JP3791171B2 - Electric double layer capacitor and electrolytic solution therefor - Google Patents

Electric double layer capacitor and electrolytic solution therefor Download PDF

Info

Publication number
JP3791171B2
JP3791171B2 JP02750398A JP2750398A JP3791171B2 JP 3791171 B2 JP3791171 B2 JP 3791171B2 JP 02750398 A JP02750398 A JP 02750398A JP 2750398 A JP2750398 A JP 2750398A JP 3791171 B2 JP3791171 B2 JP 3791171B2
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
electrolytic solution
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02750398A
Other languages
Japanese (ja)
Other versions
JPH10326725A (en
Inventor
健 河里
学 数原
和也 平塚
学 對馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP02750398A priority Critical patent/JP3791171B2/en
Publication of JPH10326725A publication Critical patent/JPH10326725A/en
Application granted granted Critical
Publication of JP3791171B2 publication Critical patent/JP3791171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【0001】
【発明の属する技術分野】
本発明は電気二重層コンデンサ及びそのための電解液に関する。
【0002】
【従来の技術】
従来の電気二重層コンデンサの形状としては、集電体上に形成した活性炭を主体とする一対の分極性電極の間にセパレータを挟んだ素子を、電解液とともに金属ケースに収容し、ガスケットを介して金属蓋によって密封したコイン型、又は一対のシート状分極性電極の間にセパレータを介して巻回してなる素子を電解液とともに金属ケース中に収容し、ケースの開口部から電解液が蒸発しないように封口した巻回型のものがある。
【0003】
また、大電流大容量向けとして、多数のシート状分極性電極を、間にセパレータを介して積層してなる素子が組み込まれた積層型の電気二重層コンデンサも提案されている(特開平4−154106、特開平3−203311、特開平4−286108)。すなわち、矩形に成形されたシート状分極性電極を正極及び負極とし、間にセパレータを介して交互に積層して素子とし、正極及び負極それぞれの端部に正極リード部材及び負極リード部材をかしめにより接続した状態でケース中に収容し、素子に電解液を含浸して蓋で密閉している。
【0004】
従来の電気二重層コンデンサの電解液には、硫酸等の鉱酸、アルカリ金属塩又はアルカリを含む水系電解液の他、各種非水系電解液が用いられている。非水系電解液の溶媒には、プロピレンカーボネート、γ−ブチロラクトン、アセトニトリル、ジメチルホルムアミド(特開昭49−68254)や、スルホラン誘導体等(特開昭62−237715)が知られている。
【0005】
耐電圧を比較すると水系電解液は0.8Vに対し、非水系電解液は2.5〜3.3Vであり、コンデンサの静電エネルギーは耐電圧の2乗に比例するので、静電エネルギーの点では非水系電解液の方が有利である。しかし、上述の非水系電解液は水系電解液に比べ、特に低温領域での電気伝導度の低下が著しいため、低温にて充電すると充電に長い時間がかかり、また大電流で放電する際には内部抵抗による出力電圧の低下が大きいという問題があった。
【0006】
本発明者等は低温特性を改善するために、環状カーボネートと凝固点温度が低くかつ低粘性を有する溶媒である鎖状カーボネートとの混合溶媒を用いた電気二重層コンデンサを提案している(特開平8−37133)。しかし、小さい電流で放電するメモリバックアップ用途等においては低温特性改善の効果が確認されているが、大電流で放電する用途には充分ではなかった。
【0007】
【発明が解決しようとする課題】
本発明の目的は、従来技術の前記課題を解決し、低温において大電流放電でも出力電圧の低下が小さく、信頼性に優れる電気二重層コンデンサの提供にある。
【0008】
【課題を解決するための手段】
本発明は、炭素材料を主成分とする電極と、該電極との界面に電気二重層を形成する電解液と、を有する電気二重層コンデンサにおいて、該電解液が、プロピレンカーボネートの60〜95体積%と一般式R1 OC(=O)OR2 (ただし、R1 とR2 は互いに異なる1価の有機基)で表される非対称鎖状炭酸エステルの5〜40体積%とを含む有機系混合溶媒と第4級オニウム塩からなる溶質とからなることを特徴とする電気二重層コンデンサを提供する。
【0009】
本発明の電気二重層コンデンサの電解液に使用されるプロピレンカーボネートは、誘電率が高くて溶質を高い濃度で溶解できる非水溶媒のなかでは電解液として使用したときの低温特性が比較的良好で、かつ電気化学的にも安定な溶媒である。
【0010】
また、鎖状炭酸エステルは、凝固点が低くて低温においても粘度の上昇が少なく、電気化学的に安定な溶媒である。特に本発明で使用する一般式R1 OC(=O)OR2 (R1 とR2 は互いに異なる1価の有機基)で表される非対称構造の鎖状炭酸エステルは、前記の特性に加え、電解液中の溶質の濃度を高くできるので、低温における電解液の電気伝導度が特に良好となる。
【0011】
本発明における非対称構造の鎖状炭酸エステルは、その一般式R1 OC(=O)OR2 において、R1 とR2 がアルキル基、アリール基等の1価の有機基から適宜選択される。この1価の有機基はハロゲン置換された有機基であってもよい。非対称鎖状炭酸エステルとプロピレンカーボネートとの混合溶媒の融点、粘度及び誘電率を考慮すると、有機基R1 とR2 はそれぞれ炭素数が1〜4であることが好ましく、メチル基、エチル基、イソプロピル基、n−プロピル基、及び2,2,2−トリフルオロエチル基からなる群から選ばれる有機基であることが好ましい。
【0012】
より好ましい非対称鎖状炭酸エステルを具体的に例示すると、メチルエチルカーボネート、メチルイソプロピルカーボネート、エチルイソプロピルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート等が挙げられる。特にメチルエチルカーボネートを用いると電解液の粘度が低く、良好である。
【0013】
本発明において、電解液の溶媒の組成としては、プロピレンカーボネートを60〜95体積%、非対称鎖状炭酸エステルを5〜40体積%含む。プロピレンカーボネートが60体積%未満であると、混合溶媒の誘電率が低くなり、溶質を高濃度で溶解できないので好ましくない。また、非対称鎖状炭酸エステルが5体積%未満であると低温特性が充分に改善されないので好ましくない。好ましくは、プロピレンカーボネートが80〜90体積%で、非対称鎖状炭酸エステルが10〜20体積%である。
【0014】
また、本発明の電気二重層コンデンサの電解液に使用される溶質は、第4級オニウム塩である。第4級オニウム塩のカチオンは、R3456+ 又はR3456+ で表せる。ここで、R3 、R4 、R5 及びR6 はそれぞれ独立に1価の有機基であるが、本発明ではそれぞれ独立に炭素数1〜4のアルキル基であることが好ましい。また、R3 、R4 、R5 及びR6 はすべて同じであってもよいが、2種以上のアルキル基からなることが好ましい。
【0015】
3 、R4 、R5 及びR6 が2種以上のアルキル基からなるカチオンを有する第4級オニウム塩は、R3 、R4 、R5 及びR6 がすべて同じであるカチオンを有する第4級オニウム塩に比べて、本発明に使用する溶媒に対する溶解度が大きく、電解液中の溶質の濃度を高濃度にできる。溶質を高濃度化することによって電解液の電気伝導度が高くなるので好ましい。
【0016】
また、R3 、R4 、R5 及びR6 はそれぞれCH3 、C25 、C37 、又はC49 であることが好ましい。具体的に本発明において好ましい第4級オニウム塩のカチオンを例示すれば、(C253 (CH3 )N+ 、(C252 (CH32+ 、(C25 )(CH33+ 、(C373 (CH3 )N+ 、(C372 (CH32+ 、(C37 )(CH33+ 、(C373 (C25 )N+ 、(C372 (C252+ 、(C37 )(C253+ 、(C253 (CH3 )P+ 、(C252 (CH32+ 、(C25 )(CH33+ 等が挙げられる。
【0017】
ここで、C37 は独立にn−プロピル基でもイソプロピル基でもよく、C49 は独立にn−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基のいずれであってもよい。また、(n−C373 (i−C37 )N+ 等も使用できる。さらに、例えば(C373 (CH3 )N+ は(n−C373 (CH3 )N+ でも(n−C372 (i−C37 )(CH3 )N+ でも(n−C37 )(i−C372 (CH3 )N+ でも(i−C373 (CH3 )N+ でもよく、他のブチル基又はプロピル基を2以上有するカチオンについても同様とする。
【0018】
電解液に使用する溶質は上記のR3 〜R6 のうちのいずれか2種が異なる第4級オニウムカチオンと、BF4 -、PF6 -、Cl- 、CF3 SO3 -、AsF6 -、N(SO2 CF32 -、NO3 -、ClO4 -、Br- 、SO4 2- 等のアニオンとからなる塩であるのが好ましい。特に、溶媒に対する溶解度、溶液の電気伝導度及び電気化学的安定性等の点で(C253 (CH3 )NBF4 が最も好ましい。
【0019】
電解液の電気伝導度は、溶質の濃度が1.5mol/l付近までは濃度に比例して増加するが、1.5mol/l以上では一定値に近づいてくる。そのため、溶質の濃度は1.0〜2.0mol/lとするのが好ましく、1.2〜1.8mol/lとするとさらに好ましい。
【0020】
本発明の電気二重層コンデンサに使用される電極は、炭素材料を主成分とする。該炭素材料としては比表面積が500〜3000m2 /g、さらには700〜2000m2 /gであることが好ましく、具体的には活性炭、カーボンブラック、ポリアセン等が挙げられる。特に、高導電性のカーボンブラックを導電材として用い、活性炭と混合して用いることが好ましい。この場合、導電材としてのカーボンブラックは電極中に5〜20重量%含まれることが好ましい。5重量%未満では電極の抵抗の低減効果が少なく、また、通常高導電性カーボンブラックは活性炭ほど電気二重層コンデンサの容量を大きくできないので、含有量を20重量%以下とすることが好ましい。
【0021】
本発明において炭素材料を主成分とする電極は、電極自体の形状、強度を保つため、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のバインダを含んでなることが好ましい。バインダが多すぎると電気二重層コンデンサの容量が低下し、またバインダが少なすぎると強度が弱くて電極の形状保持が困難であるため、バインダの量は電極中に5〜20重量%含まれることが好ましい。
【0022】
本発明における電極は、例えば炭素材料とポリテトラフルオロエチレンとの混合物を混練した後シート状に成形して得られる。このようにして得られた電極シートは、金属集電体に導電性接着剤を介して接合することが好ましい。ここで金属集電体としてはアルミニウム、ステンレス鋼等の金属の箔が好ましい。2枚の電極をセパレータを介して対向させ電解液を含浸させてコイン型のケースに収容する場合は、ケース及び蓋を金属製として集電体の機能を持たせてもよい。
【0023】
また、ポリフッ化ビニリデン等のバインダを溶媒に溶解又は分散させた液に炭素材料を分散させてスラリーとなし、該スラリーを金属集電体に塗工することによっても電極を形成できる。
【0024】
通常、上記電極を正極と負極の両極に用いて電気二重層コンデンサを構成するが、正極又は負極の一方のみを上記電極とし、他方を充放電可能な二次電池用活物質材料を含む非分極性電極としても電気二重層コンデンサを構成できる。
【0025】
本発明の電気二重層コンデンサは、正極と負極との間にセパレータを挟んだ素子を電解液とともに金属ケースに収容し、ガスケットを介して金属蓋によって密封したコイン型、正極と負極との間にセパレータを介して巻回してなる素子を電解液とともに金属ケース中に収容して封口した巻回型、多数のシート状の正極及び負極を、間にセパレータを介して交互に積層してなる素子が組み込まれた積層型等いずれの型でも使用できる。
【0026】
【実施例】
以下、本発明を実施例(例1〜5)及び比較例(例6〜9)によって詳しく説明するが、本発明はこれらの実施例によって限定されない。
【0027】
[例1]
水蒸気賦活された比表面積1800m2 /gのやしがら活性炭80重量%、ポリテトラフルオロエチレン10重量%及びカーボンブラック10重量%からなる混合物にエタノールを加えて混練し、シート状に成形後厚さ0.6mmにロール圧延し、得られたシートを直径12mmの円盤に打ち抜き、正極及び負極とした。この円盤状の正極及び負極を、コイン型セルの集電体兼ハウジング部材とするステンレス鋼製ケースの正極側及び負極側の内側に、それぞれ黒鉛系導電性接着剤を用いて接着した。次にこのステンレス鋼製ケースごと減圧下で加熱処理して水分等を除いた。
【0028】
次いで炭素質粉末を担持した含フッ素重合体樹脂、プロピレンカーボネートとメチルエチルカーボネートとの体積比で80:20の混合溶媒に、1.5mol/lの濃度で(C253 (CH3 )NBF4 を溶解させた電解液を、正極と負極に含浸させた。正極と負極との間にポリプロピレン繊維不織布製のセパレータシートを挟んであわせ、ステンレス鋼製ケースを絶縁体であるガスケットを介してかしめ封口し、直径18.4mm、厚さ2.0mmのコイン型電気二重層コンデンサを得た。
【0029】
[例2]
電解液として、プロピレンカーボネートとエチルプロピルカーボネートとの体積比で75:25の混合溶媒に、濃度1.5mol/lの(C252 (CH32 NBF4 を溶解させた溶液を用いた他は、例1と同様にしてコイン型の電気二重層コンデンサを得た。
【0030】
[例3]
電解液として、プロピレンカーボネートとメチルエチルカーボネートとの体積比で70:30の混合溶媒に、濃度1.5mol/lの(C253 (n−C37 )NBF4 を溶解した溶液を用いた他は、例1と同様にしてコイン型の電気二重層コンデンサを得た。
【0031】
[例4]
電解液として、プロピレンカーボネートとメチルエチルカーボネートとの体積比で80:20の混合溶媒溶媒に、濃度1.0mol/lの(C254 NBF4 を溶解した溶液を用いた他は例1と同様にしてコイン型の電気二重層コンデンサを得た。
【0032】
[例5]
水蒸気賦活されたやしがら活性炭のかわりに、レゾール樹脂を窒素雰囲気中650℃で焼成し、溶融KOHで賦活処理した比表面積2000m2 /gの炭素材料を用いて正極及び負極を作製し、電解液の溶媒としてプロピレンカーボネートとメチルエチルカーボネートとの体積比で90:10の混合溶媒を用いた他は例1と同様にしてコイン型電気二重層コンデンサを得た。
【0033】
[例6]
電解液の溶媒としてプロピレンカーボネートのみを用いた他は例1と同様にしてコイン型の電気二重層コンデンサを得た。
【0034】
[例7]
電解液の溶媒としてプロピレンカーボネートのみを用いた他は例2と同様にしてコイン型の電気二重層コンデンサを得た。
【0035】
[例8]
電解液の溶媒としてプロピレンカーボネートとジエチルカーボネートとの体積比で80:20の混合溶媒を用いた他は例1と同様にしてコイン型の電気二重層コンデンサを得た。
【0036】
[例9]
電解液の溶媒としてプロピレンカーボネートのみを用いた他は例4と同様にしてコイン型の電気二重層コンデンサを得た。
【0037】
[評価]
例1〜9の各電気二重層コンデンサについて、25℃と−25℃における放電容量と内部抵抗を測定した。なお、内部抵抗は各放電電流における電圧降下より算出した。放電条件は2.5Vから1.0Vまで、0.5mA及び5.0mAで行った。0.5mAの結果を表1に、5.0mAの結果を表2に示す。
【0038】
表1及び表2からわかるように、本発明による電気二重層コンデンサは−25℃で大電流放電するときの容量低下と内部抵抗の増加が少なく、低温におけるコンデンサ特性に優れている。
【0039】
【表1】

Figure 0003791171
【0040】
【表2】
Figure 0003791171
【0041】
【発明の効果】
本発明の電気二重層コンデンサは、低温における電圧降下が少なく、低温での使用に際しての容量低下と内部抵抗の増加が少ないという優れた特性を有する。本発明の電気二重層コンデンサは、低温でも大電流放電が可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric double layer capacitor and an electrolytic solution therefor.
[0002]
[Prior art]
The conventional electric double layer capacitor has a shape in which an element having a separator sandwiched between a pair of polarizable electrodes mainly composed of activated carbon formed on a current collector is housed in a metal case together with an electrolytic solution, and a gasket is interposed. A coin-type sealed with a metal lid or an element formed by winding a separator between a pair of sheet-like polarizable electrodes is housed in a metal case together with the electrolyte, and the electrolyte does not evaporate from the opening of the case There is a wound type that is sealed like this.
[0003]
In addition, a multilayer electric double layer capacitor in which an element formed by laminating a large number of sheet-like polarizable electrodes with a separator interposed therebetween has been proposed for large currents and large capacities (Japanese Patent Laid-Open No. Hei 4-). 154106, JP-A-3-203111, JP-A-4-286108). That is, a sheet-shaped polarizable electrode formed into a rectangular shape is used as a positive electrode and a negative electrode, and an element is formed by alternately laminating a separator between them, and the positive electrode lead member and the negative electrode lead member are caulked at the ends of the positive electrode and the negative electrode, respectively. It is housed in a case in a connected state, and the element is impregnated with an electrolytic solution and sealed with a lid.
[0004]
As an electrolytic solution of a conventional electric double layer capacitor, various nonaqueous electrolytic solutions are used in addition to an aqueous electrolytic solution containing a mineral acid such as sulfuric acid, an alkali metal salt or an alkali. Known solvents for the non-aqueous electrolyte include propylene carbonate, γ-butyrolactone, acetonitrile, dimethylformamide (Japanese Patent Laid-Open No. 49-68254), sulfolane derivatives and the like (Japanese Patent Laid-Open No. 62-237715).
[0005]
When the withstand voltage is compared, the aqueous electrolyte is 0.8 V, and the non-aqueous electrolyte is 2.5 to 3.3 V, and the electrostatic energy of the capacitor is proportional to the square of the withstand voltage. In terms of this point, the non-aqueous electrolyte is more advantageous. However, the non-aqueous electrolyte described above has a significant decrease in electrical conductivity especially in the low temperature region compared to the aqueous electrolyte. Therefore, when it is charged at a low temperature, it takes a long time to charge. There was a problem that the output voltage was greatly reduced by the internal resistance.
[0006]
In order to improve the low temperature characteristics, the present inventors have proposed an electric double layer capacitor using a mixed solvent of a cyclic carbonate and a chain carbonate which is a solvent having a low freezing point temperature and a low viscosity (Japanese Patent Application Laid-Open No. Hei 9 (1994)). 8-37133). However, the effect of improving the low-temperature characteristics has been confirmed in memory backup applications that discharge with a small current, but it is not sufficient for applications that discharge with a large current.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an electric double layer capacitor excellent in reliability with a small decrease in output voltage even at a large current discharge at a low temperature.
[0008]
[Means for Solving the Problems]
The present invention relates to an electric double layer capacitor having an electrode mainly composed of a carbon material and an electrolytic solution that forms an electric double layer at the interface between the electrode, and the electrolytic solution is 60 to 95 volumes of propylene carbonate . % And a general formula R 1 OC (═O) OR 2 (wherein R 1 and R 2 are monovalent organic groups different from each other) and 5 to 40% by volume of an asymmetric chain ester carbonate An electric double layer capacitor comprising a mixed solvent and a solute composed of a quaternary onium salt is provided.
[0009]
Propylene carbonate used in the electrolytic solution of the electric double layer capacitor of the present invention has a relatively low temperature characteristic when used as an electrolytic solution among non-aqueous solvents that have a high dielectric constant and can dissolve solutes at a high concentration. In addition, it is an electrochemically stable solvent.
[0010]
The chain carbonate is an electrochemically stable solvent having a low freezing point and little increase in viscosity even at low temperatures. In particular, the chain carbonate ester having an asymmetric structure represented by the general formula R 1 OC (═O) OR 2 (R 1 and R 2 are monovalent organic groups different from each other) used in the present invention has the above-mentioned characteristics. Since the concentration of the solute in the electrolytic solution can be increased, the electrical conductivity of the electrolytic solution at a low temperature is particularly good.
[0011]
In the general formula R 1 OC (═O) OR 2 , R 1 and R 2 of the chain carbonate having an asymmetric structure in the present invention are appropriately selected from monovalent organic groups such as alkyl groups and aryl groups. This monovalent organic group may be a halogen-substituted organic group. Considering the melting point, viscosity, and dielectric constant of the mixed solvent of asymmetric chain carbonate and propylene carbonate, the organic groups R 1 and R 2 preferably each have 1 to 4 carbon atoms, such as a methyl group, an ethyl group, An organic group selected from the group consisting of an isopropyl group, an n-propyl group, and a 2,2,2-trifluoroethyl group is preferable.
[0012]
Specific examples of more preferred asymmetric chain carbonates include methyl ethyl carbonate, methyl isopropyl carbonate, ethyl isopropyl carbonate, 2,2,2-trifluoroethyl methyl carbonate, and the like. In particular, when methyl ethyl carbonate is used, the viscosity of the electrolytic solution is low and good.
[0013]
In the present invention, the composition of the solvent of the electrolytic solution, propylene carbonate 60 to 95% by volume, 5 to 40 vol% including an asymmetric chain carbonic ester. If the propylene carbonate is less than 60% by volume, the dielectric constant of the mixed solvent becomes low, and the solute cannot be dissolved at a high concentration, which is not preferable. Further, if the amount of the asymmetric chain carbonate is less than 5% by volume, the low temperature characteristics are not sufficiently improved, which is not preferable . Good Mashiku is a propylene carbonate 80-90% by volume, asymmetric chain carbonic ester is 10 to 20 vol%.
[0014]
The solute used in the electrolytic solution of the electric double layer capacitor of the present invention is a quaternary onium salt. The cation of the quaternary onium salt can be represented by R 3 R 4 R 5 R 6 N + or R 3 R 4 R 5 R 6 P + . Here, although R < 3 >, R < 4 >, R < 5 > and R < 6 > are respectively independently monovalent organic groups, in this invention, it is preferable that it is a C1-C4 alkyl group each independently. R 3 , R 4 , R 5 and R 6 may all be the same, but preferably comprise two or more alkyl groups.
[0015]
R 3, quaternary onium salts R 4, R 5 and R 6 have the cations of two or more alkyl groups, a has a R 3, R 4, cation R 5 and R 6 are all the same Compared with a quaternary onium salt, the solubility with respect to the solvent used in the present invention is large, and the concentration of the solute in the electrolytic solution can be increased. It is preferable to increase the concentration of the solute since the electric conductivity of the electrolytic solution is increased.
[0016]
R 3 , R 4 , R 5 and R 6 are each preferably CH 3 , C 2 H 5 , C 3 H 7 or C 4 H 9 . Specific examples of the quaternary onium salt cation preferred in the present invention are (C 2 H 5 ) 3 (CH 3 ) N + , (C 2 H 5 ) 2 (CH 3 ) 2 N + , (C 2 H 5 ) (CH 3 ) 3 N + , (C 3 H 7 ) 3 (CH 3 ) N + , (C 3 H 7 ) 2 (CH 3 ) 2 N + , (C 3 H 7 ) (CH 3 ) 3 N + , (C 3 H 7 ) 3 (C 2 H 5 ) N + , (C 3 H 7 ) 2 (C 2 H 5 ) 2 N + , (C 3 H 7 ) (C 2 H 5 ) 3 N +, include (C 2 H 5) 3 ( CH 3) P +, (C 2 H 5) 2 (CH 3) 2 P +, (C 2 H 5) (CH 3) 3 P + , etc. .
[0017]
Here, C 3 H 7 may independently be an n-propyl group or an isopropyl group, and C 4 H 9 may independently be any of an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. Good. It can also be used (n-C 3 H 7) 3 (i-C 3 H 7) N + or the like. Further, for example, (C 3 H 7 ) 3 (CH 3 ) N + is (n-C 3 H 7 ) 3 (CH 3 ) N + or (n-C 3 H 7 ) 2 (i-C 3 H 7 ). It may be (CH 3 ) N + , (n-C 3 H 7 ) (i-C 3 H 7 ) 2 (CH 3 ) N + , (i-C 3 H 7 ) 3 (CH 3 ) N + , etc. The same applies to cations having two or more butyl groups or propyl groups.
[0018]
Solutes used in the electrolyte solution are quaternary onium cations different from any one of the above R 3 to R 6 , BF 4 , PF 6 , Cl , CF 3 SO 3 , AsF 6 −. N (SO 2 CF 3 ) 2 , NO 3 , ClO 4 , Br , SO 4 2− and the like are preferable. In particular, (C 2 H 5 ) 3 (CH 3 ) NBF 4 is most preferable in terms of solubility in a solvent, electrical conductivity of the solution, electrochemical stability, and the like.
[0019]
The electrical conductivity of the electrolytic solution increases in proportion to the concentration of the solute up to about 1.5 mol / l, but approaches a constant value at 1.5 mol / l or more. Therefore, the concentration of the solute is preferably 1.0 to 2.0 mol / l, more preferably 1.2 to 1.8 mol / l.
[0020]
The electrode used for the electric double layer capacitor of the present invention contains a carbon material as a main component. Carbon material The specific surface area of 500~3000m 2 / g, more preferably a 700~2000m 2 / g, in particular activated carbon, carbon black, polyacene and the like. In particular, it is preferable to use highly conductive carbon black as a conductive material and to mix with activated carbon. In this case, it is preferable that 5-20% by weight of carbon black as a conductive material is contained in the electrode. If the content is less than 5% by weight, the effect of reducing the resistance of the electrode is small, and normally the high conductivity carbon black cannot increase the capacity of the electric double layer capacitor as much as the activated carbon, so the content is preferably 20% by weight or less.
[0021]
In the present invention, the electrode mainly composed of a carbon material preferably contains a binder such as polytetrafluoroethylene or polyvinylidene fluoride in order to maintain the shape and strength of the electrode itself. If there is too much binder, the capacity of the electric double layer capacitor will decrease, and if there is too little binder, the strength will be weak and it will be difficult to maintain the shape of the electrode, so the amount of binder should be 5-20% by weight in the electrode Is preferred.
[0022]
The electrode in the present invention is obtained, for example, by kneading a mixture of a carbon material and polytetrafluoroethylene and then molding the mixture into a sheet shape. The electrode sheet thus obtained is preferably bonded to the metal current collector via a conductive adhesive. The metal current collector is preferably a metal foil such as aluminum or stainless steel. When two electrodes are opposed to each other through a separator and impregnated with an electrolytic solution and accommodated in a coin-type case, the case and the lid may be made of metal to have a current collector function.
[0023]
Alternatively, an electrode can be formed by dispersing a carbon material in a solution obtained by dissolving or dispersing a binder such as polyvinylidene fluoride in a solvent to form a slurry, and coating the slurry on a metal current collector.
[0024]
Usually, an electric double layer capacitor is configured by using the electrode as both a positive electrode and a negative electrode. However, only one of the positive electrode and the negative electrode is used as the electrode, and the other is a non-distributed material including an active material for a secondary battery that can be charged and discharged. An electric double layer capacitor can also be configured as a polar electrode.
[0025]
The electric double layer capacitor of the present invention is a coin type in which an element having a separator sandwiched between a positive electrode and a negative electrode is housed in a metal case together with an electrolyte, and sealed with a metal lid via a gasket, between the positive electrode and the negative electrode A wound type in which an element formed by winding through a separator is housed in a metal case together with an electrolyte and sealed, and an element in which a large number of sheet-like positive electrodes and negative electrodes are alternately stacked with a separator interposed therebetween. Any type such as a built-in laminated type can be used.
[0026]
【Example】
EXAMPLES Hereinafter, although an Example (Examples 1-5) and a comparative example (Examples 6-9) demonstrate this invention in detail, this invention is not limited by these Examples.
[0027]
[Example 1]
Steam-activated mixture of 80% by weight of activated carbon with a specific surface area of 1800 m 2 / g, 10% by weight of polytetrafluoroethylene, and 10% by weight of carbon black is kneaded with ethanol and formed into a sheet shape. Rolled to 0.6 mm, the obtained sheet was punched into a disk with a diameter of 12 mm to obtain a positive electrode and a negative electrode. The disc-shaped positive electrode and negative electrode were bonded to the positive electrode side and the negative electrode side of a stainless steel case as a current collector / housing member of a coin-type cell, respectively, using a graphite-based conductive adhesive. Next, this stainless steel case was heat-treated under reduced pressure to remove moisture and the like.
[0028]
Next, (C 2 H 5 ) 3 (CH 3 ) at a concentration of 1.5 mol / l in a fluorine-containing polymer resin carrying carbonaceous powder, a mixed solvent of 80:20 by volume ratio of propylene carbonate and methyl ethyl carbonate. ) The positive electrode and the negative electrode were impregnated with an electrolytic solution in which NBF 4 was dissolved. A polypropylene sheet nonwoven fabric separator sheet is sandwiched between the positive electrode and the negative electrode, and a stainless steel case is caulked and sealed through a gasket, which is an insulator, to form a coin-type electricity having a diameter of 18.4 mm and a thickness of 2.0 mm. A double layer capacitor was obtained.
[0029]
[Example 2]
As an electrolytic solution, a solution in which (C 2 H 5 ) 2 (CH 3 ) 2 NBF 4 having a concentration of 1.5 mol / l was dissolved in a mixed solvent of 75:25 by volume ratio of propylene carbonate and ethylpropyl carbonate. A coin-type electric double layer capacitor was obtained in the same manner as in Example 1 except that it was used.
[0030]
[Example 3]
As an electrolytic solution, (C 2 H 5 ) 3 (n-C 3 H 7 ) NBF 4 having a concentration of 1.5 mol / l was dissolved in a mixed solvent of 70:30 in a volume ratio of propylene carbonate and methyl ethyl carbonate. A coin-type electric double layer capacitor was obtained in the same manner as in Example 1 except that the solution was used.
[0031]
[Example 4]
As an example of an electrolytic solution, a solution in which (C 2 H 5 ) 4 NBF 4 having a concentration of 1.0 mol / l was dissolved in a mixed solvent solvent of 80:20 by volume ratio of propylene carbonate and methyl ethyl carbonate was used. In the same manner as in Example 1, a coin-type electric double layer capacitor was obtained.
[0032]
[Example 5]
A positive electrode and a negative electrode are produced by using a carbon material having a specific surface area of 2000 m 2 / g obtained by firing a resol resin at 650 ° C. in a nitrogen atmosphere and activating with molten KOH instead of steam activated carbon. A coin-type electric double layer capacitor was obtained in the same manner as in Example 1 except that a mixed solvent of 90:10 by volume ratio of propylene carbonate and methyl ethyl carbonate was used as the solvent of the liquid.
[0033]
[Example 6]
A coin-type electric double layer capacitor was obtained in the same manner as in Example 1 except that only propylene carbonate was used as the solvent of the electrolytic solution.
[0034]
[Example 7]
A coin-type electric double layer capacitor was obtained in the same manner as in Example 2 except that only propylene carbonate was used as the solvent of the electrolytic solution.
[0035]
[Example 8]
A coin-type electric double layer capacitor was obtained in the same manner as in Example 1 except that a mixed solvent of propylene carbonate and diethyl carbonate having a volume ratio of 80:20 was used as a solvent for the electrolytic solution.
[0036]
[Example 9]
A coin-type electric double layer capacitor was obtained in the same manner as in Example 4 except that only propylene carbonate was used as the solvent of the electrolytic solution.
[0037]
[Evaluation]
About each electric double layer capacitor of Examples 1-9, the discharge capacity and internal resistance in 25 degreeC and -25 degreeC were measured. The internal resistance was calculated from the voltage drop at each discharge current. The discharge conditions were 2.5 mA to 1.0 V, 0.5 mA and 5.0 mA. The results of 0.5 mA are shown in Table 1, and the results of 5.0 mA are shown in Table 2.
[0038]
As can be seen from Tables 1 and 2, the electric double layer capacitor according to the present invention is excellent in capacitor characteristics at a low temperature with little decrease in capacity and increase in internal resistance when discharging a large current at −25 ° C.
[0039]
[Table 1]
Figure 0003791171
[0040]
[Table 2]
Figure 0003791171
[0041]
【The invention's effect】
The electric double layer capacitor of the present invention has an excellent characteristic that a voltage drop at a low temperature is small, and a capacity drop and an increase in internal resistance are small when used at a low temperature. The electric double layer capacitor of the present invention can discharge a large current even at a low temperature.

Claims (6)

炭素材料を主成分とする電極と、該電極との界面に電気二重層を形成する電解液と、を有する電気二重層コンデンサにおいて、該電解液が、プロピレンカーボネートの60〜95体積%と一般式R1 OC(=O)OR2 (ただし、R1 とR2 は互いに異なる1価の有機基)で表される非対称鎖状炭酸エステルの5〜40体積%を含む有機系混合溶媒と第4級オニウム塩からなる溶質とからなることを特徴とする電気二重層コンデンサ。In an electric double layer capacitor having an electrode mainly composed of a carbon material and an electrolytic solution that forms an electric double layer at the interface with the electrode, the electrolytic solution has a general formula of 60 to 95% by volume of propylene carbonate. An organic mixed solvent containing 5 to 40% by volume of an asymmetric chain carbonate represented by R 1 OC (═O) OR 2 (wherein R 1 and R 2 are monovalent organic groups different from each other) ; An electric double layer capacitor comprising a solute composed of a quaternary onium salt. 1 とR2 がそれぞれ、メチル基、エチル基、イソプロピル基、n−プロピル基、及び2,2,2−トリフルオロエチル基からなる群から選ばれる有機基である請求項1記載の電気二重層コンデンサ。 2. The electrical double of claim 1 , wherein R 1 and R 2 are each an organic group selected from the group consisting of a methyl group, an ethyl group, an isopropyl group, an n-propyl group, and a 2,2,2-trifluoroethyl group. Multilayer capacitor. 非対称鎖状炭酸エステルが、メチルエチルカーボネートである請求項1又は2記載の電気二重層コンデンサ。The electric double layer capacitor according to claim 1 or 2 , wherein the asymmetric chain carbonate is methyl ethyl carbonate. 第4級オニウム塩が、R3456+ 又はR3456+ (ただし、R3 、R4 、R5 及びR6 は、それぞれ独立して炭素数1〜4のアルキル基であり、いずれか2つは互いに異なる)で表されるカチオンを有する塩である請求項1、2又は3記載の電気二重層コンデンサ。The quaternary onium salt is R 3 R 4 R 5 R 6 N + or R 3 R 4 R 5 R 6 P + (where R 3 , R 4 , R 5 and R 6 are each independently a carbon number. The electric double layer capacitor according to claim 1, 2 or 3, which is a salt having a cation represented by 1 to 4 alkyl groups, any two of which are different from each other. 第4級オニウム塩が、(C253 (CH3 )NBF4 である請求項1、2又は3記載の電気二重層コンデンサ。Quaternary onium salt, (C 2 H 5) 3 (CH 3) an electric double layer capacitor according to claim 1, 2 or 3 wherein the NBF 4. プロピレンカーボネートの60〜95体積%と一般式R1 OC(=O)OR2 (ただし、R1 とR2 は互いに異なる1価の有機基)で表される非対称鎖状炭酸エステルの5〜40体積%を含む有機系混合溶媒と第4級オニウム塩からなる溶質とからなることを特徴とする電気二重層コンデンサ用電解液。 60 to 95% by volume of propylene carbonate and 5 to 40 of asymmetric chain carbonate represented by the general formula R 1 OC (═O) OR 2 (where R 1 and R 2 are monovalent organic groups different from each other). organic mixed solvent, the electric double layer capacitor electrolytic solution, characterized in that comprising a solute consisting of a quaternary onium salt containing volume%.
JP02750398A 1997-03-24 1998-02-09 Electric double layer capacitor and electrolytic solution therefor Expired - Lifetime JP3791171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02750398A JP3791171B2 (en) 1997-03-24 1998-02-09 Electric double layer capacitor and electrolytic solution therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8882597 1997-03-24
JP9-88825 1997-03-24
JP02750398A JP3791171B2 (en) 1997-03-24 1998-02-09 Electric double layer capacitor and electrolytic solution therefor

Publications (2)

Publication Number Publication Date
JPH10326725A JPH10326725A (en) 1998-12-08
JP3791171B2 true JP3791171B2 (en) 2006-06-28

Family

ID=26365431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02750398A Expired - Lifetime JP3791171B2 (en) 1997-03-24 1998-02-09 Electric double layer capacitor and electrolytic solution therefor

Country Status (1)

Country Link
JP (1) JP3791171B2 (en)

Also Published As

Publication number Publication date
JPH10326725A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
US5754393A (en) Electric double layer capacitor
US8057937B2 (en) Hybrid battery
JPH097896A (en) Electric double-layer capacitor
US6038123A (en) Electric double layer capacitor, and carbon material and electrode therefor
JP4904616B2 (en) Electrolytic solution and electrochemical element using the same
EP0867900B1 (en) Electric double layer capacitor and electrolyte therefor
WO2007058421A1 (en) Hybrid battery
JP3648176B2 (en) Metal oxide electrochemical pseudocapacitor using organic electrolyte
JP4000603B2 (en) Electric double layer capacitor
JPWO2005008700A1 (en) Electric double layer capacitor
US20130130126A1 (en) Electrochemical cell for high-voltage operation and electrode coatings for use in the same
JP6587579B2 (en) Lithium ion capacitor
JP3791171B2 (en) Electric double layer capacitor and electrolytic solution therefor
US6580599B2 (en) Electric double layer capacitor and electrolyte therefor
JP2003243260A (en) Electric double layer capacitor
JP3727264B2 (en) Electrochemical cell using indole compounds
JPH09205041A (en) Electric double layered capacitor
JP2002175948A (en) Electric double-layer capacitor and nonaqueous electrolytic solution
WO2013172223A1 (en) Dual-mode electricity storage device
JP2002260966A (en) Electric double-layer capacitor
JP3991566B2 (en) Electrochemical capacitor
KR100706715B1 (en) Hybrid battery
JP3690065B2 (en) Electric double layer capacitor
JP4104290B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP2002222739A (en) Electric double-layer capacitor and electrolyte therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term