JP3790410B2 - Particle reduction method - Google Patents

Particle reduction method Download PDF

Info

Publication number
JP3790410B2
JP3790410B2 JP2000157798A JP2000157798A JP3790410B2 JP 3790410 B2 JP3790410 B2 JP 3790410B2 JP 2000157798 A JP2000157798 A JP 2000157798A JP 2000157798 A JP2000157798 A JP 2000157798A JP 3790410 B2 JP3790410 B2 JP 3790410B2
Authority
JP
Japan
Prior art keywords
substrate
gas
plasma
particles
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000157798A
Other languages
Japanese (ja)
Other versions
JP2001335938A (en
Inventor
仁志 坂本
憲二郎 上満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000157798A priority Critical patent/JP3790410B2/en
Publication of JP2001335938A publication Critical patent/JP2001335938A/en
Application granted granted Critical
Publication of JP3790410B2 publication Critical patent/JP3790410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマを生成して基板の表面に処理を施す処理装置において、非処理時における処理室内のパーティクルを低減するパーティクル低減方法に関する。
【0002】
【従来の技術】
現在、半導体の製造では、プラズマCVD(Chemical Vapor Deposition) 装置を用いた成膜が知られている。プラズマCVD装置は、膜の材料となる材料ガスを容器内の成膜室の中に導入してプラズマ状態にし、プラズマ中の活性な励起原子によって基板表面の化学的な反応を促進して成膜を行う装置である。プラズマCVD装置においては、基板への成膜が完了すると、材料ガスの供給を停止すると共にプラズマをオフ状態にして成膜室から搬送室に基板を移送し、新たな基板を成膜室に搬入して、再び材料ガスを供給すると共に成膜室内をプラズマ状態にして成膜を行ってている。
【0003】
【発明が解決しようとする課題】
プラズマ中には微粒子がパーティクルとなって飛散しているため、基板の成膜が完了してプラズマをオフ状態にした瞬間に、成膜後の基板にパーティクルが落下して堆積する虞が生じてしまう。また、基板を搬出した後であっても、支持台上にパーティクルが落下して搬入された基板の裏面にパーティクルが付着する虞が生じてしまう。プラズマCVD装置では、成膜が完了した後の基板上や基板搬送後の支持台上にパーティクルが堆積する虞があるが、特別な処置を施していないのが現状であった。
【0004】
本発明は上記状況に鑑みてなされたもので、プラズマ処理装置において非処理時におけるパーティクルを低減することができるパーティクル低減方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するための本発明のパーティクル低減方法は、処理室に原料ガス及び酸素及び不活性ガスを導入し、プラズマを発生させてそこで励起・活性化された原子・分子により基板の表面に処理が施されるプラズマ処理装置において、基板の表面に処理が施された後、プラズマを発生させた状態で原料ガスの導入を停止して微粒子を基板上に落下させないようにし、プラズマを発生させた状態で基板を搬出することで微粒子を基板支持台の上に落下させないようにし、基板を搬出した後、気相中の微粒子を気化させ、かつ処理室の壁面をクリーニングしない量のフッ素ガスを処理室内に導入し、気相中の微粒子を気化させた後にフッ化ガスを停止して基板を搬入することを特徴とする。
【0009】
そして、原料ガスはシランであり、不活性ガスはヘリウムであり、フッ化ガスはNF3 ガスであることを特徴とする。
【0010】
【発明の実施の形態】
図1には本発明の一実施形態例に係るパーティクル低減方法を実施するプラズマCVD装置の概略側面を示してある。
【0011】
図に示すように、基部1には円筒状のアルミニウム製の容器2が設けられ、容器2内に処理室としての成膜室3が形成されている。容器2の上部には円形の天井板4が設けられ、容器2の中心における成膜室3にはウエハ支持台5が備えられている。ウエハ支持台5は半導体の基板6を静電的に吸着保持する円盤状の載置部7を有し、載置部7は支持軸8に支持されている。載置部7は、タングステン等の金属板25の表面にアルミナ等のセラミックス26が設けられて構成されている。載置部7の金属板25にはバイアス電源21及び静電電源22が接続され、載置部7に低周波を発生させると共に静電気力を発生させる。ウエハ支持台5は全体が昇降自在もしくは支持軸8が伸縮自在とすることで、上下方向の高さが最適な高さに調整できるようになっている。
【0012】
容器2の外周には電磁石9が配置され、容器2は環状の電磁石9により包囲されている。電磁石9は円環状の鉄心10と鉄心10に巻かれるコイル11とにより構成され、コイル11には三相インバータ電源12が接続されて電磁石9に電圧が印加される。電磁石9に電圧が印加されることにより、載置部7に載置される基板6の表面に略平行に、かつ、容器2の中心軸回りに回転する磁場を生成するようになっている。
【0013】
電磁波透過窓としての天井板4の上には、例えば、円形リング状の高周波アンテナ13が配置され、高周波アンテナ13には整合器14を介して高周波電源15が接続されている。高周波アンテナ13に電力を供給することにより電磁波が容器2の成膜室3に入射する。容器2内に入射された電磁波は、成膜室3内のガスをイオン化してプラズマを発生すると共に、成膜室3内の磁束に作用して電子磁気音波を発生し、これがランダウ減衰によりプラズマにエネルギを移行させ、成膜室3内に強いプラズマを発生させる。
【0014】
容器2にはシラン(例えば SiH4)等の材料ガスを供給するガス供給ノズル16が設けられ、ガス供給ノズル16から成膜室3内に成膜材料(例えばSi)となる材料ガスが供給される。また、容器2にはアルゴンやヘリウム等の不活性ガス(希ガス)や酸素、水素、クリーニング用のNF3 等の補助ガスを供給する補助ガス供給ノズル17が設けられ、基部1には容器2の内部を排気するための真空排気系(図示省略)に接続される排気口18が設けられている。また、容器2には基板6の搬入・搬出口31が設けられ、搬入・搬出口31を通して搬送室との間で基板6が搬入・搬出される。
【0015】
上述したプラズマCVD装置では、ウエハ支持台5の載置部7に基板6が載せられ、静電的に吸着される。ガス供給ノズル16から所定流量の材料ガスを成膜室3内に供給すると共に補助ガス供給ノズル17から処置流量の補助ガス(例えば酸素及びヘリウム)を成膜室3内に供給し、成膜室3内を成膜条件に応じた所定圧力に設定する。その後、高周波電源15から高周波アンテナ13に電力を供給して高周波を発生させると共にバイアス電源21から載置部7に電力を供給して低周波を発生させる。同時に、三相インバータ電源12から電磁石9に電圧が印加され、成膜室3内に回転磁場が生成される。
【0016】
これにより、成膜室3内の材料ガスが放電して一部がプラズマ状態となる。プラズマ中の電子、あるいはイオンといった荷電粒子は回転磁場の磁力線に巻き付くように回転し、更に電界にも影響されながら運動する。従って、高密度、かつ均一な密度のプラズマが成膜域に留まることになる。このプラズマは、材料ガス中の他の中性分子に衝突して更に中性分子を電離、あるいは励起する。こうして生じた活性な粒子は、基板6の表面に吸着して効率良く化学反応を起こし、堆積してCVD膜となる。尚、処理手段として、平行な磁場を形成してプラズマにより成膜を行う装置を例に挙げているが、磁場の形成は適宜変更できると共に、成膜以外でもエッチング等他の処理を行う装置を適用することも可能である。
【0017】
基板6に対する成膜が行われた後、成膜が完了した基板6を搬送室に搬送して新たな基板6を搬入する。基板6に対する成膜が完了した後、本発明のパーティクル低減方法が実施される。図2に基づいてパーティクル低減方法を説明する。図2には本発明の一実施形態例に係るパーティクル低減方法の工程説明を示してある。
【0018】
図に示すように、成膜工程で、成膜室3内に材料ガスのSiH4、補助ガスの酸素(O2 )及びヘリウム(He)を供給すると共に、成膜室3内をプラズマ状態にして(プラズマオン)基板6の表面に処理が施される。基板6の成膜が完了した後、材料ガスのSiH4の供給を停止(材料ガスオフ)し、補助ガスのO2 及びHeを供給したまま成膜室3内をプラズマ状態にする。材料ガスの供給のないプラズマ状態が保たれることにより、成膜室3内の微粒子は空間的に捕捉され、成膜が完了した基板6の上に落下することがない。
【0019】
この状態、即ち、補助ガスのO2 及びHeを供給したまま成膜室3内をプラズマ状態にした状態で、成膜が完了した基板6を図示しない搬送室に搬送する。補助ガスとして、O2 及びHeを供給するのは、補助ガスがO2 だけであると、成膜室3の壁面を激しくスパッタしてパーティクルを増加させてしまう虞があるため、Heを供給してパーティクルの増加を緩和している。
【0020】
成膜が完了した基板3を搬送した後、補助ガスのO2 及びHeを供給して成膜室3内をプラズマ状態にしたまま、成膜室3内に微量のフッ化ガス(例えば、NF3 ガス)を成膜室3内に導入し、気相中に残留するパーティクルと反応させて気化させる。この時のNF3 ガスの量は、壁面をクリーニングしない程度の量とする。つまり、NF3 によって壁面がエッチングされない量としている。これにより、基板3を搬送した後、ウエハ支持台5の上にパーティクルが落下・堆積することがなくなる。
【0021】
NF3 ガスを導入して気相中に残留するパーティクルを気化させた後、NF3 ガスの供給を停止(NF3 オフ)して新たな基板3をウエハ支持台5の上に搬入する。この時、ウエハ支持台5の上にはパーティクルが堆積していないので、新たな基板3の裏面等にパーティクルが付着することがない。基板3を搬入した後、成膜室3内に材料ガスのSiH4を導入して再び成膜を実施する。
【0022】
上述したパーティクル低減方法を実施している間、成膜室3内はプラズマ状態であるが、電磁石9による磁場の形成は、実施しても実施しなくてもどちらでもよい。
【0023】
上述したパーティクル低減方法では、成膜が完了した後に、材料ガスを停止して補助ガスのO2 及びHeを供給したまま成膜室3内を原料ガスのないプラズマ状態にしているので、パーティクルが捕捉され、成膜が完了した基板6の上に落下することがない。また、成膜が完了した基板6を搬送した後も補助ガスのO2 及びHeを供給したまま成膜室3内をプラズマ状態に保っているので、ウエハ支持台5の上にパーティクルが落下・堆積することがない。更に、成膜室3内に微量のNF3 ガスを導入し、気相中に残留するパーティクルと反応させて気化させているので、新たな基板6にパーティクルが付着することがない。
【0026】
【発明の効果】
本発明のパーティクル低減方法は、処理室に原料ガス及び酸素及び不活性ガスを導入し、プラズマを発生させてそこで励起・活性化された原子・分子により基板の表面に処理が施されるプラズマ処理装置において、基板の表面に処理が施された後、プラズマを発生させた状態で原料ガスの導入を停止して微粒子を捕捉しプラズマを発生させた状態で基板を搬出し、基板を搬出した後、気相中の微粒子を気化させ、かつ処理室の壁面をクリーニングしない量のフッ化ガスを処理室内に導入し、気相中の微粒子を気化させた後にフッ化ガスを停止して基板を搬入するようにしたので、非処理時におけるパーティクルを低減することができ、微粒子が処理が施された基板上に落下することがなくなるとともに、微粒子が基板支持台の上に落下することがなくなり、更に、搬入された基板に微粒子が付着することがなくなる。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係るパーティクル低減方法を実施するプラズマCVD装置の概略側面図。
【図2】本発明の一実施形態例のパーティクル低減方法の工程説明図。
【符号の説明】
1 基部
2 容器
3 成膜室
4 天井板
5 ウエハ支持台
6 基板
7 載置部
8 支持軸
9 電磁石
10 鉄心
11 コイル
12 三相インバータ電源
13 高周波アンテナ
14 整合器
15 高周波電源
16 ガス供給ノズル
17 補助ガス供給ノズル
18 排気系
21 バイアス電源
22 静電電源
25 金属板
26 セラミックス
31 搬入・搬出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a particle reduction method for reducing particles in a processing chamber during non-processing in a processing apparatus that generates plasma and processes the surface of a substrate.
[0002]
[Prior art]
Currently, in the manufacture of semiconductors, film formation using a plasma CVD (Chemical Vapor Deposition) apparatus is known. A plasma CVD apparatus introduces a material gas, which is a material of a film, into a film forming chamber in a container to form a plasma state, and promotes a chemical reaction on the substrate surface by active excited atoms in the plasma to form a film. It is a device that performs. In the plasma CVD apparatus, when the film formation on the substrate is completed, the supply of the material gas is stopped, the plasma is turned off, the substrate is transferred from the film formation chamber to the transfer chamber, and a new substrate is carried into the film formation chamber. Then, the material gas is supplied again and the film formation chamber is in a plasma state to form a film.
[0003]
[Problems to be solved by the invention]
Since fine particles are scattered as particles in the plasma, there is a risk that particles will fall and deposit on the substrate after film formation at the moment the film formation on the substrate is completed and the plasma is turned off. End up. Further, even after the substrate is unloaded, there is a risk that the particles may fall on the support table and adhere to the back surface of the loaded substrate. In the plasma CVD apparatus, particles may be deposited on the substrate after the film formation is completed or on the support table after the substrate is transported, but there is no special treatment at present.
[0004]
The present invention has been made in view of the above situation, and an object thereof is to provide a particle reduction method capable of reducing particles during non-processing in a plasma processing apparatus.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the particle reduction method of the present invention introduces a source gas, oxygen and an inert gas into a processing chamber, generates plasma, and is excited and activated on the surface of the substrate by atoms / molecules. In the plasma processing apparatus to be processed, after the surface of the substrate is processed, the introduction of the raw material gas is stopped in a state where the plasma is generated so that the fine particles do not fall on the substrate, and the plasma is generated. The substrate is unloaded so that the particles do not fall on the substrate support, and after the substrate is unloaded, the vapor in the gas phase is vaporized and an amount of fluorine gas that does not clean the processing chamber wall is removed. The substrate is introduced into the processing chamber, vaporized fine particles in the gas phase, and then the substrate is loaded with the fluorination gas stopped.
[0009]
The raw material gas is silane, the inert gas is helium, and the fluorinated gas is NF 3 gas.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic side view of a plasma CVD apparatus for performing a particle reduction method according to an embodiment of the present invention.
[0011]
As shown in the figure, the base 1 is provided with a cylindrical aluminum container 2, and a film forming chamber 3 as a processing chamber is formed in the container 2. A circular ceiling plate 4 is provided on the top of the container 2, and a wafer support 5 is provided in the film forming chamber 3 in the center of the container 2. The wafer support 5 includes a disk-shaped mounting portion 7 that electrostatically attracts and holds a semiconductor substrate 6, and the mounting portion 7 is supported by a support shaft 8. The mounting portion 7 is configured by providing a ceramic 26 such as alumina on the surface of a metal plate 25 such as tungsten. A bias power source 21 and an electrostatic power source 22 are connected to the metal plate 25 of the mounting unit 7 to generate a low frequency and an electrostatic force in the mounting unit 7. The entire height of the wafer support 5 can be raised or lowered or the support shaft 8 can be expanded and contracted, so that the vertical height can be adjusted to an optimum height.
[0012]
An electromagnet 9 is disposed on the outer periphery of the container 2, and the container 2 is surrounded by an annular electromagnet 9. The electromagnet 9 includes an annular iron core 10 and a coil 11 wound around the iron core 10, and a three-phase inverter power source 12 is connected to the coil 11 to apply a voltage to the electromagnet 9. When a voltage is applied to the electromagnet 9, a magnetic field that rotates approximately in parallel with the surface of the substrate 6 placed on the placement unit 7 and around the central axis of the container 2 is generated.
[0013]
For example, a circular ring-shaped high-frequency antenna 13 is disposed on the ceiling plate 4 serving as an electromagnetic wave transmission window, and a high-frequency power source 15 is connected to the high-frequency antenna 13 via a matching unit 14. By supplying power to the high-frequency antenna 13, electromagnetic waves are incident on the film forming chamber 3 of the container 2. The electromagnetic wave incident on the container 2 ionizes the gas in the film forming chamber 3 to generate plasma, and acts on the magnetic flux in the film forming chamber 3 to generate an electron magneto-sonic wave, which is generated by Landau attenuation. Energy is transferred to the film forming chamber 3 to generate strong plasma.
[0014]
The container 2 is provided with a gas supply nozzle 16 for supplying a material gas such as silane (for example, SiH 4 ), and a material gas to be a film formation material (for example, Si) is supplied from the gas supply nozzle 16 into the film formation chamber 3. The The container 2 is provided with an auxiliary gas supply nozzle 17 for supplying an inert gas (rare gas) such as argon or helium, oxygen, hydrogen, or an auxiliary gas such as NF 3 for cleaning. There is provided an exhaust port 18 connected to a vacuum exhaust system (not shown) for exhausting the inside. Further, the container 2 is provided with a carry-in / carry-out port 31 for the substrate 6, and the substrate 6 is carried in / carrying out from the transfer chamber through the carry-in / carry-out port 31.
[0015]
In the plasma CVD apparatus described above, the substrate 6 is placed on the mounting portion 7 of the wafer support 5 and is electrostatically attracted. A material gas at a predetermined flow rate is supplied from the gas supply nozzle 16 into the film forming chamber 3, and an auxiliary gas (for example, oxygen and helium) at a treatment flow rate is supplied from the auxiliary gas supply nozzle 17 into the film forming chamber 3. The inside of 3 is set to a predetermined pressure corresponding to the film forming conditions. Thereafter, power is supplied from the high frequency power supply 15 to the high frequency antenna 13 to generate a high frequency, and power is supplied from the bias power supply 21 to the mounting portion 7 to generate a low frequency. At the same time, a voltage is applied from the three-phase inverter power supply 12 to the electromagnet 9, and a rotating magnetic field is generated in the film forming chamber 3.
[0016]
As a result, the material gas in the film forming chamber 3 is discharged and a part thereof is in a plasma state. Charged particles such as electrons or ions in the plasma rotate so as to wind around the magnetic field lines of the rotating magnetic field, and further move while being influenced by the electric field. Therefore, high-density and uniform plasma remains in the film formation region. This plasma collides with other neutral molecules in the material gas to further ionize or excite the neutral molecules. The active particles generated in this manner are adsorbed on the surface of the substrate 6 to efficiently cause a chemical reaction, and are deposited to form a CVD film. In addition, although the apparatus which forms a parallel magnetic field and forms a film by plasma is mentioned as an example as a processing means, while the formation of a magnetic field can be changed suitably, the apparatus which performs other processes, such as etching other than film-forming, is mentioned. It is also possible to apply.
[0017]
After film formation on the substrate 6 is performed, the substrate 6 on which film formation has been completed is transferred to the transfer chamber, and a new substrate 6 is carried in. After film formation on the substrate 6 is completed, the particle reduction method of the present invention is performed. The particle reduction method will be described with reference to FIG. FIG. 2 shows a process description of a particle reduction method according to an embodiment of the present invention.
[0018]
As shown in the figure, in the film forming process, the material gas SiH 4 and the auxiliary gases oxygen (O 2 ) and helium (He) are supplied into the film forming chamber 3 and the film forming chamber 3 is brought into a plasma state. (Plasma on) The surface of the substrate 6 is processed. After the film formation of the substrate 6 is completed, the supply of the material gas SiH 4 is stopped (the material gas is turned off), and the inside of the film formation chamber 3 is brought into a plasma state while the auxiliary gases O 2 and He are being supplied. By maintaining the plasma state without supply of the material gas, the fine particles in the film forming chamber 3 are spatially captured and do not fall onto the substrate 6 on which film formation has been completed.
[0019]
In this state, that is, in a state where the film forming chamber 3 is in a plasma state while the auxiliary gases O 2 and He are supplied, the substrate 6 on which film formation has been completed is transferred to a transfer chamber (not shown). As an auxiliary gas, to supply O 2, and He is the auxiliary gas is only O 2, since there is a possibility that vigorously sputtered wall of the film forming chamber 3 will increase the particle, supplying He To mitigate the increase in particles.
[0020]
After transporting the substrate 3 on which film formation has been completed, a small amount of fluorinated gas (for example, NF) is supplied into the film formation chamber 3 while supplying the auxiliary gases O 2 and He to keep the film formation chamber 3 in a plasma state. 3 gas) is introduced into the film forming chamber 3 and reacted with particles remaining in the gas phase to be vaporized. At this time, the amount of NF 3 gas is set so as not to clean the wall surface. That is, the amount of the wall is not etched by NF 3 . Thereby, after the substrate 3 is transported, particles are not dropped and deposited on the wafer support 5.
[0021]
After introducing NF 3 gas to vaporize particles remaining in the gas phase, the supply of NF 3 gas is stopped (NF 3 off), and a new substrate 3 is carried onto the wafer support 5. At this time, since particles are not deposited on the wafer support 5, the particles do not adhere to the back surface of the new substrate 3. After the substrate 3 is carried in, the material gas SiH 4 is introduced into the film forming chamber 3 to form a film again.
[0022]
While the above-described particle reduction method is being performed, the inside of the film forming chamber 3 is in a plasma state, but the formation of the magnetic field by the electromagnet 9 may or may not be performed.
[0023]
In the above-described particle reduction method, after the film formation is completed, the material gas is stopped and the inside of the film formation chamber 3 is brought into a plasma state without the source gas while the auxiliary gases O 2 and He are supplied. It does not fall on the substrate 6 that has been captured and has been formed. Further, since the inside of the film forming chamber 3 is kept in a plasma state while the auxiliary gases O 2 and He are supplied after the substrate 6 having been formed is transported, the particles fall on the wafer support 5. There is no accumulation. Furthermore, since a small amount of NF 3 gas is introduced into the film forming chamber 3 and reacted with particles remaining in the gas phase, the particles are not attached to the new substrate 6.
[0026]
【The invention's effect】
The particle reduction method of the present invention is a plasma treatment in which a raw material gas, oxygen and an inert gas are introduced into a treatment chamber, a plasma is generated, and the surface of the substrate is treated with atoms / molecules excited and activated there. In the apparatus, after the surface of the substrate is processed, the introduction of the source gas is stopped in the state where the plasma is generated, the fine particles are captured and the substrate is unloaded and the substrate is unloaded. Introduce a quantity of fluorinated gas into the process chamber that vaporizes the fine particles in the gas phase and does not clean the walls of the process chamber. After vaporizing the fine particles in the gas phase, stop the fluorinated gas and carry in the substrate. As a result, particles during non-treatment can be reduced, and the fine particles do not fall on the treated substrate, and the fine particles do not fall on the substrate support. Is eliminated, further, there is no adhesion of fine particles on the loaded wafer.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a plasma CVD apparatus for performing a particle reduction method according to an embodiment of the present invention.
FIG. 2 is a process explanatory diagram of a particle reduction method according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base part 2 Container 3 Deposition chamber 4 Ceiling board 5 Wafer support stand 6 Substrate 7 Placement part 8 Support shaft 9 Electromagnet 10 Iron core 11 Coil 12 Three-phase inverter power supply 13 High frequency antenna 14 Matching device 15 High frequency power supply 16 Gas supply nozzle 17 Auxiliary Gas supply nozzle 18 Exhaust system 21 Bias power supply 22 Electrostatic power supply 25 Metal plate 26 Ceramics 31 Loading / unloading

Claims (2)

処理室に原料ガス及び酸素及び不活性ガスを導入し、プラズマを発生させてそこで励起・活性化された原子・分子により基板の表面に処理が施されるプラズマ処理装置において、基板の表面に処理が施された後、プラズマを発生させた状態で原料ガスの導入を停止して微粒子を基板上に落下させないようにし、プラズマを発生させた状態で基板を搬出することで微粒子を基板支持台の上に落下させないようにし、基板を搬出した後、気相中の微粒子を気化させ、かつ処理室の壁面をクリーニングしない量のフッ化ガスを処理室内に導入し、気相中の微粒子を気化させた後にフッ化ガスを停止して基板を搬入することを特徴とするパーティクル低減方法。In the plasma processing equipment, where the source gas, oxygen and inert gas are introduced into the processing chamber, plasma is generated, and the substrate surface is processed by atoms / molecules excited and activated there, the surface of the substrate is processed. After the plasma is generated, the introduction of the raw material gas is stopped so that the fine particles are not dropped on the substrate, and the fine particles are removed from the substrate support by removing the substrate while the plasma is generated. After removing the substrate, the fine particles in the gas phase are vaporized , and an amount of fluoride gas that does not clean the wall of the processing chamber is introduced into the processing chamber to vaporize the fine particles in the gas phase. A method for reducing particles, comprising stopping the fluorination gas and then carrying in the substrate. 請求項において、原料ガスはシランであり、不活性ガスはヘリウムであり、フッ素ガスはNF3ガスであることを特徴とするパーティクル低減方法。2. The particle reduction method according to claim 1, wherein the source gas is silane, the inert gas is helium, and the fluorine gas is NF3 gas.
JP2000157798A 2000-05-29 2000-05-29 Particle reduction method Expired - Fee Related JP3790410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157798A JP3790410B2 (en) 2000-05-29 2000-05-29 Particle reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157798A JP3790410B2 (en) 2000-05-29 2000-05-29 Particle reduction method

Publications (2)

Publication Number Publication Date
JP2001335938A JP2001335938A (en) 2001-12-07
JP3790410B2 true JP3790410B2 (en) 2006-06-28

Family

ID=18662371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157798A Expired - Fee Related JP3790410B2 (en) 2000-05-29 2000-05-29 Particle reduction method

Country Status (1)

Country Link
JP (1) JP3790410B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865352B2 (en) 2006-02-17 2012-02-01 三菱重工業株式会社 Plasma processing apparatus and plasma processing method
JP5095242B2 (en) 2007-03-08 2012-12-12 株式会社日立ハイテクノロジーズ Plasma processing method
JP2009094311A (en) * 2007-10-10 2009-04-30 Fujitsu Microelectronics Ltd Method of manufacturing semiconductor device
JP2015070233A (en) * 2013-09-30 2015-04-13 株式会社東芝 Manufacturing method of semiconductor device
JP6862291B2 (en) 2017-06-16 2021-04-21 株式会社小糸製作所 Vehicle lighting
JP2019009305A (en) 2017-06-26 2019-01-17 東京エレクトロン株式会社 Plasma processing apparatus

Also Published As

Publication number Publication date
JP2001335938A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
US8662010B2 (en) Plasma processing apparatus, plasma processing method, plasma film deposition apparatus, and plasma film deposition method
US5507874A (en) Method of cleaning of an electrostatic chuck in plasma reactors
KR20160127674A (en) Method for processing target object
KR20160094306A (en) Method of processing target object
JPH08330281A (en) Vacuum treatment device and removal method of vacuum container inner surface deposit film in the vacuum treatment device
TW200823977A (en) Plasma doping method and plasma doping apparatus
KR20170126450A (en) Method of etching the magnetic layer
JP2001335937A (en) Method for reducing metal contamination, and method for regenerating plasma system
JP3790410B2 (en) Particle reduction method
JP3516523B2 (en) Plasma processing equipment
JP2004047695A (en) Method and apparatus for plasma doping
KR100262883B1 (en) Plasma cleaning method
JP3595885B2 (en) Plasma processing method and plasma apparatus
JP3935731B2 (en) Plasma CVD apparatus, cleaning method, and film forming method
JP3599834B2 (en) Plasma processing equipment
JP2004063925A (en) Plasma processing apparatus and method
JP2001342567A (en) Plasma treatment apparatus
JP2002043289A (en) Method and device for plasma processing
JP2003309073A (en) Resistant material and plasma treating apparatus
JP2002203790A (en) Plasma treater
JP2013089650A (en) Plasma processing method
JPH08330242A (en) Plasma vapor growth device, and method of removing film of adhesion-preventive shield in plasma vapor growth device
JPH0630346B2 (en) Microwave plasma processing equipment
JPH0849080A (en) Gas cleaning method in plasma cvd device
JP2001217225A (en) Plasma etching method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees