4の動作波形図による判定値演算回路50又は判定値演算回路60の動作と同様なので、ここではその説明を省略する。
【0051】
図12は、この発明の第4の実施の形態を示す電圧形インバータ装置の欠相検出回路の回路構成図であり、図9に示した第3実施形態回路と同一機能を有するものには同一符号を付している。
【0052】
すなわち、図12に示した欠相検出回路が、図9に示した欠相検出回路と異なる点は判定演算回路50又は判定演算回路60に代えて判定値演算回路70を備えていることである。
【0053】
図10,11の動作波形図による図12に示した判定値演算回路70の動作は、先述の図3,図4の動作波形図による判定値演算回路70の動作と同様なので、ここではその説明を省略する。
【0054】
図13は、この発明の第5の実施の形態を示す電圧形インバータ装置の欠相検出回路の回路構成図であり、図9に示した第3実施形態回路と同一機能を有するものには同一符号を付している。
【0055】
すなわち、図13に示した欠相検出回路が、図9に示した欠相検出回路と異なる点は判定演算回路50又は判定演算回路60に代えて判定値演算回路80を備えていることである。
【0056】
図14は判定演算回路80の詳細回路構成図であり、図6に示した判定演算回路60と同一機能を有するものには同一符号を付している。
【0057】
すなわち図14において、51〜53はパルス幅計測回路、55〜57は比較回路、62〜64,66〜68はAND回路、81は図8に示した判定値設定器71と同一機能の第1判定値設定器、82は第2判定値設定器を示す。
【0058】
この判定演算回路80において、図10に示したAND回路40〜42の波形では不動作、図11に示したAND回路40〜42の波形では動作するためには、パルス幅計測回路51〜53それぞれの計測値が120°(電気角)に相当する値をこの電圧形インバータ装置の出力周波数指令値ω* に連動して、第1判定値設定回路81で設定し、これを計測時間判定値として比較回路55〜57でそれぞれ比較し、いずれかの比較回路が動作し論理「H」レベルとなった回数を積算回路62〜64で積算し、それぞれの積算値がPWMパルス演算器14から送出されるPWM演算の際の分解能に基づき第2判定値設定器82が設定する積算回数判定値(例えば、周波数指令値に基づく出力周波数の3サイクル間に5回)を越えたか否かを比較回路66〜68で判定し、越えたときにはOR素子69を介して欠相信号を出力する。
【0059】
すなわち、図12に示した回路構成では、この電圧形インバータ装置の出力周波数指令値ω* に連動し、更に、この周波数指令値におけるPWM演算の分解能に対応して欠相検出回路80が動作するので、インバータ主回路2が出力する周波数が高いときに、先述のPWM演算の際に前記周波数の正弦波に対する分解能が粗くなって、出力電流のリプル成分が増大し、本来の出力電流の零点通過時以外の区間でも該出力電流が零に近い値となるときにも、欠相状態の発生を確実に遅滞なく検出することができる。
【0060】
【発明の効果】
この発明によれば、電圧形インバータ装置の出力電流が低電流領域及び高周波領域、又は電動機を加減速中での誤動作を防止できるので、欠相検出回路の動作信頼性を向上させ、より速やかに欠相状態を検出できる。
【0061】
さらにこの発明は、マイクロコンピュータによるデジタル制御の電圧形インバータ装置に好適な欠相検出方法,欠相検出回路である。
【図面の簡単な説明】
【図1】この発明の第1実施形態を示す電圧形インバータ装置の欠相検出回路の構成図
【図2】図1の極性演算回路の動作特性図
【図3】図1の動作を説明する波形図
【図4】図1の動作を説明する波形図
【図5】図1の部分詳細回路構成図
【図6】図1の部分詳細回路構成図
【図7】この発明の第2実施形態を示す電圧形インバータ装置の欠相検出回路の構成図
【図8】図7の部分詳細回路構成図
【図9】この発明の第3実施形態を示す電圧形インバータ装置の欠相検出回路の構成図
【図10】図9の動作を説明する波形図
【図11】図9の動作を説明する波形図
【図12】この発明の第4実施形態を示す電圧形インバータ装置の欠相検出回路の構成図
【図13】この発明の第5実施形態を示す電圧形インバータ装置の欠相検出回路の構成図
【図14】図13の部分詳細回路構成図
【図15】従来例を示す電圧形インバータ装置の欠相検出回路の構成図
【図16】図15の動作を説明する波形図
【符号の説明】
1…直流電源、2…インバータ主回路、3〜5…CT、6…電動機、11…周波数設定器、12…F/V変換器、13…PWM電圧指令演算器、14…PWMパルス演算器、21〜23…比較演算回路、24…OR回路、25…AND回路、26…判定演算回路、26a…パルス幅計測回路、26b…判定値設定器、26c…比較回路、31〜33…極性演算回路、34〜36…AND回路、37〜39…INV回路、40〜42…AND回路、50,60,70,80…判定演算回路、51〜53…パルス幅計測回路、54…判定値設定器、55〜57…比較回路、58…OR回路、61…第1判定値設定器、62〜64…積算回路、65…第2判定値設定器、66〜68…比較回路、69…OR回路、71…判定値設定器、81…第1判定値設定器、82…第2判定値設定器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an open phase detection method for detecting an output open phase state of a three-phase output voltage source inverter device formed by a semiconductor power conversion circuit and the like, and a circuit thereof.
[0002]
[Prior art]
FIG. 15 is a circuit configuration diagram showing a conventional example of this type of phase loss detection circuit in a three-phase output inverter device.
[0003]
In FIG. 15, 1 is a DC power source such as a rectifying power source, 2 is an inverter main circuit formed by connecting an anti-parallel circuit of a transistor and a diode in a three-phase bridge, and 3 to 5 are output currents of respective phases of the inverter main circuit 2. CT to be detected, 6 is an electric motor as a load, 11 is an output frequency command value ω of the inverter main circuit 2 * The frequency setting device for commanding the output frequency, 12 is the output frequency command value ω * Output voltage command value (DC amount) V of inverter main circuit 2 based on * F / V converter 13 for deriving the output frequency, 13 is the output frequency command value ω * And output voltage command value V * The PWM voltage command calculator for calculating the PWM voltage command (alternating current amount) for each phase from the above, 14 performs a PWM calculation using the PWM voltage command for each phase as a signal wave
This is a PWM pulse calculator that turns on and off each of the transistors constituting the inverter main circuit 2 based on the calculation result.
[0004]
FIG. 16 shows the operation of a conventional phase loss detection circuit including comparison operation circuits 21 to 23 including a full-wave rectifier and a comparator element, an OR circuit 24, an AND circuit 25, and a determination operation circuit 26. This will be described with reference to the waveform diagram shown.
[0005]
In FIG. 16, (a) shows the output current waveform of each phase detected by CT3-5, and (b) shows the logic “H” level when the absolute value of the detected value of CT3 falls below the threshold value. (C) shows the output waveform of the comparison operation circuit 22 that outputs a logic "H" level when the absolute value of the detected value of CT4 is below the threshold value. , (D) shows the output waveform of the comparison operation circuit 23 that outputs a logic “H” level when the absolute value of the detected value of CT5 falls below the threshold value, and (e) shows the logic level of the AND circuit 25. The output waveform at is shown.
[0006]
That is, with the detection current of the thick solid line as shown in FIG. 16 (a), the outputs of the comparison operation circuits 21 to 23 and the AND circuit 25 are also as shown by the thick solid lines of FIG. 16 (b) to (e). The pulse width measurement circuit 26 a constituting the arithmetic circuit 26 measures the logical “H” level period of the AND circuit 25, and determines this measurement time and the set time of the judgment value setting unit 26 b constituting the judgment arithmetic circuit 26. The comparison circuit 26c constituting the arithmetic circuit 26 makes a comparison, and if the measurement time ≧ the set time, the phase loss signal is output.
[0007]
At this time, the output frequency command value ω input to the AND circuit 25 * And output voltage command value V * Is equal to or greater than the minimum value at which this voltage source inverter device can operate, that is, both of these voltage source inverter devices are at logic “H” level during operation. The set time is the output frequency command value ω * It is desirable that the threshold value in the comparison operation circuits 21 to 23 be as close to zero as possible.
[0008]
Although not shown in FIG. 16, if one of the phases is lost due to a malfunction of the anti-parallel circuit constituting the inverter main circuit 2 or disconnection of the connection line to the load 6, the AND circuit 25 based on this phase As a result, the period of the logic “H” level of the output becomes longer. As a result, the condition of the measurement time ≧ the set time is satisfied, and the phase loss signal is output.
[0009]
[Problems to be solved by the invention]
According to the above-described conventional phase loss detection circuit, when the detection currents of CT3 to CT5 are small, for example, in the case of the sine wave-like broken line in FIG. 16 (b) to (e), the AND circuit 25 continues to output a logic "H" level period. As a result, the determination operation circuit 26 is connected to the voltage source inverter device. In spite of normal operation, an open phase signal is output.
[0010]
Conventionally, as a countermeasure against the above-described malfunction, the threshold value in the comparison arithmetic circuits 21 to 23 is made as close to zero as possible as described above. For example, the inverter main circuit 2 is PWM-controlled. For example, a ripple component is superimposed on each output current, and there is a limit even if a filter for reducing this ripple component is passed through the detection values of CT3 to CT5.
[0011]
In addition, when the frequency output from the inverter main circuit 2 is high, the resolution for the sine wave of the frequency becomes coarse during the above-described PWM calculation, the ripple component of the output current increases, and the original output current passes through the zero point. The output current may become a value close to zero even in a section other than the time, and as a result, the voltage source inverter device may output an open phase signal despite normal operation.
[0012]
SUMMARY OF THE INVENTION An object of the present invention is to provide a phase loss detection method for a voltage source inverter device and a circuit thereof that eliminates the malfunction in the low current region and high output frequency region described above.
[0013]
[Means for Solving the Problems]
The first aspect of the present invention is an open phase detection method for detecting an output open phase state of a three-phase output voltage source inverter device.
The absolute value of each output current of each phase of the voltage source inverter device is monitored, and the monitoring is performed when the output currents of the remaining phases corresponding to the phases monitoring the absolute value have different polarities. Measure the period when the absolute value of the current phase is less than or equal to the threshold value, and based on this measurement value, determine whether any one of the phase output of the voltage source inverter device is missing It is characterized by doing.
[0014]
According to a second aspect of the present invention, there is provided an open phase detection circuit that detects an output open phase state of a three-phase output voltage source inverter device.
Three sets of comparison operation circuits that output when the absolute value of each of the output currents of each phase of the voltage source inverter device is less than or equal to a threshold value, and the output current of any two of the output currents of each phase Three sets of polarity monitoring circuits that output when the output currents have different polarities, the output of any one of the comparison operation circuits for each phase, and the output of the polarity monitoring circuit for a phase different from the comparison operation circuit, Is determined based on the output value of each of the three sets of main AND circuits and the main AND circuit, and one of the phase outputs of the voltage source inverter device is lost. And a determination operation circuit that outputs the signal.
[0015]
According to a third aspect of the present invention, there is provided an open phase detection circuit that detects an output open phase state of a three-phase output voltage source inverter device.
Three sets of comparison operation circuits that output when the absolute value of each of the output currents of each phase of the voltage source inverter device is less than or equal to a threshold value, and the output current of any two of the output currents of each phase Three sets of polarity monitoring circuits that output when the output currents have different polarities, the output of any one of the comparison operation circuits for each phase, and the output of the polarity monitoring circuit for a phase different from the comparison operation circuit, 3 sets of sub AND circuits, three sets of INV circuits that invert the output values of the sub AND circuits, and any one output of the sub AND circuit, and the sub AND circuit is different. One of the three sets of main AND circuits to which the outputs of the respective INV circuits connected to the sub AND circuit are input, and the respective phase outputs of the voltage source inverter device based on the output values of the main AND circuits. Missing one phase Determines that the, characterized in that a determination calculation circuit for outputting a phase loss signal.
[0016]
A fourth invention is the phase loss detection circuit of the voltage source inverter device of the second or third invention,
The determination calculation circuit includes three sets of pulse width measurement circuits for measuring the output pulse width of each of the main AND circuits, a determination value setting unit for setting a predetermined measurement time determination value, and the output pulse widths of the respective sets. And three sets of comparison circuits for determining whether or not the measured value exceeds the measured time determination value.
[0017]
According to a fifth aspect of the present invention, in the phase loss detection circuit of the voltage source inverter device of the second or third aspect,
The determination operation circuit includes three sets of pulse width measurement circuits that measure the output pulse width of each of the main AND circuits, a determination value setting unit that sets a measurement time determination value based on an output frequency command value of the inverter device, and And three sets of comparison circuits for determining whether or not the measurement values of the respective output pulse widths exceed the measurement time determination value.
[0018]
A sixth aspect of the present invention is the phase loss detection circuit of the voltage source inverter device of the second or third aspect of the invention,
The determination operation circuit includes three sets of pulse width measurement circuits for measuring the output pulse width of each of the main AND circuits, a first determination value setting unit for setting a predetermined measurement time determination value, and the respective output pulses. Three sets of first comparison circuits that output when the measured value of the width exceeds the measurement time determination value, three sets of integration circuits that integrate the number of times output by each of the first comparison circuits, and a predetermined number of integrations A second determination value setter for setting a determination value, and three sets of second comparison circuits for determining whether or not the integrated value of each of the integration circuits exceeds the integration number determination value. .
[0019]
A seventh invention is the phase loss detection circuit of the voltage source inverter device of the second or third invention,
In the determination arithmetic circuit, three sets of pulse width measurement circuits for measuring the output pulse width of each of the main AND circuits, and a first determination value setting for setting a measurement time determination value based on the output frequency command value of the inverter device And three sets of first comparison circuits that output when the measured values of the respective output pulse widths exceed the measurement time determination value, and three sets of summing up the number of times each of the first comparison circuits outputs An integration circuit; a second determination value setter for setting an integration number determination value based on a resolution at the time of PWM calculation in the inverter device; and whether or not the integration value of each of the integration circuits exceeds the integration number determination value. 3 sets of 2nd comparison circuits to determine are provided.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a circuit configuration diagram of a phase loss detection circuit of a voltage source inverter device according to a first embodiment of the present invention. Components having the same functions as those of the conventional circuit shown in FIG. It is attached.
[0021]
That is, the phase loss detection circuit shown in FIG. 1 includes comparison operation circuits 21 to 23, polarity operation circuits 31 to 33, AND circuits 34 to 36 as main AND circuits, a determination operation circuit 50, or a determination operation circuit 60. With one of
First, the operation of the polarity arithmetic circuits 31 to 33 including a comparator element and an exclusive OR element will be described below with reference to the operation characteristic diagram shown in FIG.
[0022]
In FIG. 2, the vertical axis and the horizontal axis correspond to any two detection values of CT3 to CT5, and each polarity calculation circuit has the same polarity on both the vertical and horizontal axes, or the absolute values of both are A logic “L” level is output when near the zero point, and a logic “H” level is output when both polarities are different from each other.
[0023]
Next, the normal operation of this voltage source inverter device in the comparison operation circuits 21 to 23, the polarity operation circuits 31 to 33, and the AND circuits 34 to 36 will be described below with reference to the operation waveform diagram shown in FIG. To do.
[0024]
3, (a) shows the output current of each phase of this voltage source inverter device, and (b) to (n) are comparison operation circuits 21 to 23, polarity operation circuits 31 to 33, AND circuits 34 to 36 shows output waveforms at respective logic levels.
[0025]
That is, in the detection current of the thick solid line as shown in FIG. 3 (a), the outputs of the comparison operation circuits 21 to 23, the polarity operation circuits 31 to 33, and the AND circuits 34 to 36 are also the thick currents of FIGS. When the detected currents of CT3 to CT5 are small, for example, in the case of the sine wave broken line in FIG. 3A, the comparison operation circuits 21 to 23, the polarity operation circuits 31 to 33, and the AND circuit 34 Each output of -36 is also as shown by the broken lines in FIGS.
[0026]
As is clear from the waveform diagram of FIG. 3, when the detected currents of CT3 to CT5 are smaller than the broken line of FIG. 3 (a), for example, the period of the logic “H” level of the output of the comparison operation circuit 21 is expanded. The period of the logic “H” level of the output of the polarity arithmetic circuit 32 is narrowed, and the output of the AND circuit 34 is also narrower than the period of the logic “H” level of the comparison arithmetic circuit 21 at this time. Further, when the detected currents of CT3 to CT5 are further reduced, the logical “H” level period of the AND circuit 34 disappears due to the characteristics shown in FIG.
[0027]
That is, during the normal operation of the voltage source inverter device, the logical “H” level period of each of the AND circuits 34 to 36 is 60 ° (electrical angle) or less.
[0028]
Further, the operation in the output phase loss state of this voltage source inverter device in the comparison operation circuits 21 to 23, the polarity operation circuits 31 to 33, and the AND circuits 34 to 36 will be described below with reference to the operation waveform diagram shown in FIG. explain.
[0029]
FIG. 4 shows a waveform diagram in which the phase in which CT5 is installed is in an open phase state. Therefore, currents flow in opposite polarities in CT3 and CT4, and in the detection current of the thick solid line as shown in FIG. The outputs of the comparison operation circuits 21 to 23, the polarity operation circuits 31 to 33, and the AND circuits 34 to 36 are as shown by the thick solid lines in FIGS. 4 (b) to 4 (n), and the detected currents of CT3 to 5 are small. For example, in the case of the sinusoidal broken line in FIG. 4A, the outputs of the comparison operation circuits 21 to 23, the polarity operation circuits 31 to 33, and the AND circuits 34 to 36 are also shown in FIG. It looks like a broken line.
[0030]
As apparent from the waveform diagram of FIG. 4, when the detected current of CT3, 4 is smaller than the broken line of FIG. 4 (a), the logical “H” level period of the output of the polarity calculation circuit 31 is narrowed. The period of the logic “H” level of the output of the AND circuit 36 is also narrowed. When the detected currents of CT3 and CT are further reduced, the logical “H” level period of the AND circuit 36 disappears due to the characteristics of the polarity calculation circuit 31 shown in FIG.
[0031]
FIG. 5 is a detailed circuit configuration diagram of the determination arithmetic circuit 50, in which 51 to 53 are pulse width measuring circuits, 54 is a determination value setting unit, 55 to 57 are comparison circuits, and 58 is an OR element.
[0032]
In order to operate with the waveforms of the AND circuits 34 to 36 shown in FIG. 3 and operate with the waveforms of the AND circuits 34 to 36 shown in FIG. A value (for example, 120 °) in which the measured value exceeds 60 ° (electrical angle) is set by the determination value setting circuit 54, and this is compared as a measurement time determination value by the comparison circuits 55 to 57, respectively. When the comparison circuit operates and becomes a logic “H” level, an open phase signal is output via the OR element 58.
[0033]
FIG. 6 is a detailed circuit diagram of the determination operation circuit 60. The difference between the determination operation circuit 60 and the determination operation circuit 50 shown in FIG. 5 is that each of the comparison circuits 51 to 53 is a first comparison circuit, and the determination value is the same. The setting device 54 and the OR element 58 are deleted, and instead, a first determination value setting device 61 having the same function as the determination value setting device 54, integrating circuits 62 to 64, a second determination value setting device 65, Comparison circuits 66 to 68 as two comparison circuits and an OR element 69 are provided.
[0034]
In order to operate in the waveform of the AND circuits 34 to 36 shown in FIG. 3 and to operate in the waveform of the AND circuits 34 to 36 shown in FIG. A value (for example, 120 °) in which the measured value exceeds 60 ° (electrical angle) is set by the first determination value setting circuit 61, and this is compared as a measurement time determination value by the comparison circuits 55 to 57, respectively. The number of times that the measurement value ≧ the measurement time determination value is satisfied during one cycle of the output frequency of the voltage source inverter device is integrated by the integration circuits 62 to 64, and each integration value of the integration circuits 62 to 64 is the second determination value. The comparison circuits 66 to 68 determine whether or not the cumulative number determination value set by the setting circuit 65 (for example, five times in three cycles of the output frequency) has been exceeded, and any of the comparison circuits 66 to 68 operates. Theory When the “H” level is reached, an open phase signal is output via the OR element 69.
[0035]
FIG. 7 is a circuit configuration diagram of the phase loss detection circuit of the voltage source inverter device showing the second embodiment of the present invention, and is the same as that having the same function as the circuit of the first embodiment shown in FIG. The code | symbol is attached | subjected.
[0036]
That is, the phase loss detection circuit shown in FIG. 7 includes comparison operation circuits 21 to 23, polarity operation circuits 31 to 33, AND circuits 34 to 36 as main AND circuits, and a determination operation circuit 70.
FIG. 8 is a detailed circuit configuration diagram of the determination arithmetic circuit 70. Components having the same functions as those of the determination arithmetic circuit 50 shown in FIG.
[0037]
That is, in FIG. 8, 51 to 53 are pulse width measuring circuits, 55 to 57 are comparison circuits, 58 is an OR element, and 71 is a judgment value setting device.
[0038]
In order to operate in the waveform of the AND circuits 34 to 36 shown in FIG. 3 and to operate in the waveform of the AND circuits 34 to 36 shown in FIG. The value corresponding to the measured value of 120 ° (electrical angle) is the output frequency command value ω of this voltage source inverter device. * In conjunction with, the determination value setting circuit 71 sets the result, and the comparison time 55 is compared as a measurement time determination value. When any one of the comparison circuits operates and becomes a logic “H” level, An open phase signal is output via the OR element 58.
[0039]
That is, in the circuit configuration shown in FIG. 7, the output frequency command value ω of this voltage source inverter device * Since the phase loss detection circuit 70 operates in conjunction with this, the occurrence of the phase loss state can be detected without delay.
[0040]
FIG. 9 is a circuit configuration diagram of the phase loss detection circuit of the voltage source inverter device showing the third embodiment of the present invention, and is the same as that having the same function as the circuit of the first embodiment shown in FIG. The code | symbol is attached | subjected.
[0041]
That is, the phase loss detection circuit shown in FIG. 9 includes comparison operation circuits 21 to 23, polarity operation circuits 31 to 33, AND circuits 34 to 36 as sub AND circuits, INV circuits 37 to 39, and a main AND. AND circuits 40 to 42 as circuits, and either a determination operation circuit 50 or a determination operation circuit 60 are provided.
First, the normal operation of this voltage source inverter device in the comparison operation circuits 21 to 23, the polarity operation circuits 31 to 33, the AND circuits 34 to 36, the INV circuits 37 to 39, and the AND circuits 40 to 42 is shown in FIG. This will be described below with reference to the operation waveform diagram.
[0042]
10, (a) shows the output current of each phase of this voltage source inverter device, and (b)-(wa) show comparison operation circuits 21-23, polarity operation circuits 31-33, AND circuits 34- 36, the output waveforms of the logic levels of the AND circuits 40 to 42 are shown.
[0043]
That is, the output of each of the comparison calculation circuits 21 to 23, the polarity calculation circuits 31 to 33, the AND circuits 34 to 36, and the AND circuits 40 to 42 is also shown in FIG. When the detected currents of CT3 to CT5 are small, for example, in the case of the sine wave-like broken line in FIG. 10A, the comparison arithmetic circuits 21 to 23 and the polarity arithmetic circuit 31 To 33, AND circuits 34 to 36, and AND circuits 40 to 42 are also output as indicated by broken lines in FIGS.
[0044]
As is apparent from the waveform diagram of FIG. 10, when the detected currents of CT3 to CT5 are smaller than the broken line of FIG. 10 (A), for example, the period of the logic “H” level of the output of the comparison operation circuit 21 increases. The logical “H” level period of the output of the polarity arithmetic circuit 32 is narrowed, and the output of the AND circuit 40 is also narrower than the logical “H” level period of the comparison arithmetic circuit 21 at this time. When the detected currents of CT3 to CT5 are further reduced, the logical “H” level period of the AND circuit 40 disappears due to the characteristics shown in FIG.
[0045]
That is, during the normal operation of this voltage source inverter device, the logical “H” level period of each of the AND circuits 40 to 42 is 60 ° (electrical angle) or less.
[0046]
Further, the operation in the output phase loss state of this voltage source inverter device in the comparison operation circuits 21 to 23, the polarity operation circuits 31 to 33, the AND circuits 34 to 36, and the AND circuits 40 to 42 is shown in the operation waveform diagram of FIG. This will be described below with reference.
[0047]
FIG. 11 shows a waveform diagram in which the phase in which CT5 is installed is in an open phase state. Therefore, currents flow in opposite polarities in CT3 and CT4, and in the detection current of the thick solid line as shown in FIG. The outputs of the comparison operation circuits 21 to 23, the polarity operation circuits 31 to 33, the AND circuits 34 to 36, and the AND circuit are as shown by the thick solid lines in FIGS. When the current is small, for example, in the case of the sine wave-like broken line in FIG. 11A, the outputs of the comparison operation circuits 21 to 23, the polarity operation circuits 31 to 33, the AND circuits 34 to 36, and the AND circuits 40 to 42 are also shown. 11 (B) to (W) as shown by the broken line.
[0048]
As apparent from the waveform diagram of FIG. 11, when the detected currents of CT3 and CT4 are smaller than the broken line of FIG. 11 (a), the logical “H” level period of the output of the polarity arithmetic circuit 31 is narrowed, and the AND circuit The period of the logic “H” level of the output of 42 is also narrowed. Further, when the detected currents of CT3 and CT4 are further reduced, the logical “H” level period of the AND circuit 42 disappears due to the characteristics shown in FIG.
[0049]
10 and 11 show the frequency command value ω. * 3 is the same as the waveforms of FIGS. 3 and 4 and the main AND circuit, but the frequency command value ω * During the change of the motor (when the electric motor 6 is being accelerated or decelerated), the INV circuits 37 to 39 and the AND circuits 40 to 42 are added to prevent erroneous detection in each of the determination arithmetic circuits. ing.
[0050]
The operation of the determination value calculation circuit 50 or the determination value calculation circuit 60 shown in FIG. 9 according to the operation waveform diagrams of FIGS. 10 and 11 is the same as the determination value calculation circuit 50 or the determination value calculation according to the operation waveform diagrams of FIGS. Since the operation is the same as that of the circuit 60, the description thereof is omitted here.
[0051]
FIG. 12 is a circuit configuration diagram of the phase loss detection circuit of the voltage source inverter device showing the fourth embodiment of the present invention. The code | symbol is attached | subjected.
[0052]
That is, the phase loss detection circuit shown in FIG. 12 is different from the phase loss detection circuit shown in FIG. 9 in that a determination value calculation circuit 70 is provided instead of the determination calculation circuit 50 or the determination calculation circuit 60. .
[0053]
The operation of the judgment value arithmetic circuit 70 shown in FIG. 12 according to the operation waveform diagrams of FIGS. 10 and 11 is the same as the operation of the judgment value arithmetic circuit 70 according to the operation waveform diagrams of FIGS. Is omitted.
[0054]
FIG. 13 is a circuit configuration diagram of the phase loss detection circuit of the voltage source inverter device showing the fifth embodiment of the present invention, and is the same as that of the third embodiment shown in FIG. The code | symbol is attached | subjected.
[0055]
That is, the phase loss detection circuit shown in FIG. 13 is different from the phase loss detection circuit shown in FIG. 9 in that a determination value calculation circuit 80 is provided instead of the determination calculation circuit 50 or the determination calculation circuit 60. .
[0056]
FIG. 14 is a detailed circuit configuration diagram of the determination arithmetic circuit 80. Components having the same functions as those of the determination arithmetic circuit 60 shown in FIG.
[0057]
14, 51 to 53 are pulse width measuring circuits, 55 to 57 are comparison circuits, 62 to 64 and 66 to 68 are AND circuits, and 81 is a first function having the same function as the judgment value setting unit 71 shown in FIG. A judgment value setter 82 is a second judgment value setter.
[0058]
In order to operate in the waveform of the AND circuits 40 to 42 shown in FIG. 10 and to operate in the waveform of the AND circuits 40 to 42 shown in FIG. The value corresponding to the measured value of 120 ° (electrical angle) is the output frequency command value ω of this voltage source inverter device. * The number of times that one of the comparison circuits is operated and becomes a logic “H” level by setting the first determination value setting circuit 81 in conjunction with each other and comparing it with the comparison circuits 55 to 57 as measurement time determination values. Are integrated by the integration circuits 62 to 64, and the integrated number determination value (for example, frequency) set by the second determination value setting unit 82 based on the resolution at the time of PWM calculation in which each integrated value is sent from the PWM pulse calculator 14 The comparison circuits 66 to 68 determine whether or not the output frequency based on the command value has been exceeded 5 times in 3 cycles. When the output frequency is exceeded, an open phase signal is output via the OR element 69.
[0059]
That is, in the circuit configuration shown in FIG. 12, the output frequency command value ω of this voltage source inverter device * Further, since the phase loss detection circuit 80 operates corresponding to the resolution of the PWM calculation at this frequency command value, when the frequency output from the inverter main circuit 2 is high, the above-described PWM calculation is performed in the above-described PWM calculation. The resolution of the frequency sine wave becomes rough, the ripple component of the output current increases, and even when the output current is close to zero in the interval other than when the original output current passes through the zero point, The occurrence can be reliably detected without delay.
[0060]
【The invention's effect】
According to the present invention, the output current of the voltage source inverter device can be prevented from malfunctioning while the motor is accelerating or decelerating in the low current region and the high frequency region, thereby improving the operation reliability of the phase loss detection circuit and more quickly. The phase loss state can be detected.
[0061]
The present invention further provides a phase loss detection method and phase loss detection circuit suitable for a digitally controlled voltage source inverter device using a microcomputer.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a phase loss detection circuit of a voltage source inverter device according to a first embodiment of the present invention.
2 is an operational characteristic diagram of the polarity calculation circuit of FIG.
FIG. 3 is a waveform diagram for explaining the operation of FIG.
FIG. 4 is a waveform diagram for explaining the operation of FIG.
FIG. 5 is a partial detailed circuit configuration diagram of FIG. 1;
6 is a partial detailed circuit configuration diagram of FIG. 1. FIG.
FIG. 7 is a configuration diagram of a phase loss detection circuit of a voltage source inverter device showing a second embodiment of the invention.
8 is a partial detailed circuit configuration diagram of FIG. 7;
FIG. 9 is a configuration diagram of a phase loss detection circuit of a voltage source inverter device showing a third embodiment of the invention.
10 is a waveform diagram for explaining the operation of FIG. 9;
11 is a waveform diagram for explaining the operation of FIG. 9;
FIG. 12 is a configuration diagram of a phase loss detection circuit of a voltage source inverter device showing a fourth embodiment of the invention.
FIG. 13 is a configuration diagram of a phase loss detection circuit of a voltage source inverter device showing a fifth embodiment of the invention.
14 is a partial detailed circuit configuration diagram of FIG. 13;
FIG. 15 is a configuration diagram of a phase loss detection circuit of a voltage source inverter device showing a conventional example.
FIG. 16 is a waveform diagram for explaining the operation of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Inverter main circuit, 3-5 ... CT, 6 ... Electric motor, 11 ... Frequency setter, 12 ... F / V converter, 13 ... PWM voltage command calculator, 14 ... PWM pulse calculator, 21-23 ... comparison operation circuit, 24 ... OR circuit, 25 ... AND circuit, 26 ... determination operation circuit, 26a ... pulse width measurement circuit, 26b ... determination value setter, 26c ... comparison circuit, 31-33 ... polarity operation circuit 34-36 ... AND circuit, 37-39 ... INV circuit, 40-42 ... AND circuit, 50, 60, 70, 80 ... judgment operation circuit, 51-53 ... pulse width measurement circuit, 54 ... judgment value setting device, 55 to 57... Comparison circuit, 58... OR circuit, 61... First determination value setter, 62 to 64... Integration circuit, 65... Second determination value setter, 66 to 68 ... comparison circuit, 69. ... judgment value setter, 81 ... first size Value setter 82 ... second determination value setting unit.

Claims (7)

三相出力の電圧形インバータ装置の出力欠相状態を検出する欠相検出方法において、
前記電圧形インバータ装置の各相の出力電流それぞれの絶対値を監視し、
この絶対値を監視している相それぞれに対応した残りの相の前記出力電流が互いに異なる極性のときに、該監視している相の絶対値がしきい値以下の期間をそれぞれ計測し、
この計測値に基づいて、前記電圧形インバータ装置の各相出力の内、いずれか1相が欠相したか否かを判定することを特徴とする電圧形インバータ装置の欠相検出方法。
In the phase loss detection method for detecting the output phase loss state of the voltage source inverter device of three-phase output,
Monitor the absolute value of each output current of each phase of the voltage source inverter device,
When the output currents of the remaining phases corresponding to the phases for which the absolute value is monitored have different polarities, the periods when the absolute value of the monitored phase is equal to or less than a threshold value are measured
A method of detecting a phase failure in a voltage source inverter device, wherein, based on the measured value, it is determined whether any one of the phase output signals of the voltage source inverter device is lost.
三相出力の電圧形インバータ装置の出力欠相状態を検出する欠相検出回路において、
前記電圧形インバータ装置の各相の出力電流それぞれの絶対値がしきい値以下になったときに出力する3組の比較演算回路と、
前記各相の出力電流の内、いずれか2つの相の出力電流が互いに異なる極性のときに出力する3組の極性監視回路と、
前記各相の比較演算回路のいずれか1つの出力と、この比較演算回路とは異なった相の極性監視回路の出力とが入力される3組の主AND回路と、
前記主AND回路それぞれの出力値に基づき前記電圧形インバータ装置の各相出力の内、いずれか1相が欠相したことを判定し、欠相信号を出力する判定演算回路とを備えたことを特徴とする電圧形インバータ装置の欠相検出回路。
In the phase loss detection circuit that detects the output phase loss state of the voltage source inverter device with three-phase output,
Three sets of comparison operation circuits that output when the absolute value of each of the output currents of each phase of the voltage source inverter device falls below a threshold value;
Three sets of polarity monitoring circuits that output when the output currents of any two phases of the output currents of each phase have different polarities,
Three sets of main AND circuits to which the output of any one of the comparison operation circuits of the respective phases and the output of the polarity monitoring circuit of a phase different from the comparison operation circuit are input;
A determination operation circuit that determines that one of the phase outputs of the voltage source inverter device has lost phase based on the output value of each of the main AND circuits and outputs an open phase signal; A phase loss detection circuit for a voltage source inverter device.
三相出力の電圧形インバータ装置の出力欠相状態を検出する欠相検出回路において、
前記電圧形インバータ装置の各相の出力電流それぞれの絶対値がしきい値以下になったときに出力する3組の比較演算回路と、
前記各相の出力電流の内、いずれか2つの相の出力電流が互いに異なる極性のときに出力する3組の極性監視回路と、
前記各相の比較演算回路のいずれか1つの出力と、この比較演算回路とは異なった相の極性監視回路の出力とが入力される3組の従AND回路と、
前記従AND回路の出力値それぞれを反転する3組のINV回路と、
前記従AND回路のいずれか1つの出力と、この従AND回路とは異なった従AND回路に接続された前記INV回路それぞれの出力とが入力される3組の主AND回路と、
前記主AND回路それぞれの出力値に基づき前記電圧形インバータ装置の各相出力の内、いずれか1相が欠相したことを判定し、欠相信号を出力する判定演算回路とを備えたことを特徴とする電圧形インバータ装置の欠相検出回路。
In the phase loss detection circuit that detects the output phase loss state of the voltage source inverter device with three-phase output,
Three sets of comparison operation circuits that output when the absolute value of each of the output currents of each phase of the voltage source inverter device falls below a threshold value;
Three sets of polarity monitoring circuits that output when the output currents of any two phases of the output currents of each phase have different polarities,
Three sets of sub AND circuits to which the output of any one of the comparison operation circuits of the respective phases and the output of the polarity monitoring circuit of a phase different from the comparison operation circuit are input;
Three sets of INV circuits for inverting each of the output values of the slave AND circuit;
Three sets of main AND circuits to which any one output of the sub AND circuit and the output of each of the INV circuits connected to a sub AND circuit different from the sub AND circuit are input;
A determination operation circuit that determines that one of the phase outputs of the voltage source inverter device has lost phase based on the output value of each of the main AND circuits and outputs an open phase signal; A phase loss detection circuit for a voltage source inverter device.
請求項2又は請求項3に記載の電圧形インバータ装置の欠相検出回路において、
前記判定演算回路には、
前記主AND回路それぞれの出力パルス幅を計測する3組のパルス幅計測回路と、
予め定める計測時間判定値を設定する判定値設定器と、
前記それぞれの出力パルス幅の計測値が前記計測時間判定値を越えたか否かを判定する3組の比較回路とを備えたことを特徴とする電圧形インバータ装置の欠相検出回路。
In the phase loss detection circuit of the voltage source inverter device according to claim 2 or 3,
In the determination arithmetic circuit,
Three sets of pulse width measurement circuits for measuring the output pulse width of each of the main AND circuits;
A judgment value setter for setting a predetermined measurement time judgment value;
A phase loss detection circuit for a voltage source inverter device, comprising: three sets of comparison circuits for determining whether or not the measured values of the respective output pulse widths exceed the measurement time determination value.
請求項2又は請求項3に記載の電圧形インバータ装置の欠相検出回路において、
前記判定演算回路には、
前記主AND回路それぞれの出力パルス幅を計測する3組のパルス幅計測回路と、
前記インバータ装置の出力周波数指令値に基づく計測時間判定値を設定する判定値設定器と、
前記それぞれの出力パルス幅の計測値が前記計測時間判定値を越えたか否かを判定する3組の比較回路とを備えたことを特徴とする電圧形インバータ装置の欠相検出回路。
In the phase loss detection circuit of the voltage source inverter device according to claim 2 or 3,
In the determination arithmetic circuit,
Three sets of pulse width measurement circuits for measuring the output pulse width of each of the main AND circuits;
A determination value setter for setting a measurement time determination value based on the output frequency command value of the inverter device;
A phase loss detection circuit for a voltage source inverter device, comprising: three sets of comparison circuits for determining whether or not the measured values of the respective output pulse widths exceed the measurement time determination value.
請求項2又は請求項3に記載の電圧形インバータ装置の欠相検出回路において、
前記判定演算回路には、
前記主AND回路それぞれの出力パルス幅を計測する3組のパルス幅計測回路と、
予め定める計測時間判定値を設定する第1判定値設定器と、
前記それぞれの出力パルス幅の計測値が前記計測時間判定値を越えたときに出力する3組の第1比較回路と、
前記第1比較回路それぞれが出力した回数を積算する3組の積算回路と、
予め定める積算回数判定値を設定する第2判定値設定器と、
前記積算回路それぞれの積算値が前記積算回数判定値を越えたか否かを判定する3組の第2比較回路とを備えたことを特徴とする電圧形インバータ装置の欠相検出回路。
In the phase loss detection circuit of the voltage source inverter device according to claim 2 or 3,
In the determination arithmetic circuit,
Three sets of pulse width measurement circuits for measuring the output pulse width of each of the main AND circuits;
A first determination value setter for setting a predetermined measurement time determination value;
Three sets of first comparison circuits that output when measured values of the respective output pulse widths exceed the measured time determination value;
Three sets of integration circuits for integrating the number of times each of the first comparison circuits outputs;
A second judgment value setter for setting a predetermined cumulative number judgment value;
A phase loss detection circuit for a voltage source inverter device, comprising: three sets of second comparison circuits for determining whether or not an integrated value of each of the integration circuits exceeds the integration count determination value.
請求項2又は請求項3に記載の電圧形インバータ装置の欠相検出回路において、
前記判定演算回路には、
前記主AND回路それぞれの出力パルス幅を計測する3組のパルス幅計測回路と、
前記インバータ装置の出力周波数指令値に基づく計測時間判定値を設定する第1判定値設定器と、
前記それぞれの出力パルス幅の計測値が前記計測時間判定値を越えたときに出力する3組の第1比較回路と、
前記第1比較回路それぞれが出力した回数を積算する3組の積算回路と、
前記インバータ装置におけるPWM演算の際の分解能に基づく積算回数判定値を設定する第2判定値設定器と、
前記積算回路それぞれの積算値が前記積算回数判定値を越えたか否かを判定する3組の第2比較回路とを備えたことを特徴とする電圧形インバータ装置の欠相検出回路。
In the phase loss detection circuit of the voltage source inverter device according to claim 2 or 3,
In the determination arithmetic circuit,
Three sets of pulse width measurement circuits for measuring the output pulse width of each of the main AND circuits;
A first determination value setter for setting a measurement time determination value based on an output frequency command value of the inverter device;
Three sets of first comparison circuits that output when measured values of the respective output pulse widths exceed the measured time determination value;
Three sets of integration circuits for integrating the number of times each of the first comparison circuits outputs;
A second determination value setting unit for setting an integration number determination value based on resolution at the time of PWM calculation in the inverter device;
A phase loss detection circuit for a voltage source inverter device, comprising: three sets of second comparison circuits for determining whether or not an integrated value of each of the integration circuits exceeds the integration count determination value.
JP2000118828A 2000-04-20 2000-04-20 Phase loss detection method and circuit of voltage source inverter device. Expired - Lifetime JP3800391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000118828A JP3800391B2 (en) 2000-04-20 2000-04-20 Phase loss detection method and circuit of voltage source inverter device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000118828A JP3800391B2 (en) 2000-04-20 2000-04-20 Phase loss detection method and circuit of voltage source inverter device.

Publications (2)

Publication Number Publication Date
JP2001309669A JP2001309669A (en) 2001-11-02
JP3800391B2 true JP3800391B2 (en) 2006-07-26

Family

ID=18629898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000118828A Expired - Lifetime JP3800391B2 (en) 2000-04-20 2000-04-20 Phase loss detection method and circuit of voltage source inverter device.

Country Status (1)

Country Link
JP (1) JP3800391B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102419400A (en) * 2010-09-28 2012-04-18 深圳市英威腾电气股份有限公司 Method for detecting input phase failure of three-phase input device
CN105429107A (en) * 2015-12-01 2016-03-23 珠海格力电器股份有限公司 Phase current protection circuit for inverter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697579B2 (en) * 2004-12-07 2011-06-08 株式会社安川電機 Power converter and phase loss detection method
WO2006136507A2 (en) * 2005-06-20 2006-12-28 Siemens Vdo Automotive Ag Method and arrangement for monitoring signals
JP4775547B2 (en) * 2005-07-22 2011-09-21 株式会社安川電機 Inverter device
JP2011133295A (en) * 2009-12-24 2011-07-07 Hitachi-Ge Nuclear Energy Ltd Method for detecting phase interruption of motor for driving reactor coolant recirculation pump
JP5779530B2 (en) * 2012-03-23 2015-09-16 株式会社日立産機システム Power converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102419400A (en) * 2010-09-28 2012-04-18 深圳市英威腾电气股份有限公司 Method for detecting input phase failure of three-phase input device
CN102419400B (en) * 2010-09-28 2014-04-09 深圳市英威腾电气股份有限公司 Method for detecting input phase failure of three-phase input device
CN105429107A (en) * 2015-12-01 2016-03-23 珠海格力电器股份有限公司 Phase current protection circuit for inverter

Also Published As

Publication number Publication date
JP2001309669A (en) 2001-11-02

Similar Documents

Publication Publication Date Title
US8649130B2 (en) Motor driving apparatus having fault diagnostic function
JP3775053B2 (en) Inverter device
JP5689497B2 (en) Motor drive device having DC link unit abnormality detection function
JP2007185064A (en) Multi-level power conversion device
US20200287539A1 (en) Phase loss detection device, compressor including the same, and phase loss detection method
JP2009050059A (en) Failure detector
WO2013153596A1 (en) Ground fault detecting circuit and power conversion device using same
US9941815B2 (en) Power conversion apparatus with overcurrent simulating circuit
JP4596251B2 (en) Phase loss detection device and AC-AC direct conversion device
US20210351583A1 (en) Power supply device and abnormality detection method for ac power supply
JP3800391B2 (en) Phase loss detection method and circuit of voltage source inverter device.
JP4720334B2 (en) Offset converter for PWM converter
JP2008253008A (en) Power converter and method for deciding incorrect connection of power supply
US9369035B2 (en) Power converter and method of operation
GB2404100A (en) Model-based monitoring an operation of a converter
JP6417256B2 (en) Electric motor drive
JPH11206003A (en) Inverter device
JP2791157B2 (en) Inverter device abnormality detection device
KR101623284B1 (en) Elevator control device
JP6344558B2 (en) Fault detection device for semiconductor power converter
JP7156555B2 (en) power converter controller
JP4590859B2 (en) Power converter
JP3883054B2 (en) Converter device
JP2005045914A (en) Inverter device
JP6111656B2 (en) Phase loss detector for three-phase output wiring

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3800391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term