JP3798696B2 - Heavy duty tire - Google Patents

Heavy duty tire Download PDF

Info

Publication number
JP3798696B2
JP3798696B2 JP2002007693A JP2002007693A JP3798696B2 JP 3798696 B2 JP3798696 B2 JP 3798696B2 JP 2002007693 A JP2002007693 A JP 2002007693A JP 2002007693 A JP2002007693 A JP 2002007693A JP 3798696 B2 JP3798696 B2 JP 3798696B2
Authority
JP
Japan
Prior art keywords
tread
tire
load
tire equator
shaped land
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002007693A
Other languages
Japanese (ja)
Other versions
JP2003205707A (en
Inventor
隆広 君嶋
実 西
清人 丸岡
訓 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002007693A priority Critical patent/JP3798696B2/en
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to DE60229882T priority patent/DE60229882D1/en
Priority to PCT/JP2002/013110 priority patent/WO2003059654A1/en
Priority to CNB028240855A priority patent/CN1304211C/en
Priority to EP02793351A priority patent/EP1466759B1/en
Priority to US10/495,192 priority patent/US7543616B2/en
Priority to AU2002359981A priority patent/AU2002359981A1/en
Publication of JP2003205707A publication Critical patent/JP2003205707A/en
Application granted granted Critical
Publication of JP3798696B2 publication Critical patent/JP3798696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、接地荷重の分布を特定することにより、偏摩耗を抑制し摩耗の均一化を図った重荷重用タイヤに関する。
【0002】
【従来の技術、及び発明が解決しようとする課題】
例えば重荷重用夕イヤでは、一般に、そのトレッド輪郭形状aは、図6に略示するように、加硫金型内においては単一の円弧状に形成されている。
【0003】
しかし、このようなタイヤは、正規リムにリム組みしかつ正規内圧を充填した正規内圧状態においては、タイヤ赤道からトレッド接地半巾の0.5〜0.7倍の距離を隔てた領域Yで、トレッド面が半径方向外方に膨出する傾向がある。そのため、膨出部分bとトレッド接地端eとの間の周長差が大きくなって、トレッド接地端側のトレッド面に路面との滑りが発生し、いわゆる肩落ち摩耗等の偏摩耗が生じやすくなる。
【0004】
そこで、この肩落ち摩耗を抑えるために、例えば特開平7−164823号公報等に開示する如く、トレッド輪郭形状において、トレッド接地端側部分(所謂トレッドショルダー部)をタイヤ赤道側部分(所謂トレッドセンター部)に比して曲率半径が大きいフラットな円弧で形成し、トレッドショルダー部の接地面形状における接地長を長くすることが提案されている。
【0005】
しかし係る技術では、トレッドショルダー部におけるゴムゲージ厚さの増加を伴うため、前記曲率半径の過度の増大は、蓄熱による温度上昇によってベルト端剥離などを引き起こすなど耐久性に不利となる。このような観点から、曲率半径の増大には限界があり、従って、肩落ち摩耗などの抑制効果を充分に発揮することはできなかった。
【0006】
そこで本発明者は、接地荷重と偏摩耗との関係に着目して研究した。その結果、接地荷重と摩耗エネルギーとの相関が強く、この接地荷重の荷重分布を特定することにより、ゴムゲージ厚さの過度の上昇を招くことなく、肩落ち摩耗を含む偏摩耗を抑制でき、摩耗の均一化を図りうることを見出しえた。
【0007】
即ち本発明は、正規リムにリム組みしかつ正規内圧を充填した正規内圧状態のタイヤに正規荷重を負荷した時の正規接地状態における接地荷重の分布を特定することを基本として、ゴムゲージ厚さの過度の上昇を招くことなく肩落ち摩耗を含む偏摩耗を抑制でき、摩耗の均一化を図りうる重荷重用タイヤの提供を目的としている。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本願請求項1の発明は、トレッド部からサイドウォール部をへてビード部のビードコアに至るカーカスと、トレッド部の内方かつカーカスの外側に配されるベルト層とを具えた重荷重用タイヤであって、
前記トレッド部は、タイヤ赤道上をのびる中央の縦主溝と、その両側で周方向にのびる外の縦主溝とを設けることにより、トレッド面をタイヤ赤道側の内のリブ状陸部とその外側の外のリブ状陸部とに区分するとともに、
正規リムにリム組みしかつ正規内圧を充填した正規内圧状態のタイヤに正規荷重を負荷した時の正規接地状態において、
前記内のリブ状陸部における、タイヤ赤道側半分領域の接地荷重の平均P1cと、接地端側半分領域の接地荷重の平均P1eとの比P1e/P1cは0.8〜1.0の範囲、
かつ前記外のリブ状陸部における、タイヤ赤道側半分領域の接地荷重の平均P2cと、接地端側半分領域の接地荷重の平均P2eとの比P2e/P2cは0.6〜1.0の範囲、
しかも前記内のリブ状陸部における接地端側半分領域の接地荷重の平均P1eと、前記外のリブ状陸部におけるタイヤ赤道側半分領域の接地荷重の平均P2cとの比P2c/P1eは0.8〜1.0の範囲とするとともに、
前記ベルト層は、カーカス側の第1のベルトプライと、その外側の第2のベルトプライとを含み
かつトレッド面の輪郭線と前記第2のベルトプライとの間のトレッド厚さをTとしたとき、タイヤ赤道からトレッド接地半巾の0.5〜0.7倍の距離を隔てた領域Yにおけるトレッド厚さTyは、タイヤ赤道Cの位置でのトレッド厚さTcの0.91〜1.05倍、しかも前記第2のベルトプライの外端の位置でのトレッド厚さTbは、前記トレッド厚さTcの0.98〜1.03倍としたことを特徴としている。
【0009】
又請求項2の発明では、前記比P2e/P2cは、0.7〜1.0の範囲であることを特徴としている。
【0010】
又請求項3の発明では、前記内のリブ状陸部R1におけるタイヤ赤道側半分領域R1cの接地荷重の平均P1cと、外のリブ状陸部R2における接地端側半分領域R2eの接地荷重の平均P2eとの比P2e/P1cを0.4〜0.9の範囲としたことを特徴としている。
【0011】
又請求項4の発明では、前記ベルト層のベルトコード及びカーカスのカーカスコードが金属コードであることを特徴としている。
【0012】
なお本明細書において、前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば
・JATMAであれば、標準リムよりリム幅の狭いリムがあるサイズは、「標準リムより1ランク狭いリム幅のリム」、標準リムよりリム幅の狭いリムが設定されていないサイズについては、「標準リム」を意味し、
・TRAであれば、”Design Rim”よりリム幅の狭いリムがあるサイズは、「”Design Rim”より1ランク狭いリム幅のリム」、”Design Rim”よりリム幅の狭いリムが設定されていないサイズについては、「”Design Rim”」を意味し、・ETRTOであれば、”Measuring Rim ”よりリム幅の狭いリムがあるサイズは、「”Measuring Rim ”より1ランク狭いリム幅のリム」、”Measuring Rim ”よりリム幅の狭いリムが設定されていないサイズについては、「”Measuring Rim ”」を意味する。
【0013】
また前記「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" であるが、タイヤが乗用車用である場合には180kPaとする。また前記「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY"である。
【0014】
又本明細書において、前記「接地端」とは、前記正規リムにリム組みしかつ正規内圧を充填した正規内圧状態のタイヤに正規荷重を負荷した時に接地するトレッド接地面のタイヤ軸方向外端を意味し、この外端(接地端)とタイヤ赤道との間の距離をトレッド接地半巾という。
【0015】
【発明の実施の形態】
以下、本発明の実施の一形態を、図示例とともに説明する。図1は、本発明の重荷重用タイヤが、トラック・バス用等である場合の断面図、図2はそのトレッド部を拡大して示す断面図である。
【0016】
図1において、重荷重用タイヤ1は、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るカーカス6と、トレッド部2の内方かつ前記カーカス6の外側に配されるベルト層7とを具える。
【0017】
前記カーカス6は、カーカスコードをタイヤ周方向に対して70〜90度の角度で配列した1枚以上、本例では1枚のカーカスプライ6Aからなり、カーカスコードとして、スチール等の金属コードが使用される。
【0018】
又前記カーカスプライ6Aは、前記ビードコア5、5間に跨るプライ本体部6aの両側に、前記ビードコア5の周りを内から外に折り返して係止される折返し部6bを有する。このプライ本体部6aと折返し部6bとの間には、ビードコア5から半径方向外方にのびるビードエーペックスゴム8が配置され、ビード部4からサイドウォール部3にかけて補強している。
【0019】
前記ベルト層7は、ベルトコードとして金属コードを用いた3枚以上のベルトプライから形成される。本例では、スチールコードをタイヤ周方向に対して例えば60±15°の角度で配列してなりかつ半径方向最内に配される第1のベルトプライ7Aと、タイヤ周方向に対して例えば10〜35°の小角度で配列する第2〜4のベルトプライ7B、7C、7Dとの4枚構造の場合を例示している。
【0020】
このベルト層7では、第1のベルトプライ7Aのタイヤ軸方向のプライ巾は、第2のベルトプライ7Bのプライ巾に比して小かつ第3のベルトプライ7Cのプライ巾と略同一としており、最大巾となる第2のベルトプライ7Bのプライ巾WBをトレッド接地巾WTの0.80〜0.95倍とすることにより、トレッド部2の略全巾をタガ効果を有して補強し、かつトレッド剛性を高めている。なお最も巾狭となる第4のベルトプライ7Dは、第1〜3のベルトプライ7A〜7D及びカーカス6を外傷より保護するブレーカとして機能している。
【0021】
次に、前記タイヤ1は、トレッド部2に、タイヤ赤道C上をのびる中央の縦主溝G1と、その両側で周方向にのびる外の縦主溝G2とを具え、これによってトレッド面を、タイヤ赤道C側の内のリブ状陸部R1と、その外側の外のリブ状陸部R2とに区分している。なおリブ状陸部R1、R2は、ブロック列であってもリブであっても良い。
【0022】
又各縦主溝G1、G2は、溝巾が3mm以上の溝体であり、直線状又はジグザグ状を有して周方向に延在する。このうちタイヤ軸方向最外側となる前記外の縦主溝G2、即ちショルダー溝Gsは、本例では、その溝中心線Nが、タイヤ赤道Cからトレッド接地半巾WT/2の0.5〜0.7倍の距離を隔てた領域Yを通り、これによって、前記トレッド部2を、ショルダー溝Gsよりも内側のトレッドセンター部Jcと、外側のトレッドショルダー部Jsとに区分している。即ち、前記内のリブ状陸部R1はトレッドセンター部Jcに、又前記外のリブ状陸部R2はトレッドショルダー部Jsに配される。なおショルダー溝Gsが、ジグザグ溝の場合には、ジグザグの振幅の中心を、溝中心線Nとする。
【0023】
そして本実施形態では、このようなタイヤ1における偏摩耗を抑制し摩耗の均一化を図るため、前記タイヤ1を正規リムにリム組みしかつ正規内圧を充填した正規内圧状態のタイヤに正規荷重を負荷した時の正規接地状態において、そのときの接地荷重を以下の如く特定している。
【0024】
詳しくは、図2に示すように、前記内のリブ状陸部R1をさらに、タイヤ赤道側半分領域R1cと接地端側半分領域R1eとに仮想区分し、かつ前記外のリブ状陸部R2をさらに、タイヤ赤道側半分領域R2cと接地端側半分領域R2eとに仮想区分したとき、
▲1▼ 内のリブ状陸部R1において、前記タイヤ赤道側半分領域R1cの接地荷重の平均P1cと、接地端側半分領域R1eの接地荷重の平均P1eとの比P1e/P1cを、0.8〜1.0の範囲に設定し、
▲2▼ 外のリブ状陸部R2において、前記タイヤ赤道側半分領域R2cの接地荷重の平均P2cと、接地端側半分領域R2eの接地荷重の平均P2eとの比P2e/P2cを、0.6〜1.0の範囲に設定し、
▲3▼ 前記平均P1eとP2cとの比P2c/P1eを、0.8〜1.0の範囲に設定している。
【0025】
なお、接地荷重の前記平均P1c、P1e、P2c、P2eは、例えば、センサ−を敷きつめたシート状体上に、タイヤ1を正規荷重を負荷して接地せしめ、各センサーにかかる荷重を測定して、図3に例示する如く、荷重分布曲線を作成する。そして、この荷重分布曲線に基づき、各半分領域R1c、R1e、R2c、R2eにおける、接地荷重の平均を算出する。なお平均の算出は、前記荷重分布曲線を積分して半分領域ごとに接地荷重の総和を求め、それを各半分領域の巾で割る手法が精度の点で好ましいが、他に、半分領域ごとに接地荷重の最大値と最小値とを求め、この最大値と最小値を平均する手法も採用しうる。
【0026】
ここで本発明者は、前記接地荷重が、摩耗エネルギーと相関が強いことを見出し、特に、接地荷重の前記平均が、前記▲1▼〜▲3▼の設定範囲でタイヤ赤道C側からトレッド接地端E側に向かって一様に減少(P1c≧P1e≧P2c≧P2e)したときには、肩落ち摩耗を含む偏摩耗を抑制し、摩耗を均一化しうることを究明しえた。
【0027】
即ち、前記▲1▼の如く、比P1e/P1cを0.8〜1.0に規制することにより、内のリブ状陸部R1内における接地端側の偏摩耗を抑制できる。又前記▲2▼の如く、比P2e/P2cを0.6〜1.0に規制することにより、外のリブ状陸部R2内における接地端側の偏摩耗を抑制できる。又前記▲3▼の如く、比P2c/P1eを0.8〜1.0に規制することにより、内のリブ状陸部R1に対する外のリブ状陸部R2のタイヤ赤道側の偏摩耗を抑制できる。
【0028】
なお比P1e/P1c、比P2e/P2c、比P2c/P1eの各値が前記範囲から外れると、各半分領域R1c〜R2eの摩耗エネルギーのバランスが崩れるため、偏摩耗が発生する。特に肩落ち摩耗の抑制効果を高めるためには、前記比P2e/P2cを0.7以上にするのが好ましい。
【0029】
又トレッド全体の摩耗の均一化の観点からは、内のリブ状陸部R1におけるタイヤ赤道側半分領域R1cの接地荷重の平均P1cと、外のリブ状陸部R2における接地端側半分領域R2eの接地荷重の平均P2eとの比P2e/P1cを0.4〜0.9の範囲とすることも好ましい。
【0030】
次に、このような接地荷重の分布を得るために、本例では、図2に示すように、前記正規内圧状態におけるトレッド面の輪郭線S(以下トレッド輪郭線Sという)と前記第2のベルトプライ7Bとの間のトレッド厚さをTとしたとき、前記領域Yの各位置におけるトレッド厚さTyを、タイヤ赤道Cの位置でのトレッド厚さTcの0.91〜1.05倍の範囲とするとともに、前記第2のベルトプライの外端の位置でのトレッド厚さTbを前記トレッド厚さTcの0.98〜1.03倍に設定している。
【0031】
このようなトレッド厚さTの分布を採用することにより、前記接地面形状10を得ることが可能になった。又このことは、前記トレッド厚さTbが1.03×Tc以下と、トレッドショルダー部Jsにおけるゴムゲージ厚さの増加が抑えられるため、ゴム発熱によるベルト端剥離などを防止でき、耐久性を高く確保することも可能となる。
【0032】
又本例では、前記トレッド厚さTの分布を得るに当たり、前記第2のベルトプライ7Bを、タイヤ赤道C上に中心を有する単一円弧で形成するとともに、前記内のリブ状陸部R1におけるトレッド輪郭線Sを、単一円弧或いは複数円弧を用いた凸円弧状の輪郭線S1により、又外のリブ状陸部R2におけるトレッド輪郭線Sを、略直線状の輪郭線S2によって形成している。
【0033】
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【0034】
【実施例】
図1の構造をなすタイヤサイズ11R22.5の重荷重用タイヤを、表1の仕様に基づき試作するとともに、各試供タイヤの摩耗性能をテストし、その結果を表1に示す。又図4は、実施例1及び比較例1、2における接地荷重の荷重分布曲線を示し、本例ではこの荷重分布曲線を積分して、平均P1c〜P2eを算出している。
【0035】
(1)摩耗性能;
試供タイヤを、リム(22.5×7.50)、内圧(800kPa)にて、トラック(2−2・Dタイプ)の前輪に装着し、10、000kmの距離を走行するとともに、走行後のタイヤにおいて、
(a) 中央の縦主溝G1における摩耗量Z1と、外の縦主溝G2(ショルダー溝Gs)における摩耗量Z2とを測定し、その比Z1/Z2を比較した。値が1.0より大きいとセンター摩耗、小さいとショルダー摩耗の傾向があり、1.0に近いほど摩耗の均一性に優れている。
(b) 図5に示す如く、タイヤ赤道Cと、外の縦主溝G2の接地端側側縁G2e、G2eとの3点を通る基準円弧RRに対する、外の縦主溝G2のタイヤ赤道側側縁G2cの落ち込み量Z3を測定し比較した。値が大きいほど、軌道摩耗が大きい;
(c) 前記基準円弧RRに対する、トレッド接地端Eの落ち込み量Z4を測定し比較した。値が大きいほど、肩落ち摩耗が大きい;
【0036】
【表1】

Figure 0003798696
【0037】
【発明の効果】
叙上の如く本発明は、正規内圧状態のタイヤに正規荷重を負荷した時の正規接地状態における接地荷重の分布を特定しているため、ゴムゲージ厚さの過度の上昇を招くことなく肩落ち摩耗を含む偏摩耗を抑制でき、摩耗の均一化を図りうる。
【図面の簡単な説明】
【図1】本発明の一実施例のタイヤの断面図である。
【図2】そのトレッド部を拡大してを示す断面図である。
【図3】接地荷重の荷重分布曲線の一例を示す線図である。
【図4】表1のタイヤの接地荷重の荷重分布曲線を示す線図である。
【図5】表1における軌道摩耗及び肩落ち摩耗の評価方法を説明する線図である。
【図6】従来タイヤにおけるトレッド輪郭形状を示す線図である。
【符号の説明】
2 トレッド部
3 サイドウォール部
4 ビード部
5 ビードコア
6 カーカス
7 ベルト層
7A 第1のベルトプライ
7B 第2のベルトプライ
C タイヤ赤道
E トレッド接地端
G1 中央の縦主溝
G2 外の縦主溝
R1 中央のリブ状陸部
R2 外のリブ状陸部
R1c、R2c タイヤ赤道側半分領域
R1e、R2e 接地端側半分領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heavy duty tire that suppresses uneven wear and makes wear uniform by specifying the distribution of contact load.
[0002]
[Background Art and Problems to be Solved by the Invention]
For example, in a heavy load evening ear, generally, the tread outline shape a is formed in a single arc shape in the vulcanization mold as schematically shown in FIG.
[0003]
However, in a normal internal pressure state in which such a tire is assembled with a normal rim and filled with a normal internal pressure, in a region Y separated from the tire equator by a distance 0.5 to 0.7 times the tread ground half width, The tread surface tends to bulge outward in the radial direction. For this reason, the circumferential length difference between the bulging portion b and the tread ground contact end e becomes large, and the tread surface on the tread ground contact end side slips with the road surface, so that uneven wear such as so-called shoulder drop wear is likely to occur. Become.
[0004]
Therefore, in order to suppress this shoulder wear, for example, as disclosed in Japanese Patent Application Laid-Open No. 7-164823, etc., in the tread contour shape, the tread grounding end side portion (so-called tread shoulder portion) is replaced with the tire equator side portion (so-called tread center). It has been proposed to form a flat arc having a larger radius of curvature than the part) and to increase the contact length in the contact surface shape of the tread shoulder part.
[0005]
However, such a technique involves an increase in the thickness of the rubber gauge at the tread shoulder portion. Therefore, an excessive increase in the radius of curvature is disadvantageous in terms of durability, such as causing belt end peeling due to a temperature increase due to heat storage. From this point of view, there is a limit to the increase in the radius of curvature, and therefore, it has not been possible to sufficiently exhibit the effect of suppressing shoulder wear and the like.
[0006]
Therefore, the present inventor studied by paying attention to the relationship between the contact load and the uneven wear. As a result, there is a strong correlation between contact load and wear energy, and by specifying the load distribution of this contact load, uneven wear including shoulder drop wear can be suppressed without causing excessive increase in rubber gauge thickness. It was found that it was possible to achieve uniformization.
[0007]
That is, the present invention is based on identifying the distribution of contact load in a normal contact state when a normal load is applied to a tire in a normal internal pressure state that is assembled with a normal rim and filled with a normal internal pressure. An object of the present invention is to provide a heavy-duty tire that can suppress uneven wear including shoulder drop wear without causing excessive rise and can achieve uniform wear.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 of the present application includes a carcass extending from the tread portion through the sidewall portion to the bead core of the bead portion, and a belt layer disposed inside the tread portion and outside the carcass. A heavy duty tire with
The tread portion is provided with a central main longitudinal groove extending on the tire equator and outer longitudinal main grooves extending in the circumferential direction on both sides thereof. While dividing it into an outer rib-shaped land,
In a normal ground contact state when a normal load is applied to a tire in a normal internal pressure state that is assembled with a normal rim and filled with a normal internal pressure,
The ratio P1e / P1c between the average contact load P1c of the tire equator half region and the average contact load P1e of the contact end half region in the rib-shaped land portion is in a range of 0.8 to 1.0.
In addition, the ratio P2e / P2c between the average contact load P2c of the tire equator-side half region and the average contact load P2e of the contact end-side half region in the outer rib-shaped land portion is in the range of 0.6 to 1.0. ,
Moreover, the ratio P2c / P1e between the average P1e of the ground contact load in the half area of the ground contact edge in the inner rib-shaped land portion and the average P2c of the ground load in the tire equator-side half area of the outer rib-shaped land portion is 0. In the range of 8-1.0 ,
The belt layer includes a first belt ply on the carcass side and a second belt ply on the outside thereof .
In addition, the tread between the contour line of the tread surface and the second belt ply is T, and the tread in the region Y separated from the tire equator by 0.5 to 0.7 times the tread ground half width. The thickness Ty is 0.91 to 1.05 times the tread thickness Tc at the position of the tire equator C, and the tread thickness Tb at the outer end position of the second belt ply is the tread thickness. It is characterized by being 0.98 to 1.03 times Tc .
[0009]
The invention of claim 2 is characterized in that the ratio P2e / P2c is in the range of 0.7 to 1.0.
[0010]
In the invention of claim 3, the average contact load P1c of the tire equator-side half region R1c in the inner rib-like land portion R1 and the average contact load of the contact-end-side half region R2e of the outer rib-like land portion R2 are described. The ratio P2e / P1c with P2e is in the range of 0.4 to 0.9 .
[0011]
According to a fourth aspect of the present invention, the belt cord of the belt layer and the carcass cord of the carcass are metal cords.
[0012]
In the present specification, the “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based. For example, if it is JATMA, the rim width is larger than the standard rim. A size with a narrow rim means “a rim with a rim width that is one rank narrower than a standard rim”, and a size without a rim with a narrower rim width than a standard rim means a “standard rim”.
-For TRA, the size with a rim with a rim width narrower than “Design Rim” is set to “a rim with a rim width one rank lower than“ Design Rim ””, and a rim with a rim width narrower than “Design Rim”. If there is no size, it means “Design Rim”. ・ If it is ETRTO, a rim with a narrower rim width than “Measuring Rim” means a rim with a rim width one rank lower than “Measuring Rim”. , “Measuring Rim” means a size where a rim having a rim width smaller than that of “Measuring Rim” is not set.
[0013]
The “regular internal pressure” is the air pressure specified by the tire for each tire. The maximum air pressure in the case of JATMA, the maximum value described in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” in the case of TRA, If it is ETRTO, it is “INFLATION PRESSURE”, but if the tire is for a passenger car, it is 180 kPa. The “regular load” is the load specified by the standard for each tire. The maximum load capacity shown in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” is the maximum load capacity for JATMA and TRA for TRA. If it is ETRTO, it is "LOAD CAPACITY".
[0014]
Further, in the present specification, the “grounding end” means the outer end in the tire axial direction of the tread grounding surface that is grounded when a normal load is applied to a tire in a normal internal pressure state that is assembled to the normal rim and filled with a normal internal pressure. The distance between the outer end (grounding end) and the tire equator is called a tread grounding half width.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view when the heavy-duty tire of the present invention is for trucks and buses, and FIG. 2 is an enlarged cross-sectional view of the tread portion.
[0016]
In FIG. 1, a heavy load tire 1 includes a carcass 6 extending from a tread portion 2 through a sidewall portion 3 to a bead core 5 of a bead portion 4, and a belt disposed inside the tread portion 2 and outside the carcass 6. With layer 7.
[0017]
The carcass 6 includes at least one carcass cord in which carcass cords are arranged at an angle of 70 to 90 degrees with respect to the tire circumferential direction, in this example, one carcass ply 6A, and a metal cord such as steel is used as the carcass cord. Is done.
[0018]
The carcass ply 6A has folded portions 6b on both sides of the ply main body portion 6a straddling the bead cores 5 and 5 and folded around the bead core 5 from the inside to the outside. A bead apex rubber 8 extending radially outward from the bead core 5 is disposed between the ply main body portion 6a and the folded portion 6b, and is reinforced from the bead portion 4 to the sidewall portion 3.
[0019]
The belt layer 7 is formed of three or more belt plies using metal cords as belt cords. In this example, the steel cord is arranged at an angle of, for example, 60 ± 15 ° with respect to the tire circumferential direction, and is arranged at the innermost radial direction, for example, 10A with respect to the tire circumferential direction. The case of the four-sheet structure of the second to fourth belt plies 7B, 7C, 7D arranged at a small angle of ˜35 ° is illustrated.
[0020]
In this belt layer 7, the ply width in the tire axial direction of the first belt ply 7A is smaller than the ply width of the second belt ply 7B and is substantially the same as the ply width of the third belt ply 7C. By making the ply width WB of the second belt ply 7B, which is the maximum width, 0.80 to 0.95 times the tread grounding width WT, the entire width of the tread portion 2 is reinforced with a tagging effect. And the tread rigidity is increased. The narrowest fourth belt ply 7D functions as a breaker that protects the first to third belt plies 7A to 7D and the carcass 6 from external damage.
[0021]
Next, the tire 1 includes a tread portion 2 having a central vertical main groove G1 extending on the tire equator C and outer vertical main grooves G2 extending in the circumferential direction on both sides thereof. It is divided into a rib-like land portion R1 on the tire equator C side and a rib-like land portion R2 outside the tire equator C side. The rib-like land portions R1 and R2 may be block rows or ribs.
[0022]
Each vertical main groove G1, G2 is a groove body having a groove width of 3 mm or more, and has a linear shape or a zigzag shape and extends in the circumferential direction. Of these, the outer longitudinal main groove G2 that is the outermost side in the tire axial direction, that is, the shoulder groove Gs, in this example, the groove center line N is 0.5 to 0 of the tread ground half width WT / 2 from the tire equator C. Through the region Y separated by a distance of 7 times, the tread portion 2 is divided into a tread center portion Jc inside the shoulder groove Gs and an outer tread shoulder portion Js. That is, the inner rib-shaped land portion R1 is disposed in the tread center portion Jc, and the outer rib-shaped land portion R2 is disposed in the tread shoulder portion Js. When the shoulder groove Gs is a zigzag groove, the center of the zigzag amplitude is defined as a groove center line N.
[0023]
In the present embodiment, in order to suppress uneven wear in the tire 1 and make the wear uniform, a normal load is applied to a tire in a normal internal pressure state in which the tire 1 is assembled on a normal rim and filled with a normal internal pressure. In the normal grounding state when loaded, the grounding load at that time is specified as follows.
[0024]
Specifically, as shown in FIG. 2, the inner rib-like land portion R1 is further virtually divided into a tire equator-side half region R1c and a ground contact end-side half region R1e, and the outer rib-like land portion R2 is divided. Furthermore, when virtually dividing into the tire equator half region R2c and the ground contact end half region R2e,
(1) In the rib-like land portion R1, the ratio P1e / P1c between the average contact load P1c of the tire equator half region R1c and the average contact load P1e of the contact end half region R1e is 0.8. Set to a range of ~ 1.0,
(2) In the outer rib-shaped land R2, the ratio P2e / P2c between the average contact load P2c of the tire equator half region R2c and the average contact load P2e of the contact end half region R2e is 0.6. Set to a range of ~ 1.0,
(3) The ratio P2c / P1e between the average P1e and P2c is set in the range of 0.8 to 1.0.
[0025]
The average P1c, P1e, P2c, and P2e of the grounding load are measured by, for example, placing the tire 1 on the sheet-like body on which the sensor is spread and applying a normal load to the ground, and measuring the load applied to each sensor. As shown in FIG. 3, a load distribution curve is created. And based on this load distribution curve, the average of the contact load in each half area | region R1c, R1e, R2c, R2e is calculated. The average calculation is preferably performed by integrating the load distribution curve to obtain the sum of the ground loads for each half region and dividing it by the width of each half region in terms of accuracy. A method of obtaining the maximum value and the minimum value of the ground load and averaging the maximum value and the minimum value can also be adopted.
[0026]
Here, the present inventor has found that the contact load has a strong correlation with the wear energy, and in particular, the average of the contact loads is the tread contact from the tire equator C side within the set range of (1) to (3). It has been found that when wear is reduced uniformly toward the end E side (P1c ≧ P1e ≧ P2c ≧ P2e), uneven wear including shoulder drop wear can be suppressed and wear can be made uniform.
[0027]
That is, as described in (1) above, by restricting the ratio P1e / P1c to 0.8 to 1.0, uneven wear on the ground contact end side in the inner rib-like land portion R1 can be suppressed. Further, as described in (2) above, by restricting the ratio P2e / P2c to 0.6 to 1.0, uneven wear on the ground contact end side in the outer rib-shaped land portion R2 can be suppressed. Further, as described in (3) above, by restricting the ratio P2c / P1e to 0.8 to 1.0, uneven wear on the tire equator side of the outer rib-shaped land portion R2 with respect to the inner rib-shaped land portion R1 is suppressed. it can.
[0028]
If the values of the ratio P1e / P1c, the ratio P2e / P2c, and the ratio P2c / P1e are out of the above ranges, the wear energy balance of the half regions R1c to R2e is lost, and uneven wear occurs. In particular, in order to enhance the effect of suppressing shoulder drop wear, the ratio P2e / P2c is preferably set to 0.7 or more.
[0029]
Also, from the viewpoint of uniform wear of the entire tread, the average contact load P1c of the tire equator-side half region R1c in the inner rib-shaped land portion R1 and the contact end-side half region R2e of the outer rib-shaped land portion R2 It is also preferable that the ratio P2e / P1c with respect to the average P2e of the ground load is in the range of 0.4 to 0.9.
[0030]
Next, in order to obtain such a distribution of contact load, in this example, as shown in FIG. 2, the tread surface contour line S (hereinafter referred to as the tread contour line S) and the second tread surface in the normal internal pressure state are used. Assuming that the tread thickness between the belt ply 7B is T, the tread thickness Ty at each position in the region Y is 0.91 to 1.05 times the tread thickness Tc at the tire equator C position. The tread thickness Tb at the outer end position of the second belt ply is set to 0.98 to 1.03 times the tread thickness Tc.
[0031]
By adopting such a distribution of the tread thickness T, the ground contact surface shape 10 can be obtained. This also means that the tread thickness Tb is 1.03 × Tc or less, and the increase in the rubber gauge thickness at the tread shoulder portion Js can be suppressed. It is also possible to do.
[0032]
In this example, in order to obtain the distribution of the tread thickness T, the second belt ply 7B is formed by a single arc having a center on the tire equator C, and at the inner rib-shaped land portion R1. The tread contour S is formed by a convex arc-shaped contour S1 using a single arc or a plurality of arcs, and the tread contour S in the outer rib-shaped land portion R2 is formed by a substantially linear contour S2. Yes.
[0033]
As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.
[0034]
【Example】
A heavy-duty tire having a tire size of 11R22.5 having the structure shown in FIG. 1 was made on the basis of the specifications shown in Table 1, and the wear performance of each sample tire was tested. The results are shown in Table 1. FIG. 4 shows a load distribution curve of the ground load in Example 1 and Comparative Examples 1 and 2. In this example, the load distribution curves are integrated to calculate averages P1c to P2e.
[0035]
(1) Wear performance;
A sample tire was mounted on the front wheel of a truck (2-2, D type) with a rim (22.5 × 7.50) and internal pressure (800 kPa) and traveled a distance of 10,000 km. In the tire,
(A) The wear amount Z1 in the central vertical main groove G1 and the wear amount Z2 in the outer vertical main groove G2 (shoulder groove Gs) were measured, and the ratio Z1 / Z2 was compared. When the value is larger than 1.0, there is a tendency for center wear, and when the value is smaller, shoulder wear tends to be obtained.
(B) As shown in FIG. 5, the tire equator side of the outer vertical main groove G2 with respect to the reference arc RR passing through the three points of the tire equator C and the grounding end side edges G2e and G2e of the outer vertical main groove G2 The amount of depression Z3 of the side edge G2c was measured and compared. The higher the value, the greater the track wear;
(C) The amount of depression Z4 of the tread ground contact E with respect to the reference arc RR was measured and compared. The higher the value, the greater the shoulder wear.
[0036]
[Table 1]
Figure 0003798696
[0037]
【The invention's effect】
As described above, the present invention specifies the distribution of the contact load in the normal contact state when a normal load is applied to the tire in the normal internal pressure state, so that the shoulder fall wear without causing an excessive increase in the rubber gauge thickness. It is possible to suppress uneven wear including, and to achieve uniform wear.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a tire according to an embodiment of the present invention.
FIG. 2 is an enlarged sectional view showing the tread portion.
FIG. 3 is a diagram showing an example of a load distribution curve of a ground load.
4 is a diagram showing a load distribution curve of a ground contact load of a tire in Table 1. FIG.
FIG. 5 is a diagram for explaining a method for evaluating track wear and shoulder wear in Table 1. FIG.
FIG. 6 is a diagram showing a tread contour shape in a conventional tire.
[Explanation of symbols]
2 tread portion 3 side wall portion 4 bead portion 5 bead core 6 carcass 7 belt layer 7A first belt ply 7B second belt ply C tire equator E tread ground contact end G1 central longitudinal main groove G2 outer longitudinal main groove R1 center Rib-shaped land portion R2 Outside rib-shaped land portion R1c, R2c Tire equator-side half region R1e, R2e Grounding end-side half region

Claims (4)

トレッド部からサイドウォール部をへてビード部のビードコアに至るカーカスと、トレッド部の内方かつカーカスの外側に配されるベルト層とを具えた重荷重用タイヤであって、
前記トレッド部は、タイヤ赤道上をのびる中央の縦主溝と、その両側で周方向にのびる外の縦主溝とを設けることにより、トレッド面をタイヤ赤道側の内のリブ状陸部とその外側の外のリブ状陸部とに区分するとともに、
正規リムにリム組みしかつ正規内圧を充填した正規内圧状態のタイヤに正規荷重を負荷した時の正規接地状態において、
前記内のリブ状陸部における、タイヤ赤道側半分領域の接地荷重の平均P1cと、接地端側半分領域の接地荷重の平均P1eとの比P1e/P1cは0.8〜1.0の範囲、
かつ前記外のリブ状陸部における、タイヤ赤道側半分領域の接地荷重の平均P2cと、接地端側半分領域の接地荷重の平均P2eとの比P2e/P2cは0.6〜1.0の範囲、
しかも前記内のリブ状陸部における接地端側半分領域の接地荷重の平均P1eと、前記外のリブ状陸部におけるタイヤ赤道側半分領域の接地荷重の平均P2cとの比P2c/P1eは0.8〜1.0の範囲とするとともに、
前記ベルト層は、カーカス側の第1のベルトプライと、その外側の第2のベルトプライとを含み
かつトレッド面の輪郭線と前記第2のベルトプライとの間のトレッド厚さをTとしたとき、タイヤ赤道からトレッド接地半巾の0.5〜0.7倍の距離を隔てた領域Yにおけるトレッド厚さTyは、タイヤ赤道Cの位置でのトレッド厚さTcの0.91〜1.05倍、しかも前記第2のベルトプライの外端の位置でのトレッド厚さTbは、前記トレッド厚さTcの0.98〜1.03倍としたことを特徴とする重荷重用タイヤ。
A heavy duty tire comprising a carcass extending from a tread portion through a sidewall portion to a bead core of the bead portion, and a belt layer disposed inside the tread portion and outside the carcass,
The tread portion is provided with a central main longitudinal groove extending on the tire equator and outer longitudinal main grooves extending in the circumferential direction on both sides thereof. While dividing it into an outer rib-shaped land,
In a normal grounding state when a normal load is applied to a tire in a normal internal pressure state that is assembled with a normal rim and filled with a normal internal pressure,
The ratio P1e / P1c between the average contact load P1c of the tire equator half region and the average contact load P1e of the contact end half region in the rib-shaped land portion is in a range of 0.8 to 1.0.
In addition, the ratio P2e / P2c between the average contact load P2c of the tire equator-side half region and the average contact load P2e of the contact end-side half region in the outer rib-shaped land portion is in the range of 0.6 to 1.0. ,
Moreover, the ratio P2c / P1e between the average P1e of the ground contact load in the half area of the ground contact edge in the inner rib-shaped land portion and the average P2c of the ground load in the half area of the tire equator in the outer rib-shaped land portion is 0. In the range of 8-1.0 ,
The belt layer includes a first belt ply on the carcass side and a second belt ply on the outside thereof .
In addition, the tread between the contour line of the tread surface and the second belt ply is T, and the tread in the region Y separated from the tire equator by 0.5 to 0.7 times the tread ground half width. The thickness Ty is 0.91 to 1.05 times the tread thickness Tc at the position of the tire equator C, and the tread thickness Tb at the outer end position of the second belt ply is the tread thickness. A heavy duty tire characterized by being 0.98 to 1.03 times Tc .
前記比P2e/P2cは、0.7〜1.0の範囲であることを特徴とする請求項1記載の重荷重用タイヤ。  The heavy duty tire according to claim 1, wherein the ratio P2e / P2c is in a range of 0.7 to 1.0. 前記内のリブ状陸部R1におけるタイヤ赤道側半分領域R1cの接地荷重の平均P1cと、外のリブ状陸部R2における接地端側半分領域R2eの接地荷重の平均P2eとの比P2e/P1cを0.4〜0.9の範囲としたことを特徴とする請求項1又は2記載の重荷重用タイヤ。 The ratio P2e / P1c between the average contact load P1c of the tire equator half region R1c in the inner rib-shaped land R1 and the average contact load P2e of the contact end half region R2e in the outer rib-shaped land R2 The heavy-duty tire according to claim 1 or 2, characterized by being in a range of 0.4 to 0.9 . 前記ベルト層のベルトコード及びカーカスのカーカスコードが金属コードであることを特徴とする請求項1記載の重荷重用空気入りタイヤ。  The heavy duty pneumatic tire according to claim 1, wherein the belt cord of the belt layer and the carcass cord of the carcass are metal cords.
JP2002007693A 2002-01-16 2002-01-16 Heavy duty tire Expired - Fee Related JP3798696B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002007693A JP3798696B2 (en) 2002-01-16 2002-01-16 Heavy duty tire
PCT/JP2002/013110 WO2003059654A1 (en) 2002-01-16 2002-12-13 Heavy duty tire
CNB028240855A CN1304211C (en) 2002-01-16 2002-12-13 Heavy duty tire
EP02793351A EP1466759B1 (en) 2002-01-16 2002-12-13 Heavy duty tire
DE60229882T DE60229882D1 (en) 2002-01-16 2002-12-13 HIGH PERFORMANCE TIRES
US10/495,192 US7543616B2 (en) 2002-01-16 2002-12-13 Heavy duty tire with tread portion having three longitudinal main grooves
AU2002359981A AU2002359981A1 (en) 2002-01-16 2002-12-13 Heavy duty tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002007693A JP3798696B2 (en) 2002-01-16 2002-01-16 Heavy duty tire

Publications (2)

Publication Number Publication Date
JP2003205707A JP2003205707A (en) 2003-07-22
JP3798696B2 true JP3798696B2 (en) 2006-07-19

Family

ID=27646142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002007693A Expired - Fee Related JP3798696B2 (en) 2002-01-16 2002-01-16 Heavy duty tire

Country Status (1)

Country Link
JP (1) JP3798696B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180152A (en) * 2010-10-29 2013-06-26 米其林集团总公司 Tire tread having a plurality of wear layers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455778B2 (en) * 2010-05-13 2014-03-26 東洋ゴム工業株式会社 Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180152A (en) * 2010-10-29 2013-06-26 米其林集团总公司 Tire tread having a plurality of wear layers

Also Published As

Publication number Publication date
JP2003205707A (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US10252579B2 (en) Heavy duty tire
JP4015623B2 (en) Heavy duty tire
JP6186147B2 (en) Pneumatic tire
US7036541B2 (en) Pneumatic tire
US20090032157A1 (en) Tire for construction vehicle
EP2423005B1 (en) Pneumatic tire
JP6032240B2 (en) Pneumatic tire
EP2881266B1 (en) Pneumatic tire
US7543616B2 (en) Heavy duty tire with tread portion having three longitudinal main grooves
US20180290498A1 (en) Pneumatic tire
WO2019171554A1 (en) Pneumatic tire
JP6450224B2 (en) Pneumatic tire
JP6686816B2 (en) Pneumatic tire
JP4180910B2 (en) Heavy duty radial tire
JP2001171312A (en) Tire for heavy load
JP3808778B2 (en) Heavy duty tire
JP4255229B2 (en) Pneumatic tire
US8550135B2 (en) Pneumatic tire
JP4392147B2 (en) Heavy duty tire
JP3798696B2 (en) Heavy duty tire
US20220153066A1 (en) Pneumatic tire
US11325422B2 (en) Tyre
US11724549B2 (en) Pneumatic tire
JP4363902B2 (en) Heavy duty tire
JP4388309B2 (en) Heavy duty tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060420

R150 Certificate of patent or registration of utility model

Ref document number: 3798696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees