JP3794860B2 - Substrate processing method and substrate processing apparatus - Google Patents

Substrate processing method and substrate processing apparatus Download PDF

Info

Publication number
JP3794860B2
JP3794860B2 JP05561099A JP5561099A JP3794860B2 JP 3794860 B2 JP3794860 B2 JP 3794860B2 JP 05561099 A JP05561099 A JP 05561099A JP 5561099 A JP5561099 A JP 5561099A JP 3794860 B2 JP3794860 B2 JP 3794860B2
Authority
JP
Japan
Prior art keywords
liquid
shower
substrate
wafer
supply mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05561099A
Other languages
Japanese (ja)
Other versions
JP2000252247A (en
Inventor
哲夫 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP05561099A priority Critical patent/JP3794860B2/en
Publication of JP2000252247A publication Critical patent/JP2000252247A/en
Application granted granted Critical
Publication of JP3794860B2 publication Critical patent/JP3794860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば薬液またはリンス液(薬液およびリンス液を総称して処理液という)を貯留する処理槽に、半導体ウエハや液晶表示パネル用ガラス基板などの薄板状の被処理基板(以下単に基板という)を浸漬して基板に所定の処理を施す基板処理方法および基板処理装置に関する。
【0002】
【従来の技術】
従来、半導体ウエハや液晶表示パネル用ガラス基板などを用いた精密電子基板の製造プロセスにおいては、基板を処理液に浸漬して種々の表面処理を施している。このような表面処理においては、エッチング液やフォトレジスト膜剥離液などの薬液を貯留した薬液槽とリンス液である純水を貯留した水洗槽とを有し、薬液槽さらに水洗槽に順次基板を浸漬して、薬液槽にて基板に薬液処理を施した後に、さらに、水洗槽にて基板に付着した薬液やパーティクルを洗い流すリンス処理をしている。
【0003】
このリンス処理には、薬液槽で付着した薬液を基板から素早く水洗する機能水洗処理があり、この機能水洗処理について以下に説明する。
【0004】
図5(a)〜図5(d)は、従来の機能水洗処理における各工程を模式的に示す薬液処理部、機能水洗処理部の縦断面図であり、(a)はウエハ上昇状態、(b)はウエハ浸漬およびオーバーフロー状態、(c)はシャワーしての急速排液状態、(d)はシャワーしてのアップフロー状態を示している。
【0005】
図5(a)に示すように、薬液槽52の昇降手段としてのリフタ(図示せず)から搬送用ロボット(図示せず)に受け渡された複数の半導体ウエハ(以下、単にウエハという)53は、搬送用ロボットによって機能水洗槽51のリフタ55に受け渡される。リフタ55は下降して、複数のウエハ53をそれぞれ下方から3つのウエハガイド54の溝部分で所定間隔(例えばノーマルピッチP=6.00mm、またはハーフピッチP/2)毎に受けて保持した状態で、複数のウエハ53をウエハガイド54と共に機能水洗槽51内の純水中に浸漬する。
【0006】
このように、ウエハ53を純水内に浸漬させた状態で、図5(b)に示すように、機能水洗槽51内の底部の両側に配設された純水供給部56から純水を供給し続けて機能水洗槽51の上部開口端51aから純水をオーバーフローさせて、薬液処理時にウエハ53に付着した薬液、および薬液処理により発生した物質(パーティクル)を純水と共に槽外に流し出すようにしている。図5に示すオーバーフロー処理工程はウエハ53を洗浄するのに必要とされる時間続けられる。
【0007】
さらに、図6(a)〜図6(c)で時間T1で示すように、オーバーフロー処理工程が終了すると、図5(c)に示すように、一時的に、その純水供給部56からの純水の供給を停止すると共に、機能水洗槽51の側壁下部に配設されている排液口57を開口して、薬液やパーティクルが混じった槽内全液の急速排液を行うようにしている。この排液工程の間、ウエハ53の表面が親水性の場合には、これと同時または所定時間後(急速排液でウエハ53が空気に晒され始めるまでの時間内)に、機能水洗槽51の上部開口端51aの上方位置に互いに対向して配設されたシャワーパイプ58の各ノズル部(図示せず)から純水をウエハ53の表面上側部分に向けてシャワーさせるようにしたことで、ウエハ53の表面が部分的に空気中に晒されるのを防止して自然酸化膜の成長を抑制するようになっている。
【0008】
さらに、図6(a)〜図6(c)に時間T2で示すように、このシャワー出力状態で槽内全液の急速排液が完了すると、図5(d)に示すように、機能水洗槽51内の底部の排液口57を閉鎖して、両側の各純水供給部56から純水をそれぞれ供給するアップフロー工程を行うことにより、機能水洗槽51内に純水を満たすようにする。
【0009】
機能水洗槽51内に純水が満されると、図6(a)〜図6(c)に時間T3で示すように、図5(b)に示す状態へ戻り、図5(c)〜図5(d)の各ステップを所定回数だけ繰り返して、薬液やパーティクルをウエハ53の表面上から素早く取り除くことでウエハ53に対する薬液の影響を防止する機能水洗処理を終了するようになっている。
【0010】
【発明が解決しようとする課題】
ところが、上記従来の構成では、図7(a)に示すように、槽内の複数のウエハ53は、それぞれその下側3個所をウエハガイド54の各保持用溝部54aに抜き差し自在な状態で差し込むことにより、つまり、ウエハ53は、それぞれの下側に対してのみ所定間隔を保持するように動きを規制することによって、所定ピッチで順次並べられて隣接配置されている。このため、図5(c)に示す槽内全液の急速排液時に、シャワーパイプ58の各ノズルから供給されるウエハ乾燥防止用の純水のしずくがウエハ53に当たる際の衝撃で、ウエハ53は個々に細かく震動した不安定な状態にあり、一気に排液されることによる液面61の急激な低下に伴って、ウエハガイド54の保持用溝部54aに当接するウエハ53の下端部53aを中心としてウエハ53の表面が互いに傾いて接触してしまうという問題を有していた。
【0011】
また、排液口57へ向かって急に流れる液の勢いも複雑に作用して、隣り同士のウエハがたまたま、その上端が近づき合うように震動した場合、その瞬間に、図7(b)に示すようにウエハ53の動きを規制されていない上側が互いに引き寄せ合うようにして、ウエハガイド54の保持用溝部54aに当接するウエハ53の下端部53aを中心としてウエハ53の表面が互いに傾いて接触してしまうという問題を有していた。
【0012】
特に、ウエハ53の表面が親水性の場合には、ウエハ53の表面に水分を残した状態で互いに接触してくっついてしまうので、くっついたウエハ53同士を剥がそうとしても剥がれにくく、無理に剥がそうとするとウエハ53に傷をつけたり割れたりするという問題を有していた。また、ウエハ53同士がくっつくことによりパーティクルを発生したり、一方のウエハ53に付着しているパーティクルが他方のウエハ53に付着するという問題を有していた。特に、複数のウエハ53の保持間隔がハーフピッチP/2(搬送用キャリアにおいて収容されている基板相互間のピッチをPとした際にその半分のピッチ)の場合には、この問題は顕著に表れる。
【0013】
以上のように、複数のウエハ53をそれぞれ下方から3つのウエハガイド54の保持用溝部54aでそれぞれ保持しているが、上記のようなウエハ53同士のくっつきを解決するために、その溝構造を鋭角状のV溝としてウエハ53を強固に保持する構造にすると、一気に排液されることによる液面61の急激な低下に伴ってウエハ53の上側が互いに引き寄せられて傾くように作用することで、ウエハ53にひびが入ったり割れたりして破損してしまうという問題を有していた。
【0014】
また、水洗槽51内に複数のウエハ53を固定するための溝構造部を形成したガイドを設け、ウエハ53同士のくっつきを防止することも考えられるが、その溝付きのガイドという部材が別途必要であると共に、そのガイドとウエハガイド54の保持用溝部54aとの位置調整も困難であり、しかも、そのガイドによって水洗槽51内の液流れが阻害されて処理液置換特性も悪化するという問題がある。
【0015】
本発明は、上記従来の問題を解決するもので、上記したような溝付きのガイドを別途必要とせず、槽内全液の急速排液時に基板同士のくっつきを防止して基板の損傷を防止することができる基板処理方法および基板処理装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の基板処理方法は、処理槽に貯留された浸漬処理液に基板を浸漬し、処理槽内より浸漬処理液を排液する際に、基板に液をシャワーする基板処理方法において、浸漬処理液の液面が、基板上端の高さから、基板の直径に対して少なくとも20パーセントの高さが浸漬処理液の液面より出るまでの区間に位置する間は、前記シャワー液の基板へ向けての供給を、前記区間より下に位置するときより小流量で行うことを特徴とするものである(請求項1)。
【0017】
この方法により、基板全体を浸漬していた浸漬処理液の液面が、基板上端の高さから、基板の一部が浸漬処理液の液面より出る所要高さまでの区間に位置する間は、シャワー液の基板へ向けての供給を、液面が前記区間より下に位置するときより、抑制するまたは停止することとなる。このため、浸漬処理液の液面が前記区間では、基板へ向かってシャワー液が供給されることに起因する基板の震動は低減ないし皆無となり、基板同士が接触してくっつくこと無く排液できる。そして、液面が前記区間より低下してからは、もはや基板の一部が処理液中から出てしまっているので、液の流れによって基板の上端同士が接触することは起こり難い状況にあり、基板へ向かってのシャワー液の供給量を多くしても、シャワー液が基板へ向かって大量に供給されることによる震動が基板に加わることがあっても、基板同士がくっつくことはない。このように基板へ向けてのシャワー液の供給の程度を、基板と浸漬処理液の液面との高さ関係に応じて変更するので、基板の表面同士の接触によるくっつきがなくなって基板の損傷が防止される。
【0018】
また、本発明の基板処理装置は、浸漬処理液を貯留し、基板を浸漬処理液に浸漬する処理槽と、処理槽が貯留する浸漬処理液を排出する排液手段と、基板に液を供給するシャワー液供給手段と、前記排液手段と前記シャワー液供給手段を制御する制御部とを備え、前記制御部は、浸漬処理液の液面が、基板上端の高さから、基板の直径に対して少なくとも20パーセントの高さが浸漬処理液の液面より出るまでの所要区間に位置する間、第1のシャワー液供給モードに制御し、浸漬処理液の液面が前記区間より下では、第2のシャワー液供給モードに制御するものであり、前記第1のシャワー液供給モードでは、前記シャワー液の基板への供給を前記第2のシャワー液供給モードより少ない流量で行い、または、前記シャワー液の基板への供給を停止し、前記第2のシャワー液供給モードでは、前記シャワー液の基板への供給を前記第1のシャワー液供給モードよりも大流量で行うことを特徴とするものである(請求項2)。
【0019】
この構成により、基板全体を浸漬していた浸漬処理液の液面が、基板上端の高さから、基板の一部が浸漬処理液の液面より出る所要高さまでの区間に位置する間は、基板へ向けてのシャワー液の供給は第1のシャワー液供給モードすなわち、基板へのシャワー液の供給を抑制または停止するモードに制御される。このため、浸漬処理液の液面が前記区間では、基板へ向かってのシャワー液の供給に原因する基板の震動は低減ないし皆無となり、基板同士が接触してくっつくことが無い。そして、液面が前記区間より低下してからは、もはや基板の一部が処理液中から出ているので、液の流れによって基板の上端同士が接触することは起こり難い状況にあるので、第2のシャワー液供給モードすなわち、基板へ向けてのシャワー液の供給量を多くしても、シャワー液が基板へ向かって大量に供給されることによる震動を基板にあたえても、基板同士がくっつくことはない。このように基板へ向けてのシャワー液の供給のモードを、基板と浸漬処理液の液面との高さ関係に応じて変更するように制御しながら排液するので、基板の表面同士の接触によるくっつきがなくなって基板の損傷が防止される。
【0020】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明するが、本発明は以下に示す実施形態に限定されるものではない。
【0021】
(実施形態)
図1は本発明の実施形態における基板処理方法を実施するに好適な基板処理装置を組み込んでなるウエットステーションの概略構成を示す平面図であり、矢印Fで示される面が装置の正面である。
【0022】
図1において、ウエットステーション1は、複数のウエハ2を収容したキャリア3から、各処理槽へウエハ2を搬送するための搬送ロボット(図示せず)に対して複数のウエハ2を一括して移載する搬入側のウエハ移替部5と、これとは逆に、搬送ロボットからキャリア3に複数のウエハ2を一括して移載する搬出側のウエハ移替部6と、このウエハ移替部5に隣接し、薬液または純水である各種処理液をそれぞれ貯留した複数の処理槽にわたってウエハ2を順次浸漬させることによりウエハ2に薬液処理や水洗処理などの一連の各種処理が施される処理ユニット7と、この処理ユニット7と搬出側のウエハ移替部6との間に配設され、処理ユニット7で処理後のウエハ2をスピン乾燥させる乾燥部8とを有している。
【0023】
この処理ユニット7は、これらの各処理槽に複数のウエハ2を搬送するための搬送用ロボット(図示せず)のハンド部分を洗浄するハンド洗浄部9と、このハンド洗浄部9側に隣接し、例えば窒化膜除去用の薬液として燐酸溶液などを貯留した薬液槽を有し、この薬液槽にウエハ2を浸漬することで薬液処理する第1の燐酸処理部10と、この燐酸処理部10側に隣接し、これと同様の窒化膜除去用の薬液として燐酸溶液を貯留した薬液槽を有し、この薬液槽にウエハ2を浸漬することで薬液処理する第2の燐酸処理部11と、本発明の基板処理装置の一実施形態であって、この燐酸処理部11側に隣接し、ウエハ2に付いた燐酸やパーティクルを素早く水洗する機能水洗処理部12と、この機能水洗処理部12側に隣接し、ウエハ2を最終的に水洗する最終水洗処理部13とを処理工程順に有している。
【0024】
ここで、第1および第2の燐酸処理部10,11を設けたのは、これらの燐酸処理部10,11による薬液処理としての窒化膜除去処理が他の処理部による処理に比べて時間がかかるため、処理タクトを短縮するべく並行して窒化膜除去処理を行うためである。また、機能水洗処理部12を設けたのは、ウエハ2に付いていた燐酸が槽内に残っていると窒化膜除去機能が進行するので、純水中に燐酸溶液の付いたウエハ2を浸漬させた直後に一気に急速排液しつつ、新たなる純水と置換することで、ウエハ2から離脱した燐酸溶液の純水に対する濃度を素早くかつ急激に低下させて窒化膜除去機能の進行を停止させるためである。
【0025】
図2は図1の機能水洗処理部12の概略構成を示す模式図である。
【0026】
図2において、この機能水洗処理部12は、内部に満たされた純水中に複数のウエハ2が浸漬自在なように上方を開放した処理槽としての水洗槽21と、この水洗槽21の内部にオーバーフロー用の純水を供給する純水供給手段22と、搬送ロボットから受け渡される複数のウエハ2を保持した状態で水洗槽21内の純水内に搬送する昇降手段としてのリフタ24と、水洗槽21内でウエハ2に水洗処理を施した後の処理済み液(本実施形態では純水に燐酸が混じった溶液)を水洗槽21から急速に排液させる排液手段25と、純水をウエハ2の表面上側部分に向けてシャワーするシャワー手段26と、制御手段27とを有している。
【0027】
この純水供給手段22は、水洗槽21内の底部に対向して配設され、純水吐出用の複数のノズル口(図示せず)が、浸漬されたウエハ2の方向に向けて配設された一対の筒状部材28と、これら一対の筒状部材28に連結され純水を通す配管部材29と、その配管部材29の途中に配設された流量調節用のバルブ部材30とを有し、バルブ部材30を開状態とすることで配管部材29さらに一対の筒状部材28の複数のノズル口(図示せず)を介して純水を供給し続けて水洗槽21の上部開口端21aから純水をオーバーフローさせ、薬液処理時にウエハ2の表面に付着した薬液やパーティクルを純水と共に槽外に流し出すように構成している。
【0028】
また、リフタ24は、複数のウエハ2を、それぞれの主面を鉛直に立てた姿勢で、それぞれ下方から3つのウエハガイド23の溝部分で所定間隔(ハーフピッチP/2)毎に受けて保持した状態で、水洗槽21内のリンス液である純水内に浸漬させて水洗処理する位置Aと水洗槽21外の上方にウエハ2およびウエハガイド23を位置させるウエハ受渡し位置との間を上下に昇降するように構成している。
【0029】
さらに、排液手段25は、浸漬される複数のウエハ2の表面と対向した水洗槽21の側壁の最下部分に配設された排液口31と、この排液口31に連結され処理済み液を排液するべく通す配管部材32と、この配管部材32の途中に配設された流量調節用のバルブ部材33とを有しており、バルブ部材33を開口することで水洗槽21内の処理済み液を急速に排液し、また、ウエハ2の浸漬およびオーバーフロー時にはバルブ部材33を閉止することで水洗槽21内の処理済み液をオーバーフローさせて槽外に流し出すようにしている。
【0030】
さらに、シャワー手段26は、水洗槽21の上部開口端21aの上方位置に互いに対向して配設され、純水吐出用の複数のノズル口(図示せず)が斜め下方(ウエハ2の方向)に向けて配設された一対の筒状部材34と、これら一対の筒状部材34に連結され純水を通す配管部材35と、その配管部材35の途中に配設された流量調節用のバルブ部材36とを有し、対向した一対の筒状部材34の各ノズル口(図示せず)から純水をウエハ2の表面上側部分に向けてシャワーすることで、ウエハ2の表面が部分的に空気中に晒されるのを防止して自然酸化膜の成長を抑制するようになっている。
【0031】
さらに、制御手段27はシーケンサやマイクロコンピュータなどで構成されており、シーケンサやマイクロコンピュータからの制御信号でバルブ部材30,33,36をそれぞれ開閉制御することで、水洗槽21内の純水の液面より上方にウエハ2の上側の一部が出る位置になるまでは、排液手段25で排液させるように制御するとともに、シャワー手段26からウエハ2へ向けての純水シャワー流量を少なくした第1のシャワー液供給モードでシャワー処理し、しかる後に、ウエハ2へ向けての純水シャワー流量を前記第1のシャワー液供給モードより大流量である第2のシャワー液供給モードでシャワー処理を行いながら、水洗槽21内の処理済み液を排液手段25で急速に排液させるように制御する構成となっている。
【0032】
つまり、制御手段27はバルブ部材30,33,36の電磁バルブ制御端子にそれぞれ接続されており、バルブ部材30を閉止状態に制御してオーバーフロー用の純水供給を停止させてから、バルブ部材33を開放状態に制御して排液させ、かかる排液の間、液面上にウエハ2の上側の一部が出るまでは、バルブ部材36を絞り加減にし開けた小流量である第1のシャワー液供給モードでシャワー処理し、液面上にウエハ2の上側の一部が出てからは、バルブ部材36を広く開け放った大流量でシャワーする第2のシャワー液供給モードでシャワー処理を行うように制御する。
【0033】
また、ウエハ2の上側のどの程度の部分が液面上へ出る高さまで、シャワー処理を純水流量を絞り加減にした第1のシャワー液供給モードに制御しておくかについては、ウエハ2の並び方向の基板配列ピッチ、その他種々の諸条件に左右され、例えば、基板配列ピッチが狭いほど、ウエハ2の上端がなるべく水面高く出る位置まで、第1のシャワー液供給モードに制御しておく必要がある。つまり、ウエハ2の上側の部分がなるべく多く水面より出て、排液による流れの勢いでウエハ2同士がくっつく力をウエハ2があまり強く受けなくなって、少々の震動を受けたぐらいではウエハ2同士がくっつく現象が起こらないようになるまで、シャワー処理を、純水流量を絞り加減にした第1のシャワー液供給モードに制御しておくことが望ましい。ただし、必要以上にウエハ2の上側の部分が多く出るまで、つまり、ウエハ2がくっつくことが生じなくなる所要高さより低くまで、第1のシャワー液供給モードとしても、ウエハ2の表面が空気に晒されることによる不具合が顕著なるだけで、適当でない。
【0034】
上記構成により、以下、その動作を説明する。
【0035】
まず、クリーンルーム内にウエットステーション1が設置されており、オペレータは、正面方向からこのウエハ搬入側のウエハ移替部5における第1のテーブル上に各キャリア3をそれぞれ載置する。その後、オペレータによるスイッチ操作で駆動を開始して、複数のウエハ2を収容したキャリア3から搬送ロボット(図示せず)に複数のウエハ2を一括して移載する。
【0036】
次に、複数のウエハ2を、搬送用ロボットのロボットハンドによって、複数のウエハ2は一括してリフタ24に受渡されてリフタ24で処理ユニット7の各処理槽内の処理液に浸漬されるように順次搬送されて各種処理がそれぞれ施される。
【0037】
この処理ユニット7におけるリンス処理には、薬液槽で付着した薬液をウエハ2から素早く水洗する機能水洗処理部12があり、この機能水洗処理部12の動作について以下に詳細に説明する。
【0038】
図3(a)〜図3(e)は、図1の機能水洗処理部12における各工程を模式的に示す縦断面図であり、(a)はウエハ上昇状態、(b)はウエハ浸漬およびオーバーフロー状態、(c)は第1のシャワー液供給モードでシャワー処理しての急速排液状態、(d)は第2のシャワー液供給モードでシャワー処理しての急速排液状態、(e)は第2のシャワー液供給モードでシャワー処理してのアップフロー状態を示している。
【0039】
図3(a)に示すように、燐酸処理部11から搬送用ロボット(図示せず)で搬送してリフタ24に受渡し、リフタ24は、複数のウエハ2をそれぞれ下方から3つのウエハガイド23の溝部分で所定間隔毎に受けて保持した状態で下がり、図3(b)に示すように、複数のウエハ2はウエハガイド23と共に水洗槽21内の純水中に浸漬される。
【0040】
制御手段27は、リフタ24が下がる前より、バルブ部材30を開放状態に制御すると共にバルブ部材33を閉止状態に制御しており、水洗槽21内の底部の両側に配設された純水供給部の一対の筒状部材28の各ノズル部(図示せず)から、浸漬している各ウエハ2に向けて純水が供給され、供給された純水は水洗槽21の上部開口端21aからオーバーフローし、薬液処理時にウエハ2の表面に付着した薬液や、薬液処理で発生した物質(パーティクル)を槽外へ流し出す。前記図3(b)に示すオーバフロー処理工程は、ウエハ2を洗浄するのに必要とされる経験的に、または予め実験して求めておいたオーバフロー処理時間続けられる。あるいは、水洗槽21に付設した各種センサによって検出される水洗槽21内の純水の特性から、オーバフロー処理を終えるべき状況に達したと判断されるまで、オーバフロー処理工程は続けられる。
【0041】
さらに、制御手段27は、本実施形態では、図4(a)〜図4(c)に各部の動作タイミングを示すように、前記オーバーフロー処理工程が終了する時間T1にて、バルブ部材30を閉止状態に制御し、バルブ部材33を開放状態に制御し、バルブ部材36を開放状態に制御する。このように制御することにより、第1のシャワー液供給モードでの排液工程が行われる。
【0042】
すなわち、図3(c)に示すように、一対の筒状部材28からの純水供給を停止し、排液口31から急速排液し、シャワー手段26の対向した一対の筒状部材34から純水を、第1のシャワー液供給モードつまり、ウエハ2の表面上側部分に向けて、流量を少なく絞ったで小流量でシャワーする。
【0043】
かかる第1のシャワー液供給モードでのシャワーは、シャワー供給される純水の流量を少なく絞ってるので、全体が液面上に出たウエハ2に対してならば、ウエハ2の表面が空気に晒されるのを防止するには不足する流量であるが、しかし、この時点では、まだ、ウエハ2は上端の一部だけしか水面から出ておらず、しかも、純水液面から出た直後でもあるから、ウエハ2の表面が空気に晒されたり、乾いてしまうことはない。むしろ注目すべきことは、シャワー流量を少なく絞るために、ウエハ2へ向けて純水がシャワーされることによる個々のウエハ2が受ける衝撃が少くでき、ウエハ2が個々震動してウエハ2の上端同士がくっつくことが回避される。
【0044】
さらに、制御手段27は、図4(a)〜図4(c)に示すように、水洗槽21内の純水の液面が、ウエハ2の上側の一部が液面より出る所要高さまで低下する時間Tnになると、バルブ部材33の開放状態での制御は継続したままで、シャワー用のバルブ部材36を、ウエハ2の表面が空気に晒されるのを防止するのに十分な流量を流通させる大開放状態に制御する。このように制御することにより、図3(d)に示すように、第2のシャワー液供給モードでの排液工程が行われる。すなわち、一対の筒状部材28からの純水供給は停止し、排液口31から急速排液し、シャワー手段26の対向した一対の筒状部材34から純水を、第2のシャワー液供給モードつまり、ウエハ2の表面上側部分に向けて、大流量で供給する。かかる第2のシャワー液供給モードでのシャワーは、シャワーされて供給される純水は、ウエハ2の表面が空気に晒されるのを確実に防止するのに十分な流量であり、大流量でのシャワーだけにウエハ2へ与える衝撃は前記第1のシャワー液供給モードより大きい。しかし、個々のウエハ2の上端の一部は既に液面より上に出ており、液中を漂うように不安定にウエハ2が揺れることは少なく、また、少々震動したところで、液面は下がっていてウエハ2の上端部と上端部の間には液が存在していないので、ウエハ2の上端と上端の間に存在する液がウエハ2の上端同士を引き寄せるようにして、くっつける現象はもはや起こらず、ウエハ2同士がくっつくことはない。
【0045】
前記したように、シャワー手段26からの純水の供給動作を、第1のシャワー液供給モードから第2のシャワー液供給モードへ切り換えるのは、液面の低下によって水洗槽21内の液面上にウエハ2の上側の所定の一部が出た時点Tnであるが、その切り替え時期は本実施形態では、直径200mmのウエハ2の場合にその上側の40mm部分(直径に対する露出比率20パーセント)が液面上に出たときである。この場合、排液時の液面低下に伴うウエハ2同士のくっつきはなく、排液することを幾度も試したが、ウエハ2の表面の損傷は完璧に防止することができた。
【0046】
第1のシャワー液供給モードでシャワーする期間の終わり、すなわち、第1のシャワー液供給モードでのシャワーから第2のシャワー液供給モードへ切り換えるタイミングは、ウエハ2の液面から出る部分が多ければ多いほど、ウエハ2同士のくっつきによるウエハ2の損傷をより確実に防止することができるが、ウエハ2同士のくっつきが生じなくなってからは、それ以上にウエハ2の液面からでる部分を多くするのは無駄である。前記モードの切り換えは、ウエハ2の上端からどの程度の距離(図3(d)に記載の距離「L」)まで液面が下がってからが最適であるかは、、ウエハ2相互間の距離(基板配列ピッチ)やその材質、厚さ、さらには保持状態により定められるものである。
【0047】
引き続き、制御手段27は、図4(a)〜図4(c)で時間T3に示すように、前記した第2のシャワー液供給モードでの排液工程によって水洗槽21に貯留されている全液が排液された時間T3にて、バルブ部材33を閉止状態に制御し、バルブ部材30を開放状態に制御し、シャワー用のバルブ部材36を大きく開放した状態を継続するよう制御する。このように制御することにより、図3(e)に示すようにアップフロー工程を行う。すなわち、一対の筒状部材28からの純水供給を再開し、排液口31からの排液は停止し、シャワー手段26の対向した一対の筒状部材34から純水を、第2のシャワー液供給モードでシャワーするもので、かかるアップフロー工程を、ウエハ2の全体が純水内に浸漬されるのに十分な時間T4まで継続する。
【0048】
その後、図3(b)に示す状態へ戻り、水洗槽21内の一対の筒状部材28の各ノズル部から純水をそれぞれ供給し続けることで、水洗槽21の上部開口端21aから純水をオーバーフローさせてウエハ2の表面に付着した薬液、および薬液処理で発生した物質(パーティクル)を純水と共に槽外に流し出す。
【0049】
さらに、上記と同様にして、制御手段27がバルブ部材30,33,36をそれぞれ制御することで、ウエハ浸漬およびオーバーフローとその停止、第1のシャワー液供給モードでの急速排液、第2のシャワー液供給モードでの急速排液、アップフローとその後のシャワー出力停止、さらにオーバーフローの各ステップを所定回数だけ繰り返して、ウエハ2の表面上から薬液およびパーティクルを素早く取り除くことで、ウエハ2に対する薬液の影響を防止する機能水洗処理を終了する。
【0050】
さらに、最終水洗処理部13でウエハ2を最終的に水洗し、最終水洗処理部13で処理した複数のウエハ2を乾燥部8でスピン乾燥する。このようにして、所定の表面処理が為されスピン乾燥された複数のウエハ2は搬出側のウエハ移替部6に搬送用ロボット(図示せず)で搬送されて回収され、搬出側のウエハ移替部6において、上記ウエハ移替部5の場合とは逆に、2個の搬送用のキャリア3に2つのウエハ群に分けられて前後のキャリア3内にそれぞれ移し替えられることになる。オペレータは、処理済みの複数のウエハ2が収容された2つのキャリア3を搬出すればよい。
【0051】
したがって、各基板である複数のウエハ2はそれぞれその下方からリフタ24のウエハガイド23の溝部分で受けられて保持されているために、槽内全液の急速排液時における急激な液面の低下に伴って各ウエハ2の上側が互いに引き寄せられるように力が働き、各ウエハ2はそれぞれ上側ほど傾けようとする力の影響を受けやすくウエハ2同士がくっつきやすいが、排液時にシャワー手段26にウエハ2へ向けての純水供給を、前記したように第1のシャワー液供給モードで行っておいてから、第2のシャワー液供給モードで行うようにしたので、ウエハ2同士がくっつくことは解消される。
【0052】
特に、ウエハ2の保持間隔がハーフピッチと狭くなった場合にも、従来のように水洗槽21内にガイドを取り付けるというような仕様変更をすることなく、ウエハ2の表面同士が接触してくっつくことにより損傷を受けることが防止できる。しかも、このようなウエハ2同士のくっつきを防止するべく、排液時にシャワー手段26の流量を制御手段27で切り換えるだけの簡単な構成およびその制御とすることができる。
【0053】
また、上記実施形態では、第1のシャワー液供給モードは、シャワー手段26からの純水供給する流量を、第2のシャワー液供給モードより絞ることとしたが、第1のシャワー液供給モードは、シャワー手段26からの液の供給を停止するようにしてもよい。流量を絞って供給を抑制するより、供給を停止することにより次のような特段の効果が期待できる。すなわち、シャワーされる液の飛沫が、隣り合うウエハ2同士の間に落ちて、ウエハ2の表面と表面の間を橋渡しするように付着し、表面張力の作用でウエハ2上端と上端とを、引き寄せ合うようになる現象に起因して起こるウエハ2同士のくっつきに関しては、シャワーを停止するだけに、完全になくすことが期待できる。
【0054】
また、上記実施形態では、排液による液面の低下が、ウエハ2の上端まで至るまでの間も、シャワー手段26からの純水供給を、前記したように第1のシャワー液供給モードで行うが、液面の低下がウエハ2の上端まで至るまでの間は、まだウエハ2は純水中に完全に浸漬しているので、必ずしも、シャワー手段26からの純水供給することを要さず、あるいは、供給するにしても第2のシャワー液供給モードでもよい。
【0055】
また、上記実施形態では、第1のシャワー液供給モードは、シャワー手段26からの純水供給する流量を、第2のシャワー液供給モードより絞ることとしたが、第1のシャワー液供給モードは、供給する純水の流量は第2のシャワー液供給モードと同じとし、ただし、供給された純水の向かう先が、ウエハ2に対しては向かわないように、シャワーノズルが純水を供給する向きを変えたり、シャワーノズルを移動させる等して、第1のシャワー液供給モードでは、ウエハ2へ向かっては純水が供給されないようにしてもよい。
【0056】
また、上記実施形態では、第1のシャワー液供給モードから第2のシャワー液供給モードへの切り替えは、一気に切り替わるようにしたが、第1のシャワー液供給モードと第2のシャワー液供給モードとの間に、中間のモードを用意してなだらかに変化して切り替わるようにしてもよい。
【0057】
また、上記実施形態では、第1のシャワー液供給モードから第2のシャワー液供給モードへの切り替えは、予め第1のシャワー液供給モードでシャワーしながらバルブ部材33を開放した時から、基板の一部が浸漬処理液の液面より出る所要高さまで液面が低下するまでの時間を求めておいて、制御手段27に内蔵のタイマで時間管理する手法で、基板の一部が浸漬処理液の液面より出る所要高さまで液面が低下する時間Tnにて、自動的に第1のシャワー液供給モードから第2のシャワー液供給モードへ切り替わるようにしたが、液面レベルセンサを用いて、基板の一部が浸漬処理液の液面より出る所要高をセンサで直接検出することで、切り替えを行うようにしてもよい。
【0058】
また、上記実施形態では、専ら排液することにより、浸漬処理液の液面が基板に対して低下するようにしたが、例えば、排液せずに基板の一部が浸漬処理液の液面より出るまで、リフタ24を少しだけ上昇させることにより、基板の一部が浸漬処理液の液面から出るようにし、かかるリフタ24が上昇する間は、シャワー液の基板への供給を抑制または停止する第1のシャワー液供給モードに制御し、しかる後、第2のシャワー液供給モードでシャワーしながら、浸漬処理液を排液するようにしてもよい。
【0059】
また、上記実施形態では、水洗槽21内でウエハ2に水洗処理を施した処理済み液を水洗槽21から排液する速度を、ことさら変化させるようなことはしないが、液面が、ウエハ2上端の高さから、ウエハ2の一部が液面より出る所要高さまでの区間に位置する間は、かかる所定区間より下に位置するときよりも、すなわち、第1のシャワー液供給モードに制御するときには、第2のシャワー液供給モードに制御するときよりも、排液する速度を、遅くなるように変動させてもよい。例えば、排液手段としては、低速に排液させる第1排液手段と、それよりも高速で排液させる第2排液手段の2つ用意し、はじめは第1排液手段で低速に排液し、ウエハ2の上側の一部が水面上に出てから後には、第2排液手段で高速に排液するようにしてもよい。このようにするためには、例えば、水洗槽21に対して、低速排液用に開口面積の小さい排液口と、高速排液用に開口面積の大きい排液口とを設けておいて、切り替え自在にしておけばよい。
【0060】
なお、上記実施形態のウエットステーション1は、本発明に係る機能水洗処理部12が適用される多槽式基板処理装置の一例であって、その具体的な構成は、本発明の要旨を逸脱しない範囲で適宜変更可能である。例えば、多槽式基板処理装置だけではなく、単槽式基板処理装置に対しても、処理液の急速排液を行って処理液を置換する場合に適用可能なことはいうまでもないことである。また、例えば、上記実施形態,2では本発明を機能水洗処理部12に適応したが、機能水洗処理部12に限らず処理液の置換時に適応され、例えば燐酸処理部10,11に本発明を適応してもよい。さらに、上記実施形態,2の処理ユニット7では、一連の各種薬液処理として、窒化膜除去処理の槽構成について説明してきたが、この窒化膜除去処理の他に、レジスト剥離処理、酸化膜エッチング処理、ライトエッチング処理および拡散前洗浄処理などの各種薬液処理であってもよいことは言うまでもないことである。
【0061】
このように、本発明は、例えば同一槽で機能水洗処理以外に薬液処理も行う所謂ワンバス式の基板処理装置にも適応可能である。本発明にかかる基板処理装置の適応範囲は、本実施形態による機能水洗処理部12に限定されず、基板を浸漬させて処理する基板処理装置全般に適応可能である。
【0062】
【発明の効果】
以上のように、本発明の請求項1に記載の方法によれば、処理槽から処理液を排液する際に、浸漬処理液の液面が、基板上端の高さから、基板の一部が浸漬処理液の液面より出る所要高さまでの区間に位置する間は、前記シャワー液の基板へ向けての供給を抑制または停止するので、ウエハ2へ向けて純水がシャワーされることによる個々のウエハ2が受ける衝撃が少くできるので、ウエハ2が個々震動してウエハ2の上端同士がくっつくことが確実に回避される。
【0063】
また、本発明の請求項2に記載の装置によれば、排液手段とシャワー液供給手段を制御する制御部は、浸漬処理液の液面が、基板上端の高さから、基板の一部が浸漬処理液の液面より出る所要高さまでの区間に位置する間は、前記シャワー液の基板への供給を抑制または停止する第1のシャワー液供給モードに制御し、浸漬処理液の液面が前記所要区間より下では、前記第1のシャワー液供給モードよりも前記シャワー液の基板への供給を多くする第2のシャワー液供給モードに制御するから、浸漬処理液の液面が、前記区間に位置する間は、前記シャワー液の基板への供給を抑制または停止するためにシャワー液の供給に起因する基板の震動は低減ないし皆無となり、基板同士が接触してくっつくことは起こらない。
【0064】
そして、液面が前記所要距離まで低下してからは、もはや基板の一部は処理液中から出ているので、液の流れによって基板の上端同士が接触することは起こり難い状況にあるので、基板へ向けてのシャワー液の供給量を多くしても、シャワー液が基板へ向かって大量に供給されることによる震動を基板にあたえても、基板同士がくっつくことはなく速やかに排液し、このように基板へ向けてのシャワー液の供給のモードを、浸漬処理液の液面高さに応じて変更するように制御しながら排液するので、基板の表面同士の接触によるくっつきがなくなって基板の損傷が防止される。
【図面の簡単な説明】
【図1】本発明の実施形態における基板処理装置を組み込んでなるウエットステーションの概略構成を示す平面図である。
【図2】図1の機能水洗処理部の構成を示す模式図である。
【図3】図1の機能水洗処理部における各工程を模式的に示す縦断面図であり、(a)はウエハ上昇状態、(b)はウエハ浸漬およびオーバーフロー状態、(c)は第1のシャワー液供給モードでの急速排液状態、(d)第2のシャワー液供給モードでの急速排液状態、(e)はアップフロー状態を示す図である。
【図4】(a)はオーバーフロー用の純水供給、(b)はシャワー出力、(c)は排液の制御を示す動作タイミング図である。
【図5】従来の機能水洗処理における各工程を模式的に示す薬液処理部、機能水洗処理部の縦断面図であり、(a)はウエハ上昇状態、(b)はウエハ浸漬およびオーバーフロー状態、(c)は急速排液およびシャワー出力状態、(d)はアップフローおよびシャワー出力状態である。
【図6】従来の機能水洗処理における(a)はオーバーフロー用の純水供給、(b)はシャワー出力、(c)は急速排液の制御を示す動作タイミング図である。
【図7】(a)は図5(a)の複数のウエハおよびウエハガイドの保持用溝部の一部縦断面図、(b)は液面の急激な低下によるウエハ同士のくっつき状態を示すウエハおよびウエハガイドの保持用溝部の一部縦断面図である。
【符号の説明】
1 ウエットステーション
2 半導体ウエハ
7 処理ユニット
12 機能水洗処理部
21,41,51 水洗槽
21a 上部開口端
22 純水供給手段
23 ウエハガイド
25 排液手段
26 シャワー手段
27 制御手段
28,34 筒状部材
30,33,36 バルブ部材
31 排液口
[0001]
BACKGROUND OF THE INVENTION
The present invention provides, for example, a thin plate-like substrate (hereinafter simply referred to as a substrate) such as a semiconductor wafer or a glass substrate for a liquid crystal display panel in a processing tank that stores a chemical solution or a rinse solution (collectively referred to as a treatment solution). The present invention relates to a substrate processing method and a substrate processing apparatus for performing predetermined processing on a substrate by immersing the substrate.
[0002]
[Prior art]
Conventionally, in a manufacturing process of a precision electronic substrate using a semiconductor wafer, a glass substrate for a liquid crystal display panel, and the like, various surface treatments are performed by immersing the substrate in a processing solution. In such surface treatment, there are a chemical bath storing a chemical solution such as an etching solution and a photoresist film stripping solution and a washing bath storing pure water as a rinsing liquid, and the substrate is sequentially placed in the chemical bath and the washing bath. After immersing and performing chemical treatment on the substrate in the chemical bath, rinsing is performed to wash away the chemical and particles adhering to the substrate in the washing bath.
[0003]
This rinsing process includes a functional water washing process for quickly washing the chemical solution adhering in the chemical tank from the substrate. This functional water washing process will be described below.
[0004]
5 (a) to 5 (d) are longitudinal sectional views of the chemical solution processing unit and the functional water washing processing unit schematically showing each process in the conventional functional water washing processing, where (a) is a wafer rising state, ( b) shows a wafer immersion and overflow state, (c) shows a quick draining state after showering, and (d) shows an upflow state after showering.
[0005]
As shown in FIG. 5A, a plurality of semiconductor wafers (hereinafter simply referred to as wafers) 53 delivered from a lifter (not shown) as an elevating means for the chemical tank 52 to a transfer robot (not shown). Is transferred to the lifter 55 of the functional water tub 51 by the transfer robot. The lifter 55 is lowered, and a plurality of wafers 53 are received and held at predetermined intervals (for example, normal pitch P = 6.00 mm or half pitch P / 2) at the groove portions of the three wafer guides 54 from below. Thus, the plurality of wafers 53 are immersed in the pure water in the functional water washing tank 51 together with the wafer guides 54.
[0006]
In this manner, with the wafer 53 immersed in pure water, pure water is supplied from the pure water supply units 56 disposed on both sides of the bottom in the functional water washing tank 51 as shown in FIG. Continuously supplying the pure water overflows from the upper opening end 51a of the functional water washing tank 51, and the chemical liquid adhering to the wafer 53 during the chemical liquid processing and the substance (particles) generated by the chemical liquid processing are poured out of the tank together with the pure water. I am doing so. The overflow process shown in FIG. 5 is continued for the time required to clean the wafer 53.
[0007]
Furthermore, as shown in FIG. 6 (a) to FIG. 6 (c) at time T1, when the overflow processing step is completed, as shown in FIG. 5 (c), temporarily from the pure water supply unit 56. While stopping the supply of pure water, the drainage port 57 disposed at the lower part of the side wall of the functional water washing tank 51 is opened so that the whole liquid in the tank mixed with chemicals and particles can be quickly drained. Yes. If the surface of the wafer 53 is hydrophilic during this drainage process, at the same time or after a predetermined time (within the time until the wafer 53 starts to be exposed to air by rapid drainage), the functional water washing tank 51 is used. The pure water is showered from the respective nozzle portions (not shown) of the shower pipe 58 disposed opposite to each other above the upper opening end 51a of the wafer 53 toward the upper surface portion of the wafer 53. The surface of the wafer 53 is prevented from being partially exposed to the air to suppress the growth of the natural oxide film.
[0008]
Further, as shown in FIG. 6 (a) to FIG. 6 (c) at time T2, when the rapid drainage of all the liquid in the tank is completed in this shower output state, as shown in FIG. By closing the drain outlet 57 at the bottom of the tank 51 and performing an upflow process of supplying pure water from the pure water supply sections 56 on both sides, the functional water washing tank 51 is filled with pure water. To do.
[0009]
When the pure water is filled in the functional water washing tank 51, as shown at time T3 in FIGS. 6A to 6C, the state returns to the state shown in FIG. 5B, and FIGS. 5D is repeated a predetermined number of times to quickly remove the chemical solution and particles from the surface of the wafer 53, thereby completing the functional water washing process for preventing the influence of the chemical solution on the wafer 53.
[0010]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, as shown in FIG. 7A, the plurality of wafers 53 in the tank are inserted into the holding groove portions 54a of the wafer guide 54 so that the lower three portions thereof can be freely inserted and removed. In other words, the wafers 53 are sequentially arranged adjacent to each other at a predetermined pitch by restricting the movement so as to maintain a predetermined interval only with respect to each lower side. For this reason, during the rapid drainage of all the liquid in the tank shown in FIG. 5C, the wafer 53 is subjected to an impact when a drop of pure water for preventing wafer drying supplied from each nozzle of the shower pipe 58 hits the wafer 53. Is in an unstable state that is individually vibrated finely, and with the sudden drop in the liquid level 61 caused by draining all at once, the lower end 53a of the wafer 53 that contacts the holding groove 54a of the wafer guide 54 is centered. As a result, the surfaces of the wafers 53 are inclined and come into contact with each other.
[0011]
Further, the momentum of the liquid suddenly flowing toward the liquid discharge port 57 also acts in a complicated manner. When the adjacent wafers happen to vibrate so that their upper ends approach each other, at that moment, FIG. As shown in the drawing, the upper surfaces of the wafer 53 that are not restricted in movement are attracted to each other so that the surfaces of the wafers 53 are inclined with respect to each other about the lower end 53a of the wafer 53 that contacts the holding groove 54a of the wafer guide 54. Had the problem of end up.
[0012]
In particular, when the surface of the wafer 53 is hydrophilic, the wafers 53 come into contact with each other with moisture remaining on the surface, so that even if the wafers 53 that are stuck to each other are peeled off, it is difficult to peel off. If it did so, it had the problem of scratching or cracking the wafer 53. Further, there are problems that particles are generated by the wafers 53 sticking to each other, and particles that are attached to one wafer 53 are attached to the other wafer 53. In particular, when the holding interval of the plurality of wafers 53 is a half pitch P / 2 (half the pitch when the pitch between substrates accommodated in the carrier for transport is P), this problem is remarkable. appear.
[0013]
As described above, the plurality of wafers 53 are respectively held by the holding groove portions 54a of the three wafer guides 54 from below, but in order to solve the sticking between the wafers 53 as described above, the groove structure is changed. When the wafer 53 is firmly held as an acute-angled V-shaped groove, the upper sides of the wafer 53 are attracted to each other and tilt as the liquid level 61 is suddenly lowered by draining at once. The wafer 53 has a problem that the wafer 53 is cracked or broken.
[0014]
Further, it may be possible to provide a guide in which a groove structure for fixing a plurality of wafers 53 is fixed in the washing tank 51 to prevent the wafers 53 from sticking to each other, but a member called a guide with grooves is required separately. In addition, it is difficult to adjust the position of the guide and the holding groove 54a of the wafer guide 54, and the flow of the liquid in the washing tank 51 is hindered by the guide, so that the processing liquid replacement characteristic is deteriorated. is there.
[0015]
The present invention solves the above-described conventional problems, and does not require a separate grooved guide as described above, and prevents the substrates from sticking to each other during rapid drainage of the entire liquid in the tank. It is an object of the present invention to provide a substrate processing method and a substrate processing apparatus that can be used.
[0016]
[Means for Solving the Problems]
The substrate processing method of the present invention is a substrate processing method for immersing a substrate in an immersion processing liquid stored in a processing tank and draining the immersion processing liquid from the processing tank. While the liquid level is located in a section from the height of the upper end of the substrate to a height of at least 20 percent of the substrate diameter from the liquid level of the immersion treatment liquid, it is directed toward the shower liquid substrate. Than when it is located below the section Perform with small flow rate (Claim 1).
[0017]
By this method, while the liquid level of the immersion treatment liquid that has immersed the entire substrate is located in a section from the height of the upper end of the substrate to the required height at which a part of the substrate comes out of the liquid level of the immersion treatment liquid, The supply of the shower liquid toward the substrate is suppressed or stopped from the time when the liquid level is located below the section. For this reason, when the liquid surface of the immersion treatment liquid is in the section, the vibration of the substrate due to the shower liquid being supplied toward the substrate is reduced or eliminated, and the substrate can be drained without contact with each other. And, since the liquid level is lower than the section, a part of the substrate has already come out of the processing liquid, so that it is difficult for the upper ends of the substrates to contact each other by the flow of the liquid, Even if the supply amount of the shower liquid toward the substrate is increased, even if the vibration due to the large amount of shower liquid supplied toward the substrate is added to the substrate, the substrates do not stick to each other. In this way, the degree of supply of the shower liquid toward the substrate is changed according to the height relationship between the substrate and the liquid level of the immersion treatment liquid, so there is no sticking due to contact between the surfaces of the substrate and damage to the substrate Is prevented.
[0018]
Further, the substrate processing apparatus of the present invention stores an immersion treatment liquid, a treatment tank for immersing the substrate in the immersion treatment liquid, a drainage means for discharging the immersion treatment liquid stored in the treatment tank, and supplies the liquid to the substrate. And a controller for controlling the drainage means and the shower liquid supply means, wherein the control section is configured so that the liquid level of the immersion treatment liquid is changed from the height of the upper end of the substrate to the diameter of the substrate. On the other hand, the height of at least 20 percent is located in the required section until it comes out from the surface of the immersion treatment liquid. During the first Control to the shower liquid supply mode, the liquid level of the immersion treatment liquid from the above section Below, the second Control to shower liquid supply mode In the first shower liquid supply mode, the shower liquid is supplied to the substrate at a smaller flow rate than in the second shower liquid supply mode, or the shower liquid supply to the substrate is stopped. In the second shower liquid supply mode, the shower liquid is supplied to the substrate at a larger flow rate than in the first shower liquid supply mode. (Claim 2).
[0019]
With this configuration, while the liquid level of the immersion treatment liquid that has immersed the entire substrate is located in the section from the height of the upper end of the substrate to the required height at which a part of the substrate comes out of the liquid level of the immersion treatment liquid, The supply of the shower liquid toward the substrate is controlled in a first shower liquid supply mode, that is, a mode in which the supply of the shower liquid to the substrate is suppressed or stopped. For this reason, when the liquid surface of the immersion treatment liquid is in the section, the vibration of the substrate caused by the supply of the shower liquid toward the substrate is reduced or eliminated, and the substrates do not come into contact with each other. And since the part of the substrate has already come out of the processing liquid after the liquid level has dropped from the section, it is difficult for the upper ends of the substrates to contact each other due to the flow of the liquid. Even if the shower liquid supply mode (2), that is, the amount of shower liquid supplied to the substrate is increased or the substrate is subjected to the vibration caused by supplying a large amount of shower liquid toward the substrate, the substrates adhere to each other. There is nothing. Since the liquid is drained while being controlled so that the mode of supplying the shower liquid toward the substrate is changed according to the height relationship between the substrate and the liquid level of the immersion treatment liquid, the surfaces of the substrates are in contact with each other. This prevents sticking and prevents damage to the substrate.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the embodiments described below.
[0021]
(Embodiment)
FIG. 1 is a plan view showing a schematic configuration of a wet station incorporating a substrate processing apparatus suitable for carrying out a substrate processing method according to an embodiment of the present invention, and a surface indicated by an arrow F is the front of the apparatus.
[0022]
In FIG. 1, a wet station 1 transfers a plurality of wafers 2 from a carrier 3 containing a plurality of wafers 2 to a transfer robot (not shown) for transferring the wafers 2 to each processing bath. The wafer transfer unit 5 on the loading side for loading, the wafer transfer unit 6 on the unloading side for transferring a plurality of wafers 2 from the transfer robot to the carrier 3 at the same time, and the wafer transfer unit. 5 is a process in which a series of various processes such as a chemical process and a washing process are performed on the wafer 2 by sequentially immersing the wafer 2 across a plurality of processing tanks each storing various processing liquids, which are chemicals or pure water. A unit 7 and a drying unit 8 that is disposed between the processing unit 7 and the wafer transfer unit 6 on the carry-out side and spin-drys the wafer 2 processed by the processing unit 7 are provided.
[0023]
This processing unit 7 is adjacent to a hand cleaning unit 9 for cleaning a hand part of a transfer robot (not shown) for transferring a plurality of wafers 2 to each of these processing tanks, and the hand cleaning unit 9 side. For example, the first phosphoric acid treatment unit 10 having a chemical solution tank storing a phosphoric acid solution or the like as a chemical solution for removing a nitride film, and performing chemical treatment by immersing the wafer 2 in the chemical solution bath, and the phosphoric acid treatment unit 10 side And a second phosphoric acid treatment section 11 that has a chemical solution tank in which a phosphoric acid solution is stored as a chemical solution for removing a nitride film similar to the above, and performs chemical treatment by immersing the wafer 2 in the chemical solution bath. In one embodiment of the substrate processing apparatus of the present invention, adjacent to the phosphoric acid processing unit 11 side, a functional water washing processing unit 12 that quickly rinses phosphoric acid and particles attached to the wafer 2 and the functional water washing processing unit 12 side. Adjacent and final wafer 2 It has the processing order of steps and a final washing section 13 for washing the.
[0024]
Here, the first and second phosphoric acid treatment units 10 and 11 are provided because the nitride film removal process as the chemical solution treatment by these phosphoric acid treatment units 10 and 11 takes a longer time than the treatment by the other treatment units. Therefore, the nitride film removal process is performed in parallel to shorten the processing tact. The functional water washing processing unit 12 is provided because the function of removing the nitride film proceeds when phosphoric acid attached to the wafer 2 remains in the tank, so that the wafer 2 with the phosphoric acid solution is immersed in pure water. The concentration of the phosphoric acid solution detached from the wafer 2 with respect to the pure water is quickly and abruptly reduced by rapidly draining immediately after the discharge and replacing with the pure water, thereby stopping the progress of the nitride film removing function. Because.
[0025]
FIG. 2 is a schematic diagram showing a schematic configuration of the functional water washing treatment unit 12 of FIG.
[0026]
In FIG. 2, the functional water washing processing unit 12 includes a water washing tank 21 as a treatment tank whose upper side is opened so that a plurality of wafers 2 can be immersed in pure water filled therein, and the inside of the water washing tank 21. A pure water supply means 22 for supplying pure water for overflow to the lift, and a lifter 24 as an elevating means for transferring the wafers 2 into the pure water in the washing tank 21 while holding a plurality of wafers 2 delivered from the transfer robot, A draining means 25 for rapidly draining the treated liquid (in this embodiment, a solution in which phosphoric acid is mixed with pure water) after the wafer 2 is washed in the washing tank 21, and pure water Shower means 26 for showering toward the upper surface portion of the wafer 2 and control means 27.
[0027]
The pure water supply means 22 is disposed so as to face the bottom in the washing tank 21, and a plurality of nozzle openings (not shown) for discharging pure water are disposed in the direction of the immersed wafer 2. A pair of cylindrical members 28, a piping member 29 connected to the pair of cylindrical members 28 and allowing pure water to pass therethrough, and a flow rate adjusting valve member 30 disposed in the middle of the piping member 29. Then, by opening the valve member 30, the pure water is continuously supplied through the piping member 29 and the plurality of nozzle ports (not shown) of the pair of cylindrical members 28, so that the upper opening end 21a of the rinsing tank 21 is maintained. The pure water is allowed to overflow from the water, and the chemical solution and particles adhering to the surface of the wafer 2 during the chemical solution treatment are flowed out of the tank together with the pure water.
[0028]
Further, the lifter 24 receives and holds the plurality of wafers 2 at predetermined intervals (half pitch P / 2) by the groove portions of the three wafer guides 23 from below, with each main surface standing vertically. In this state, the position A where the wafer 2 and the wafer guide 23 are placed above and below the position A where the wafer 2 is immersed in pure water, which is a rinsing liquid in the water rinsing tank 21, and the water rinsing process is moved up and down. It is configured to move up and down.
[0029]
Further, the drainage means 25 is connected to the drainage port 31 disposed at the lowermost portion of the side wall of the washing tank 21 facing the surfaces of the plurality of wafers 2 to be immersed, and has been processed by being connected to the drainage port 31. It has a piping member 32 through which the liquid is drained and a flow rate adjusting valve member 33 arranged in the middle of the piping member 32. By opening the valve member 33, the inside of the washing tank 21 is provided. The processed liquid is drained rapidly, and when the wafer 2 is immersed and overflowed, the valve member 33 is closed so that the processed liquid in the washing tank 21 overflows and flows out of the tank.
[0030]
Furthermore, the shower means 26 is disposed opposite to each other above the upper opening end 21a of the washing tank 21, and a plurality of nozzle openings (not shown) for discharging pure water are obliquely downward (in the direction of the wafer 2). A pair of cylindrical members 34 disposed toward the pipe, a piping member 35 connected to the pair of cylindrical members 34 and allowing pure water to pass therethrough, and a flow rate adjusting valve disposed in the middle of the piping member 35 The surface of the wafer 2 is partially made by showering pure water from the nozzle ports (not shown) of the pair of cylindrical members 34 facing each other toward the upper surface portion of the wafer 2. It prevents exposure to the air and suppresses the growth of the natural oxide film.
[0031]
Further, the control means 27 is composed of a sequencer, a microcomputer, and the like, and the pure water in the washing tank 21 is controlled by opening / closing the valve members 30, 33, 36 by control signals from the sequencer and the microcomputer, respectively. Until the upper part of the wafer 2 reaches a position above the surface, the drainage means 25 controls the drainage so that the pure water shower flow from the shower means 26 toward the wafer 2 is reduced. The shower process is performed in the first shower liquid supply mode, and then the shower process is performed in the second shower liquid supply mode in which the pure water shower flow toward the wafer 2 is larger than that in the first shower liquid supply mode. While performing, it has the structure which controls so that the processed liquid in the washing tank 21 may be drained rapidly by the drainage means 25.
[0032]
That is, the control means 27 is connected to the electromagnetic valve control terminals of the valve members 30, 33 and 36, respectively, and after the valve member 30 is controlled to be closed to stop the supply of pure water for overflow, the valve member 33 is stopped. The first shower is a small flow rate with the valve member 36 opened and closed until the upper part of the wafer 2 comes out on the liquid level during the drainage. After the shower process is performed in the liquid supply mode and a part of the upper side of the wafer 2 comes out on the liquid surface, the shower process is performed in the second shower liquid supply mode in which the shower is performed at a large flow rate with the valve member 36 wide open. To control.
[0033]
In addition, how much of the upper portion of the wafer 2 is controlled to the first shower liquid supply mode in which the flow rate of pure water is adjusted to the height at which the wafer 2 is exposed to the liquid level. Depending on the substrate arrangement pitch in the alignment direction and various other conditions, for example, as the substrate arrangement pitch is narrower, it is necessary to control the first shower liquid supply mode to a position where the upper end of the wafer 2 protrudes as high as possible. There is. That is, the upper part of the wafer 2 comes out of the surface as much as possible, and the wafer 2 is not so strongly affected by the force of the flow caused by the drainage. It is desirable to control the shower process to the first shower liquid supply mode in which the flow rate of pure water is reduced and adjusted until the sticking phenomenon does not occur. However, the surface of the wafer 2 is exposed to the air even in the first shower liquid supply mode until the upper portion of the wafer 2 comes out more than necessary, that is, below the required height at which the wafer 2 does not stick. It is not appropriate only because the trouble caused by the
[0034]
The operation of the above configuration will be described below.
[0035]
First, the wet station 1 is installed in the clean room, and the operator places each carrier 3 on the first table in the wafer transfer section 5 on the wafer carry-in side from the front direction. Thereafter, driving is started by a switch operation by an operator, and the plurality of wafers 2 are collectively transferred from the carrier 3 containing the plurality of wafers 2 to a transfer robot (not shown).
[0036]
Next, the plurality of wafers 2 are collectively delivered to the lifter 24 by the robot hand of the transfer robot so that the plurality of wafers 2 are immersed in the processing liquid in each processing tank of the processing unit 7 by the lifter 24. Are sequentially conveyed to be subjected to various processes.
[0037]
In the rinsing process in the processing unit 7, there is a functional water washing processing unit 12 for quickly washing the chemical solution adhering in the chemical bath from the wafer 2. The operation of the functional water washing processing unit 12 will be described in detail below.
[0038]
3 (a) to 3 (e) are longitudinal sectional views schematically showing each step in the functional water washing treatment section 12 of FIG. 1, (a) is a wafer rising state, (b) is wafer immersion and Overflow state, (c) is a rapid drain state after showering in the first shower liquid supply mode, (d) is a rapid drain state after showering in the second shower liquid supply mode, (e) Shows an upflow state after showering in the second shower liquid supply mode.
[0039]
As shown in FIG. 3A, the wafer is transferred from the phosphoric acid processing unit 11 by a transfer robot (not shown) and delivered to the lifter 24. The lifter 24 receives a plurality of wafer guides 23 from the lower side. As shown in FIG. 3 (b), the plurality of wafers 2 are immersed in pure water in the rinsing tank 21 together with the wafer guides 23 as shown in FIG. 3B.
[0040]
The control means 27 controls the valve member 30 to the open state and controls the valve member 33 to the closed state before the lifter 24 is lowered, and supplies pure water disposed on both sides of the bottom in the washing tank 21. Pure water is supplied from each nozzle part (not shown) of the pair of cylindrical members 28 toward each immersed wafer 2, and the supplied pure water is supplied from the upper opening end 21 a of the rinsing tank 21. The chemical solution that overflows and adheres to the surface of the wafer 2 during the chemical treatment or the substance (particles) generated by the chemical treatment is poured out of the tank. The overflow processing step shown in FIG. 3 (b) is continued for the overflow processing time that is empirically required for cleaning the wafer 2 or that has been determined in advance through experiments. Alternatively, the overflow processing step is continued until it is determined from the characteristics of pure water in the water rinsing tank 21 detected by various sensors attached to the water rinsing tank 21 that the situation for overflow processing has been reached.
[0041]
Further, in this embodiment, the control means 27 closes the valve member 30 at time T1 when the overflow processing step ends, as shown in FIG. 4 (a) to FIG. 4 (c). The valve member 33 is controlled to the open state, and the valve member 36 is controlled to the open state. By controlling in this way, the draining process in the first shower liquid supply mode is performed.
[0042]
That is, as shown in FIG. 3 (c), the supply of pure water from the pair of cylindrical members 28 is stopped, the liquid is rapidly discharged from the drain port 31, and the pair of cylindrical members 34 opposed to the shower means 26 are used. Pure water is showered at a small flow rate in the first shower liquid supply mode, that is, toward the upper portion of the surface of the wafer 2 with a small flow rate.
[0043]
In the shower in the first shower liquid supply mode, since the flow rate of pure water supplied to the shower is reduced, the surface of the wafer 2 is exposed to air if the entire wafer is on the liquid surface. Although the flow rate is insufficient to prevent exposure, at this point in time, the wafer 2 is still only part of the upper end from the water surface, and even immediately after it exits from the pure water level. Therefore, the surface of the wafer 2 is not exposed to air or dried. Rather, it should be noted that in order to reduce the shower flow rate, the impact of the individual wafers 2 due to the showering of pure water toward the wafers 2 can be reduced, and the wafers 2 can be individually oscillated and the upper end of the wafers 2 Sticking together is avoided.
[0044]
Further, as shown in FIGS. 4 (a) to 4 (c), the control means 27 controls the level of pure water in the rinsing tank 21 to a required height at which a part of the upper side of the wafer 2 comes out of the liquid level. When the time Tn decreases, the control in the open state of the valve member 33 continues, and a flow rate sufficient to prevent the surface of the wafer 2 from being exposed to the air flows through the valve member 36 for shower. Control to a large open state. By controlling in this way, as shown in FIG.3 (d), the drainage process in 2nd shower liquid supply mode is performed. That is, the supply of pure water from the pair of cylindrical members 28 is stopped, the liquid is rapidly discharged from the drain port 31, and the pure water is supplied from the pair of cylindrical members 34 opposed to the shower means 26 to the second shower liquid supply. That is, a large flow rate is supplied toward the upper portion of the surface of the wafer 2. In the shower in the second shower liquid supply mode, the pure water supplied after being showered has a flow rate sufficient to surely prevent the surface of the wafer 2 from being exposed to the air. The impact given to the wafer 2 only for the shower is larger than the first shower liquid supply mode. However, a part of the upper end of each wafer 2 has already come out above the liquid level, so that the wafer 2 is not unstablely shaken so as to drift in the liquid, and the liquid level drops when it is slightly shaken. Since no liquid exists between the upper end and the upper end of the wafer 2, the liquid existing between the upper end and the upper end of the wafer 2 attracts the upper ends of the wafer 2 so that the sticking phenomenon no longer occurs. It does not occur and the wafers 2 do not stick to each other.
[0045]
As described above, the pure water supply operation from the shower means 26 is switched from the first shower liquid supply mode to the second shower liquid supply mode on the liquid surface in the rinsing tank 21 due to the decrease in the liquid surface. In this embodiment, when the predetermined portion on the upper side of the wafer 2 comes out at the time Tn, the switching timing of the upper portion of the wafer 2 having a diameter of 200 mm is an upper 40 mm portion (exposure ratio of 20% to the diameter). When it comes out on the liquid level. In this case, there was no sticking between the wafers 2 due to a drop in the liquid level during drainage, and drainage was tried many times, but damage to the surface of the wafer 2 could be completely prevented.
[0046]
The timing of switching from the shower in the first shower liquid supply mode to the second shower liquid supply mode at the end of the period of showering in the first shower liquid supply mode, if there are many portions that exit from the liquid surface of the wafer 2 The greater the number, the more reliably the wafer 2 can be prevented from being damaged due to the sticking between the wafers 2, but after the sticking between the wafers 2 no longer occurs, the portion of the wafer 2 that protrudes from the liquid surface is further increased. It is useless. The optimum mode switching is the distance between the wafers 2 and the distance from the upper end of the wafer 2 (the distance “L” shown in FIG. 3D) is optimal after the liquid level is lowered. It is determined by (substrate arrangement pitch), its material, thickness, and holding state.
[0047]
Subsequently, as shown at time T3 in FIGS. 4 (a) to 4 (c), the control means 27 is configured to store all the water stored in the water rinsing tank 21 by the draining process in the second shower liquid supply mode. At time T3 when the liquid is discharged, the valve member 33 is controlled to be closed, the valve member 30 is controlled to be opened, and the shower valve member 36 is controlled to be kept largely open. By controlling in this way, an upflow process is performed as shown in FIG. That is, the supply of pure water from the pair of cylindrical members 28 is restarted, the drainage from the drainage port 31 is stopped, and pure water is supplied from the pair of cylindrical members 34 opposed to the shower means 26 to the second shower. The shower is performed in the liquid supply mode, and this upflow process is continued until time T4 sufficient for the entire wafer 2 to be immersed in pure water.
[0048]
Thereafter, the state returns to the state shown in FIG. 3 (b), and pure water is supplied from each nozzle portion of the pair of tubular members 28 in the water rinsing tank 21, so that pure water is supplied from the upper opening end 21 a of the water rinsing tank 21. Is overflowed, and the chemical solution adhering to the surface of the wafer 2 and the substance (particles) generated by the chemical treatment are poured out of the tank together with pure water.
[0049]
Further, in the same manner as described above, the control means 27 controls the valve members 30, 33 and 36, respectively, so that the wafer immersion and overflow, the stop thereof, the rapid drainage in the first shower liquid supply mode, the second The chemical solution for the wafer 2 can be quickly removed by repeating the steps of rapid drainage in the shower liquid supply mode, up-flow and subsequent shower output stoppage, and overflow a predetermined number of times to quickly remove the chemical solution and particles from the surface of the wafer 2. The functional water-washing treatment to prevent the influence of is terminated.
[0050]
Further, the wafer 2 is finally washed with the final water washing processing unit 13, and the plurality of wafers 2 processed by the final water washing processing unit 13 are spin-dried with the drying unit 8. In this way, the plurality of wafers 2 that have been subjected to the predetermined surface treatment and spin-dried are transported and recovered by the transport robot (not shown) to the transporting unit 6 on the transport side, and transferred to the transport side. In the replacement unit 6, contrary to the case of the wafer transfer unit 5, the two transfer carriers 3 are divided into two wafer groups and transferred to the front and rear carriers 3, respectively. The operator may carry out the two carriers 3 in which a plurality of processed wafers 2 are accommodated.
[0051]
Accordingly, since the plurality of wafers 2 as the respective substrates are received and held by the groove portions of the wafer guide 23 of the lifter 24 from below, the rapid liquid level at the time of rapid drainage of all the liquid in the tank is obtained. A force is exerted so that the upper sides of the wafers 2 are attracted to each other with the lowering, and the wafers 2 are easily influenced by the force of inclining toward the upper side, and the wafers 2 are likely to stick to each other. Since the pure water is supplied to the wafer 2 in the first shower liquid supply mode as described above and then in the second shower liquid supply mode, the wafers 2 stick to each other. Is resolved.
[0052]
In particular, even when the holding interval of the wafer 2 is reduced to a half pitch, the surfaces of the wafers 2 are brought into contact with each other without changing the specifications such as attaching a guide in the washing tank 21 as in the prior art. Damage can be prevented. In addition, in order to prevent such sticking between the wafers 2, it is possible to have a simple configuration and control by simply switching the flow rate of the shower means 26 by the control means 27 during drainage.
[0053]
Moreover, in the said embodiment, although the 1st shower liquid supply mode was decided to restrict | squeeze the flow volume which supplies pure water from the shower means 26 rather than the 2nd shower liquid supply mode, the 1st shower liquid supply mode is The liquid supply from the shower means 26 may be stopped. The following special effects can be expected by stopping the supply, rather than reducing the flow and suppressing the supply. That is, the splash of the liquid to be showered falls between the adjacent wafers 2 and adheres so as to bridge between the surfaces of the wafers 2, and the upper end and the upper end of the wafer 2 are bonded by the action of the surface tension. Regarding the sticking between the wafers 2 caused by the phenomenon of attracting each other, it can be expected that the wafers 2 can be completely eliminated only by stopping the shower.
[0054]
In the above-described embodiment, the pure water supply from the shower means 26 is performed in the first shower liquid supply mode as described above until the liquid level is lowered by the drainage until reaching the upper end of the wafer 2. However, until the lowering of the liquid level reaches the upper end of the wafer 2, the wafer 2 is still completely immersed in pure water, so that it is not always necessary to supply pure water from the shower means 26. Alternatively, the second shower liquid supply mode may be used.
[0055]
Moreover, in the said embodiment, although the 1st shower liquid supply mode was decided to restrict | squeeze the flow volume which supplies pure water from the shower means 26 rather than the 2nd shower liquid supply mode, the 1st shower liquid supply mode is The flow rate of pure water to be supplied is the same as that in the second shower liquid supply mode, except that the shower nozzle supplies pure water so that the destination of the supplied pure water does not face the wafer 2. The pure water may not be supplied toward the wafer 2 in the first shower liquid supply mode by changing the direction or moving the shower nozzle.
[0056]
Moreover, in the said embodiment, although switching from 1st shower liquid supply mode to 2nd shower liquid supply mode was made to switch at a stretch, 1st shower liquid supply mode and 2nd shower liquid supply mode In the meantime, an intermediate mode may be prepared so that the mode changes slowly.
[0057]
Further, in the above embodiment, the switching from the first shower liquid supply mode to the second shower liquid supply mode is performed when the valve member 33 is opened in advance while showering in the first shower liquid supply mode. A method in which the time until the liquid level is lowered to a required height at which a part of the immersion liquid comes out from the liquid surface is obtained, and the time is managed by a timer built in the control means 27. At the time Tn when the liquid level drops to the required height from the liquid level, the first shower liquid supply mode is automatically switched to the second shower liquid supply mode, but the liquid level sensor is used. Switching may be performed by directly detecting the required height at which a part of the substrate comes out of the surface of the immersion treatment liquid with a sensor.
[0058]
In the above embodiment, the liquid level of the immersion treatment liquid is lowered with respect to the substrate by draining exclusively. For example, a part of the substrate is not drained and the liquid level of the immersion treatment liquid is reduced. The lifter 24 is slightly raised until it comes out, so that a part of the substrate comes out of the surface of the immersion treatment liquid, and the supply of the shower liquid to the substrate is suppressed or stopped while the lifter 24 is raised. The first shower liquid supply mode may be controlled, and then the immersion treatment liquid may be drained while showering in the second shower liquid supply mode.
[0059]
Moreover, in the said embodiment, although the speed | rate which drains the processed liquid which performed the washing process to the wafer 2 in the washing tank 21 from the washing tank 21 is not changed, the liquid level is the wafer 2. While being located in the section from the height of the upper end to the required height at which a part of the wafer 2 comes out of the liquid level, it is controlled to be in the first shower liquid supply mode than when it is located below the predetermined section. When this is done, the draining speed may be varied to be slower than when controlling to the second shower liquid supply mode. For example, two draining means are prepared: a first draining means for draining at a low speed and a second draining means for draining at a higher speed than that. First, the first draining means drains at a low speed. After the liquid is discharged and a part of the upper side of the wafer 2 comes out on the water surface, the liquid may be discharged at a high speed by the second liquid discharging means. In order to do so, for example, a drainage port with a small opening area for low-speed drainage and a drainage port with a large opening area for high-speed drainage are provided for the washing tank 21, It should be possible to switch freely.
[0060]
The wet station 1 of the above embodiment is an example of a multi-tank substrate processing apparatus to which the functional water washing processing unit 12 according to the present invention is applied, and its specific configuration does not depart from the gist of the present invention. The range can be changed as appropriate. For example, it is needless to say that the present invention can be applied not only to a multi-tank type substrate processing apparatus but also to a single tank type substrate processing apparatus when a processing liquid is quickly discharged to replace the processing liquid. is there. Further, for example, in the above-described embodiment and 2, the present invention is applied to the functional water washing treatment unit 12, but is not limited to the functional water washing treatment unit 12, and is applied when replacing the treatment liquid. May be adapted. Furthermore, in the processing unit 7 of the above-described embodiment and 2, the tank configuration of the nitride film removal process has been described as a series of various chemical processing, but in addition to this nitride film removal process, a resist stripping process, an oxide film etching process Needless to say, various chemical treatments such as light etching treatment and pre-diffusion washing treatment may be used.
[0061]
As described above, the present invention can be applied to a so-called one-bath type substrate processing apparatus that performs chemical treatment in addition to the functional water washing treatment in the same tank. The applicable range of the substrate processing apparatus according to the present invention is not limited to the functional water washing processing unit 12 according to the present embodiment, but can be applied to all substrate processing apparatuses that perform processing by immersing a substrate.
[0062]
【The invention's effect】
As described above, according to the method of the first aspect of the present invention, when the processing liquid is drained from the processing tank, the liquid level of the immersion processing liquid changes from the height of the upper end of the substrate to a part of the substrate. Since the supply of the shower liquid toward the substrate is suppressed or stopped while the liquid is positioned in a section up to the required height from the liquid surface of the immersion treatment liquid, pure water is showered toward the wafer 2. Since the impact received by each wafer 2 can be reduced, it is reliably avoided that the wafers 2 individually vibrate and the upper ends of the wafers 2 stick to each other.
[0063]
According to the second aspect of the present invention, the controller that controls the drainage means and the shower liquid supply means is configured such that the liquid level of the immersion treatment liquid is a part of the substrate from the height of the upper end of the substrate. Is positioned in a section up to the required height from the surface of the immersion treatment liquid, the first shower liquid supply mode for suppressing or stopping the supply of the shower liquid to the substrate is controlled, and the liquid level of the immersion treatment liquid is controlled. However, below the required section, since the second shower liquid supply mode for increasing the supply of the shower liquid to the substrate than the first shower liquid supply mode is controlled, the liquid level of the immersion treatment liquid is While positioned in the section, since the supply of the shower liquid to the substrate is suppressed or stopped, the vibration of the substrate due to the supply of the shower liquid is reduced or eliminated, and the substrates do not come into contact with each other.
[0064]
And, since the liquid level has dropped to the required distance, a part of the substrate has already come out of the processing liquid, so it is difficult for the upper ends of the substrates to contact each other due to the flow of the liquid. Even if the amount of shower liquid supplied to the substrate is increased or the vibration caused by supplying a large amount of shower liquid toward the substrate is applied to the substrate, the substrates do not stick to each other and drain quickly. Since the liquid is drained while controlling the supply mode of the shower liquid toward the substrate so as to change according to the liquid level of the immersion treatment liquid, there is no sticking due to contact between the surfaces of the substrates. Damage to the substrate is prevented.
[Brief description of the drawings]
FIG. 1 is a plan view showing a schematic configuration of a wet station incorporating a substrate processing apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a configuration of a functional water washing treatment unit in FIG. 1;
3 is a longitudinal sectional view schematically showing each step in the functional water washing treatment section of FIG. 1, wherein (a) is a wafer rising state, (b) is a wafer immersion and overflow state, and (c) is a first step. (D) Rapid drainage state in the second shower liquid supply mode, (e) is a diagram showing an upflow state.
4A is an operation timing chart showing control of pure water for overflow, FIG. 4B is shower output, and FIG. 4C is drainage control.
FIGS. 5A and 5B are vertical cross-sectional views of a chemical solution processing unit and a functional water cleaning processing unit schematically showing each process in a conventional functional water washing process, where FIG. 5A is a wafer rising state, FIG. 5B is a wafer immersion and overflow state, (C) is a rapid drainage and shower output state, and (d) is an upflow and shower output state.
FIGS. 6A and 6B are operation timing charts showing (a) supplying pure water for overflow, (b) shower output, and (c) rapid drainage control in the conventional functional water washing process.
7A is a partial vertical cross-sectional view of a plurality of wafers and a wafer guide holding groove in FIG. 5A, and FIG. 7B is a wafer showing a state in which wafers are stuck together due to a rapid drop in liquid level. FIG. 6 is a partial longitudinal sectional view of a holding groove portion of the wafer guide.
[Explanation of symbols]
1 Wet station
2 Semiconductor wafer
7 Processing unit
12 Functional water washing treatment department
21, 41, 51 Flush tank
21a Upper open end
22 Pure water supply means
23 Wafer guide
25 Drainage means
26 Shower means
27 Control means
28, 34 Tubular member
30, 33, 36 Valve member
31 Drain outlet

Claims (2)

処理槽に貯留された浸漬処理液に基板を浸漬し、
処理槽内より浸漬処理液を排液する際に、
基板に液をシャワーする基板処理方法において、
浸漬処理液の液面が、基板上端の高さから、基板の直径に対して少なくとも20パーセントの高さが浸漬処理液の液面より出るまでの区間に位置する間は、前記シャワー液の基板へ向けての供給を、前記区間より下に位置するときより小流量で行うことを特徴とする基板処理方法。
Immerse the substrate in the immersion treatment liquid stored in the treatment tank,
When draining the immersion treatment liquid from the treatment tank,
In a substrate processing method of showering a liquid on a substrate,
While the liquid level of the immersion treatment liquid is located in a section from the height of the upper end of the substrate to a height of at least 20 percent of the diameter of the substrate from the liquid level of the immersion treatment liquid, the shower liquid substrate The substrate processing method is characterized in that the supply toward the substrate is performed at a smaller flow rate than when the substrate is located below the section.
浸漬処理液を貯留し、基板を浸漬処理液に浸漬する処理槽と、
処理槽が貯留する浸漬処理液を排出する排液手段と、
基板に液を供給するシャワー液供給手段と、
前記排液手段と前記シャワー液供給手段を制御する制御部とを備え、
前記制御部は、
浸漬処理液の液面が、基板上端の高さから、基板の直径に対して少なくとも20パーセントの高さが浸漬処理液の液面より出るまでの所要区間に位置する間、第1のシャワー液供給モードに制御し、
浸漬処理液の液面が前記区間より下では、第2のシャワー液供給モードに制御するものであり、
前記第1のシャワー液供給モードでは、前記シャワー液の基板への供給を前記第2のシャワー液供給モードより少ない流量で行い、または、前記シャワー液の基板への供給を停止し、
前記第2のシャワー液供給モードでは、前記シャワー液の基板への供給を前記第1のシャワー液供給モードよりも大流量で行う
ことを特徴とする基板処理装置。
A treatment tank for storing the immersion treatment liquid and immersing the substrate in the immersion treatment liquid;
A drainage means for discharging the immersion treatment liquid stored in the treatment tank;
Shower liquid supply means for supplying liquid to the substrate;
A controller for controlling the drainage means and the shower liquid supply means,
The controller is
While the liquid level of the immersion treatment liquid is positioned in a required section from the height of the upper end of the substrate to a height of at least 20 percent of the diameter of the substrate from the liquid level of the immersion treatment liquid , the first shower liquid Control to supply mode,
When the liquid level of the immersion treatment liquid is below the section , the second shower liquid supply mode is controlled .
In the first shower liquid supply mode, the shower liquid is supplied to the substrate at a lower flow rate than the second shower liquid supply mode, or the shower liquid supply to the substrate is stopped,
In the second shower liquid supply mode, the substrate processing apparatus is configured to supply the shower liquid to the substrate at a larger flow rate than in the first shower liquid supply mode .
JP05561099A 1999-03-03 1999-03-03 Substrate processing method and substrate processing apparatus Expired - Fee Related JP3794860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05561099A JP3794860B2 (en) 1999-03-03 1999-03-03 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05561099A JP3794860B2 (en) 1999-03-03 1999-03-03 Substrate processing method and substrate processing apparatus

Publications (2)

Publication Number Publication Date
JP2000252247A JP2000252247A (en) 2000-09-14
JP3794860B2 true JP3794860B2 (en) 2006-07-12

Family

ID=13003543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05561099A Expired - Fee Related JP3794860B2 (en) 1999-03-03 1999-03-03 Substrate processing method and substrate processing apparatus

Country Status (1)

Country Link
JP (1) JP3794860B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488158B2 (en) * 1999-12-28 2004-01-19 Necエレクトロニクス株式会社 Wafer cleaning method

Also Published As

Publication number Publication date
JP2000252247A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
US6875289B2 (en) Semiconductor wafer cleaning systems and methods
US8043468B2 (en) Apparatus for and method of processing substrate
KR0147043B1 (en) Cleaning device
US6352083B1 (en) Substrate treating apparatus and substrate treating method
JP3794860B2 (en) Substrate processing method and substrate processing apparatus
JP3839553B2 (en) Substrate processing tank and substrate processing apparatus
JP3715421B2 (en) Substrate processing apparatus and substrate processing method
JP3464353B2 (en) Sheet material supply device
JP4215869B2 (en) Substrate processing method and substrate processing apparatus
JP3697063B2 (en) Cleaning system
JPH11145105A (en) Cleaning device
JP2000254603A (en) Treating device and treatment method
JPS62156659A (en) Method and apparatus for cleaning
WO1999034420A1 (en) Wafer cleaning equipment and tray for use in wafer cleaning equipment
KR100549203B1 (en) Method and apparatus for wafer transaction
JP3756321B2 (en) Substrate processing apparatus and method
JPH11319736A (en) Method and apparatus for processing substrate
JP2000126702A (en) Apparatus and method for rinsing
JPH11283947A (en) Substrate processing device and method
JP3600746B2 (en) Substrate processing equipment
JPH11162904A (en) Substrate treatment apparatus
JP2000133629A (en) Substrate processor and its method
JP2000218243A (en) Substrate treating device
JP3333664B2 (en) Cleaning method and cleaning device
JP2000150438A (en) Substrate processing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees