JP3798568B2 - Semiconductor element - Google Patents

Semiconductor element Download PDF

Info

Publication number
JP3798568B2
JP3798568B2 JP04039999A JP4039999A JP3798568B2 JP 3798568 B2 JP3798568 B2 JP 3798568B2 JP 04039999 A JP04039999 A JP 04039999A JP 4039999 A JP4039999 A JP 4039999A JP 3798568 B2 JP3798568 B2 JP 3798568B2
Authority
JP
Japan
Prior art keywords
bump
bumps
semiconductor element
internal wiring
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04039999A
Other languages
Japanese (ja)
Other versions
JP2000243771A (en
Inventor
信久 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP04039999A priority Critical patent/JP3798568B2/en
Priority to US09/504,874 priority patent/US6707159B1/en
Publication of JP2000243771A publication Critical patent/JP2000243771A/en
Priority to US10/767,439 priority patent/US7329562B2/en
Application granted granted Critical
Publication of JP3798568B2 publication Critical patent/JP3798568B2/en
Priority to US12/068,596 priority patent/US20080138976A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子に関し、特に半導体素子表面の配線に関するものである。
【0002】
【従来の技術】
半導体素子の素子形成面に電極を設けて、キャリヤテープなどの配線基板の電極との間で直接接続し、この配線基板の電極を、プリント基板やセラミック基板に接続するワイヤレスボンディング技術が通常行われている。
また、半導体素子の一層の集積化を図るため、複数の半導体素子を2層に重ね合わせる、チップオンチップ構造の半導体素子が注目されている。
【0003】
前記いずれの技術の場合も、配線基板の電極、又は半導体素子の素子形成面の電極の上に、「バンプ」という突起電極を設ける必要がある。
【0004】
【発明が解決しようとする課題】
一方、半導体素子の素子形成面には、素子の機能を実現するための多数の配線がなされており、素子設計をするときには、これらの配線が錯綜しないように設計をしなければならない。
しかし、限られた素子形成面に配線を縦横に巡らせるのには限度があり、このため素子の小型化、集積化に制約を受けるという不都合を来していた。
【0005】
そこで、本発明者は、前記バンプを素子の配線に利用するという発想に至った。本発明は、素子上の配線の自由度を増し、小型化、集積化を可能にする半導体素子を実現することを目的とする。
【0006】
【課題を解決するための手段及び発明の効果】
(1)本発明の半導体素子は、半導体素子形成領域に外部接続用バンプを配置しているとともに、素子内配線を行うために、外部接続用バンプの高さよりも低い高さの内部配線用バンプを配置し、当該内部配線用バンプを外部接続用バンプに接続しているものである(請求項1)。
【0007】
この構成によれば、素子内配線の一部を、内部配線用バンプによる配線で行えるので、素子内配線が簡単になる。また、バンプの低抵抗、高熱伝導率という特性を利用すれば、比較的大きな電流が流せるので、内部配線用バンプを接地配線や電源配線に好適に利用することができる。
また、前記内部配線用バンプの高さは、外部接続用バンプの高さよりも低いので、2つの半導体素子を貼り合わせてチップオンチップ構造とするときなどに、内部配線用バンプ同士が接触することはない。
【0008】
前記内部配線用バンプは、外部接続用バンプに接続されているので、外部接続用バンプ間の配線が行える。
(2)本発明の半導体素子は、半導体基板の半導体素子形成領域外に周囲バンプを配置しているとともに、素子内配線を行うために、周囲バンプの高さよりも低い高さの内部配線用バンプを配置し、前記内部配線用バンプを周囲バンプに接続しているものである(請求項2)。
【0009】
この構成であれば、周囲バンプを、接地と同電位に接続すれば、内部配線用バンプを簡単に接地することができる。周囲バンプを、電源と同電位に接続すれば、内部配線用バンプに簡単に電源を供給することができる。
また、前記内部配線用バンプの高さは、周囲バンプの高さよりも低いので、2つの半導体素子を貼り合わせてチップオンチップ構造とするときなどに、内部配線用バンプ同士が接触することを避けることができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。本発明の実施の形態では、半導体の種類として、Siを使用することを前提として説明するが、他にGaAs、Geなどの半導体を使用してもよい。
本実施形態に係る半導体素子11は、図1に示すように、半導体素子11の上面に、外部接続用バンプ8,9が形成されているとともに、内部配線用バンプ6が形成されている。
【0011】
この内部配線用バンプ6の高さは、外部接続用バンプ8,9の高さよりも低くなっている。このため、図2に示すように半導体素子11を、他の半導体素子12と、いわゆるフェイスツーフェイスの形で2層構造にする場合、又は半導体素子11をTAB(Tape Automated Bonding)のフィルムキャリアのインナーリード側に接続する場合に、内部配線用バンプ6同士のくっつきをなくすための、一定のクリアランスCを確保することができる。
【0012】
図3は、半導体基板1にバンプ配線を形成する工程を説明するための断面図である。
図3(a)に示すように、半導体基板1上には、SiO2膜2を介して所定の部位にAl電極3a,3b,3c,3dが形成されている。ここでは、電極3a、電極3cは外部接続用バンプを形成する電極、電極3bと電極3cは内部配線用バンプにより接続される電極とする。電極3dはバンプと接続しない電極である。電極3cは内部配線用バンプによる接続と外部接続用バンプを形成する電極を兼ねる。電極3a,3b,3c以外の部分はSiN,SiON,SiO2,PSG等のパッシベーション膜4に覆われている。
【0013】
なお、バンプと接続しない電極3dの上は、パッシベーション膜4を除去する必要がないことはもちろんである。したがって、電極3dが半導体基板1上で内部配線用バンプとクロスしても、絶縁は確保される。
この上に、Al電極とバンプとの密着性をよくするためのTiW合金層、及び給電のためのAu,Ptなどの層を積層したシード層(図示せず)をスパッタなどの方法で蒸着する。
【0014】
次に、フォトレジスト5を塗布し、内部配線用バンプのメッキのための孔あけを配線したい部位に行う(図3(b))。
そして電解メッキ法にてバンプ用金属をメッキする(図3(c))。このバンプ用金属として、Au,Pd,Pt,Ag,Ir(イリジウム)等をあげることができる。形成された内部配線用バンプを番号6で示す。なお、電解メッキ法に代えて、化学反応による還元作用を利用した金属のメッキ成膜方法である無電解メッキ法を採用してもよい。この内部配線用バンプ6の高さは、例えば1μmである。
【0015】
次に、フォトレジスト5を除去し表面のシード層を除去して、フォトレジスト7を塗布し、外部接続用バンプのための孔あけを、電極3a、電極3cの部位に行う(図3(d))。
そして、シード層(図示せず)を蒸着し、バンプ用金属をメッキし、フォトレジスト7を除去し表面のシード層を除去して、アニール処理を行うことにより、電極3a、電極3cに外部接続用バンプ8,9がそれぞれ形成された半導体素子を得る(図3(e))。この外部接続用バンプ8,9の高さは、例えば20μmである。
【0016】
図4は、本発明の他の実施形態を示す斜視図である。半導体素子11の上面に、外部接続用バンプ8,9が形成されているとともに、半導体素子11の周囲に接地用バンプ10a又は電源用バンプ10b(総称するときは「周囲バンプ10」という)が形成され、これらの間を結ぶ内部配線用バンプ6が形成されている。
【0017】
この周囲バンプ10は、半導体素子11の、抵抗の低い接地線として利用することにより、他の外部接続用バンプを簡単に接地することができる。また、抵抗の低い電源線として利用することにより、他の外部接続用バンプを簡単に電源につなぐことができる。また、図4に示したように、周囲バンプ10の途中に切れ目Dを作ることにより、一方の周囲バンプ13aを接地に、他方の周囲バンプ13bを電源につなぐことができる。
【0018】
図5は、周囲バンプ10付きの半導体素子11を、いわゆるチップオンチップの形で2層構造にする場合の断面図である。周囲バンプ10が接合することにより、完全なシールド構造ができるので、静電誘導に強い半導体素子とすることができる。また、実装時もしくは実装後、半導体素子にかかる応力を、周囲バンプ10が緩和する作用もある。
【0019】
この図5の場合、内部配線用バンプ6の高さは、外部接続用バンプ9、周囲バンプ10の高さよりも低くなっているので、半導体素子11を、他の半導体素子12と、いわゆるチップオンチップの形で2層構造にする場合などに、内部配線用バンプ6同士のくっつきをなくすための、一定のクリアランスCを確保することができる。
【0020】
図6は、バンプ配線を形成する工程を説明するための断面図である。この実施形態では、半導体基板1の素子形成領域Aの中の外部接続用バンプと、素子形成領域の外(例えばスクライブ線の領域B)に設けた周囲バンプとの間を内部配線用バンプで接続することを想定している。
図6(a)に示すように、半導体基板1の素子形成領域A上には、SiO2膜2を介して所定の部位にAl電極3が形成されている。Al電極3以外の部分はパッシベーション膜4に覆われている。また、スクライブ線領域Bは、オーミック接触又は絶縁を確保するため、所定極性の不純物13を高濃度に注入しておく。不純物の極性は、オーミック接触させる場合は、基板と同極性、絶縁させる場合は基板と異極性とする。
【0021】
この素子形成領域A及びスクライブ線領域Bに、Al電極とバンプとの密着性をよくするためのTiW合金層、給電のためのAu,Ptなどの層を積層したシード層(図示せず)をスパッタなどの方法で蒸着しておく。
次に、フォトレジスト5を塗布し、内部配線用バンプのメッキのための孔あけを素子形成領域A及びスクライブ線領域Bにまたがって行う(図6(b))。
【0022】
そして電解メッキ法又は無電解メッキ法にてバンプ用金属6を薄くメッキする(図6(c))。このバンプ用金属として、Au,Pd,Pt,Ag,Ir(イリジウム)等をあげることができる。
次に、フォトレジスト5を除去し表面のシード層も除去して、フォトレジスト7を塗布し、外部接続用バンプ9,10のための孔あけを、電極3及びスクライブ線の部位に行う(図6(d))。
【0023】
そして、シード層(図示せず)を蒸着し、バンプ用金属を厚くメッキし、フォトレジスト7を除去し表面のシード層を除去して、アニール処理を行うことにより、電極3に外部接続用バンプ9が形成され、スクライブ線の領域に周囲バンプ10が形成された半導体素子を得る(図6(e))。最後に、スクライブ線領域Bの切削部をカッター15で切り出す。
【図面の簡単な説明】
【図1】発明の実施の形態に係る半導体素子の要部斜視図である。
【図2】半導体素子11を、他の半導体素子12と、いわゆるチップオンチップの形で2層構造にした場合の断面図である。
【図3】半導体基板1にバンプ配線を形成する工程を説明するための断面図である。
【図4】発明の他の実施の形態に係る半導体素子の要部斜視図である。
【図5】半導体素子11を、他の半導体素子12と、いわゆるチップオンチップの形で2層構造にした場合の断面図である。
【図6】バンプ配線を形成する工程を説明するための断面図である。
【符号の説明】
1 半導体基板
2 SiO2
3a〜3d Al電極
4 パッシベーション膜
5,7 フォトレジスト
6 内部配線用バンプ
8,9 外部接続用バンプ
10 周囲バンプ
11,12 半導体素子
13 不純物層
15 カッター
A 素子形成領域
B スクライブ線領域
C クリアランス
D 周囲バンプ途中の切れ目
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor element, and more particularly to wiring on the surface of a semiconductor element.
[0002]
[Prior art]
Generally, a wireless bonding technique is used in which an electrode is provided on the element formation surface of a semiconductor element and is directly connected to an electrode of a wiring board such as a carrier tape, and the electrode of the wiring board is connected to a printed board or a ceramic board. ing.
Further, in order to further integrate semiconductor elements, a semiconductor element having a chip-on-chip structure in which a plurality of semiconductor elements are stacked in two layers has been attracting attention.
[0003]
In any of the above techniques, it is necessary to provide a bump electrode called “bump” on the electrode of the wiring board or the electrode on the element formation surface of the semiconductor element.
[0004]
[Problems to be solved by the invention]
On the other hand, a large number of wirings for realizing the function of the element are formed on the element forming surface of the semiconductor element, and when designing the element, the wiring must be designed so as not to be complicated.
However, there is a limit in routing the wiring vertically and horizontally on a limited element formation surface, which causes the inconvenience of being restricted by downsizing and integration of elements.
[0005]
Therefore, the present inventor has come up with the idea of using the bumps for element wiring. An object of the present invention is to realize a semiconductor element that increases the degree of freedom of wiring on the element and enables miniaturization and integration.
[0006]
[Means for Solving the Problems and Effects of the Invention]
(1) In the semiconductor element of the present invention, external connection bumps are disposed in the semiconductor element formation region, and internal wiring bumps having a height lower than the height of the external connection bumps are used for wiring in the element. And the internal wiring bumps are connected to the external connection bumps (Claim 1).
[0007]
According to this configuration, part of the intra-element wiring can be performed by wiring using the internal wiring bumps, so that the intra-element wiring is simplified. Moreover, if the characteristics of the bumps such as low resistance and high thermal conductivity are used, a relatively large current can be flowed, so that the internal wiring bumps can be suitably used for ground wiring and power supply wiring.
Also, since the height of the internal wiring bump is lower than the height of the external connection bump, when the two semiconductor elements are bonded to form a chip-on-chip structure, the internal wiring bumps are in contact with each other. There is no.
[0008]
Since the internal wiring bumps are connected to the external connection bumps, wiring between the external connection bumps can be performed.
(2) In the semiconductor element of the present invention, the peripheral bump is disposed outside the semiconductor element formation region of the semiconductor substrate, and the internal wiring bump having a height lower than the height of the peripheral bump is used for wiring in the element. And the internal wiring bumps are connected to the surrounding bumps (claim 2).
[0009]
With this configuration, the internal wiring bump can be easily grounded by connecting the peripheral bump to the same potential as the ground. If the peripheral bumps are connected to the same potential as the power supply, the power can be easily supplied to the internal wiring bumps.
In addition, since the height of the internal wiring bump is lower than the height of the surrounding bump, when the two semiconductor elements are bonded to form a chip-on-chip structure, the internal wiring bumps are prevented from contacting each other. be able to.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiment of the present invention will be described on the assumption that Si is used as the type of semiconductor, but other semiconductors such as GaAs and Ge may be used.
As shown in FIG. 1, the semiconductor element 11 according to this embodiment has external connection bumps 8 and 9 formed on the upper surface of the semiconductor element 11, and internal wiring bumps 6.
[0011]
The height of the internal wiring bump 6 is lower than the height of the external connection bumps 8 and 9. For this reason, as shown in FIG. 2, when the semiconductor element 11 has a two-layer structure in the form of a so-called face-to-face with another semiconductor element 12, or the semiconductor element 11 is a TAB (Tape Automated Bonding) film carrier. When connecting to the inner lead side, it is possible to secure a certain clearance C for eliminating the sticking between the internal wiring bumps 6.
[0012]
FIG. 3 is a cross-sectional view for explaining a process of forming bump wiring on the semiconductor substrate 1.
As shown in FIG. 3 (a), Al electrodes 3a, 3b, 3c and 3d are formed on the semiconductor substrate 1 at predetermined sites with the SiO 2 film 2 interposed therebetween. Here, the electrodes 3a and 3c are electrodes that form external connection bumps, and the electrodes 3b and 3c are electrodes that are connected by internal wiring bumps. The electrode 3d is an electrode that is not connected to the bump. The electrode 3c also serves as an electrode for forming a connection by an internal wiring bump and an external connection bump. Portions other than the electrodes 3a, 3b and 3c are covered with a passivation film 4 such as SiN, SiON, SiO 2 or PSG.
[0013]
Of course, it is not necessary to remove the passivation film 4 on the electrode 3d not connected to the bump. Therefore, even if the electrode 3d crosses the internal wiring bump on the semiconductor substrate 1, insulation is ensured.
On top of this, a TiW alloy layer for improving the adhesion between the Al electrode and the bump, and a seed layer (not shown) in which a layer of Au, Pt or the like for power feeding is laminated is deposited by a method such as sputtering. .
[0014]
Next, a photoresist 5 is applied, and a hole for plating of the internal wiring bump is formed in a portion to be wired (FIG. 3B).
Then, bump metal is plated by electrolytic plating (FIG. 3C). Examples of the bump metal include Au, Pd, Pt, Ag, Ir (iridium), and the like. The formed internal wiring bump is denoted by reference numeral 6. Instead of the electrolytic plating method, an electroless plating method that is a metal plating film formation method using a reducing action by a chemical reaction may be employed. The height of the internal wiring bump 6 is, for example, 1 μm.
[0015]
Next, the photoresist 5 is removed, the seed layer on the surface is removed, the photoresist 7 is applied, and holes for the external connection bumps are made in the portions of the electrodes 3a and 3c (FIG. 3 (d)). )).
Then, a seed layer (not shown) is deposited, a bump metal is plated, the photoresist 7 is removed, the seed layer on the surface is removed, and an annealing process is performed, so that the electrodes 3a and 3c are externally connected. A semiconductor element on which the bumps 8 and 9 are formed is obtained (FIG. 3 (e)). The height of the external connection bumps 8 and 9 is, for example, 20 μm.
[0016]
FIG. 4 is a perspective view showing another embodiment of the present invention. External connection bumps 8 and 9 are formed on the upper surface of the semiconductor element 11, and a grounding bump 10 a or a power supply bump 10 b (generally called “surrounding bump 10”) is formed around the semiconductor element 11. Then, an internal wiring bump 6 is formed to connect them.
[0017]
By using the peripheral bump 10 as a ground line having a low resistance of the semiconductor element 11, other bumps for external connection can be easily grounded. Further, by using it as a power supply line having a low resistance, other external connection bumps can be easily connected to the power supply. Also, as shown in FIG. 4, by making a cut D in the middle of the peripheral bump 10, it is possible to connect one peripheral bump 13a to the ground and the other peripheral bump 13b to the power source.
[0018]
FIG. 5 is a cross-sectional view in the case where the semiconductor element 11 with the peripheral bumps 10 has a two-layer structure in the form of a so-called chip-on-chip. By joining the peripheral bumps 10, a complete shield structure can be formed, so that a semiconductor element resistant to electrostatic induction can be obtained. Further, the peripheral bump 10 has an action of relaxing the stress applied to the semiconductor element during or after mounting.
[0019]
In the case of FIG. 5, the height of the internal wiring bump 6 is lower than the height of the external connection bump 9 and the peripheral bump 10, so that the semiconductor element 11 and other semiconductor elements 12 are so-called chip-on. In the case of a two-layer structure in the form of a chip or the like, a certain clearance C can be secured to eliminate the sticking between the internal wiring bumps 6.
[0020]
FIG. 6 is a cross-sectional view for explaining a process of forming bump wiring. In this embodiment, an internal wiring bump is connected between an external connection bump in the element formation area A of the semiconductor substrate 1 and a peripheral bump provided outside the element formation area (for example, the scribe line area B). Assumes that
As shown in FIG. 6A, an Al electrode 3 is formed at a predetermined site on the element formation region A of the semiconductor substrate 1 via the SiO 2 film 2. Portions other than the Al electrode 3 are covered with a passivation film 4. In the scribe line region B, an impurity 13 having a predetermined polarity is implanted at a high concentration in order to ensure ohmic contact or insulation. The polarity of the impurity is the same polarity as that of the substrate in the case of ohmic contact, and different from that of the substrate in the case of insulation.
[0021]
In the element formation region A and the scribe line region B, a seed layer (not shown) in which a TiW alloy layer for improving the adhesion between the Al electrode and the bump and a layer of Au, Pt or the like for feeding is laminated. Evaporation is performed by a method such as sputtering.
Next, a photoresist 5 is applied, and a hole for plating the internal wiring bump is formed across the element formation region A and the scribe line region B (FIG. 6B).
[0022]
Then, the bump metal 6 is thinly plated by an electrolytic plating method or an electroless plating method (FIG. 6C). Examples of the bump metal include Au, Pd, Pt, Ag, Ir (iridium), and the like.
Next, the photoresist 5 is removed, the seed layer on the surface is also removed, the photoresist 7 is applied, and the holes for the external connection bumps 9 and 10 are formed in the portions of the electrode 3 and the scribe line (see FIG. 6 (d)).
[0023]
Then, a seed layer (not shown) is vapor-deposited, the bump metal is thickly plated, the photoresist 7 is removed, the surface seed layer is removed, and an annealing process is performed, whereby an external connection bump is formed on the electrode 3. 9 is formed, and a semiconductor element having a peripheral bump 10 formed in the region of the scribe line is obtained (FIG. 6E). Finally, the cutting portion of the scribe line region B is cut out by the cutter 15.
[Brief description of the drawings]
FIG. 1 is a perspective view of a main part of a semiconductor device according to an embodiment of the invention.
FIG. 2 is a cross-sectional view in the case where a semiconductor element 11 has a two-layer structure in the form of a so-called chip-on-chip with another semiconductor element 12;
FIG. 3 is a cross-sectional view for explaining a step of forming a bump wiring on the semiconductor substrate 1;
FIG. 4 is a perspective view of a main part of a semiconductor device according to another embodiment of the invention.
FIG. 5 is a cross-sectional view of a semiconductor element 11 having a two-layer structure in the form of a so-called chip-on-chip with another semiconductor element 12;
FIG. 6 is a cross-sectional view for explaining a step of forming a bump wiring.
[Explanation of symbols]
1 semiconductor substrate 2 SiO 2 film 3 a to 3 d Al electrode 4 passivation film 5 and 7 the photoresist 6 internal wiring bump 8,9 external connection bumps 10 around the bumps 11, 12 semiconductor device 13 impurity layer 15 Cutter A device forming region B Scribe line area C clearance D

Claims (2)

半導体素子形成領域に外部接続用バンプを配置しているとともに、素子内配線を行うために、外部接続用バンプの高さよりも低い高さの内部配線用バンプを配置し、当該内部配線用バンプを外部接続用バンプに接続していることを特徴とする半導体素子。In addition to arranging external connection bumps in the semiconductor element formation region, in order to perform internal wiring, an internal wiring bump having a height lower than the height of the external connection bump is arranged, and the internal wiring bumps are arranged. A semiconductor element connected to an external connection bump. 半導体基板の半導体素子形成領域外に周囲バンプを配置しているとともに、素子内配線を行うために、周囲バンプの高さよりも低い高さの内部配線用バンプを配置し、前記内部配線用バンプを周囲バンプに接続していることを特徴とする半導体素子。Surrounding bumps are disposed outside the semiconductor element formation region of the semiconductor substrate, and in order to perform internal wiring, internal wiring bumps having a height lower than the height of the surrounding bumps are disposed, and the internal wiring bumps are arranged. A semiconductor element connected to a peripheral bump.
JP04039999A 1999-02-18 1999-02-18 Semiconductor element Expired - Lifetime JP3798568B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04039999A JP3798568B2 (en) 1999-02-18 1999-02-18 Semiconductor element
US09/504,874 US6707159B1 (en) 1999-02-18 2000-02-16 Semiconductor chip and production process therefor
US10/767,439 US7329562B2 (en) 1999-02-18 2004-01-30 Process of producing semiconductor chip with surface interconnection at bump
US12/068,596 US20080138976A1 (en) 1999-02-18 2008-02-08 Semiconductor chip and production process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04039999A JP3798568B2 (en) 1999-02-18 1999-02-18 Semiconductor element

Publications (2)

Publication Number Publication Date
JP2000243771A JP2000243771A (en) 2000-09-08
JP3798568B2 true JP3798568B2 (en) 2006-07-19

Family

ID=12579594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04039999A Expired - Lifetime JP3798568B2 (en) 1999-02-18 1999-02-18 Semiconductor element

Country Status (1)

Country Link
JP (1) JP3798568B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904619B2 (en) * 2000-11-29 2012-03-28 富士通セミコンダクター株式会社 Semiconductor device
US6727533B2 (en) 2000-11-29 2004-04-27 Fujitsu Limited Semiconductor apparatus having a large-size bus connection
US6646347B2 (en) * 2001-11-30 2003-11-11 Motorola, Inc. Semiconductor power device and method of formation
KR20110124993A (en) 2010-05-12 2011-11-18 삼성전자주식회사 Semiconductor chip and semiconductor package including the same and method of manufacturing the same

Also Published As

Publication number Publication date
JP2000243771A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
US6707159B1 (en) Semiconductor chip and production process therefor
US6683380B2 (en) Integrated circuit with bonding layer over active circuitry
JP2002164437A (en) Integrated power circuit with dispersed bonding and current distribution and its method
JP2007096315A (en) Solder bump structure for flip chip semiconductor device and its manufacturing method
CN110444482A (en) Semiconductor structure and method for forming semiconductor structure
JP2002319587A (en) Semiconductor device
US6404061B1 (en) Semiconductor device and semiconductor chip
JP4251164B2 (en) Semiconductor device and semiconductor chip
KR20200035197A (en) Semiconductor device and method for manufacturing the same
JP3798568B2 (en) Semiconductor element
JPH09205114A (en) Semiconductor device
JP3365743B2 (en) Semiconductor device
JP6548187B2 (en) Semiconductor device
JP4238694B2 (en) Manufacturing method of semiconductor wafer and semiconductor chip
JP4334652B2 (en) Semiconductor device
JP4495189B2 (en) Semiconductor device
JP4018848B2 (en) Semiconductor device
JP4520478B2 (en) Semiconductor device
JP4575928B2 (en) Semiconductor device
US20220238468A1 (en) Semiconductor device and method for fabricating the same
JP4520479B2 (en) Semiconductor device
JP3321427B2 (en) Semiconductor device
JP2007048887A (en) Semiconductor device and its manufacturing method
JP4215654B2 (en) Bumped semiconductor device and manufacturing method thereof
JPS61147560A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

EXPY Cancellation because of completion of term