JP3788627B2 - 集積回路にシリコンジオキシドおよびシリコンガラス層を形成する方法および装置 - Google Patents

集積回路にシリコンジオキシドおよびシリコンガラス層を形成する方法および装置 Download PDF

Info

Publication number
JP3788627B2
JP3788627B2 JP53289497A JP53289497A JP3788627B2 JP 3788627 B2 JP3788627 B2 JP 3788627B2 JP 53289497 A JP53289497 A JP 53289497A JP 53289497 A JP53289497 A JP 53289497A JP 3788627 B2 JP3788627 B2 JP 3788627B2
Authority
JP
Japan
Prior art keywords
substrate
mist
deposition chamber
silicon
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP53289497A
Other languages
English (en)
Other versions
JP2001500318A (ja
Inventor
ディー. マクミラン,ラリー
シー. スコット,マイケル
デ アラウジョ,カルロス エイ. パズ
達男 大槻
ハヤシ,シンイチロウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symetrix Corp
Original Assignee
Symetrix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symetrix Corp filed Critical Symetrix Corp
Publication of JP2001500318A publication Critical patent/JP2001500318A/ja
Application granted granted Critical
Publication of JP3788627B2 publication Critical patent/JP3788627B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0493Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases using vacuum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4558Perforated rings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1287Process of deposition of the inorganic material with flow inducing means, e.g. ultrasonic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Surface Treatment Of Glass (AREA)

Description

発明の背景
1.発明の属する分野
本発明は、基板上に高品質のシリコンジオキシド膜およびシリコンガラス膜を蒸着する方法と、そのような方法を行う装置に関する。特に、本発明は、集積回路における使用に適した厚みと品質を有するシリコンジオキシドおよびシリコンガラスの薄膜の形成に関する。
2.課題の陳述
シリコンジオキシドおよびシリコンガラスの層が集積回路の重要部を形成することは、周知である。これらは、シリコンの酸化などの多くの方法で形成され得る。シリコン酸化物またはシリコンのガラスの幾つかの種類は、APCVD NSG(atmospheric pressure chemical vopor deposited non-doped silicon glass)またはSOG(spin-on glass)層77Cなどの形成方法によって公知である。その他は、BPSG(borophosphosilicate glass)などの、使用される特定のドーパントによって公知である。一般に、シリコン酸化物およびシリコンガラスは、集積回路の他の層が製造される方法とは実質的に異なる方法によって形成される。この結果、プロセス間の処理工程が多くなり、集積回路の製造を開始するのに比較的高いコストが必要になる。回路内の他の層を製造するために使用される製造プロセスとより密接に対応する、シリコンジオキシドおよびシリコンガラス製造プロセスへの要求が、長い間感じられてきた。これは単純なプロセスであれば、これはまた、集積回路の全製造プロセスを低廉化する。
発明の要旨
本発明は、集積回路用のシリコンジオキシドおよびシリコンガラスの薄膜を製造する公知の蒸着技術に関連する、多くの課題および欠点を克服するために開発されてきた。また、本発明は、シリコンジオキシドおよびシリコンガラスの(数オングストロームから数ミクロンの厚みの)薄膜を容易に且つ経済的に製造するために使用することが可能な、製造価値のあるプロセスを提供することによって、当該分野における大きな要求を概ね満たすために開発されてきた。この方法はまた、層状の超格子材料などの集積回路に使用される複合金属酸化物を形成するために開発された、最近の方法とほぼ同じ装置を使用する。
本発明によると、シリコンジオキシドまたはシリコンガラスの薄膜を製造する方法が提供される。この方法は、加熱またはその他の方法による処理の際にシリコンジオキシドまたはシリコンガラスを形成するために有効な量のシリコンを含む、前駆物質液を提供する工程と、封鎖した蒸着チャンバ内部に基板を提供し、前駆物質液のミストを提供して、ミストが基板全面に均一に流れて基板上に前駆物質液の膜を形成するように、ミストを蒸着チャンバ内に導入する工程とを包含する。好適には、蒸着は、基板に対して、好適には約15℃〜40℃の間の周囲(ambient)温度で実施される。一般に、周囲温度は、約−50℃〜100℃の間であり得る。
ある実施形態では、ミストおよび基板に紫外線を付与する間に蒸着が起こる。
別の実施形態では、基板を間に挟んだ2つの平行なプレート間に直流バイアスを印加する間に蒸着が起こる。
蒸着プロセスの間に、蒸着チャンバは軽い真空状態までポンピングされ、前駆物質液の膜から溶媒を除去する。蒸着後、真空は、好適には増大されて前駆物質を乾燥させ、それにより基板上に材料を含む固体シリコン層を残す。次いで、基板が好適には加熱およびアニールされ、シリコンジオキシドまたはシリコンの固体薄膜を製造する。好適には、次いで集積回路が基板上に完成される。
このプロセスは、本質的に周囲温度で且つほぼ大気圧で実施されるので、製造プラントにおいて実施することが比較的容易なプロセスである。さらに、ミスト形成は、いかなる複雑な装置も使用しない。
蒸着チャンバに流し込まれたミストは、基板の上方にある調節可能なバリヤプレートによって、蒸着領域内部の小さな半封鎖空間内部に収容される。ミストの流れる方向は、基板に対して平行であるため、実質的に周囲温度での分子の衝突によって基板がコーティングされる。これは、粒子の運動量を使用する、または液体材料を加熱して蒸着プロセスを強制または促進するという比較的極端な選択対象とは対照的である。蒸着前または蒸着中のいずれかにおける、蒸着される材料の加熱は、結果として、乾燥段階中に裂けるまたはピンホールを形成する可能性がより高い膜を形成する。
また、ミストは「上部を流れる」ので、適用した材料の蒸着は、与えられた基板上のどの「段(step)」でもその上面全面に極めて適合し、段の底部の難しい(hard)角度にスムーズに適合しやすい。
本発明によると、上記の方法を実行する装置も提供される。
本発明の目的は、集積回路品質のシリコンジオキシドおよびシリコンガラスの薄膜を容易に且つ安価で製造する能力を有する、汎用性の高い方法および装置を提供することである。
本発明のさらなる目的は、厚さ範囲の広い、すなわち厚さが数オングストロームからミクロンの、そのようなシリコンジオキシドおよびシリコンガラスの薄膜を製造する能力を有する、そのような方法および装置を提供することである。
本発明のさらなる目的は、実質的に周囲温度で且つ大気圧よりわずかに低圧で、シリコンジオキシドまたはシリコンガラスの薄膜を製造することである。
本発明のその他の目的、利点、および顕著な特徴は、添付図面と関連して本発明の多数の実施形態を開示する、以下の詳細な説明により明らかになる。
【図面の簡単な説明】
図1は、本発明の一実施形態による装置の蒸着チャンバの側面破断図である。
図2は、吸気および排出ノズルアセンブリの拡大平面図である。
図3は、本発明に使用されるマニフォールドシステムの上面拡大模式図である。
図4は、本発明に使用されるミスト生成装置の側面模式図である。
図5は、図4のミスト生成装置の分解図である。
図6は、本発明によるシリコンジオキシドまたはシリコンガラスの前駆物質の調製を示すフローチャートである。
図7は、本発明の例示的な実施形態の装置の上面図である。
図8は、本発明の方法および装置を使用して製造され得る集積回路の断面図である。
図9は、図7の実施形態に対応する装置の模式図である。
図10は、蒸着チャンバ内部の紫外線放射源の配置を示す斜視図である。
図11および図12は、調節可能なバリヤプレートの実現可能な位置の幾つかを示す。
図13は、本発明の装置および方法を用いて形成されたウェハの上面図である。
図14は、図13の線14−14から見た図13のウェハの断面図である。
好適な実施形態の詳細な説明
1.概要
本発明の主要な局面によると、酸素と結合したシリコンを含む前駆物質液を最初に調製し、次いで溶液のミストを生成して蒸着チャンバに流し込み、そして蒸着チャンバ内部に配置された基板上に薄膜状/層状に蒸着する。当該分野において伝統的であるように、この開示では、「基板」という用語は、シリコン前駆物質がその上に蒸着され得る、1つ以上の材料の層5(図14)を含む一般的な意味で使用され、また、ウェハ1222そのものを意味する特定の意味でも使用される。表示されない限り、この用語は、シリコンまたはシリコンガラスの層が本発明のプロセスおよび装置を使用して上部に蒸着される、任意の対象物を意味する。前駆物質液には、一般にアルコール溶媒中のシリコン−アルコキシドから成るゾル−ゲル前駆物質形態(formulation)、ならびに、一般にネオデカン酸または2−エチルヘキサン酸などのカルボン酸と、シリコンまたはシリコン化合物とを溶媒中で反応させることによって形成されるシリコン−カルボキシレートを含む、時としてMOD形態と呼ばれる有機金属前駆物質形態、およびその他の前駆物質形態が含まれる。シリコン2−エチルヘキネートおよびシリコンネオデカネートが、これらの化合物の中で最も有用であるように思われる。前駆物質中のこれらのように、鎖長が中規模のカルボン酸を利用して形成された薄膜は、長鎖のカルボン酸を利用して形成された薄膜のような、焼成時のクラック、ブリスタ、または剥がれを起こさない。
本明細書で使用する「ミスト」という用語は、ガスによって運搬される液体の良好な液滴として定義される。「ミスト」という用語には、ガス中の固体または液体の粒子のコロイド状の懸濁液として一般に定義される、エーロゾルが含まれる。ミストという用語にはまた、蒸気、霧、およびその他のガス中の前駆物質液の霧状懸濁液が含まれる。上記の用語は一般的な用法から生じているので、定義は正確でなく、重複し、そして様々な著者によって異なって使用され得る。本明細書において、エーロゾルという用語は、本明細書に参考として援用するテキストAerosol Science and Technology,Parker C.Reist著、McGraw-Hill,Inc.,New York,1983年に含まれる、全ての懸濁液を含むことを意図される。本明細書で使用する「ミスト」という用語は、エーロゾルという用語より広範であることを意図され、エーロゾル、蒸気、または霧という用語に含まれない懸濁液を含む。
前駆物質液の溶液は、好適には、共通溶媒を生じるアルコキシド化学、カルボン酸化学、またはその他の湿式化学技術を使用するそれぞれの要素用の前駆物質を調製することによって得られる。その共通溶媒を有する溶液は、好適には、全蒸着プロセス用の唯一の供給源として使用される。しかし、本発明はまた、複数の前駆物質供給源を並行して使用することも企図する。特に、他の供給源は、最終的な所望の化合物に対するドーピングや改変(modifying)のために、並行して用いられ得る。好適な前駆物質液では、シリコンジオキシドと亜リン酸およびホウ素などのドーパントとは、共通溶媒を有する溶液中の1つ以上の前駆物質化合物に含まれる。前駆物質形成の一実施例を下記に説明する。
好適には、溶媒の沸点は、110℃〜170℃の範囲内であるべきである。表A中のいずれの溶媒も使用され得るが、好適な溶媒は、キシレン類、n−ブチルアセテート、n−オクタン、および2−メトキシエタノールである。キシレンは通常、キシレンの3つの異性体(fractionation)を含む形式で入手可能なので、本明細書では「キシレン類」という用語を使用する。キシレン類という用語は、1つまたは幾つかの任意の異性体を含む任意の溶媒を含むことを意図される。
Figure 0003788627
前駆物質液の使用は、多くの理由から非常に望ましい。まず、溶液自体が比較的生成し易い。本発明に使用される前駆物質は、上述の従来のシリコンガラス蒸着法に使用される対応する材料よりも、実質的に精確に扱い易く、上述のシリコンジオキシドを形成する方法よりも実質的に速い。さらに、前駆物質液は、錯化合物を形成する新しい方法と極めて良く両立し得る方法によって、シリコンジオキシドおよびシリコンガラスを形成することを可能にする。錯化合物の中間には、しばしばシリコンジオキシドおよびシリコン化合物が挿入される。
本発明に使用される前駆物質液はまた、安定化した溶液である。ここで、「安定化した」とは、シリコンジオキシドまたはシリコンガラスの重要なシリコン−酸素結合が、前駆物質を形成するプロセスにおいて形成され、そのような形成後は安定することを意味する。これは、2つの局面を有する。第1に、溶液は、適度に長い期間を越えて貯蔵された場合に、反応または劣化しない。それゆえ、本発明による安定化した溶液は、比較的長い貯蔵寿命を有し、これにより製造プロセスをより単純且つ効率的にする。安定化した溶液の第2の局面は、前駆物質を形成するときに形成された結合が、蒸着プロセスの間ずっと安定して残り、最終的なシリコン化合物中の結合の少なくとも1つを形成することである。例えば、シリコン−アルコキシドは、式:R−O−S−O−Rによって与えられ得る。ここで、Sはシリコンであり、Oは酸素であり、そしてRはアルキル基である。制御されたエネルギーがシリコンアルコキシドに付与されると、その結果、下記の式によって表すように、アルキル分子またはアルキル分子の断片(fragments)を加えた酸素原子に結合した、シリコン原子を含む分子が形成される。
S−O−R+エネルギー(約250℃またはUVラドの熱)→
S=O+アルキル断片
ここで、「=」は、二重結合を表す。シリコンカルボキシレートに関しては、式は、
S−O2CR+エネルギー(約250℃またはUVラドの熱)→
S=O+C−R断片
と書かれ得る。ここで、Rはアルキル基であり、Sはシリコンであり、Oは酸素であり、そしてCは炭素である。好適な一実施形態では、前駆物質を基板上に蒸着し、基板上の溶媒およびアルキル基のまたは他の断片からのシリコンオキシド分子の分離は、分離の幾らかはミスト中で起こり得るが、基板上で起こる。主として、望ましくない断片は、バキュームを用いたポンピングにより排出することによって、および/または約250℃より低い熱での加熱により追い出すことによって除去される。アニールプロセスは、膜内の酸素欠損を修復し、所望の結晶構造を強制するが、基本的なシリコン−酸素結合が残る。このように、前駆物質中のシリコン−酸素結合は安定して残り、蒸着プロセスを通過して、最終的な所望のシリコンジオキシドまたはシリコンガラス化合物のシリコン−酸素結合を形成する。
前駆物質液の使用の結果、高品質の薄膜が得られる。なぜなら、前駆物質液は、蒸着後の所望の化合物が均一で化学量論的に正しくなるように、正確に且つ一貫して製造されることが可能だからである。また、本発明の蒸着法は、極端な(violent)化学的または物理学的反応を含まないからである。これらの反応はいずれも、所定の分子形態のシリコン化合物を著しく不安定化し、あるいは化合物の不均一な蒸着、クラック等を発生させる。
本発明の別の局面は、溶媒交換の技術を含む。概して、溶媒交換は、最初の前駆物質の溶媒と異なる第2の溶媒を加える工程と、それ以外の溶媒を蒸留する工程とを包含する。溶液から望ましくない溶媒を除去するために、溶液は、除去されるべき溶媒の沸点より高温で、且つ保持されることが望ましい溶媒の沸点よりも低温まで加熱される。例えば、キシレン溶媒が望ましい場合、キシレンを所定の溶液に加え、所望の量および粘度に達するまで他の溶媒を蒸留する。
さらに、本発明は、前駆物質の残渣によるシステムの目詰まりを減少させながらバルブおよびシステム管類等を通して前駆物質を流す、適正な蒸気圧用の共通溶媒を調製する。
コーティングの直前に、開始剤が前駆物質に加えられ得る。開始剤は、蒸気圧が高く、沸点が低い、ミストの形成の開始を補助する溶媒である。好適には、前駆物質中のシリコン部分(the silicon moieties)も開始剤に可溶である。すなわち、開始剤は、シリコン部分用の溶媒である。約50℃〜100℃の間の沸点を有する液体が、開始剤として好ましい。開始剤として使用され得る液体の例が、表Bにおいて与えられる。
Figure 0003788627
本発明の方法によると、前記物質液のミストは、実質的に周囲温度で、基板を横切って、基板上に一様に流される。この開示では、「周囲(ambient)」という用語は周囲(surroundings)の温度であることを意味し、好適には室温であり、概ね15℃〜40℃の間である。しかし、真空引き、電気ポーリング、および/または紫外線照射などの様々なプロセスが蒸着中に発生し得るので、蒸着チャンバ2内部の実際の温度は、蒸着が起きる室温から変化し得る。それゆえ、「実質的に周囲温度」という言葉を使用する。実質的に周囲温度とは、概ね−50℃〜100℃の範囲内であることを意味する。下記にさらに論じられるように、流動プロセスの重要な局面は、ミストが複数の投入口を介して基板を横切って流れ、複数の排出口を介して基板上方の領域から出ることである。これらの口は、基板の周縁部に近接し且つ周縁部の周りに分布して、実質的に基板を横切って一様に分布したミストの流れを発生させる。
蒸着プロセスの別の特徴は、このプロセスが比較的低エネルギーのプロセスであるということである。蒸着は、液体粒子間の比較的低エネルギーの動力学的相互作用、および粒子と基板に対向するバリヤプレートとの間の、同様に比較的低エネルギーの動力学的相互作用によって発生すると思われる。蒸着中に蒸着チャンバまたは基板を加熱すると、薄膜の品質が劣化することが分かった。蒸着中、蒸着後、または蒸着中および蒸着後に前駆物質液が処理されて、シリコンジオキシドまたはシリコンガラスの薄膜を基板上に形成する。この文脈(context)において、「処理」とは、以下の、真空に露出する、紫外線照射、電気ポーリング、乾燥、加熱、およびアニールのうちの任意の1つまたは組合わせを意味する。好適な実施形態では、UV照射および電気ポーリングは、蒸着中に、前駆物質液に任意に適用される。紫外線も同様に、好適には蒸着後に照射される。蒸着後、好適な実施形態では液体である基板に蒸着された材料は、好適には、ある時間真空に露出され、その後加熱され、そしてアニールされる。このプロセスの化学は、完全には理解されていない。UVは、溶媒および前駆物質の有機物またはその他の断片から、シリコンジオキシド分子、または所望の最終シリコン化合物を構成するその他の要素を分離するのを補助すると思われる。電気ポーリングは、ミストの基板の領域における滞留時間を増大させ、それにより、粒子を基板に向かって跳ね返させる他のミスト粒子との衝突の機会を増加させると思われる。真空に対する露出は、溶媒を蒸発させ、最終シリコン化合物の要素から分離された、有機物またはその他の断片を除去するのを助けると信じられている。加熱は、溶媒のいかなる残留物も除去し、前記物質化合物の有機物またはその他の断片から、所望の化合物のシリコンオキシド分子またはその他の要素をさらに分離し、有機物を追い出すと思われる。加熱工程の後、蒸着した薄膜の材料は、最終結晶構造ではないが、シリコンジオキシドを本質的に構成すると思われる。アニールは、残っている前駆物質化合物の結合を全て壊し、前駆物質化合物から残っている有機物を全て除去するが、主として損傷を受けた領域を修復し、シリコンジオキシドまたはシリコンガラスに最終的な所望の結晶構造を形成させると思われる。しかし、最初の前駆物質化合物でも最終的な所望のシリコン化合物のいずれでもない中間化合物が、蒸着プロセス、真空露出、加熱、および/またはアニール中に形成し得る。本発明の好適なプロセスは、ミスト化した前駆物質液が基板上に直接蒸着され、溶媒および有機物またはその他の断片の分離および除去が、主として溶液が基板上に形成された後に起きるプロセスである。しかし、本発明の別の局面はまた、最終的な所望の化合物または中間化合物が、蒸着中に溶媒および有機物から分離され、最終的な所望の化合物または中間化合物が基板上に蒸着されることを企図している。両方の局面において、好適には、前駆物質の1つ以上の結合は、通り抜けて最終的な膜へと達する。
強誘電性膜などのシリコンジオキシドまたはシリコンガラス薄膜の重要なパラメータは、薄膜が概して非常に薄い(例えば、200オングストローム〜15000オングストロームの範囲内である)ことを必要とすることである。そのような膜厚は、本発明によるプロセスおよび装置によって、容易に達成することが可能である。本発明はまた、要望に応じて、非常に厚い膜を生成するためにも使用することが可能である。
2.蒸着装置
図1に、本発明の例示的な一実施形態による薄膜蒸着装置を示す。この装置は、概して1で示される。装置1は、基板ホルダ4、バリアプレート6、投入ノズルアセンブリ8、排出ノズルアセンブリ10、および紫外線放射源16を含む、蒸着チャンバ2を有する。蒸着チャンバ2は、本体12と、本体を覆って取り付け可能な、蒸着チャンバ2内部の封鎖空間を規定する蓋14とを有する。チャンバは、下記に説明する複数の外部真空供給源に連結される。蓋14は、15で示すヒンジを使用して本体12に枢転式に連結される。操作中、ミストおよび不活性キャリアガスが、43の方向に、管45を通って送り込まれ、投入ノズルアセンブリ8を通過する。投入ノズルアセンブリ8において、ミストは基板5上に蒸着される。過剰なミストおよびキャリアガスは、排出ノズル10を介して蒸着チャンバ2から引き出される。
基板ホルダ4は、ステンレス鋼などの導電性材料による2つの円形プレート3および3′により形成されている。上部プレート3は、デルリンなどの電気的に絶縁性の材料によって、底部プレート(フィールドプレート)3′から絶縁されている。例示的な実施形態では、直径4インチの基板を利用するので、基板ホルダ4は、直径が名目上(nominally)6インチであり、回転自在軸20上に支持されている。回転自在軸20は、ホルダ4および基板5が蒸着プロセス中に回転し得るように、モータ18に順に連結されている。絶縁軸22は、上部に支持された基板ホルダ4および基板5を、直流電圧から電気的に絶縁する。この直流電圧は、基板ホルダ4とバリヤプレート6との間に(チャンバ本体12を介して)直流バイアスが発生し得るように、蒸着チャンバ本体12に印加される。そのような直流バイアスは、例えば、薄膜が基板5上に蒸着される間に、薄膜をフィールドポーリングするために利用され得る。絶縁軸22は、カップリング21によって、軸20および軸20′に連結される。電気供給源102は、接続部108においてリード線106によって蒸着チャンバ2の本体12に、そしてリード線104によって、フィードスルー23を介して真鍮スリーブ25に効果的に接続され、フィールドプレート3′とバリヤプレート6との間の直流バイアスを与える。
バリヤプレート6は、ステンレス鋼などの導電性の材料によって形成される。バリヤプレート6は、投入管26およびノズルアセンブリ8を通って注入された気化原料またはミストが、バリヤプレート6と基板ホルダ4との間を基板5の全面を覆って強制的に流されるように、基板5の実質的に全面を覆って基板5に並行に広がるのに十分大きな寸法を有する。バリヤプレート6は、好適には基板ホルダ4と同じ直径である。図1、図11、および図12に示すように、バリヤプレート6は、蓋が開けられるたびに基板5から離れるように、複数のロッド24によって蓋14に連結される。バリヤプレート6はまた、幅が約0.75インチ、長さが4インチのUV透過ウィンドウ27を有する。ウィンドウ27は、供給源16からのUV放射線を基板5上に直接照射させる。ウィンドウ27は、好適には石英によって形成されるが、スプラシル(suprasil)またはその他の適切な材料によっても形成され得る。
図11および図12に、基板ホルダ4から様々な距離にあるバリヤプレート6を示す。それぞれのロッド24は、典型的には、蒸着チャンバ蓋14に取り付けられたステンレス鋼ロッドである。それぞれのロッド24は、ボルト35(図1)を適合させるためにホールを空けられている。ロッド24は、ボルト35によってバリヤプレート6に取り付けられる。それぞれのロッド24は、ボルト35をロッド24に固定する止めネジ36を適合させるために、タップが切られる。止めネジ36をゆるめ、ボルト35に対してロッド24の位置を決め直し、その後止めネジ36を締め直すことによって、ロッド24をチャンバ蓋14から外さなくても、それぞれのロッドの有効な長さを1/2インチまで調節することが可能である。それぞれのロッド24は取り外し可能であり、バリヤプレート6と基板ホルダ4(および基板5)との対応する間隔S、S′等を原料物質、流速等に依存して大まかに調節するために、異なる長さL、L′等の異なる長さのロッド24のセットを交換することを可能にする。例えば、ロッドの長さLは、調節されて0.10〜2.00インチの範囲の間隔Sを提供し得る。所定の位置に一度配置されると、ロッド24を上記のように調節することも可能である。このように、ロッド24、ボルト35および止めネジ36は、バリアプレート6を調整するための調整手段を構成する。基板ホルダ4とバリヤプレート6との間の間隔は、下記のように調製されるシリコンジオキシド用の前駆物質液を蒸着する場合には、好適には約0.375インチ〜0.4インチの間である。
図7は本発明の例示的な実施形態の装置の上面図であり、そして図9は図7の実施形態に対応する装置の模式図である。図7に示すように、0〜1000Torrの温度補正したキャパシタンスマノメータ710が、蒸着チャンバ2内部の圧力をモニタし、マノメータ710の信号が下流制御バルブ932(図9)を制御して蒸着チャンバ2内の精確な圧力を維持する。図9に示すように、蒸着チャンバ2は、真空ポンプ921によって粗くポンピング(rough-pupmed)される。真空ポンプ921は、一実施形態では、Alcatel 2-stage,11 CFMメカニカルフォアポンプである。粗くポンピングされた後、蒸着チャンバ2は、C.T.I.Cryo-Torr 100高真空ポンプなどの真空ポンプ916によって、高真空ポンピングされる。その他のターボ分子ポンプまたは低温ポンプも、高真空ポンピング用に使用することが可能である。5.0×10-6Torrより下までの蒸着チャンバ2の高真空ポンピングは、バルブ713を開き、高真空ポンプ916を使用し、バルブ940を閉じた状態で達成される。高真空ポンプ916は、この操作のためだけにバルブ940を開いた状態で、ポンプ916の再生(regeneration)の必要に応じて(典型的には2週間ごとに)使用されるポンプ917によって、支援(back)される。電離真空計915は、チャンバ2内の真空をモニタするために使用される。蒸着チャンバ2の高真空ポンピングは、蒸着操作に先立ってチャンバ壁ならびにチャンバの内側に配置された基板5からの水分の吸収を促進するために使用される。
図9に示すように、RGA(残留ガス分析器)912が、1気圧から極端に低い気圧まで、蒸着チャンバ2内部の分解生成物を分析するために設けられ得る。最高300AMUまでの分解能が提供される。例示的な実施形態では、RGA912は、U.T.I.残留ガス分析器であり、Varian Associates 10 LPSイオンポンプ930に接続される。
バルブ727および942は、チャンバ2を再度満たす目的で、供給源944から蒸着チャンバ2に窒素を通気するために使用される。バルブ942は、チャンバ2への窒素の流れを調節するために使用されるニードルバルブである。
蒸着チャンバ2は、プロセスポンプ921を用いた蒸着処理の間に、約200〜600Torrの間の圧力まで真空減圧される。蒸着チャンバ排出システムは、ポンプ921に加えて、液体窒素コールドトラップ709と、コントローラおよび手動バルブを備えたMKSコントロールバルブ932とを有する。コールドトラップ709は、供給源934からの乾性窒素でパージされ得る。Daytonソレノイドバルブ927は、粗選ライン(roughing line)を乾性窒素ガスで再充填するために使用される。コールドトラップ709は、バルブ726を介してプロセスチャンバ2に連結され、且つニードルバルブ932、フィルタ931およびプロセスラインバルブ928を介しても、プロセスチャンバ2に連結される。蒸着チャンバの排出物は、燃焼ボックスおよびスクラバー装置922に方向づけられ、毒性で腐食性且つ可燃性の気体の安全な排出を確実にする。
蒸着チャンバ2から外部チャンバ(図示せず)へのアクセスは、空気圧式スリットバルブ703を通って設けられる。蒸着チャンバ2の内部は、蒸着操作中、覗き窓718を通して見ることが可能である。
前駆物質液は、流体質量コントローラ708およびVCRバルブ725−3を有するシステムを介して提供される。流体質量コントローラ708およびVCRバルブ725−3は、供給源736からミスト生成器46−1へのアルゴンなどの不活性ガスの流れを調節することによって、マニフォールドアセンブリ40(図3)を通る蒸着チャンバ2への原料物質の分散速度を制御する。さらなるガス供給源、流体質量コントローラ、およびバルブ投入部(図示せず)を、VCRバルブ725−5を介してマニフォールドアセンブリ40に連結するミスト生成器46−2に連結することが可能である。別個の流体質量コントローラ708′が、供給源738からの酸素および/またはその他の不活性またはプロセス活性ガスを、VCRバルブ725−7を介してマニフォールドアセンブリ40に導入するために使用される。
投入ノズルアセンブリ8および排出ノズルアセンブリ10を、図2を参照してより具体的に示す。投入ノズルアセンブリ8は、図3に関連して下記で論じられる、マニフォールドアセンブリ40からのミスト化した溶液を受け入れる投入管26を有する。投入管26は、アーチ形管28に連結される。アーチ形管28は、管28の内側の円周に沿って、中心から中心まで1/4"の間隔を置いた取り外し可能ネジ30を受ける複数の小ホールまたは投入口31を有する。
排出ノズルアセンブリ10は、取り外し可能ネジ30を備えた複数の小ホールまたは排出口31′を有するアーチ形排出管29を有する。排出ノズルアセンブリ10の構造は、管34が真空/排出源(図示せず)につながっていることを除いて、投入ノズルアセンブリ8の構造と実質的に同じである。管28および29のエンドキャップ32は、掃除のために取り外すことが可能である。投入ノズルアセンブリ8のアーチ形管28および排出ノズルアセンブリ10の対応するアーチ形管29はそれぞれ、対向して配置された基板ホルダ4の周辺部4−1および4−2を囲む。
シリコンジオキシド膜が蒸着される例示的な実施形態では、管28および29のホール31および31′の中心は、名目上、基板ホルダ4の0.375インチ上方に配置される。しかし、図1を参照して、この距離は、特定の蒸着プロセスに合うように、様々な長さの軸20′を使用して調節可能である。
それぞれの管28および29は、典型的には1/4″O.D.ステンレス鋼から、約3/16″の内径を有して形成される。それぞれの管28および29の内壁は、好適には電解研磨される。管28および29のホール31および31′は、それぞれ中心から中心まで1/4インチの間隔を置き、且つ4−40(1/8″)ソケットヘッド止めネジを適合させるためにタップを切られる。
そのような構造を通して、そして2つのアーチ形管28および29のネジ30を選択的に挿入または取り外すことにより、開いたホール31および31′の位置を調節することによって、基板5上方の気化溶液またはミストの流れを様々な溶液および流速等用に良好に制御し、基板5上の薄膜の均一な蒸着を達成することが可能である。
図1および図2を参照すると、基板ホルダ4、バリヤプレート6、投入ノズルアセンブリ8および排出ノズルアセンブリ10は、集合的に協働して、基板5の上部/露出面を囲む比較的小さな半封鎖蒸着領域17を定義する。気化溶液は、実質的に蒸着プロセスの間ずっと蒸着領域17の内部に収容される。
基板ホルダ4、バリヤプレート6、投入ノズルアセンブリ8および排出ノズルアセンブリ10の例示的な実施形態を示し且つ説明しているが、そのような構造の変形を本発明の範囲内で利用することが可能であることが理解される。例えば、アーチ形投入管および排出管28および29は、V形またはU形管、あるいは溝付き(slotted)管などの他の構造の管と置き換えることが可能である。または、アーチ形投入管および排出管28および29は、単に、複数の分離したノズルおよび分離した排出口に置き換えることが可能である。
図3に、本発明によるマニフォールドアセンブリ40を示す。マニフォールドアセンブリ40は、気化溶液(ミストまたはエーロゾル)を投入ノズルアセンブリ8に供給するために利用される。マニフォールドアセンブリ40は概して、混合チャンバ42と、それぞれのバルブ725−2、725−5、725−7を通して対応するミスト生成器に連結された複数の入口44と、混合チャンバ42からノズルアセンブリ8への流れを調節する蒸着バルブ725−1と、排出通気バルブ725−6とを有する。
使用中、1つ以上のミスト生成器46−が、1つ以上の異なるミストを生成するために利用される。生成されたミストは、次いで、バルブ725−および入口44を通って、混合チャンバ42に流れ込む。
混合チャンバ42に流れ込んだミストは、混合されて単一の均一なミスト状(misted)溶液を形成する。次いで、ミスト状溶液は、適切な流速でバルブ725−1および投入管26を通って、蒸着チャンバ2に流れ込む。バルブ725−1は、蒸着チャンバ2を要望に応じてポンピングすることができるように、または必要時にマニフォールドシステムを洗浄およびパージするために、選択的に閉じられることが可能である。同様に、排出バルブ725−6の出口は、1つ以上のミスト生成器46を排出/パージする必要があるときに、バルブ725−1を閉じることが可能であり、バルブ725−6および1つ以上のバルブ725−を開くことが可能であり、且つ混合チャンバ42をポンピングして、ポンプ921および/またはポンプ916を介して真空を付与することによって、または標準的なネガティブフロー型の排出を使用することによって、ミスト生成器46および混合チャンバ42を洗浄およびパージすることが可能であるように、真空供給源(図示せず)に連結される。
本発明の重要な局面は、安定化した前駆物質液が、蒸着チャンバ2に導入される前に、超音波で撹拌されて微粒化または霧化されることである。この微粒化は、本発明の改善した操作用の重要な主成分を提供する安定化した前駆物質液のミストを製造する。
図4は、本発明に使用されるミスト生成装置の例示的な実施形態の側面模式図である。図5は、図4のミスト生成装置の分解図である。図4および図5に示すように、ミスト生成器46は、閉鎖容器54と、容器54の底部に液密に且つ真空に密封されたTDK TU-26Bまたは同等の超音波トランスデューサ56とを有する。容器54は、内部フィルタカートリッジがない、改変したMillipore Waferguard T-Lineガスフィルタユニット(カタログno.YY50 005 00)である。矢印420によって示されるガスの流れる方向は、フィルタの通常操作において使用される方向とは逆である。トランスデューサ56は、ミスト生成器46の底部セクション412の窪んだホールの中に取り付けられ、デルリン取付台402のホール411を貫通する8〜32回ネジを切った2本のスタブ410によって、底部セクション412に固定される。テフロン「O」リング404およびテフロンシール406が、トランスデューサ56と容器54の内側との間に気密および真空密シールを提供する。ミスト生成器46はまた、キャリアガスに容器54を通過させるために、入口60および出口62を有する。
操作の前に、容器54の上部セクション414から底部セクション412を分離した後、前駆物質液64の所定の量を容器54に導入する。操作中は、トランスデューサ56を電気的に起動して前駆物質液のミスト66を生成し、そして口60を介して不活性キャリアガスをミスト66中に通すと、不活性キャリアガスはミストで湿性になる、または飽和する。次いで、湿性キャリアガスを出口62からマニフォールドアセンブリ40に通す。キャリアガスは、通常、アルゴン、ヘリウム、または窒素などの不活性ガスであるが、適切な条件下では反応性ガスを含み得る。
図4および図5に示すミスト生成器46は、凝固などの問題を伴わずに蒸着チャンバ2に効果的に流し込まれる、または注入されることが可能な気化溶液を発生させるので、特に有利である。
図4および図5に示すミスト生成器46が本発明によると好ましいが、他のミスト生成器を本発明に従って利用することが可能であることが理解される。例えば、スプレーノズルは、閉鎖した容器内部に前駆物質液のミストを生成するために使用されることが可能である。また、適切なガスを、図4および図5に示す口60および62よりも小さな入口および出口を使用して、ミストを通して混合チャンバ40に流し込むことが可能である。
図10は、蒸着チャンバ2内部の紫外線放射源16の配置を示す斜視図である。本プロセスのフォトエンハンスメントは、蒸着中および蒸着後にUV(紫外線)光線を与えることによって行われる。UV光線は、前駆物質からの溶媒および有機物の分離を促し、それにより乾燥プロセスを促進すると思われる。さらに、蒸着プロセス前のUV照射の使用は、蒸着チャンバ2および基板5からの水分の除去(脱着)を促進する。蒸着チャンバ内部の紫外線光源16の位置は、重要ではない。なぜなら、紫外線照射は、蒸着チャンバ2のステンレス鋼の壁から投入ノズル8および排出ノズル10の間の空間および基板5上に反射され、それにより、反射は上記のフォトエンハンスメント効果を提供することが可能だからである。
UV源16は、蒸着チャンバ2内に配置されて紫外線照射バス(bath)をそこに付与する、少なくとも1つのUVランプを有する。使用可能なスペクトル源には、紫外線ランプおよびエキシマレーザが含まれる。いずれの場合においても、UV源16によって付与された照射バスは、溶液および有機物または他の断片から所望の化合物の分離を最も効果的にするために適合される。第1の場合では、エキシマレーザによって発せられた放射は、溶媒の結合、前駆物質化合物の結合、および/または任意の中間有機化合物の結合を分離するまたは解くために必要なエネルギーに一致するように、スペクトル的に「適合される」(spectrally "turned")。これらの結合は、所定の前駆物質中に所望の化合物を保持する、蒸着プロセス中に形成される。あるいは、UV源16がUVランプ(または複数のUVランプ)である場合には、「適合」は、1つ(または1組)のUVランプを、より望ましい周波数のスペクトルを有する別の1つ(または1組)のUVランプと交換することによって、達成される。UV源はまた、比較的低出力のものであるべきである。なぜなら、低出力でなければ、前駆物質ミストを完全に乾かしてしまうからである。
本明細書で論じられるシリコン前駆物質の蒸着のために、約180〜260ナノメータの波長を有するUV放射線を発するDanielson Phototron PSM-275 UV放射源16を使用する。この波長範囲のUV放射は、気化ゾル−ゲル、MOD、またはその他の液体の化学的供給源中にシリコンを保持する水素結合を共鳴させ且つ分離させる際に、特に効果的である。
図1、図7、および図9に示す装置1は、蒸着操作中に蒸着チャンバ2内に直流バイアスを印加する電気的手段102を有する。図1に、直流入力部104を示す。入力スリーブ25と蒸着チャンバ本体12との間に印加される直流電位は、典型的には350ボルトである。直流電位は、膜の品質に加えて強誘電性膜の原位置のポーリングを達成する。
350ボルトより高いまたは低い直流バイアスも、上記の結果を実現するために使用することが可能である。さらに、蒸着が発生している間に、紫外線照射および直流バイアスが組み合わされて、同時または連続のいずれかで、且つ繰り返して蒸着チャンバ2内部に印加され得る。
ホットプレートなどの補助加熱手段(図示せず)が、基板上に蒸着されている前駆物質液の薄膜を焼成および/またはアニールするために使用され得る。焼成/アニールプロセスは、図6の工程P11およびP12に関連して論じられるように、蒸着チャンバ2内部で実施され得るが、焼成およびアニールは、好適には予備チャンバ内部で行われ得る。アニールは、好適には酸素炉の中で実施される。拡散したエキシマレーザ源からなどの高エネルギー密度(high energy density)紫外線照射も、好適なアニール法である。
3.プロセスの実施例
図6を参照すると、本発明の方法を示す例示的なフローチャートが示されている。この方法では、シリコンジオキシドまたはシリコンガラスが、図1〜図5の装置を利用して蒸着される。この実施例では、蒸着される層は、シリコンジオキシドである。工程P1では、シリコンジオキシド前駆物質液が調整される。最初に、表1に示す材料の量を計測する。表1では、「FW」は式量を表し、「grams」はグラムでの重量、「mmoles」はミリモルを表し、そして「Equiv」は溶液中のモルの相当数を表す。
Figure 0003788627
シリコンブトキシドの販売元がStremであるのに対して、ネオデカノン酸は、Morton-Thiokolから得られた。工程P1を続けて、シリコンブトキシドおよびネオデカノン酸を、50ミリリットル(ml)のキシレンを入れたフラスコに入れる。混合物を、最高温度115℃まで18時間加熱し且つ撹拌して全ての水を蒸留する。35mlのキシレンを加え、熱を最大135℃まで上昇させて、全てのブタノールおよび水を溶液から蒸留する。蒸留工程は、上記の好適な実施形態のような、形成工程P1の一部であり得るが、本質的な工程であるので、工程P5として別個に示す。すなわち、本質的に無水の最終前駆物質を製造するために可能な限り多くの水を蒸留することは、貯蔵時の前駆物質の劣化を防ぐために重要である。また任意に、ドーパントおよびその他の添加物が、工程P3で加えられ、前駆物質と混合され得る。これは概して、ボロホスホシリケートガラス(borophosphosilicate glass、BPSG)などのシリコンガラスが蒸着される場合である。工程P7では、溶液の重量が40.617グラムになるまで、混合物をさらなるキシレンを用いて希釈した。これにより、0.0999mmole Si/gramの濃度を有する貯蔵溶液が提供された。前駆物質は、この時点で貯蔵され得る。蒸着の直前に、工程P9では、溶液は、20.306グラムの重量であり、キシレンを用いて40.609グラムまで希釈された。これにより、0.05000mmole Si/gramの濃度を有する溶液が提供された。工程P9に戻って、約9.0ミリリットルの上記のようなシリコンジオキシドを、約5.0mlのメチルエチルケトン(MEK)開始剤と一緒に、ミスト生成器46の容器54に入れた。最初に、シリコンウェハ1222(図13および図14)をその上に蒸着した基板5が、ホットプレート上で、大気圧(@コロラド州、コロラドスプリングス)で400℃で10分間、予備焼成された。基板は、蒸着チャンバ内の基板ホルダ上に配置された。蒸着チャンバは、バルブ726を介したラフポンプ921ならびにバルブ713を介した高真空ポンプ916を使用して、10-6Torrまで減圧された。350ボルトの直流バイアスを、蒸着チャンバのスリーブ25と本体12との間に印加した。次に、基板回転モータ18を作動させ、基板ホルダ4を毎分約5回転で回転させた。次いで、UV源16が30分間作動させられ、蒸着チャンバ内の水分および基板上のいかなる水分も脱着させた。次いで、高真空バルブ713を閉じ、蒸着チャンバを、バルブ727および942を介して、アルゴンまたは窒素などの不活性ガス源944を用いて、約595Torrの圧力まで徐々に再充填した。次に、排出スロットルバルブ928、フィルタ931、およびニードルバルブ932を開くことによって、プロセス真空ラインを開いて、蒸着チャンバの圧力を約595Torrで安定化させた。次いで、注入バルブ725−1および蒸着バルブ725−2を開き、且つバルブ725−6を閉じて、超音波ミスト生成器46を通る供給源736からのアルゴンの流れを開始させた。次いで、超音波ミスト生成器46が30分間作動させられて、基板上で実質的に周囲温度で蒸着される、約1500オングストロームの膜を発生させた。蒸着プロセスは、アルゴンキャリアガスを使用してシリコンジオキシド前駆物質ミストを基板全面に流した。シリコンジオキシド前駆物質の十分な膜が基板上に蒸着されて薄膜を製造した後に、ミスト生成器、UV源、および基板回転モータを停止させた。次いで蒸着バルブ725−1が閉じられ、次いでバルブ725−6が開かれ、そしてトランスデューサ56が停止され、ミスト生成器46−1が周囲温度に達するまで、通気孔705を介してマニフォールド42を通気した。マニフォールド42は、供給源736からのアルゴンガスを適用することによって、通気孔705を介してパージされ、工程P10を完了した。
工程P11では、ウェハが蒸着チャンバ内に残っている間に、チャンバを0.4Torrまで、ポンプ921を使用して1/2時間ゆっくりと減圧した。ゆっくりした減圧中、バルブ928、フィルタ931、およびバルブ932は、チャンバの圧力が0.4Torrに達するまで開いたままにした。その後、バルブ928を閉じ、バルブ713を開いて、高真空ポンプ916に蒸着チャンバ2を10-6Torrまで10分間減圧し、シリコン前駆物質を乾燥させて固体シリコン化合物を基板上に形成した。次いで、別の2つのシリコンジオキシドの層を上記のように蒸着させた。次に、バルブ713を閉じ、蒸着チャンバを通気バルブ727を開くことによって大気圧まで通気した。次いで、ウェハを蒸着チャンバから取り除き、400℃で2分間二次焼成して工程P11を完了した。工程P13では、次いで、750℃で60分間、ウェハを酸素雰囲気中でアニールした。工程P14では、白金下部電極、BST層1230、および上部白金電極1232を蒸着し、次いで、周知のフォトレジスト技術を使用してウェハをエッチングして、下記にさらに説明するように、複数の電子素子を製造した。
上記のように、素子は、ウェハ全面の厚みをほとんど変化させない良好に適合した被膜(coverage)、良好な段の被膜を有し、且つクラックを有さなかった。形成されるBSTコンデンサは、集積回路品質のものであった。
図8を見ると、集積回路100の一部分の断面図が示され、その一部は、本発明の方法によって製造される。集積回路を描写する図8、図13、および図14は、実際の半導体装置の任意の特定の部分の実際の断面図を意味するものではなく、可能な限り本発明の構造およびプロセスをより明確に且つ完全に描写するために使用される、理想化された表現に過ぎないことが理解される。集積回路100の図に示す部分は、トランジスタ72およびコンデンサ80を有する1つのメモリセル76を表す。集積回路100の部分、特に層77、86、および95は、本発明の装置およびプロセスを利用して形成され得る。層82などのその他の層は、金属酸化物前駆物質を用いた本発明を使用して形成され得る。層82がストロンチウムビスマスタンタレートなどの強誘電性材料である場合には、集積回路は、不揮発性強誘電性(FERAM)スイッチングメモリセルである。層82がBSTなどの誘電性材料である場合には、集積回路100は、揮発性DRAMメモリセルである。
集積回路100は、好適には単結晶シリコンウェハである基板71を含み、その上部にトランジスタ72が形成される。トランジスタ72は、基板71の領域をドーピングすることによって形成された、ソース/ドレインアクティブ領域73Aおよび73B、ならびにゲート74を含む。集積回路100は、フィールド酸化膜領域75と、第1の絶縁層77をさらに含み、第1の絶縁層77上にコンデンサ80が形成される。第1の絶縁層77は、ゲート酸化膜および熱酸化膜を含み得るが、それらは個別には示されていない。なぜなら、周知のように、それらは異なる工程で形成されるが、同一の材料により形成されるため、本質的に融合するからである。第1の絶縁層77も、従来では、ドープされていないシリコンガラス層、BPSG(ボロホスホシリケート)層、およびSOG層を含み得る。しかし、本発明によると、層77は、本発明のプロセスによって形成された5つから10のシリコンジオキシドおよび/またはBPSGの層を含む。コンデンサ80は、第1の電極81、強誘電性または高誘電率の材料であり得る中間層82、および第2の電極84を含む。第2の絶縁層86はコンデンサ80の上に横たわり、しばしばメタライゼーション層と呼ばれる配線層88は、アクティブ領域73Bをコンデンサ80の第1の電極81と接続し、且つアクティブ領域73Aおよび第2の電極84を回路の他の部分と接続する。配線層88は、好適には、アクティブ領域73Aおよび73Bと接触する第1の層90、第2の層91、およびコンデンサの電極81および84の表面99および97と各々接触する第3の層93を含む多層構造である。層90、91、および93は、アクティブ領域73Aおよび73Bを各々オーバレイする部分115および116、第1の電極81の表面99の上方に横たわる部分118、第2の電極84の表面97の上方に横たわる部分119、および部分116および118を接続する部分117を含む。部分115および116は、第2の絶縁層86および第1の絶縁層77を貫通し、アクティブ領域73Aおよび73Bに各々接触する。部分117は、第2の絶縁層86の上方に横たわる。そして部分118および119は、第2の絶縁層86を貫通して、第1の電極81の表面99および第2の電極の表面97に各々接触する。部分116および118は、部分117によって電気的に接続しており、それによりアクティブ領域73Bを第1の電極81の表面99に電気的に接続する。他の実施形態では、コンデンサ80はコンデンサ全面に亘っていずれかの方向に配置される電場または電圧を用いて動作するので、アクティブ領域73Bは第2の電極84に接続され得る。キャッピング層95は、好適にはリンをドープしたシリコンガラスであり、集積回路の層状構造を完成させる。周知のように、そのような集積回路100は、一般に、その後何百という個々の集積回路チップに鋸引き(sawed)されるウェハ上に製造される。それぞれのチップは、何千または何百万というセル76を含む。次いで、それぞれのチップは、完成した集積回路を製造するためにパーケージされる。
現時点で本発明の好適な実施形態であると見なされるものを説明してきたが、本発明を、その精神または本質的な特徴から逸脱することなく、他の特定の形態において具体化することが可能であることが理解される。従って、本明細書の実施形態は、あらゆる局面において、例証的であって限定的ではないと見なされる。本発明の範囲は、前述の説明によってではなく、添付された請求項によって示される。

Claims (16)

  1. シリコンジオキシドまたはシリコンガラスの薄膜を製造する方法であって、該方法は、
    (a)カルボキシシラン、アルコキシカルボキシシランおよび無水のアルコキシシランからなるグループから選択されるシリコン化合物、及び沸点が110℃〜170℃の範囲内の溶剤を含む液体前駆体を提供するステップと、
    (b)基板を封鎖した蒸着チャンバの内部に配置するステップと、
    (c)該液体前駆体のミストを生成するステップであって、該ミストは、ガスによって運搬される液体の微細な液滴を含む、ステップと、
    (d)該ミストを該蒸着チャンバを介して流すことにより、該基板上に該液体前駆体の層を形成するステップと、
    (e)該基板に蒸着した該液体の層を処理することにより、シリコンジオキシドおよびシリコンガラスからなるグループから選択されるシリコン材料の固体膜を形成するステップと
    を包含し、
    前記膜は、前記蒸着チャンバが200トールと600トールとの間の真空に維持され、かつ、前記基板周囲温度が15℃から40℃に維持されて蒸着される
    ことを特徴とする、シリコンジオキシドまたはシリコンガラスの薄膜を製造する方法。
  2. 前記シリコン材料は、集積回路の一部を形成し、前記方法は、該シリコン材料の少なくとも一部を該集積回路の電子デバイスのための絶縁体として含むように該集積回路の製造を完了するステップをさらに包含する、請求項1に記載の方法。
  3. 前記液体前駆体は、溶媒中に金属アルコキシドを含む、請求項1に記載の方法。
  4. 前記液体前駆体は、溶媒中に金属カルボキシレートを含む、請求項1に記載の方法。
  5. 前記ミストを前記蒸着チャンバに流すステップは、該蒸着チャンバ中の真空を維持しつつ実行される、請求項1に記載の方法。
  6. 前記流すステップは、前記基板の一方の側の周辺に近接して前記ミストを前記蒸着チャンバに注入することと、該基板の反対側の周辺に近接する領域で該ミストを該蒸着チャンバから排出することにより、該基板にわたってミストの実質的に均等に分配された流れを生成することとを包含する、請求項1に記載の方法。
  7. 前記基板の表面は、基板面を定義し、前記ミストは、基板面と、該基板と間隔を空けて該基板面に平行に前記蒸着チャンバ内に配置されるバリアプレートとの間を流れる、請求項1に記載の方法。
  8. 前記バリアプレートは、該バリアプレートと前記基板との間の距離を変更するように調節可能である、請求項に記載の方法。
  9. 前記ミストが前記基板上を流れている間に該基板の面に平行な面内で該基板を回転させる追加のステップを包含する、請求項1に記載の方法。
  10. 前記ミストが前記蒸着チャンバを介して流れている間に紫外線放射を該ミストに付与する追加のステップを包含する、請求項1に記載の方法。
  11. 前記蒸着チャンバと前記基板との間にDCバイアスを付与するステップを包含する、請求項1に記載の方法。
  12. 前記ミストを生成するステップは、前記液体前駆体の量を超音波的に振動させることにより、噴霧により該ミストを形成することを包含する、請求項1に記載の方法。
  13. 前記処理するステップは、前記基板上に蒸着した前記層を乾燥すること、焼成することおよびアニールすることからなるグループからの1以上のステップを包含する、請求項1に記載の方法。
  14. 前記処理するステップは、前記基板に蒸着した前記液体前駆体を乾燥することを包含する、請求項1に記載の方法。
  15. 前記乾燥するステップは、前記蒸着チャンバにおいてサブ大気圧を維持することを包含する、請求項1に記載の方法。
  16. 前記液体前駆体は、溶媒中に金属化合物を含み、該溶媒は、キシレン類、2−メトキシエタノール、n−オクタンおよびn−ブチルアセテートからなるグループから選択される、請求項1に記載の方法。
JP53289497A 1996-03-14 1997-03-14 集積回路にシリコンジオキシドおよびシリコンガラス層を形成する方法および装置 Expired - Fee Related JP3788627B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/615,806 1996-03-14
US08/615,806 US5759923A (en) 1991-02-25 1996-03-14 Method and apparatus for fabricating silicon dioxide and silicon glass layers in integrated circuits
PCT/US1997/004185 WO1997034320A1 (en) 1996-03-14 1997-03-14 Method and apparatus for fabricating silicon dioxide and silicon glass layers in integrated circuits

Publications (2)

Publication Number Publication Date
JP2001500318A JP2001500318A (ja) 2001-01-09
JP3788627B2 true JP3788627B2 (ja) 2006-06-21

Family

ID=24466883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53289497A Expired - Fee Related JP3788627B2 (ja) 1996-03-14 1997-03-14 集積回路にシリコンジオキシドおよびシリコンガラス層を形成する方法および装置

Country Status (7)

Country Link
US (1) US5759923A (ja)
EP (1) EP0891631A1 (ja)
JP (1) JP3788627B2 (ja)
KR (1) KR100327839B1 (ja)
CN (1) CN1213457A (ja)
TW (1) TW356558B (ja)
WO (1) WO1997034320A1 (ja)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0754167T3 (da) * 1994-04-05 1999-05-03 Klaus Leiter Fremgangsmåde og anordning til målrettet dannelse af kim eller krystaller
US6413883B1 (en) 1996-03-04 2002-07-02 Symetrix Corporation Method of liquid deposition by selection of liquid viscosity and other precursor properties
US5972428A (en) * 1996-03-05 1999-10-26 Symetrix Corporation Methods and apparatus for material deposition using primer
US6136703A (en) * 1998-09-03 2000-10-24 Micron Technology, Inc. Methods for forming phosphorus- and/or boron-containing silica layers on substrates
KR100314806B1 (ko) 1998-10-29 2002-02-19 박종섭 스핀온글래스막형성방법
US6901808B1 (en) 2002-02-12 2005-06-07 Lam Research Corporation Capacitive manometer having reduced process drift
US8749054B2 (en) 2010-06-24 2014-06-10 L. Pierre de Rochemont Semiconductor carrier with vertical power FET module
US7252011B2 (en) * 2002-03-11 2007-08-07 Mks Instruments, Inc. Surface area deposition trap
US7579251B2 (en) * 2003-05-15 2009-08-25 Fujitsu Limited Aerosol deposition process
US7311947B2 (en) * 2003-10-10 2007-12-25 Micron Technology, Inc. Laser assisted material deposition
US20050212093A1 (en) * 2004-03-26 2005-09-29 Matsushita Electric Industrial Co., Ltd. Semiconductor device and apparatus for fabricating the same
EP1797617A4 (en) 2004-10-01 2009-08-12 Rochemont L Pierre De CERAMIC ANTENNA MODULE AND METHODS OF MAKING SAME
US7446055B2 (en) * 2005-03-17 2008-11-04 Air Products And Chemicals, Inc. Aerosol misted deposition of low dielectric organosilicate films
US7927423B1 (en) * 2005-05-25 2011-04-19 Abbott Kenneth A Vapor deposition of anti-stiction layer for micromechanical devices
US8350657B2 (en) * 2005-06-30 2013-01-08 Derochemont L Pierre Power management module and method of manufacture
JP4945561B2 (ja) * 2005-06-30 2012-06-06 デ,ロシェモント,エル.,ピエール 電気コンポーネントおよびその製造方法
US8354294B2 (en) 2006-01-24 2013-01-15 De Rochemont L Pierre Liquid chemical deposition apparatus and process and products therefrom
US7763917B2 (en) * 2006-01-24 2010-07-27 De Rochemont L Pierre Photovoltaic devices with silicon dioxide encapsulation layer and method to make same
US7807062B2 (en) * 2006-07-10 2010-10-05 Micron Technology, Inc. Electron induced chemical etching and deposition for local circuit repair
US7892978B2 (en) 2006-07-10 2011-02-22 Micron Technology, Inc. Electron induced chemical etching for device level diagnosis
US7791055B2 (en) 2006-07-10 2010-09-07 Micron Technology, Inc. Electron induced chemical etching/deposition for enhanced detection of surface defects
US7718080B2 (en) * 2006-08-14 2010-05-18 Micron Technology, Inc. Electronic beam processing device and method using carbon nanotube emitter
US7791071B2 (en) 2006-08-14 2010-09-07 Micron Technology, Inc. Profiling solid state samples
US7833427B2 (en) * 2006-08-14 2010-11-16 Micron Technology, Inc. Electron beam etching device and method
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
US8922347B1 (en) 2009-06-17 2014-12-30 L. Pierre de Rochemont R.F. energy collection circuit for wireless devices
US8952858B2 (en) 2009-06-17 2015-02-10 L. Pierre de Rochemont Frequency-selective dipole antennas
US8552708B2 (en) 2010-06-02 2013-10-08 L. Pierre de Rochemont Monolithic DC/DC power management module with surface FET
US9023493B2 (en) 2010-07-13 2015-05-05 L. Pierre de Rochemont Chemically complex ablative max-phase material and method of manufacture
CN103180955B (zh) 2010-08-23 2018-10-16 L·皮尔·德罗什蒙 具有谐振晶体管栅极的功率场效应晶体管
CN103415925A (zh) 2010-11-03 2013-11-27 L·皮尔·德罗什蒙 具有单片集成的量子点器件的半导体芯片载体及其制造方法
KR101364701B1 (ko) * 2011-11-17 2014-02-20 주식회사 유진테크 위상차를 갖는 반응가스를 공급하는 기판 처리 장치
KR101408084B1 (ko) * 2011-11-17 2014-07-04 주식회사 유진테크 보조가스공급포트를 포함하는 기판 처리 장치
US9765429B2 (en) 2013-09-04 2017-09-19 President And Fellows Of Harvard College Growing films via sequential liquid/vapor phases
JP2017069279A (ja) * 2015-09-28 2017-04-06 ウシオ電機株式会社 固体光源素子パッケージの製造方法
US10275573B2 (en) 2016-01-13 2019-04-30 Bigfoot Biomedical, Inc. User interface for diabetes management system
WO2017124006A1 (en) 2016-01-14 2017-07-20 Bigfoot Biomedical, Inc. Adjusting insulin delivery rates
EP3568859A1 (en) 2017-01-13 2019-11-20 Bigfoot Biomedical, Inc. Insulin delivery methods, systems and devices
USD874471S1 (en) 2017-06-08 2020-02-04 Insulet Corporation Display screen with a graphical user interface
US20190051495A1 (en) * 2017-08-10 2019-02-14 Qiwei Liang Microwave Reactor For Deposition or Treatment of Carbon Compounds
USD928199S1 (en) 2018-04-02 2021-08-17 Bigfoot Biomedical, Inc. Medication delivery device with icons
CN109037104B (zh) * 2018-07-23 2020-04-14 华进半导体封装先导技术研发中心有限公司 半导体清洗设备及利用该设备清洗通孔的方法
WO2020026823A1 (ja) * 2018-08-01 2020-02-06 株式会社ニコン ミスト発生装置、並びにミスト成膜方法、及びミスト成膜装置
USD920343S1 (en) 2019-01-09 2021-05-25 Bigfoot Biomedical, Inc. Display screen or portion thereof with graphical user interface associated with insulin delivery
USD977502S1 (en) 2020-06-09 2023-02-07 Insulet Corporation Display screen with graphical user interface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456945A (en) * 1988-12-27 1995-10-10 Symetrix Corporation Method and apparatus for material deposition
US5514822A (en) * 1991-12-13 1996-05-07 Symetrix Corporation Precursors and processes for making metal oxides

Also Published As

Publication number Publication date
JP2001500318A (ja) 2001-01-09
KR100327839B1 (ko) 2002-04-17
US5759923A (en) 1998-06-02
TW356558B (en) 1999-04-21
KR19990087764A (ko) 1999-12-27
EP0891631A1 (en) 1999-01-20
WO1997034320A1 (en) 1997-09-18
CN1213457A (zh) 1999-04-07
WO1997034320A9 (en) 1999-12-16

Similar Documents

Publication Publication Date Title
JP3788627B2 (ja) 集積回路にシリコンジオキシドおよびシリコンガラス層を形成する方法および装置
US5614252A (en) Method of fabricating barium strontium titanate
US5456945A (en) Method and apparatus for material deposition
US6056994A (en) Liquid deposition methods of fabricating layered superlattice materials
JP4010343B2 (ja) 改良ミストおよびミストフローを有するミスト状前駆体の堆積装置および方法
US6143063A (en) Misted precursor deposition apparatus and method with improved mist and mist flow
US5688565A (en) Misted deposition method of fabricating layered superlattice materials
US6511718B1 (en) Method and apparatus for fabrication of thin films by chemical vapor deposition
JP4449226B2 (ja) 金属酸化膜の改質方法、金属酸化膜の成膜方法及び熱処理装置
US6110531A (en) Method and apparatus for preparing integrated circuit thin films by chemical vapor deposition
JP3390517B2 (ja) 液体原料用cvd装置
JP3788628B2 (ja) ヘキサメチル―ジシラザンを用いる薄膜の液体源形成
KR20010110429A (ko) 액체 점성 및 다른 전구체 특성의 선택에 의한 액체증착의 개선
JP3973051B2 (ja) プライマを用いて材料を堆積させる方法および装置
US5965219A (en) Misted deposition method with applied UV radiation
JP2000512076A (ja) 薄膜の噴霧液体源蒸着を高い歩留まりを伴って行うための方法と装置
CN1180447A (zh) 使用底层涂料的材料沉积方法及装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050216

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20050930

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees