JP3798482B2 - Method for producing fine yttrium aluminum garnet powder - Google Patents

Method for producing fine yttrium aluminum garnet powder Download PDF

Info

Publication number
JP3798482B2
JP3798482B2 JP27416496A JP27416496A JP3798482B2 JP 3798482 B2 JP3798482 B2 JP 3798482B2 JP 27416496 A JP27416496 A JP 27416496A JP 27416496 A JP27416496 A JP 27416496A JP 3798482 B2 JP3798482 B2 JP 3798482B2
Authority
JP
Japan
Prior art keywords
carbonate
ions
yttrium
precipitate
aluminum garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27416496A
Other languages
Japanese (ja)
Other versions
JPH10101333A (en
Inventor
高公 柳谷
秀喜 八木
昌文 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP27416496A priority Critical patent/JP3798482B2/en
Publication of JPH10101333A publication Critical patent/JPH10101333A/en
Application granted granted Critical
Publication of JP3798482B2 publication Critical patent/JP3798482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の利用分野】
本発明は、レーザー用発振子、放電ランプ用エンベロープ、サファイヤ代替用窓材、装飾品等に用いる、透光性YAGセラミックスの製造に有用なYAG微粉体の製造方法に関する。なおYAGの組成はY3Al5O12で、理論密度は4.55g/cm3である。
【0002】
【従来技術】
透光性YAGセラミックスの製造方法としては、これまでにホットプレスによるもの(米国特許:3767,745)や、酸化物微粉末のボールミル混合とCIP成形(静水圧成形)による直接焼結法(特開平3−218963号)が開示されている。ホットプレス法では、装置が高価なうえ量産性に乏しく、またセラミックスの重要な特徴である複雑形状品の製造が困難である。酸化物微粉末混合法では透光性の良い焼結体が得られるが、反応性を増し、かつ混合時の比重差によるイットリアとアルミナとの分離を抑制するため、イットリアの超微粉体を用いる必要がある。このためイットリアとアルミナを別々に製造する必要がある。また超微粉体を用いるため成形密度が低く、その結果、焼結時の収縮が増加し、寸法精度が要求される用途への適用が困難となる。さらに量産法として押し出し成形法や射出成形法を適用した場合、成形圧力が高くなりニーダーやスクリューの摩耗による汚染が増加し、この結果、良質のセラミックスが得られない。
【0003】
また単一相YAG微粉末の製造方法としては、これまでにゾルゲル法や水酸化物沈澱法等が報告されているが、透光性焼結体が得られる程度の焼結性は有していない。これは前駆体の沈澱粒子がゲル状の微細な粒子で、乾燥凝集の結果、仮焼時の粒子同士の焼き付きや粒成長が著しくなり、一次粒子の分散性が低下するためである。この点を改善した例として、硫酸塩の直接分解法(特開昭59−207555号)が開示されている。しかしながらこの方法では分解生成する亜硫酸ガスによる大気汚染が生じるため、亜硫酸ガスの回収が必要である。さらに硫酸根を大量に含むため、高温で硫酸根を分解せねばならず、仮焼時の一次粒子の成長が著しくなる。このため、MgOやSiO2の焼結助剤なしでは良好な透光性焼結体が得られない。
【0004】
このような問題点を均一沈澱法の一種である尿素法により解決したものとして、特開平2−92817号公報がある。これによれば、YAG組成に混合した鉱酸塩の混合物水溶液に硫酸イオンを添加し、これに尿素を加えて加熱し、尿素の加水分解によって生じるアンモニアで粒状沈澱を生成させる。得られた沈澱は粒状で、これを濾過、水洗、乾燥、焼成して分散性の良いYAG微粉体とする。しかしながらこの方法では、金属イオンの加水分解を加速するため、中和に必要な量の7倍以上の尿素を必要とする。そして発生するアンモニアは悪臭を伴い、また排水中に含まれる未分解尿素は環境を汚染する。
【0005】
【発明の課題】
本発明は、これらの欠点を改良したYAG微粉末の製造方法を提供することを目的とする。本発明は特に、尿素を用いずにYAG微粉末の原料沈澱を製造することを目的とする。
【0006】
【発明の構成】
この発明は、モル比で金属イオンの0.1〜2.0倍量の硫酸イオンが共存する、ガーネット組成のイットリウムとアルミニウムとの鉱酸塩の混合物水溶液からなる母液に、炭酸塩の水溶液を、母液のpHが3.5〜7.5となるまで添加して、イットリウムイオンとアルミニウムイオンとの水不溶性塩を晶出させ、この後に水不溶性塩を熟成し、熟成後にアルカリ性物質を反応液に添加し、pHを7 . 5〜10に調整し、次いで水不溶性塩を濾過、洗浄した後、焼成してイットリウムアルミニウムガーネット微粉体とすることを特徴とする。
【0007】
ここに炭酸塩としては、炭酸Naや炭酸水素Na等の炭酸イオンのアルカリ塩や、炭酸アンモニウムや炭酸水素アンモニウム、炭酸カルバミン酸水素アンモニウム等の炭酸イオンのアンモニウム塩等を用い、特に沈澱中にアルカリ金属イオンを導入しない炭酸イオンのアンモニウム塩が好ましい。当然のことながら用いる炭酸塩は水溶性塩に限られる。また洗浄には特に限定するものではないが水を用い、焼成前に乾燥することが好ましい。
【0008】
【発明の作用と効果】
本発明の特徴は、イットリウムとアルミニウムの鉱酸塩、例えば塩化物塩や硝酸塩,硫酸塩の混合物水溶液から水不溶性塩を生成する際、モル比で金属イオンの0.1〜2.0倍量の硫酸イオンを共存させ、沈澱剤として炭酸塩水溶液をpHが3.5〜7.5となるまで添加して沈澱を生成させ、該沈澱を熟成させることによって得られる粒子状沈澱を原料とし、これを洗浄・焼成してYAG酸化物粉体とすることにある。ここで硫酸イオン濃度と金属イオン濃度との比が不適切な場合、一次粒子の成長が不十分で二次粒子と一次粒子の粒径の比が増加する、もしくは一次粒子の粒成長が過剰で焼結性が低下することになる。また炭酸塩の添加終了時のpHが不適切な場合、一次粒子の成長が不十分で二次粒子と一次粒子の粒径の比が増加する。これに対してこの発明では、凝集が少なく、仮焼後に一次粒子で平均粒径が例えば0.02〜0.4μmの分散性に優れたYAG微粉体が製造できる。
【0009】
この粒子状沈澱を尿素法によって得られる粒子状沈澱と比較すると、濾過、水洗性は遜色はなく、アンモニアや尿素による中和ではなく炭酸イオンを用いて沈澱させるため、沈澱は不定形の水酸化物ではなく炭酸塩ないしは塩基性炭酸塩であり、不純物の混入が少ない。このため二次粒子の要因となる陰イオンの除去が容易である。さらに尿素の分解ではなく炭酸イオンの添加による沈澱を用いるため、低温で沈澱を生成できる。尿素添加と異なり、沈澱剤も必要最小限で済み、発生するアンモニアによる悪臭を最小限とし、かつ排水中の残存尿素による環境問題も生じない。
【0010】
この発明では例えば、イットリウムとアルミニウムの塩酸や硝酸、硫酸等の無機酸塩、即ち鉱酸塩を、別々に水に溶解する。次いで、例えば合計金属イオン濃度が0.005〜1.0mol/Lとなるように、2つの水溶液をYAG組成に合わせて混合する。これに金属イオンに対するモル比で0.1〜2.0倍量となるように、硫酸アンモニウム、硫酸ナトリウム、硫酸等の形態で、硫酸イオンを添加する。これとは別に用意した、例えば0.05〜2.5mol/Lの炭酸塩の水溶液を、例えば室温で攪拌下にpHが3.5〜7.5となるまで例えば滴下して添加する。炭酸塩水溶液の添加は徐々に行えば良く、必ずしも滴下には限らない。pHをこの範囲とするのは、pH3.5以下では炭酸イオン濃度が低いため充分な沈澱が生成せず、またpH7.5以上では沈澱反応が急激すぎて充分な熟成効果が得られず、粒子状沈澱が得られないからである。そしてpHが低すぎる場合も高すぎる場合も、仮焼後の二次粒子径に対して一次粒子径が小さすぎ、透明なYAG焼結体が得られない。
【0011】
滴下終了後、30分〜100時間攪拌下に熟成(養生)する。熟成により沈澱粒子が成長して濾過や水洗が容易になり、同時に沈澱時に取り込まれた塩素イオンや硝酸イオン,硫酸イオン等の不純物が母液中に戻り、純度が向上する。熟成温度は特に限定しないが、高すぎると急速に熟成が進み、得られる沈澱粒子の粒度分布が広くなる傾向があるため、5℃〜60℃が好ましい。熟成終了後、アンモニア水やヘキサミン等の非金属系のアルカリを添加し、pH7 . 5〜10に調整して金属イオンを完全に沈澱させる。この結果、YAG組成に合致した沈澱が得られる。次に沈澱を濾過し、水洗等により洗浄して、二次粒子の成長要因となる陰イオンを除去する。得られた沈澱を、例えば乾燥後に、650℃以上の温度で仮焼してYAG微粉末を得る。かくして得られたYAG微粉末は凝集が少なく分散性が高く、一次粒子の平均粒径は例えば0.02〜0.4μmとなる。
【0012】
この発明ではアンモニアや尿素を基本的に使用しないので、環境への影響が小さい。また沈澱を室温付近で形成でき、炭酸塩ないし塩基性炭酸塩を沈澱させるので沈澱中への不純物の混入が少ない。そしてこの発明では、金属イオン濃度と硫酸イオン濃度との比を最適化し、沈澱形成時のpHを最適化することにより、2次粒子の成長が少なく、一次粒子の粒径が適切な範囲にある、イットリウムアルミニウムガーネット微粉末を製造できる。このような微粉末は焼結性に優れ、MgOやSiO2等の焼結助剤無しで透明なセラミックへ焼結できる。
【0013】
【実施例1】
1mol/LのYCl3水溶液900mlと1mol/LのAlCl3水溶液1500mlを5Lビーカーにとり、36N濃硫酸を100ml(金属イオンに対してモル比で0.75倍量)添加し、母液とした。室温に保った母液に2.5Mの炭酸水素アンモニウムをpH4.8になるまで滴下した。この過程で母液中のイットリウムイオンやアルミニウムイオンはほぼ全量沈澱し、この後25℃で12時間養生した。養生後、アンモニア水を滴下してpHを7.5とし、母液中に残存するイットリウムイオンやアルミニウムイオンを完全に沈澱させ、化学量論的組成の沈澱とした。養生後の沈澱は粒状で濾過や水洗が可能であるが、結晶学的にはアモルファスであった。この後、沈澱の濾過と水洗を6回繰り返し、沈澱中の不純物,特に遊離の陰イオンを除去した。遊離の陰イオンが二次粒子の成長を促進し、YAG微粉末の焼結性を阻害することは、発明者らの別の実験で確認済みである。
【0014】
このアモルファス沈澱を空気中120℃で乾燥後、空気中1200℃で1時間仮焼することにより、分散性に優れた一次粒子の平均粒径0.1μm、2次粒子の平均粒径0.18μmのYAG微粒子が得られた。仮焼雰囲気は任意である。得られたYAG微粒子2gを、20φ金型を用いて100kg/cm2の圧力で一次成形した後、2Ton/cm2の圧力でCIP成形し、1650℃にて3時間真空焼結した。得られた焼結体の密度をアルキメデス法で測定すると4.55g/cm3で、理論密度に達していた。焼結体の両面を3mm厚に鏡面研磨した後、波長600nmで光直線透過率を測定すると61%であった。
【0015】
【実施例2〜22】
実施例1と同様の操作で、金属イオン濃度、硫酸イオン濃度、養生前のpH(滴下終了時のpH)、養生時間と養生温度、仮焼温度を種々変更した。なおいずれも養生後の沈澱を6回濾過と水洗し、沈澱中の遊離陰イオンを除去した。沈澱の形態は実施例の範囲で皆同等であった。また炭酸水素アンモニウムの滴下終了時のpH(養生前のpH)が7.5以下のものでは、養生後の沈澱にアンモニア水を滴下してpHを7.5に揃えた。なお揃えるpHは7.5〜10が好ましい。乾燥や1650℃での焼結の条件は皆同じとした。なお発明者はこれ以外に、市販の炭酸アンモニウム(炭酸カルバミン酸水素アンモニウム)による沈澱を試みたが結果は同等であった。
【0016】
得られたYAG微粉末の結果を、表1,表2に示す。表1,表2から、本発明では、分散性が良好で一次粒子の平均粒径が0.02〜0.4μmのYAG微粉末が得られることが分かる。このYAG微粉末を原料として製造した焼結体は、良好な透過率を示した(表2)。
【0017】
比較例に付いて検討すると、硫酸イオン濃度が低すぎる比較例1では、一次粒子径(この明細書では粒子径は平均粒径を意味する)が小さく、かつ二次粒子径と一次粒子径との比が大きい。硫酸イオンが過剰な比較例4,5では、一次粒子径の成長が過剰で焼結性に乏しい。養生前のpHが低すぎる比較例2と養生前のpHが高すぎる比較例3は、いずれも一次粒子径が小さすぎるため焼結性に乏しい。
【0018】
【表1】

Figure 0003798482
Figure 0003798482
* 金属イオン濃度はイットリウムイオンとアルミニウムイオンとの合計量を、硫酸イオンと金属イオンとの比は両者のモル比を、
養生前pHは炭酸水素アンモニウムの滴下終了時のpHを示し、滴下時の母液温度は室温とした.
【0019】
【表2】
Figure 0003798482
Figure 0003798482
[0001]
[Field of the Invention]
The present invention relates to a method for producing fine YAG powder useful for producing translucent YAG ceramics used in laser oscillators, discharge lamp envelopes, sapphire replacement window materials, decorative articles, and the like. Note YAG composition in Y3 Al5 O12, the theoretical density is 4.55 g / cm 3.
[0002]
[Prior art]
As a manufacturing method of translucent YAG ceramics, a hot sintering method (US Pat. No .: 3767, 745) or a direct sintering method using ball mill mixing of oxide fine powder and CIP molding (hydrostatic pressure molding) has been used. No. 3-218963) is disclosed. In the hot press method, an apparatus is expensive and mass productivity is poor, and it is difficult to manufacture a complex shaped product which is an important feature of ceramics. The oxide fine powder mixing method provides a sintered body with good translucency, but in order to increase the reactivity and suppress the separation of yttria and alumina due to the difference in specific gravity during mixing, an ultra fine yttria powder is used. It is necessary to use it. For this reason, it is necessary to manufacture yttria and alumina separately. In addition, since the ultrafine powder is used, the molding density is low, and as a result, shrinkage during sintering increases, making it difficult to apply to applications that require dimensional accuracy. Furthermore, when an extrusion molding method or an injection molding method is applied as a mass production method, the molding pressure increases and contamination due to wear of the kneader or screw increases, and as a result, high-quality ceramics cannot be obtained.
[0003]
In addition, as a method for producing a single-phase YAG fine powder, a sol-gel method, a hydroxide precipitation method, and the like have been reported so far, but have a sinterability enough to obtain a translucent sintered body. Absent. This is because the precipitated particles of the precursor are fine gel-like particles, and as a result of drying and agglomeration, seizure and grain growth between the particles during calcination become remarkable, and the dispersibility of the primary particles decreases. As an example of improving this point, a direct decomposition method of sulfate (Japanese Patent Laid-Open No. 59-207555) is disclosed. However, since this method causes air pollution due to the sulfurous acid gas generated by decomposition, it is necessary to recover the sulfurous acid gas. Furthermore, since it contains a large amount of sulfate radicals, the sulfate radicals must be decomposed at a high temperature, and the growth of primary particles during calcination becomes remarkable. For this reason, a good translucent sintered body cannot be obtained without a sintering aid such as MgO or SiO2.
[0004]
Japanese Patent Laid-Open No. 2-92817 discloses a solution to this problem by the urea method, which is a kind of uniform precipitation method. According to this, sulfate ions are added to a mixture aqueous solution of mineral acid salt mixed in the YAG composition, urea is added to this and heated, and a granular precipitate is generated with ammonia generated by hydrolysis of urea. The resulting precipitate is granular and is filtered, washed with water, dried and fired to obtain fine YAG powder with good dispersibility. However, this method requires more than 7 times the amount of urea required for neutralization in order to accelerate the hydrolysis of metal ions. The generated ammonia has a bad odor, and undecomposed urea contained in the wastewater pollutes the environment.
[0005]
[Problems of the Invention]
An object of the present invention is to provide a method for producing a YAG fine powder in which these drawbacks are improved. The present invention is particularly aimed at producing a raw material precipitate of YAG fine powder without using urea.
[0006]
[Structure of the invention]
In the present invention, an aqueous carbonate solution is added to a mother liquor consisting of an aqueous mixture of mineral salts of yttrium and aluminum having a garnet composition in which 0.1 to 2.0 times the amount of sulfate ions coexist in a molar ratio. The solution is added until the pH of the mother liquor reaches 3.5 to 7.5 to crystallize a water-insoluble salt of yttrium ions and aluminum ions, and then the water-insoluble salt is aged, and after aging, the alkaline substance is added to the reaction solution. was added to, pH was adjusted to 7. 5 to 10 and then filtered off insoluble salts, washed, and firing to a yttrium aluminum garnet fine powder.
[0007]
The carbonate used here is an alkali salt of carbonate ion such as Na carbonate or Na hydrogen carbonate, or an ammonium salt of carbonate ion such as ammonium carbonate, ammonium hydrogen carbonate or ammonium hydrogen carbonate carbamate. Ammonium salts of carbonate ions that do not introduce metal ions are preferred. As a matter of course, the carbonate used is limited to a water-soluble salt. Moreover, although it does not specifically limit for washing | cleaning, It is preferable to use water and to dry before baking.
[0008]
[Operation and effect of the invention]
A feature of the present invention is that when a water-insoluble salt is produced from a mixed aqueous solution of yttrium and aluminum, for example, a chloride salt, nitrate salt, or sulfate salt, the metal ion is 0.1 to 2.0 times the molar ratio. In the presence of the sulfate ions, a carbonate aqueous solution as a precipitating agent is added until the pH is 3.5 to 7.5 to form a precipitate, and the particulate precipitate obtained by aging the precipitate is used as a raw material, This is to be washed and fired to obtain YAG oxide powder. If the ratio between the sulfate ion concentration and the metal ion concentration is inappropriate, the primary particle growth is insufficient and the secondary particle to primary particle size ratio increases, or the primary particle growth is excessive. Sinterability will fall. In addition, when the pH at the end of addition of carbonate is inappropriate, the growth of primary particles is insufficient and the ratio of the particle size of secondary particles to primary particles increases. On the other hand, according to the present invention, it is possible to produce a YAG fine powder which is less agglomerated and excellent in dispersibility having a primary particle size of, for example, 0.02 to 0.4 μm after calcination.
[0009]
When this particulate precipitate is compared with the particulate precipitate obtained by the urea method, the filtration and washing properties are not inferior, and the precipitate is not neutralized with ammonia or urea, but is precipitated using carbonate ions. It is not a product but carbonate or basic carbonate, and there is little contamination with impurities. For this reason, it is easy to remove anions that cause secondary particles. Furthermore, since precipitation by addition of carbonate ions is used instead of decomposition of urea, precipitation can be generated at a low temperature. Unlike the addition of urea, the precipitating agent is also minimally required, the malodor caused by the generated ammonia is minimized, and the environmental problem due to residual urea in the wastewater does not occur.
[0010]
In this invention, for example, inorganic acid salts such as hydrochloric acid, nitric acid and sulfuric acid of yttrium and aluminum, that is, mineral acid salts, are dissolved separately in water. Next, the two aqueous solutions are mixed in accordance with the YAG composition so that the total metal ion concentration becomes 0.005 to 1.0 mol / L, for example. To this, sulfate ions are added in the form of ammonium sulfate, sodium sulfate, sulfuric acid or the like so that the molar ratio with respect to metal ions is 0.1 to 2.0 times. Separately, for example, an aqueous solution of 0.05 to 2.5 mol / L carbonate, for example, is added dropwise, for example, with stirring at room temperature until the pH is 3.5 to 7.5. The addition of the carbonate aqueous solution may be performed gradually, and is not necessarily dripping. If the pH is within this range, the precipitation of the carbonate ion concentration is low at pH 3.5 or lower, so that sufficient precipitation does not occur, and at pH 7.5 or higher, the precipitation reaction is too rapid to obtain a sufficient ripening effect. This is because no precipitate is obtained. When the pH is too low or too high, the primary particle size is too small with respect to the secondary particle size after calcination, and a transparent YAG sintered body cannot be obtained.
[0011]
After completion of dropping, the mixture is aged (cured) with stirring for 30 minutes to 100 hours. Precipitation particles grow by aging, and filtration and washing are facilitated. At the same time, impurities such as chloride ions, nitrate ions, and sulfate ions taken in during precipitation return to the mother liquor to improve purity. The aging temperature is not particularly limited, but if it is too high, aging proceeds rapidly, and the particle size distribution of the resulting precipitated particles tends to be wide, and 5 ° C to 60 ° C is preferable. After the ripening, adding an alkali non-metallic aqueous ammonia and hexamine or the like, pH 7. Adjusted to 5-10 to completely precipitate the metal ions. As a result, a precipitate conforming to the YAG composition is obtained. Next, the precipitate is filtered and washed by washing with water or the like to remove anions that cause the growth of secondary particles. The obtained precipitate is, for example, dried and calcined at a temperature of 650 ° C. or higher to obtain a YAG fine powder. The YAG fine powder thus obtained has little aggregation and high dispersibility, and the average primary particle diameter is, for example, 0.02 to 0.4 μm.
[0012]
In the present invention, ammonia and urea are basically not used, so that the influence on the environment is small. In addition, a precipitate can be formed at around room temperature, and carbonate or basic carbonate is precipitated, so that impurities are hardly mixed into the precipitate. In this invention, by optimizing the ratio between the metal ion concentration and the sulfate ion concentration and optimizing the pH at the time of precipitation formation, the secondary particle growth is small and the primary particle size is in an appropriate range. Yttrium aluminum garnet fine powder can be produced. Such a fine powder is excellent in sinterability and can be sintered into a transparent ceramic without a sintering aid such as MgO or SiO2.
[0013]
[Example 1]
900 ml of 1 mol / L YCl3 aqueous solution and 1500 ml of 1 mol / L AlCl3 aqueous solution were placed in a 5 L beaker, and 100 ml of 36N concentrated sulfuric acid (0.75 times the molar ratio with respect to metal ions) was added to obtain a mother liquor. To the mother liquor kept at room temperature, 2.5M ammonium bicarbonate was added dropwise until pH 4.8. During this process, almost all yttrium ions and aluminum ions in the mother liquor were precipitated, and then cured at 25 ° C. for 12 hours. After curing, aqueous ammonia was added dropwise to adjust the pH to 7.5, and yttrium ions and aluminum ions remaining in the mother liquor were completely precipitated to obtain a stoichiometric composition. The precipitate after curing was granular and could be filtered or washed with water, but crystallographically amorphous. Thereafter, filtration and washing of the precipitate were repeated six times to remove impurities in the precipitate, particularly free anions. It has been confirmed by another experiment by the inventors that free anions promote the growth of secondary particles and inhibit the sinterability of YAG fine powder.
[0014]
This amorphous precipitate is dried in air at 120 ° C. and calcined in air at 1200 ° C. for 1 hour, so that the average particle size of primary particles excellent in dispersibility is 0.1 μm, and the average particle size of secondary particles is 0.18 μm. YAG fine particles were obtained. The calcination atmosphere is arbitrary. 2 g of the obtained YAG fine particles were subjected to primary molding at a pressure of 100 kg / cm 2 using a 20φ mold, CIP molding at a pressure of 2 Ton / cm 2 , and vacuum sintering at 1650 ° C. for 3 hours. When the density of the obtained sintered body was measured by the Archimedes method, it was 4.55 g / cm 3 and reached the theoretical density. After mirror-polishing both surfaces of the sintered body to a thickness of 3 mm, the optical linear transmittance was measured at a wavelength of 600 nm to be 61%.
[0015]
Examples 2 to 22
In the same manner as in Example 1, the metal ion concentration, sulfate ion concentration, pH before curing (pH at the end of dropping), curing time and curing temperature, and calcining temperature were variously changed. In all cases, the precipitate after curing was filtered and washed with water six times to remove free anions in the precipitate. The form of precipitation was all equivalent within the scope of the examples. Moreover, when pH at the time of completion | finish of dripping of ammonium hydrogencarbonate (pH before curing) is 7.5 or less, aqueous ammonia was dropped into the precipitate after curing to adjust the pH to 7.5. The pH to be aligned is preferably 7.5 to 10. The conditions for drying and sintering at 1650 ° C. were all the same. In addition to the above, the inventors tried precipitation with commercially available ammonium carbonate (ammonium hydrogen carbonate carbamate), but the results were equivalent.
[0016]
The results of the obtained YAG fine powder are shown in Tables 1 and 2. From Tables 1 and 2, it can be seen that in the present invention, YAG fine powder having good dispersibility and an average primary particle size of 0.02-0.4 μm can be obtained. The sintered body produced using this YAG fine powder as a raw material showed good transmittance (Table 2).
[0017]
When the comparative example is examined, in Comparative Example 1 in which the sulfate ion concentration is too low, the primary particle size (in this specification, the particle size means the average particle size) is small, and the secondary particle size and the primary particle size are The ratio is large. In Comparative Examples 4 and 5 in which sulfate ions are excessive, the primary particle diameter is excessively grown and the sinterability is poor. Comparative Example 2 in which the pH before curing is too low and Comparative Example 3 in which the pH before curing is too high are both poor in sinterability because the primary particle diameter is too small.
[0018]
[Table 1]
Figure 0003798482
Figure 0003798482
* Metal ion concentration is the total amount of yttrium ions and aluminum ions, and the ratio of sulfate ions to metal ions is the molar ratio of both.
The pre-curing pH was the pH at the end of the ammonium hydrogen carbonate dropping, and the mother liquor temperature at the dropping was room temperature.
[0019]
[Table 2]
Figure 0003798482
Figure 0003798482

Claims (2)

モル比で金属イオンの0.1〜2.0倍量の硫酸イオンが共存する、ガーネット組成のイットリウムとアルミニウムとの鉱酸塩の混合物水溶液からなる母液に、
炭酸塩の水溶液を、母液のpHが3.5〜7.5となるまで添加して、イットリウムイオンとアルミニウムイオンとの水不溶性塩を晶出させ、
この後に水不溶性塩を熟成し、熟成後にアルカリ性物質を反応液に添加し、pHを7 . 5〜10に調整し、次いで水不溶性塩を濾過、洗浄した後、焼成してイットリウムアルミニウムガーネット微粉体とすることを特徴とするイットリウムアルミニウムガーネット微粉体の製造方法。
To a mother liquor composed of an aqueous solution of a mixture of yttrium and aluminum salts of a garnet composition in which 0.1 to 2.0 times the amount of sulfate ions of metal ions coexist in a molar ratio,
An aqueous carbonate solution is added until the pH of the mother liquor is 3.5 to 7.5 to crystallize a water-insoluble salt of yttrium ions and aluminum ions,
The water-insoluble salt and aged after this, the alkaline substance is added to the reaction solution after aging, pH was adjusted to 7.5 to 10, then filtered water insoluble salt, washed and calcined to yttrium aluminum garnet fine powder A method for producing a fine yttrium aluminum garnet powder.
前記炭酸塩を炭酸水素アンモニウムもしくは炭酸アンモニウムとしたことを特徴とする、請求項1のイットリウムアルミニウムガーネット微粉体の製造方法。 The method for producing fine yttrium aluminum garnet powder according to claim 1, wherein the carbonate is ammonium hydrogen carbonate or ammonium carbonate.
JP27416496A 1996-09-24 1996-09-24 Method for producing fine yttrium aluminum garnet powder Expired - Lifetime JP3798482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27416496A JP3798482B2 (en) 1996-09-24 1996-09-24 Method for producing fine yttrium aluminum garnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27416496A JP3798482B2 (en) 1996-09-24 1996-09-24 Method for producing fine yttrium aluminum garnet powder

Publications (2)

Publication Number Publication Date
JPH10101333A JPH10101333A (en) 1998-04-21
JP3798482B2 true JP3798482B2 (en) 2006-07-19

Family

ID=17537934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27416496A Expired - Lifetime JP3798482B2 (en) 1996-09-24 1996-09-24 Method for producing fine yttrium aluminum garnet powder

Country Status (1)

Country Link
JP (1) JP3798482B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955142B2 (en) * 1999-09-20 2012-06-20 信越化学工業株式会社 Rare earth / aluminum / garnet fine powder and sintered body using the powder
JP4688307B2 (en) * 2000-07-11 2011-05-25 コバレントマテリアル株式会社 Plasma-resistant member for semiconductor manufacturing equipment
JP4605729B2 (en) * 2001-01-19 2011-01-05 信越石英株式会社 Translucent ceramic body and method for producing the same
KR100449851B1 (en) * 2001-07-19 2004-09-22 한국전자통신연구원 Short antenna element with broadband and antenna using the same
JP2006282447A (en) 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Translucent material and method for manufacturing the same

Also Published As

Publication number Publication date
JPH10101333A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
CN109678506B (en) Preparation method of erbium oxide transparent ceramic
CN114988886B (en) Preparation method of high-purity alpha-alumina powder capable of being sintered at low temperature
JP3798482B2 (en) Method for producing fine yttrium aluminum garnet powder
RU2689721C1 (en) Method of producing high-stoichiometric nano-sized materials based on yttrium-aluminum garnet with rare-earth element oxides
JP3692188B2 (en) Method for producing fine yttrium aluminum garnet powder
JPH07172826A (en) Cerium carbonate and cerium oxide each having novel shape and their production
JP3906352B2 (en) Method for producing YAG transparent sintered body
JPH0323213A (en) Production of powder of oxide of rare earth element
JPH05254830A (en) Finely divided particles of rare earth oxides excellent in dispersibility and production process thereof
JP5729926B2 (en) Gallium oxide powder
JP3801275B2 (en) Method for producing yttrium aluminum garnet raw material powder
JPH0346407B2 (en)
JPH10114519A (en) Production of yttrium aluminum garnet powder
JP2843909B2 (en) Method for producing yttrium oxide transparent sintered body
JPH06305726A (en) Production of powdery oxide of rare earth element
JP3877922B2 (en) Method for producing rare earth compound
RU2721548C1 (en) Complex method of producing low-agglomerated high-stoichiometric nano-sized precursor powders based on yttrium-aluminium garnet with rare-earth element oxides
RU2700074C1 (en) Method of reducing particle size and degree of agglomeration at stage of initial precursors synthesis when producing yttrium aluminium garnet
KR20010083819A (en) Manufacture method of calcium carbonate
RU2707840C1 (en) Method of producing highly stoichiometric nano-sized precursor for synthesis of solid solutions of yttrium-aluminium garnet with rare-earth element oxides
JP3125067B2 (en) Method for producing transparent yttria sintered body
JP3906353B2 (en) YAG fine powder manufacturing method
RU2697562C1 (en) Method of producing a low-agglomerated nanosized precursor for synthesis of solid solutions of yttrium-aluminum garnet with rare-earth element oxides
JPH08183613A (en) Production of yttrium-aluminum-garnet powder and yttrium-aluminum-garnet sintered compact using the same
KR100473399B1 (en) Process for the preparation of fine ceramic powders

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

EXPY Cancellation because of completion of term